JP2015010757A - Triple-tube type heat exchanger - Google Patents
Triple-tube type heat exchanger Download PDFInfo
- Publication number
- JP2015010757A JP2015010757A JP2013135933A JP2013135933A JP2015010757A JP 2015010757 A JP2015010757 A JP 2015010757A JP 2013135933 A JP2013135933 A JP 2013135933A JP 2013135933 A JP2013135933 A JP 2013135933A JP 2015010757 A JP2015010757 A JP 2015010757A
- Authority
- JP
- Japan
- Prior art keywords
- tube
- inner tube
- pipe
- heat exchanger
- triple
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000012530 fluid Substances 0.000 claims abstract description 50
- 230000002093 peripheral effect Effects 0.000 claims abstract description 10
- 238000001514 detection method Methods 0.000 claims description 64
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- 239000000463 material Substances 0.000 description 10
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- 238000005253 cladding Methods 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000003507 refrigerant Substances 0.000 description 5
- 239000007769 metal material Substances 0.000 description 3
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 1
- 229910000861 Mg alloy Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Landscapes
- Details Of Fluid Heaters (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Description
本発明は、3重管式熱交換器に関し、特に内管とこの内管に外嵌された漏洩検知管からなる2重構造の多葉管を外管の内部に収容した3重管式熱交換器に関する。 The present invention relates to a triple-pipe heat exchanger, and more particularly, a triple-pipe heat in which a multi-leaf tube having a double structure including an inner pipe and a leak detection pipe fitted to the inner pipe is accommodated inside the outer pipe. Regarding the exchanger.
ガス燃焼式熱源機やヒートポンプ式熱源機や燃料電池等で加熱した湯水を貯湯する貯湯給湯装置、湯水を用いる暖房装置、その他の種々の産業分野においては、高温の流体と低温の流体との間で熱交換させる為の種々の熱交換器が使用されている。 In hot water storage and hot water storage devices that store hot water heated by gas combustion heat source devices, heat pump heat source devices, fuel cells, etc., heating devices that use hot water, and other various industrial fields, there is a gap between hot and cold fluids. Various heat exchangers for heat exchange are used.
特に、2重管式熱交換器は、熱交換性能に優れ且つ製作費の面で有利であるため広く採用されており、最近では内管として管壁が周方向に山部と谷部を繰り返す波形形状をなす多葉管を用い、その多葉管を外管の内部に収納した2重管式熱交換器も採用されている。 In particular, the double-pipe heat exchanger has been widely adopted because it has excellent heat exchange performance and is advantageous in terms of manufacturing cost. Recently, the pipe wall as an inner pipe repeats crests and troughs in the circumferential direction. A double tube heat exchanger in which a multi-leaf tube having a corrugated shape is used and the multi-leaf tube is housed inside an outer tube is also employed.
例えば、特許文献1に開示された2重管式熱交換器においては、山部と谷部を周方向に交互に繰り返す波形形状の多葉管からなる内管を外管の内部に収納し、6つの山部の頂部を外管の内周面に密着させ、6つの谷部は相互に離間した状態に形成されている。 For example, in the double-pipe heat exchanger disclosed in Patent Document 1, an inner tube made up of a corrugated multi-leaf tube that alternately repeats crests and valleys in the circumferential direction is housed inside the outer tube, The tops of the six peaks are brought into close contact with the inner peripheral surface of the outer tube, and the six valleys are formed in a state of being separated from each other.
ここで、例えば貯湯給湯装置に用いる2重管式熱交換器において、例えば内管内に冷媒を流し、内管と外管との間の隙間に湯水を流すような場合に、内管に亀裂が発生すると冷媒が漏洩して湯水に混入する虞がある。 Here, for example, in a double-pipe heat exchanger used in a hot water storage and hot water supply apparatus, for example, when a coolant is caused to flow in the inner pipe and hot water is caused to flow in a gap between the inner pipe and the outer pipe, the inner pipe is cracked. If generated, the refrigerant may leak and be mixed into the hot water.
そこで、特許文献2には、管部材の内部を流れる流体が管部材の外部へ漏出した場合に、その漏洩を検知すると共に漏洩した流体が管部材の外側の流体に混入するのを防止するため、内周面に多数条の漏洩検知溝を形成した漏洩検知用外管を、前記管部材に密着状に外嵌させた2重構造漏洩検知管が開示されている。 Therefore, in Patent Document 2, when the fluid flowing inside the tube member leaks to the outside of the tube member, the leakage is detected and the leaked fluid is prevented from being mixed into the fluid outside the tube member. In addition, a double structure leak detection tube is disclosed in which a leak detection outer tube having a large number of leak detection grooves formed on the inner peripheral surface thereof is tightly fitted to the tube member.
特許文献3の放熱器は、ヒートポンプ給湯機の貯湯タンク内に設置されるものであり、この放熱器は、3本の円形断面の伝熱管を離隔して配置し、これら伝熱管の外表面を被覆管で被覆した構造である。被覆管は、伝熱管の内部の冷媒が伝熱管から漏洩した場合に、その冷媒が被覆管の外側の流体に混入するのを防止するものである。 The radiator of Patent Document 3 is installed in a hot water storage tank of a heat pump water heater, and this radiator disposes three circular cross-section heat transfer tubes apart from each other, and the outer surfaces of these heat transfer tubes are arranged. The structure is covered with a cladding tube. The cladding tube prevents the refrigerant inside the heat transfer tube from entering the fluid outside the cladding tube when the refrigerant leaks from the heat transfer tube.
特許文献1に記載のような2重管式熱交換器において、多葉管からなる内管の外側に被覆管としての漏洩検知管を設け、この漏洩検知管の内面の全域に特許文献2に記載の多数条の漏洩検知溝を形成することが考えられる。
しかし、その2重管式熱交換器では、多数条の漏洩検知溝には空気層があるため、また、内管と漏洩検知管の間の伝熱面積が小さくなるため、熱交換性能を高めることが困難であるだけでなく、多数条の漏洩検知溝を形成する加工費も高価になる。
In a double-pipe heat exchanger as described in Patent Document 1, a leak detection tube as a cladding tube is provided outside the inner tube made of a multi-leaf tube, and Patent Document 2 covers the entire inner surface of the leak detection tube. It is conceivable to form a large number of leak detection grooves as described.
However, in the double pipe heat exchanger, since there are air layers in the multiple leak detection grooves, and the heat transfer area between the inner pipe and the leak detection pipe is reduced, the heat exchange performance is improved. This is not only difficult, but the processing cost for forming a large number of leakage detection grooves is also expensive.
特許文献3の放熱器を2重管式熱交換器に適用可能であるとしても、この放熱器は3本の円形断面の伝熱管を被覆管で被覆した構造であるため、伝熱管の部材数が多く、製作費が高価になる。 Even if the radiator of Patent Document 3 can be applied to a double-pipe heat exchanger, this radiator has a structure in which three circular cross-section heat transfer tubes are covered with a cladding tube, so the number of members of the heat transfer tube Many manufacturing costs are high.
本発明の目的は、内管と漏洩検知管とを周方向に山部と谷部を繰り返す多葉管に構成しながら高い熱交換性能を確保できる3重管式熱交換器を提供することである。 An object of the present invention is to provide a triple pipe heat exchanger that can ensure high heat exchange performance while constituting an inner tube and a leak detection tube in a multi-leaf tube that repeats a crest and a trough in the circumferential direction. is there.
請求項1の3重管式熱交換器は、管壁が周方向に山部と谷部が繰り返す波形形状をなす多葉管からなる内管と、この内管と略同形状の多葉管からなり且つ内管に外嵌させて内管の外周面近傍部に配置された漏洩検知管と、前記内管と漏洩検知管とが内部に収納された外管とを備え、前記内管の内部を流れる流体と、前記漏洩検知管と前記外管との間の隙間に流れる流体との間で熱交換可能に構成した3重管式熱交換器であって、前記内管と前記漏洩検知管の多葉管の軸心直交断面の断面形状は、山部と谷部とを接続する直線部を有し、少なくとも前記直線部において前記内管と前記漏洩検知管とが密着していることを特徴としている。 The triple pipe heat exchanger according to claim 1 includes an inner tube made of a multi-leaf tube having a corrugated shape in which a tube wall repeats a crest and a trough in the circumferential direction, and a multi-leaf tube having substantially the same shape as the inner tube. A leakage detection tube that is externally fitted to the inner tube and disposed in the vicinity of the outer peripheral surface of the inner tube, and an outer tube in which the inner tube and the leakage detection tube are housed. A triple-pipe heat exchanger configured to be able to exchange heat between a fluid flowing inside and a fluid flowing in a gap between the leak detection tube and the outer tube, the inner tube and the leak detection The cross-sectional shape of the axial cross section of the multi-leaf tube of the tube has a straight portion connecting the peak portion and the valley portion, and the inner tube and the leak detection tube are in close contact with each other at least in the straight portion. It is characterized by.
請求項2の3重管式熱交換器は、請求項1の発明において、前記内管の山部の大部分は前記漏洩検知管の山部に密着すると共に、前記漏洩検知管の山部の大部分が前記外管に密着していることを特徴としている。 The triple pipe heat exchanger according to claim 2 is the invention according to claim 1, wherein most of the crests of the inner tube are in close contact with the crests of the leak detection tube and the crests of the leak detection tube Mostly, it is characterized by being in close contact with the outer tube.
請求項1の発明によれば、多葉管からなる内管と、この内管と略同形状の多葉管からなり且つ内管に外嵌させて内管の外周面近傍部に配置された漏洩検知管と、前記内管と漏洩検知管とが内部に収納された外管とを備えた3重管式熱交換器であり、前記内管と前記漏洩検知管の多葉管の軸心直交断面の断面形状は、山部と谷部とを接続する直線部を有し、少なくとも前記直線部において前記内管と前記漏洩検知管とが密着しているため、内管と漏洩検知管間の熱交換性能に優れるから、内管内を流れる流体と漏洩検知管と外管との間の隙間を流れる流体との間で熱交換する熱交換性能に優れたものとなる。
しかも、前記直線部において前記内管と前記漏洩検知管とが密着しているため、内管と漏洩検知管との一体性が高まり、流体から伝播する振動に対する剛性を高める上でも有利である。
According to the first aspect of the present invention, the inner tube is composed of a multi-leaf tube, and is composed of a multi-leaf tube having substantially the same shape as the inner tube, and is fitted on the inner tube and arranged in the vicinity of the outer peripheral surface of the inner tube. A triple tube heat exchanger comprising a leak detection tube and an outer tube in which the inner tube and the leak detection tube are housed, and an axial center of the inner tube and the multi-leaf tube of the leak detection tube The cross-sectional shape of the orthogonal cross section has a straight portion connecting the peak portion and the trough portion, and at least the straight tube has the inner tube and the leak detection tube in close contact with each other. Therefore, the heat exchange performance for exchanging heat between the fluid flowing in the inner tube and the fluid flowing in the gap between the leak detection tube and the outer tube is excellent.
In addition, since the inner tube and the leak detection tube are in close contact with each other in the linear portion, the inner tube and the leak detection tube are more integrated, which is advantageous in increasing the rigidity against vibrations propagated from the fluid.
請求項2の発明によれば、前記内管の山部の大部分は前記漏洩検知管の山部に密着すると共に、前記漏洩検知管の山部の大部分が前記外管に密着しているため、3重管式熱交換器の全体の剛性を高めることができる。 According to the invention of claim 2, most of the crests of the inner tube are in close contact with the crests of the leak detection tube, and most of the crests of the leak detection tube are in close contact with the outer tube. Therefore, the overall rigidity of the triple pipe heat exchanger can be increased.
以下、本発明を実施するための形態について実施例に基づいて説明する。 Hereinafter, modes for carrying out the present invention will be described based on examples.
本発明に係る3重管式熱交換器1について図1〜図4に基づいて説明する。
この3重管式熱交換器1は、内管2と漏洩検知管3と外管4とを備えている。内管2と漏洩検知管3と外管4は、例えばリン脱酸銅製の円形断面の水道用銅管又はこれと同等品からなる所定の長さの素材管を用いて製作される。素材管の管壁の厚さは例えば0.6〜1.0mmで、3重管式熱交換器の外径は例えば16〜20mmである。但し、これらの数値は例示でありこれらに限定されるものではない。
A triple-pipe heat exchanger 1 according to the present invention will be described with reference to FIGS.
The triple tube heat exchanger 1 includes an inner tube 2, a leak detection tube 3, and an outer tube 4. The inner pipe 2, the leak detection pipe 3, and the outer pipe 4 are manufactured using a material pipe having a predetermined length made of, for example, a copper pipe for water tap having a circular cross section made of phosphorous deoxidized copper or an equivalent product thereof. The thickness of the tube wall of the material pipe is, for example, 0.6 to 1.0 mm, and the outer diameter of the triple pipe heat exchanger is, for example, 16 to 20 mm. However, these numerical values are illustrative and are not limited thereto.
内管2は、管壁が周方向に山部2bと谷部2aが繰り返す波形形状をなす多葉管に構成されている。漏洩検知管3は、内管2とほぼ同形状の多葉管からなり、内管2に外嵌させて内管2の外周面近傍部に配置されている。外管4の内部に内管2と漏洩検知管3とが収納されている。 The inner tube 2 is configured as a multi-leaf tube having a corrugated shape in which the tube wall repeats a crest 2b and a trough 2a in the circumferential direction. The leak detection tube 3 is a multi-leaf tube having substantially the same shape as the inner tube 2, and is fitted on the inner tube 2 and arranged in the vicinity of the outer peripheral surface of the inner tube 2. An inner tube 2 and a leak detection tube 3 are housed inside the outer tube 4.
内管2の内部には、4つの谷部2aで囲まれた流体通路5aと4つの山部2b内側の流体通路5bとからなる内側流体通路5が形成され、漏洩検知管3と外管4との間には4つのほぼ三角形断面の流体通路6aからなる外側流体通路6が形成され、内管2の内部(内側流体通路5)を流れる流体(例えばヒートポンプ用冷媒)と、漏洩検知管3と外管4との間の隙間6a(外側流体通路6)を流れる流体(例えば給湯用湯水)との間で熱交換可能に構成してある。 Inside the inner pipe 2, an inner fluid passage 5 is formed which is composed of a fluid passage 5 a surrounded by four valleys 2 a and four fluid passages 5 b inside the crest 2 b, and a leak detection pipe 3 and an outer pipe 4 are formed. The outer fluid passage 6 including four fluid passages 6a having a substantially triangular cross section is formed between the fluid and the fluid (for example, a heat pump refrigerant) flowing inside the inner tube 2 (inner fluid passage 5), and the leak detection tube 3. Heat exchange with a fluid (for example, hot water for hot water supply) flowing through a gap 6a (outer fluid passage 6) between the outer pipe 4 and the outer pipe 4 is possible.
内管2と漏洩検知管3を製作する際には、内管2の素材管を漏洩検知管3の素材管に挿入した2重管を加工することで2重構造の多葉管7(以下、2重多葉管という)に製作する。この2重多葉管7を外管4の素材管に挿入した状態で、少なくとも外管4を縮径加工することで3重管式熱交換器1を製作する。尚、2重多葉管7と外管4の両方を縮径加工してもよい。
この3重管式熱交換器1の製作段階においては、例えば6mの長さのストレート形状の熱交換器に製作し、その後所望の長さに切断したものを例えば複数回螺旋状に巻回したコイル形状の3重管式熱交換器にして使用に供される。
When the inner tube 2 and the leak detection tube 3 are manufactured, a double-walled multi-leaf tube 7 (hereinafter referred to as a double tube) is formed by processing a double tube in which the material tube of the inner tube 2 is inserted into the material tube of the leak detection tube 3. 2). In a state where the double multi-leaf tube 7 is inserted into the material tube of the outer tube 4, at least the outer tube 4 is reduced in diameter to manufacture the triple tube heat exchanger 1. Note that both the double multi-leaf tube 7 and the outer tube 4 may be reduced in diameter.
In the manufacturing stage of the triple tube heat exchanger 1, a straight heat exchanger having a length of 6 m, for example, is manufactured, and then cut into a desired length, for example, spirally wound a plurality of times. The coil-shaped triple tube heat exchanger is used for use.
この2重多葉管7は、図2に示すように、所定のリード角をもって螺旋状に捩じった形状に構成されている。前記所定のリード角は、軸心方向に例えば300〜500mm移行する毎に1回転するような角度である。上記の捩じりを付加してあるため、3重管式熱交換器1をコイル状に巻回した構造の熱交換器に構成する際に巻回しやすくなる上、3重管式熱交換器1内を流れる流体に対する攪拌作用が得られる。但し、上記の捩じりは必須のものではなく省略してもよい。 As shown in FIG. 2, the double multi-leaf tube 7 is formed in a spirally twisted shape with a predetermined lead angle. The predetermined lead angle is an angle that makes one rotation for every 300 to 500 mm in the axial direction, for example. Since the above twist is added, it becomes easy to wind the triple tube heat exchanger 1 when it is configured as a heat exchanger having a coil structure, and the triple tube heat exchanger A stirring action can be obtained with respect to the fluid flowing through the inside of the tank. However, the above twisting is not essential and may be omitted.
内管2は、4つの谷部2aと4つの山部2bとを有し、谷部2aは円弧的な形状であり、山部2bは円弧の両端部に湾曲部を付けた形状である。4つの谷部2aは、中心部の断面略正方形の流体通路5aの回りに周方向に90°間隔に配置され、各谷部2aの先端近傍部は周方向に隣接する谷部2aと接触している。それ故、3重管式熱交換器1の中心側部分において内管2の剛性が高まり、流体から伝播する振動等によって破損しにくくなる。 The inner pipe 2 has four valleys 2a and four peaks 2b, the valley 2a has an arc shape, and the peaks 2b have a shape with curved portions at both ends of the arc. The four valley portions 2a are arranged at 90 ° intervals in the circumferential direction around the fluid passage 5a having a substantially square cross section at the center, and the vicinity of the tip of each valley portion 2a is in contact with the valley portion 2a adjacent in the circumferential direction. ing. Therefore, the rigidity of the inner pipe 2 is increased at the center side portion of the triple-pipe heat exchanger 1, and the inner pipe 2 is less likely to be damaged by vibrations propagated from the fluid.
漏洩検知管3は、4つの谷部3aと4つの山部3bとを有し、谷部3aは円弧的な形状であり、山部3bは円弧の両端部に湾曲部を付けた形状である。各谷部3aは対応する内管2の谷部2aの外面の近傍部に位置し、内管2の各谷部2aとそれに対応する漏洩検知管3の谷部3aの間に三日月形の流体が流通し得る隙間8が形成されている。そのため、内管2から例えば冷媒が隙間8に漏洩した場合には、それを検知することで、内管2からの流体の漏洩の発生を確実に検知することができる。尚、谷部2aの曲率半径が小さく、大きな応力が発生して破損しやすいため、谷部2aと谷部3aの間に隙間8を形成することで、内管2からの漏洩を検知しやすくなる。 The leak detection tube 3 has four valleys 3a and four peaks 3b, the valleys 3a have an arc shape, and the peaks 3b have a shape with curved portions at both ends of the arc. . Each trough 3a is located in the vicinity of the outer surface of the trough 2a of the corresponding inner pipe 2, and a crescent-shaped fluid is provided between each trough 2a of the inner pipe 2 and the corresponding trough 3a of the leak detection pipe 3. A gap 8 through which can be circulated is formed. Therefore, for example, when a refrigerant leaks from the inner tube 2 into the gap 8, the occurrence of fluid leakage from the inner tube 2 can be reliably detected by detecting it. In addition, since the curvature radius of the trough part 2a is small and it is easy to generate | occur | produce and damage a big stress, it is easy to detect the leak from the inner tube 2 by forming the clearance gap 8 between the trough part 2a and the trough part 3a. Become.
内管2の多葉管の軸心直交断面の断面形状は、山部2bと谷部2aとを接続する直線部2cを有し、漏洩検知管3の多葉管の軸心直交断面の断面形状は、山部3bと谷部3aとを接続する直線部3cを有し、内管2の直線部2cと、それに対向する漏洩検知管3の直線部3cとが面接触状に密着している。尚、直線部2c,3cは螺旋状に捩じられた帯板状管壁であり、このように、帯板状管壁2c,3cが密着しているため、内側流体通路5内を流れる流体と、外側流体通路6内を流れる流体との間の熱交換性能が高くなる。しかも、内管2と漏洩検知管3の一体性が高まるため、剛性を確保する上で有利である。
尚、山部2bとそれに連なる1対の直線部2cは、開角が約45°の扇形に形成されており、漏洩検知管3についても同様である。
The cross-sectional shape of the cross-section orthogonal to the axis of the multi-leaf tube of the inner tube 2 has a straight portion 2c that connects the peak 2b and the valley 2a, and the cross-section of the cross-section orthogonal to the axis of the multi-leaf tube of the leak detection tube 3 The shape includes a straight portion 3c that connects the peak portion 3b and the trough portion 3a, and the straight portion 2c of the inner tube 2 and the straight portion 3c of the leak detection tube 3 opposed to the straight portion 3c are in close contact with each other. Yes. Note that the straight portions 2c and 3c are strip-like tube walls twisted in a spiral shape, and the fluid flowing through the inner fluid passage 5 since the strip-like tube walls 2c and 3c are in close contact. And the heat exchange performance between the fluid flowing in the outer fluid passage 6 is enhanced. In addition, since the integrity of the inner tube 2 and the leak detection tube 3 is increased, it is advantageous in securing rigidity.
The peak portion 2b and the pair of linear portions 2c connected to the peak portion 2b are formed in a fan shape with an opening angle of about 45 °, and the same applies to the leak detection tube 3.
内管2の山部2bの大部分は漏洩検知管3の山部3bの内面に面接触状に密着すると共に、漏洩検知管3の山部3bの大部分が外管4の内面に面接触状に密着している。そのため、3重管式熱交換器1の全体の剛性を高めることができる上、内側流体通路5内を流れる流体と外側流体通路6内を流れる流体との間の熱交換性能も高くなる。
また、内管3の各山部2bの両側部において、内管2と漏洩検知管3との間に小さな三日月形の隙間9が形成されている。これは、山部2bの両側部も曲率半径が小さいため、大きな応力が発生する可能性が高いからである。
Most of the crest 2b of the inner tube 2 is in close contact with the inner surface of the crest 3b of the leak detection tube 3, and most of the crest 3b of the leak detection tube 3 is in surface contact with the inner surface of the outer tube 4. It is closely attached to the shape. Therefore, the overall rigidity of the triple pipe heat exchanger 1 can be increased, and the heat exchange performance between the fluid flowing in the inner fluid passage 5 and the fluid flowing in the outer fluid passage 6 is also improved.
Further, a small crescent-shaped gap 9 is formed between the inner tube 2 and the leak detection tube 3 on both sides of each peak portion 2 b of the inner tube 3. This is because both sides of the ridge 2b have a small radius of curvature, and thus there is a high possibility that a large stress will occur.
次に、上記の3重管式熱交換器1の作用、効果については、以上の説明において詳しく説明したとおりであるので、以下に簡単に説明する。
この3重管式熱交換器1においては、内管2と漏洩検知管3とで2重多葉管7を構成し、この2重多葉管7を外管4の内部に収納したので、内側流体通路5内の流体と外側流体通路6内の流体との間で熱交換する伝熱面積を大きくすることができる。その結果、熱交換性能の高い3重管式熱交換器1となる。
Next, since the operation and effect of the triple pipe heat exchanger 1 are as described in detail in the above description, they will be briefly described below.
In the triple tube heat exchanger 1, the inner tube 2 and the leak detection tube 3 constitute a double multi-leaf tube 7, and the double multi-leaf tube 7 is housed inside the outer tube 4. The heat transfer area for heat exchange between the fluid in the inner fluid passage 5 and the fluid in the outer fluid passage 6 can be increased. As a result, the triple pipe heat exchanger 1 with high heat exchange performance is obtained.
漏洩検知管3を内管2に外嵌させて内管2の外周面近傍部に配置したため、内管2の外周面の大部分が漏洩検知管3の内周面の大部分に面接触する構造になった。そのため、熱交換性能を高めることができた。しかも、仮に内管2から流体が漏洩したとしても、漏洩検知管3内に閉じ込められて、外側流体通路6へは漏洩しないため、3重管式熱交換器1の品質と信頼性を高めることができた。また、内管2が1本の素材管から構成されるため、部材数が少なくなり、製作費を節減できる。 Since the leak detection tube 3 is externally fitted to the inner tube 2 and disposed in the vicinity of the outer peripheral surface of the inner tube 2, most of the outer peripheral surface of the inner tube 2 is in surface contact with most of the inner peripheral surface of the leak detection tube 3. It became a structure. Therefore, the heat exchange performance could be improved. In addition, even if fluid leaks from the inner pipe 2, it is confined in the leak detection pipe 3 and does not leak to the outer fluid passage 6, thereby improving the quality and reliability of the triple pipe heat exchanger 1. I was able to. Further, since the inner tube 2 is composed of one material tube, the number of members is reduced, and the manufacturing cost can be reduced.
谷部2a,3a間に隙間8を形成するため、内管2から流体が漏洩した場合に、隙間8を介してその漏洩を検知することができる。直線部2c,3c同士を面接触状に密着させたため、熱交換性能を高めることができた。そして、内管2の谷部2aの先端近傍部が隣接する谷部2aに密着しているため、3重管式熱交換器1の中心側部分における内管2の剛性と、2重多葉管7の剛性を高めることができる。 Since the gap 8 is formed between the valley portions 2a and 3a, when the fluid leaks from the inner pipe 2, the leakage can be detected through the gap 8. Since the straight portions 2c and 3c were brought into close contact with each other, heat exchange performance could be improved. Since the vicinity of the tip of the valley portion 2a of the inner tube 2 is in close contact with the adjacent valley portion 2a, the rigidity of the inner tube 2 in the center side portion of the triple tube heat exchanger 1 and the double multi-leaf The rigidity of the tube 7 can be increased.
内管2の山部2bの大部分が漏洩検知管3の山部3bの内面に密着し、漏洩検知管3の山部3bの大部分が外管4の内面に面接触状に密着しているため、3重管式熱交換器1の全体の剛性を高めることができる上、熱交換性能も高めることができる。2重多葉管7が螺旋状に捩じられているため、3重管式熱交換器1をコイル状に巻回して熱交換器にする場合に、巻回しやすくなり、内側流体通路5と外側流体通路6内を流れる流体に対する攪拌作用が得られる。 Most of the crest 2b of the inner tube 2 is in close contact with the inner surface of the crest 3b of the leak detection tube 3, and most of the crest 3b of the leak detection tube 3 is in intimate contact with the inner surface of the outer tube 4. Therefore, the overall rigidity of the triple pipe heat exchanger 1 can be increased, and the heat exchange performance can also be improved. Since the double multi-leaf tube 7 is spirally twisted, when the triple tube heat exchanger 1 is wound into a coil shape to make a heat exchanger, it becomes easy to wind the inner fluid passage 5 and A stirring action for the fluid flowing in the outer fluid passage 6 is obtained.
次に、前記実施例を部分的に変更する例について説明する。
1)内管2と漏洩検知管3からなる2重多葉管7における、谷部2a,3aの数と山部2b,3bの数は、4に限らず、3又は5以上でもよい。
Next, an example in which the above embodiment is partially changed will be described.
1) The number of valleys 2a and 3a and the number of peaks 2b and 3b in the double multi-leaf tube 7 including the inner tube 2 and the leakage detection tube 3 are not limited to four, and may be three or five or more.
2)内管2と漏洩検知管3と外管4の素材管の金属材料は、リン脱酸銅に限るものではなく、その他の種々の銅材料でもよく、銅以外の金属(例えば、アルミニウムやその合金、真鍮、マグネシウム合金、チタンなど)であってもよい。内管2と漏洩検知管3と外管4を同種の金属材料の素材管から製作するとは限らず、異なる種類の金属材料の素材管から製作してもよい。また、内管2の管壁の厚さと漏洩検知管3の管壁の厚さは同じでもよく、異なっていてもよい。 2) The metal material of the material tube of the inner tube 2, the leak detection tube 3 and the outer tube 4 is not limited to phosphorous deoxidized copper, but may be other various copper materials, and may be a metal other than copper (for example, aluminum or The alloy, brass, magnesium alloy, titanium, etc.) may be used. The inner tube 2, the leak detection tube 3, and the outer tube 4 are not necessarily manufactured from a material tube of the same kind of metal material, but may be manufactured from a material tube of a different kind of metal material. Moreover, the thickness of the tube wall of the inner tube 2 and the thickness of the tube wall of the leak detection tube 3 may be the same or different.
3)3重管式熱交換器1の断面の外形輪郭の形状を、円形以外の形状(例えば、楕円形、長円形など)に構成することも可能である。
4)3重管式熱交換器1の外径は、前記実施例に記載のものに限定されるものではなく、種々の外径に設定することができる。
5)その他、当業者であれば、本発明の趣旨を逸脱することなく、前記実施例に種々の変更を付加した形態で実施することができる。
3) The shape of the outer contour of the cross section of the triple-pipe heat exchanger 1 can be configured to have a shape other than a circle (for example, an ellipse or an oval).
4) The outer diameter of the triple pipe heat exchanger 1 is not limited to the one described in the above embodiment, and can be set to various outer diameters.
5) In addition, those skilled in the art can implement the present invention in a form in which various modifications are added without departing from the spirit of the present invention.
2種類の流体間の熱交換に供する3重管式熱交換器であって、種々の産業分野で利用可能な3重管式熱交換器が開示されている。 A triple-pipe heat exchanger that is used for heat exchange between two kinds of fluids and that can be used in various industrial fields is disclosed.
1 3重管式熱交換器
2 内管
2a 谷部
2b 山部
2c 直線部
3 漏洩検知管
3a 谷部
3b 山部
3c 直線部
4 外管
5 内側流体通路
6 外側流体通路
7 2重多葉管
8 隙間
9 隙間
DESCRIPTION OF SYMBOLS 1 Triple pipe type heat exchanger 2 Inner pipe 2a Valley part 2b Mountain part 2c Straight line part 3 Leakage detection pipe 3a Valley part 3b Mountain part 3c Straight line part 4 Outer pipe 5 Inner fluid path 6 Outer fluid path 7 Double multileaf pipe 8 Clearance 9 Clearance
Claims (2)
前記内管と前記漏洩検知管の多葉管の軸心直交断面の断面形状は、山部と谷部とを接続する直線部を有し、少なくとも前記直線部において前記内管と前記漏洩検知管とが密着していることを特徴とする3重管式熱交換器。 An inner tube consisting of a multi-leaf tube having a corrugated shape in which the crest and trough are repeated in the circumferential direction in the circumferential direction, and a multi-leaf tube having substantially the same shape as this inner tube, and is fitted to the inner tube to be fitted to the inner tube. A leakage detection tube disposed in the vicinity of the outer peripheral surface; an outer tube in which the inner tube and the leakage detection tube are housed; a fluid flowing in the inner tube; the leakage detection tube; A triple pipe heat exchanger configured to be able to exchange heat with a fluid flowing in a gap between the pipes;
The cross-sectional shape of the cross-section of the inner tube and the multi-leaf tube of the leak detection tube that is orthogonal to the axial center has a straight portion connecting a peak and a valley, and at least the straight tube has the inner tube and the leak detection tube. And a triple tube heat exchanger characterized by the fact that they are in close contact with each other.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013135933A JP6211313B2 (en) | 2013-06-28 | 2013-06-28 | Triple tube heat exchanger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013135933A JP6211313B2 (en) | 2013-06-28 | 2013-06-28 | Triple tube heat exchanger |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015010757A true JP2015010757A (en) | 2015-01-19 |
JP6211313B2 JP6211313B2 (en) | 2017-10-11 |
Family
ID=52304075
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013135933A Active JP6211313B2 (en) | 2013-06-28 | 2013-06-28 | Triple tube heat exchanger |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6211313B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017026265A (en) * | 2015-07-27 | 2017-02-02 | 株式会社ノーリツ | Multi-tubular condensation heat exchanger |
JP2017026266A (en) * | 2015-07-27 | 2017-02-02 | 株式会社ノーリツ | Multi-tubular condensation heat exchanger |
US10401055B2 (en) * | 2017-03-03 | 2019-09-03 | Trane International Inc. | Reduced drag combustion pass in a tubular heat exchanger |
JP2020029999A (en) * | 2018-08-23 | 2020-02-27 | 株式会社ノーリツ | Triple pipe type heat exchanger |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4372374A (en) * | 1980-01-15 | 1983-02-08 | Ateliers Des Charmilles S.A. | Vented heat transfer tube assembly |
JP2000102820A (en) * | 1998-09-28 | 2000-04-11 | Nishiyama Seisakusho:Kk | Manufacture of specially shaped pipe having wall, cross section of which is incurvated in convexo-concave shape around central axis |
JP2002013882A (en) * | 2000-06-30 | 2002-01-18 | Matsushita Refrig Co Ltd | Double pipe heat exchanger and refrigerating cycle device using it |
JP2006078062A (en) * | 2004-09-08 | 2006-03-23 | Matsushita Electric Ind Co Ltd | Heat exchanger |
JP2006250417A (en) * | 2005-03-10 | 2006-09-21 | Sanyo Electric Co Ltd | Heat pump water heater |
JP2007093034A (en) * | 2005-09-27 | 2007-04-12 | Matsushita Electric Ind Co Ltd | Triple tube heat exchanger |
JP3933083B2 (en) * | 2003-04-07 | 2007-06-20 | 日立電線株式会社 | Manufacturing method of leak detection tube |
JP2008116096A (en) * | 2006-11-02 | 2008-05-22 | Sumitomo Light Metal Ind Ltd | Water heat exchanger for water heater |
JP2008232449A (en) * | 2007-03-16 | 2008-10-02 | Sumitomo Light Metal Ind Ltd | Double tube type heat exchanger and its manufacturing method |
JP2009243715A (en) * | 2008-03-28 | 2009-10-22 | Kobelco & Materials Copper Tube Inc | Leakage detecting tube and heat exchanger |
JP2012189312A (en) * | 2011-02-22 | 2012-10-04 | Fuji Electric Retail Systems Co Ltd | Heat exchanger |
JP2013053804A (en) * | 2011-09-03 | 2013-03-21 | Nishiyama Seisakusho Co Ltd | Structure of triple pipe, and heat exchanger |
JP2013127321A (en) * | 2011-12-16 | 2013-06-27 | Kobelco & Materials Copper Tube Inc | Heat transfer tube having leakage detection function, and outer tube used for the same |
-
2013
- 2013-06-28 JP JP2013135933A patent/JP6211313B2/en active Active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4372374A (en) * | 1980-01-15 | 1983-02-08 | Ateliers Des Charmilles S.A. | Vented heat transfer tube assembly |
JP2000102820A (en) * | 1998-09-28 | 2000-04-11 | Nishiyama Seisakusho:Kk | Manufacture of specially shaped pipe having wall, cross section of which is incurvated in convexo-concave shape around central axis |
JP2002013882A (en) * | 2000-06-30 | 2002-01-18 | Matsushita Refrig Co Ltd | Double pipe heat exchanger and refrigerating cycle device using it |
JP3933083B2 (en) * | 2003-04-07 | 2007-06-20 | 日立電線株式会社 | Manufacturing method of leak detection tube |
JP2006078062A (en) * | 2004-09-08 | 2006-03-23 | Matsushita Electric Ind Co Ltd | Heat exchanger |
JP2006250417A (en) * | 2005-03-10 | 2006-09-21 | Sanyo Electric Co Ltd | Heat pump water heater |
JP2007093034A (en) * | 2005-09-27 | 2007-04-12 | Matsushita Electric Ind Co Ltd | Triple tube heat exchanger |
JP2008116096A (en) * | 2006-11-02 | 2008-05-22 | Sumitomo Light Metal Ind Ltd | Water heat exchanger for water heater |
JP2008232449A (en) * | 2007-03-16 | 2008-10-02 | Sumitomo Light Metal Ind Ltd | Double tube type heat exchanger and its manufacturing method |
JP2009243715A (en) * | 2008-03-28 | 2009-10-22 | Kobelco & Materials Copper Tube Inc | Leakage detecting tube and heat exchanger |
JP2012189312A (en) * | 2011-02-22 | 2012-10-04 | Fuji Electric Retail Systems Co Ltd | Heat exchanger |
JP2013053804A (en) * | 2011-09-03 | 2013-03-21 | Nishiyama Seisakusho Co Ltd | Structure of triple pipe, and heat exchanger |
JP2013127321A (en) * | 2011-12-16 | 2013-06-27 | Kobelco & Materials Copper Tube Inc | Heat transfer tube having leakage detection function, and outer tube used for the same |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017026265A (en) * | 2015-07-27 | 2017-02-02 | 株式会社ノーリツ | Multi-tubular condensation heat exchanger |
JP2017026266A (en) * | 2015-07-27 | 2017-02-02 | 株式会社ノーリツ | Multi-tubular condensation heat exchanger |
US10401055B2 (en) * | 2017-03-03 | 2019-09-03 | Trane International Inc. | Reduced drag combustion pass in a tubular heat exchanger |
JP2020029999A (en) * | 2018-08-23 | 2020-02-27 | 株式会社ノーリツ | Triple pipe type heat exchanger |
Also Published As
Publication number | Publication date |
---|---|
JP6211313B2 (en) | 2017-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6032585B2 (en) | Triple tube structure and heat exchanger | |
JP6211313B2 (en) | Triple tube heat exchanger | |
JP5157617B2 (en) | Heat exchanger | |
JP2009264644A (en) | Heat exchanger | |
JP6211330B2 (en) | Manufacturing method of triple tube heat exchanger | |
JP2010038429A (en) | Heat exchanger | |
JP2012007773A (en) | Heat exchanger | |
JP4947162B2 (en) | Heat exchanger | |
JP5404589B2 (en) | Twisted tube heat exchanger | |
JP2012007771A (en) | Heat exchanger | |
JP2015010758A (en) | Triple-tube type heat exchanger | |
JP2010255856A (en) | Heat exchanger and heat pump water heater using the same | |
JP5289088B2 (en) | Heat exchanger and heat transfer tube | |
JP2008175450A (en) | Heat exchanger | |
JP5540683B2 (en) | Heat exchanger and water heater provided with the same | |
JP2010112565A (en) | Heat exchanger | |
JP5431210B2 (en) | Heat transfer tube and heat exchanger | |
JP2010210137A (en) | Heat exchanger | |
JP5531810B2 (en) | Heat exchanger | |
JP6565426B2 (en) | Multi-tube condensation heat exchanger | |
KR20130117898A (en) | Heat exchange pipe and heat exchanger having the same | |
JP2010255980A (en) | Heat exchanger and heat pump water heater using the same | |
JP2010032183A (en) | Heat exchanger | |
KR20120135776A (en) | Heat exchange pipe | |
JP2012007772A (en) | Heat exchanger |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160525 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170223 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170228 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170421 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170908 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170913 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6211313 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |