JP2015006444A - Medical implant with abrasion particles excellent in response of body - Google Patents
Medical implant with abrasion particles excellent in response of body Download PDFInfo
- Publication number
- JP2015006444A JP2015006444A JP2014191211A JP2014191211A JP2015006444A JP 2015006444 A JP2015006444 A JP 2015006444A JP 2014191211 A JP2014191211 A JP 2014191211A JP 2014191211 A JP2014191211 A JP 2014191211A JP 2015006444 A JP2015006444 A JP 2015006444A
- Authority
- JP
- Japan
- Prior art keywords
- substances
- medical implant
- uhmwpe
- preform
- additive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Landscapes
- Materials For Medical Uses (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Prostheses (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
Abstract
Description
本発明は、一般に医療用インプラント、特に、良好な身体応答を引き起こす医療用インプラントに関する。 The present invention relates generally to medical implants, and more particularly to medical implants that cause a good body response.
超高分子量ポリエチレン(「UHMWPE」)は、関節全置換物(total joint replacement)に最もよく使用される支持材料であり、1960年代初頭にJohn Charnleyによって導入された(The UHMWPE Handbook、S. Kurtz編、Elsevier、2004)。それ以来、この材料の高靭性及び良好な機械的性質の結果として、関節全置換術において種々の用途が開発された。UHMWPEは、純粋な形態で使用される、添加剤を含まない最適なポリマーの1つである(ASTM F 648-07)。 Ultra high molecular weight polyethylene (`` UHMWPE '') is the most commonly used support material for total joint replacement and was introduced by John Charnley in the early 1960s (The UHMWPE Handbook, edited by S. Kurtz). Elsevier, 2004). Since then, various applications in total joint replacement have been developed as a result of the high toughness and good mechanical properties of this material. UHMWPE is one of the best polymers without additives, used in pure form (ASTM F 648-07).
「従来の」UHMWPEには優れた臨床実績があるが、インプラントシステムの最大耐用年数は、UHMWPE支持表面から磨耗粒子が放出されるために制限されている(Willert H. G.、Bertram H.、Buchhorn G. H.、Clin Orthop 258、95、1990)。磨耗粒子の負の生物学的作用は、長いインプラント寿命の最も重要な制限因子と考えられる。ヒト組織中へのサブミクロンサイズの磨耗片(wear debris)の遊離は、慢性炎症の原因となる。UHMWPE粒子によって引き起こされた持続的な炎症は、炎症細胞(マクロファージ)を活性化し、それが骨吸収性細胞(破骨細胞)を刺激し、ひいてはインプラントのルースニングを促進する。 Although “traditional” UHMWPE has excellent clinical experience, the maximum useful life of the implant system is limited by the release of wear particles from the UHMWPE bearing surface (Willert HG, Bertram H., Buchhorn GH, Clin Orthop 258, 95, 1990). The negative biological effects of wear particles are considered the most important limiting factor for long implant life. Release of submicron sized wear debris into human tissue causes chronic inflammation. The persistent inflammation caused by UHMWPE particles activates inflammatory cells (macrophages), which stimulate bone resorbable cells (osteoclasts) and thus promote implant loosening.
1970年代には、高架橋UHMWPEが、材料の耐磨耗性を改善する目的で導入された(Oonishi H.、Kadoya Y.、Masuda S.、Journal of Biomedical Materials Research、58、167、2001; Grobbelaar C. J.、du Plessis T. A.、Marais F.、The Journal of Bone and Joint Surgery、60-B、370、1978)。UHMWPE材料は、最大100Mradの高線量でガンマ線照射された。これは、典型的には2.5〜4.0Mradの範囲の線量を受けるガンマ線滅菌UHMWPEとは著しく異なる。このような高線量を使用することによって、材料の架橋プロセスが促進され、それによって耐磨耗性が増大された。したがって、この架橋プロセスは、磨耗粒子の減少、ひいては有害な身体応答反応の減少ももたらした。高架橋材料の欠点は、材料中に遊離基が依然として存在し、それが酸化的分解を引き起こす可能性があることであった。 In the 1970s, viaducted UHMWPE was introduced to improve the wear resistance of materials (Oonishi H., Kadoya Y., Masuda S., Journal of Biomedical Materials Research, 58, 167, 2001; Grobbelaar CJ Du Plessis TA, Marais F., The Journal of Bone and Joint Surgery, 60-B, 370, 1978). UHMWPE material was gamma irradiated at high doses up to 100 Mrad. This is significantly different from gamma sterilized UHMWPE, which typically receives doses in the range of 2.5-4.0 Mrad. By using such a high dose, the material cross-linking process was facilitated, thereby increasing the wear resistance. Thus, this cross-linking process also resulted in a reduction of wear particles and thus a deleterious body response response. The disadvantage of the highly cross-linked material was that free radicals were still present in the material, which could cause oxidative degradation.
ガンマ線のエネルギーは、ポリエチレン鎖の炭素-炭素結合又は炭素-水素結合の一部を破壊して、遊離基を形成するのに十分である。これらの遊離基は、一部分は再結合するが、それらの一部は長寿命であり、インプラント周囲のパッケージング中に存在するか又はパッケージング中に拡散している酸素と反応する可能性がある(Costa L.、Jacobson K.、Bracco P.、Brach del Prever. E. M.、Biomaterials 23、1613、2002)。酸化的分解反応は、材料を脆化させ、それと共に材料の機械的性質を低下させ、インプラントの破壊を引き起こすおそれがある(Kurtz S. M.、Hozack W.、Marcolongo M.、Turner J.、Rimnac C.、Edidin A.、J Arthroplasty 18、68〜78、2003)。 The energy of the gamma rays is sufficient to break some of the carbon-carbon bonds or carbon-hydrogen bonds of the polyethylene chain to form free radicals. Some of these free radicals recombine, but some of them are long-lived and can react with oxygen that is present in or packaged around the implant. (Costa L., Jacobson K., Bracco P., Brach del Prever. EM, Biomaterials 23, 1613, 2002). Oxidative degradation reactions can embrittle the material and, at the same time, reduce the mechanical properties of the material and cause implant failure (Kurtz SM, Hozack W., Marcolongo M., Turner J., Rimnac C. Edidin A., J Arthroplasty 18, 68-78, 2003).
UHMWPEの結晶溶融温度より高い又は低い温度での熱処理による遊離基のクエンチは、以前から知られている(S. Kurtz、The UHMWPE Handbook、Elsevier Academic Press、2004、p.112)。したがって、残留遊離基は熱処理プロセスの間にクエンチされるので、1990年代に、照射プロセス後に熱処理(アニール又は再溶融)することによって向上した磨耗安定性と酸化安定性とを兼備させた高架橋材料を開発した。 Free radical quenching by heat treatment above or below the crystal melting temperature of UHMWPE has been known for some time (S. Kurtz, The UHMWPE Handbook, Elsevier Academic Press, 2004, p. 112). Therefore, residual free radicals are quenched during the heat treatment process, so in the 1990s, a highly cross-linked material that had improved wear stability and oxidation stability by heat treatment (annealing or remelting) after the irradiation process. developed.
高架橋UHMWPEの磨耗率が比較的低く、したがって、磨耗粒子の容量が比較的低いことが臨床研究によって確認されたが、それにもかかわらず、骨溶解は完全には消失しなかった。いくつかの研究で、高架橋UHMWPEを用いたインプラントシステムについて、骨溶解部又は放射線透過域が記載された(J. A. D’Antonioら、Clinical Orthopaedics and Related Research、441、2005; C. A. Enghら、The Journal of Arthroplasty、21 (6 Suppl. 2)、2006; G. Digasら、Clinical Orthopaedics and Related Research、417、2003)。よって、高架橋UHMWPEによって発生する磨耗粒子は少量であっても、炎症反応を開始する可能性があり、最終的に骨溶解を引き起こす。 Clinical studies have confirmed that the rate of wear of the highly cross-linked UHMWPE is relatively low, and hence the volume of wear particles, but nonetheless osteolysis has not completely disappeared. Several studies have described osteolysis or radiation transmission areas for implant systems using viaducted UHMWPE (JA D'Antonio et al., Clinical Orthopaedics and Related Research, 441, 2005; CA Engh et al., The Journal of Arthroplasty, 21 (6 Suppl. 2), 2006; G. Digas et al., Clinical Orthopaedics and Related Research, 417, 2003). Thus, even a small amount of wear particles generated by the highly cross-linked UHMWPE can initiate an inflammatory response, ultimately causing osteolysis.
インドのスパイスであるターメリックの一成分、クルクミンは、インド医学においてその薬理作用が十分に文書で立証されている。他の有益な特性は別として、クルクミンは、抗酸化特性及び抗炎症特性を有することが記載されている(R. K. Maheshwariら、Life Sciences、78 (18)、2006; A. Sahu、Acta Biomaterialia、Article in Press、2008; J. Merellら、Presentation at the World Biomaterials Conference、Amsterdam 2008; The University of Texas MD Anderson Cancer Center、ウェブページ: http://www.mdanderson.org/departments/cimer/)。 Curcumin, a component of Indian turmeric, is well documented for its pharmacological effects in Indian medicine. Apart from other beneficial properties, curcumin has been described to have antioxidant and anti-inflammatory properties (RK Maheshwari et al., Life Sciences, 78 (18), 2006; A. Sahu, Acta Biomaterialia, Article in Press, 2008; J. Merell et al., Presentation at the World Biomaterials Conference, Amsterdam 2008; The University of Texas MD Anderson Cancer Center, web page: http://www.mdanderson.org/departments/cimer/).
他の文献研究は、種々の物質の有益な特性を記載している。ごく最近の研究では、ケルセチンが、コラーゲン基質中に混ぜられた場合に、骨形成を促進することが記載された(R. W. K. Wongら、Journal of Orthopaedic Research、26 (8)、2008)。別の研究は、腫瘍抽出物によって誘発された骨溶解が、ジホスホネートの添加によって減少することを記載している(A. Jungら、Schweiz. Med. Wochenschr.、109 (47)、1979)。ジホスホネートの同様の効果が、別の研究でも示された(C. S. B. Galaskoら、the Fourth Tripartite Surgical Meetingにおいて発表された論文、Oxford、England、1979年7月5〜7日)。 Other literature studies have described the beneficial properties of various substances. A very recent study has described that quercetin promotes bone formation when mixed in a collagen matrix (R. W. K. Wong et al., Journal of Orthopedic Research, 26 (8), 2008). Another study describes that osteolysis induced by tumor extracts is reduced by the addition of diphosphonate (A. Jung et al., Schweiz. Med. Wochenschr., 109 (47), 1979). Similar effects of diphosphonates have been shown in other studies (C. S. B. Galasko et al., Paper published in the Fourth Tripartite Surgical Meeting, Oxford, England, July 5-7, 1979).
医療用インプラントに使用するためのUHMWPE材料に関連する前記問題を前提として、本発明の目的は、これまで知られている医療用インプラント材料に付随する負の生物学的作用を克服する医療用インプラントの形成を可能にする、改善されたUHMWPE材料を提供することである。 Given the above problems associated with UHMWPE materials for use in medical implants, the purpose of the present invention is to overcome the negative biological effects associated with previously known medical implant materials. It is to provide an improved UHMWPE material that allows the formation of.
本発明の目標は、良好な身体応答特性を示す磨耗粒子を生じる医療用プラント、特に人工関節置換物の形態の医療用プラントに使用するための材料を提供することである。今日まで、人工関節置換物によって発生する磨耗粒子は、多くの場合、炎症、骨溶解又は他の負の身体応答と関連していた。 The goal of the present invention is to provide materials for use in medical plants that produce wear particles that exhibit good body response characteristics, particularly in the form of artificial joint replacements. To date, wear particles generated by artificial joint replacements have often been associated with inflammation, osteolysis or other negative body responses.
本発明の一実施形態において、良好な身体応答特性、例えば、抗炎症特性、抗腫瘍特性、抗微生物特性などを示す天然添加剤とブレンドされた材料を記載する。 In one embodiment of the present invention, materials blended with natural additives that exhibit good body response properties, such as anti-inflammatory properties, anti-tumor properties, anti-microbial properties, etc., are described.
したがって、本発明の教示は、医療用プラントの長期的な生物学的作用を改善するための戦略の転換点となる。医療用インプラントの長期的な生物学的作用を改善するためのこれまでのアプローチは、炎症、骨溶解及び他の負の身体応答に関連する磨耗粒子の生成を最小限に抑えるために医療用インプラントの材料の耐磨耗性を改善することが中心であった。これに対して、本発明の実施形態は、良好な身体応答特性を示す磨耗粒子を生じる医療用インプラントに使用するための材料を提供する。一部の実施形態において、この材料は、材料の耐磨耗性も改善できる。 Thus, the teachings of the present invention represent a turning point in strategies for improving the long-term biological effects of medical plants. Previous approaches to improve the long-term biological effects of medical implants are to reduce the generation of wear particles associated with inflammation, osteolysis and other negative body responses. The focus was on improving the wear resistance of these materials. In contrast, embodiments of the present invention provide materials for use in medical implants that produce wear particles that exhibit good body response characteristics. In some embodiments, the material can also improve the wear resistance of the material.
本発明による医療用インプラントのいくつかの好ましい実施形態、より正確に言えば、その一部を、添付した図面を参照して以下に詳述する。 Some preferred embodiments of medical implants according to the invention, more precisely some of which are described in detail below with reference to the accompanying drawings.
一実施形態において、本発明は、医療用インプラントに良好な身体応答特性を与えるための医療用インプラント製造用UHMWPE材料への添加剤としての、抗炎症物質、抗微生物物質、抗腫瘍物質、抗ウイルス物質及び/又は骨刺激物質からなる群から選択される1種又は複数の物質の使用を対象とする。 In one embodiment, the present invention provides an anti-inflammatory substance, an antimicrobial substance, an antitumor substance, an antiviral as an additive to a UHMWPE material for manufacturing a medical implant to impart good body response characteristics to the medical implant Covers the use of one or more substances selected from the group consisting of substances and / or bone stimulating substances.
本発明者らは意外なことに、UHMWPE材料への添加剤としてこのような物質を使用すると、このような材料に対する細胞応答特性がかなり改善されることを発見した。 The inventors have surprisingly discovered that the use of such materials as additives to UHMWPE materials significantly improves the cellular response characteristics to such materials.
好ましい実施形態において、添加剤は、クルクミン、ジンゲロール、ジンゲロン、ヘレナリン、サリシン、サリチル酸、カンナビクロメン、フラボノイドの形態、特にケルセチン、レスベラトロール及び/若しくはミリセチン、タンニン、テルペン、マルビイン及び/若しくはステロイド系抗炎症薬の形態、特に副腎皮質ステロイドの形態の抗炎症物質、並びに/又は抗微生物物質、例えば、ペプチド系物質、特にラクトフェリン、若しくは非ペプチド系物質、特にペニシリン及び/若しくは銀、並びに/又は抗腫瘍物質、例えば、アントラサイクリン、クルクミン及び/若しくはヘレナリン、並びに/又は抗ウイルス物質、例えば、タンニン、並びに/又は骨刺激物質、例えば、ペプチド系物質、特にラクトフェリン、及び/若しくは非ペプチド系物質、特にケルセチン及び/若しくはジホスホン酸塩の形態のもの、及び/若しくは成長因子、特にBMPファミリー、特にBMP-2のうち1種又は複数である。 In a preferred embodiment, the additive is in the form of curcumin, gingerol, gingerone, helenalin, salicin, salicylic acid, cannabichromene, flavonoids, in particular quercetin, resveratrol and / or myricetin, tannin, terpene, malvinin and / or steroidal anti-steroids. Anti-inflammatory substances in the form of inflammatory drugs, in particular in the form of corticosteroids, and / or antimicrobial substances, for example peptide-based substances, in particular lactoferrin, or non-peptide-based substances, in particular penicillin and / or silver, and / or anti-tumor Substances such as anthracyclines, curcumin and / or helenalin and / or antiviral substances such as tannins and / or bone stimulating substances such as peptide-based substances, in particular lactoferrin, and / or non-peptide-based substances In particular in the form of quercetin and / or diphosphonates, and / or growth factors, in particular one or more of the BMP family, especially BMP-2.
特に好ましい実施形態において、前記添加剤はクルクミンである。 In a particularly preferred embodiment, the additive is curcumin.
前記添加剤は、広範囲の量で使用する。好ましい実施形態は、医療用インプラントの総重量に基づき、0.0001〜5重量%、好ましくは0.001〜1重量%、更に好ましくは0.02〜0.1重量%の量での添加剤の使用である。 The additive is used in a wide range of amounts. A preferred embodiment is the use of additives in an amount of 0.0001-5% by weight, preferably 0.001-1% by weight, more preferably 0.02-0.1% by weight, based on the total weight of the medical implant.
前記添加剤は任意の種類の医療用インプラントに有用であるが、人工関節置換物において特に有用である。このような人工関節置換物は、前記添加剤を使用した場合には、良好な身体応答特性を示す相当数の磨耗粒子を生じる。 The additive is useful for any type of medical implant, but is particularly useful in artificial joint replacements. Such artificial joint replacements produce a significant number of wear particles that exhibit good body response characteristics when the additives are used.
更なる態様において、本発明の実施形態は、以下の特性を含む医療用インプラント、特に整形外科関節置換物に使用するUHMWPE材料を対象とする:
・ 磨耗片が抗炎症特性を有し、それによって、炎症の結果として生じる骨溶解カスケードを低減する。
・ 磨耗片が、抗腫瘍特性、抗微生物特性(例えば、抗細菌特性)、抗ウイルス特性、骨刺激特性又は骨吸収阻害特性などの他の有益な特性を有する。
・ 材料によって、容易で、簡易な製造方法が可能となる。クルクミン粉末又は別の抗炎症性添加剤をUHMWPE粉末と混合してから、焼結する。複雑な防御環境を用いずに空気中で照射を実施できる。或いは、照射を行わずに、材料を使用できる。
・ 促進老化試験によって実証されるように、クルクミンなどの添加が酸化的分解から材料を保護する(実施例1を参照のこと)。
In a further aspect, embodiments of the present invention are directed to UHMWPE materials for use in medical implants, particularly orthopedic joint replacements, that include the following properties:
The wear strip has anti-inflammatory properties, thereby reducing the osteolysis cascade that results from inflammation.
The wear piece has other beneficial properties such as anti-tumor properties, anti-microbial properties (eg anti-bacterial properties), anti-viral properties, bone stimulation properties or bone resorption inhibition properties.
-Depending on the material, an easy and simple manufacturing method is possible. Curcumin powder or another anti-inflammatory additive is mixed with UHMWPE powder and then sintered. Irradiation can be performed in the air without using a complex protective environment. Alternatively, the material can be used without irradiation.
-Addition of curcumin or the like protects the material from oxidative degradation as demonstrated by accelerated aging tests (see Example 1).
更なる態様において、本発明の実施形態は、UHMWPEと、医療用インプラントに良好な身体応答特性を与えるための、医療用インプラント製造用のUHMWPE材料への添加剤としての、抗炎症物質、抗微生物物質、抗腫瘍物質、抗ウイルス物質及び/又は骨刺激物質からなる群から選択される1種又は複数の添加剤とを含む、良好な身体応答特性を有するUHMWPE材料を対象とする。 In a further aspect, embodiments of the present invention provide anti-inflammatory substances, antimicrobials as additives to UHMWPE and UHMWPE materials for manufacturing medical implants to provide good body response characteristics to medical implants. Intended are UHMWPE materials with good body response characteristics, including one or more additives selected from the group consisting of substances, antitumor substances, antiviral substances and / or bone stimulating substances.
好ましい実施形態において、前記添加剤は、クルクミン、ジンゲロール、ジンゲロン、ヘレナリン、サリシン、サリチル酸、カンナビクロメン、フラボノイドの形態、特にケルセチン、レスベラトロール及び/若しくはミリセチン、タンニン、テルペン、マルビイン及び/若しくはステロイド系抗炎症薬の形態、特に副腎皮質ステロイドの形態の抗炎症物質、並びに/又は抗微生物物質、例えば、ペプチド系物質、特にラクトフェリン、若しくは非ペプチド系物質、特にペニシリン及び/若しくは銀、並びに/又は抗腫瘍物質、例えば、アントラサイクリン、クルクミン及び/若しくはヘレナリン、並びに/又は抗ウイルス物質、例えば、タンニン、並びに/又は骨刺激物質、例えば、ペプチド系物質、特にラクトフェリン及び/若しくは非ペプチド系物質、特にケルセチン及び/若しくはジホスホン酸塩の形態のもの、及び/若しくは成長因子、特にBMPファミリー、特にBMP-2である。 In a preferred embodiment, the additive is in the form of curcumin, gingerol, gingerone, helenalin, salicin, salicylic acid, cannabichromene, flavonoids, in particular quercetin, resveratrol and / or myricetin, tannin, terpene, malubiin and / or steroidal Anti-inflammatory substances in the form of anti-inflammatory drugs, in particular in the form of corticosteroids, and / or antimicrobial substances such as peptide substances, in particular lactoferrin, or non-peptide substances, in particular penicillin and / or silver, and / or anti Tumor substances such as anthracyclines, curcumin and / or helenalin and / or antiviral substances such as tannins and / or bone stimulating substances such as peptide-based substances, in particular lactoferrin and / or non-peptide-based substances , In particular in the form of quercetin and / or diphosphonates, and / or growth factors, in particular the BMP family, especially BMP-2.
特に好ましい実施形態において、前記添加剤はクルクミンである。 In a particularly preferred embodiment, the additive is curcumin.
更なる好ましい実施形態において、前記添加剤は、前記UHMWPE材料中に、医療用インプラントの総重量に基づき、0.0001〜5重量%、好ましくは0.001〜1重量%、更に好ましくは0.02〜0.1重量%の量で使用する。 In a further preferred embodiment, the additive is present in the UHMWPE material in an amount of 0.0001-5 wt%, preferably 0.001-1 wt%, more preferably 0.02-0.1 wt%, based on the total weight of the medical implant. Use in quantity.
本発明の実施形態はまた、前記UHMWPE材料の形態のプレフォーム材料から作製される医療用インプラントを対象とする。 Embodiments of the present invention are also directed to medical implants made from a preform material in the form of the UHMWPE material.
用語「プレフォーム」は、本明細書全体を通じて、UHMWPE材料の固結ブロック(consolidated block)、シート又はロッド、特にその後に更なる処理に供されて最終的に医療用インプラントの形態の最終製品を得ることができるものを意味するのに使用する。 The term “preform” is used throughout this specification to refer to a consolidated block, sheet or rod of UHMWPE material, particularly a final product in the form of a medical implant that is subsequently subjected to further processing. Used to mean what can be obtained.
本発明のこの実施形態による材料には照射を行うことができるが、必要ではない。ガンマ線又は電子ビーム線によるUHMWPEプレフォームの照射は、架橋密度を増加させる。この材料の架橋密度の大きさに相当するのは、架橋結合間の分子量の大きさである。明らかに、個々のUHMWPEポリマー間の架橋密度が大きいほど、架橋結合間の分子量は小さい。好ましくは、ガンマ線又は電子ビームの照射は、5〜20Mradの線量で行い、この値は、必要とされるUHMWPE材料の最終特性に応じて選択できる。照射線量の変更は、架橋結合間の分子量に差をもたらし、目的とする最終製品に基づいて選択されるものとする。 The material according to this embodiment of the invention can be irradiated, but is not necessary. Irradiation of the UHMWPE preform with gamma rays or electron beam rays increases the crosslink density. Corresponding to the crosslink density of this material is the size of the molecular weight between the crosslinks. Clearly, the greater the crosslink density between individual UHMWPE polymers, the lower the molecular weight between crosslinks. Preferably, the gamma or electron beam irradiation is performed at a dose of 5-20 Mrad, and this value can be selected depending on the final properties of the required UHMWPE material. The change in irradiation dose will result in a difference in molecular weight between crosslinks and should be selected based on the intended final product.
更なる好ましい実施形態は、プレフォーム材料が2〜20Mrad、好ましくは4〜20Mrad、より好ましくは5〜20Mrad、特に好ましくは5〜15Mradの線量のガンマ線又は電子ビーム照射によって照射された前記医療用インプラントである。照射線量の正確な値は、UHMWPE材料の必要とされる最終特性に応じて選択できる。照射は、空気中で周囲条件下において実施できる。別の態様において、照射は、真空下で又は窒素若しくはアルゴンガス雰囲気などの防御環境において実施することもできる。 A further preferred embodiment is the medical implant wherein the preform material is irradiated by gamma or electron beam irradiation at a dose of 2-20 Mrad, preferably 4-20 Mrad, more preferably 5-20 Mrad, particularly preferably 5-15 Mrad. It is. The exact value of irradiation dose can be selected depending on the required final properties of the UHMWPE material. Irradiation can be carried out in air at ambient conditions. In another aspect, the irradiation can be performed under vacuum or in a protective environment such as a nitrogen or argon gas atmosphere.
他方、本発明のこの実施形態によるプレフォーム材料は、照射を行わずに用いることもできるし、又はごく少ない照射線量を照射することもできる。 On the other hand, the preform material according to this embodiment of the present invention can be used without irradiation, or it can be irradiated with a very small irradiation dose.
したがって、本発明の別の実施形態においては、前記材料に、ガンマ線若しくは電子ビーム照射による照射を行わないか、又は2Mrad未満の線量のガンマ線若しくは電子ビーム照射によって照射を行う。 Therefore, in another embodiment of the present invention, the material is not irradiated by gamma ray or electron beam irradiation, or is irradiated by gamma ray or electron beam irradiation at a dose of less than 2 Mrad.
更なる好ましい実施形態は、プレフォーム材料が空気中で照射された医療用インプラントである。 A further preferred embodiment is a medical implant in which the preform material is irradiated in air.
更なる好ましい実施形態において、プレフォーム材料は、照射後にアニールも更なる加熱も行われていない。 In a further preferred embodiment, the preform material has not been annealed or further heated after irradiation.
好ましくは、本発明のこの実施形態による医療用インプラントは、人工関節置換物である。 Preferably, the medical implant according to this embodiment of the invention is an artificial joint replacement.
別の実施形態において、本発明は、炎症性疾患、微生物疾患、腫瘍性疾患、ウイルス性疾患及び/又は骨分解性疾患(bone-degrading disease)の治療のための前記医療用インプラントを対象とする。好ましくは、前記添加剤はクルクミンであり、前記医療用インプラントは炎症性疾患の治療用である。 In another embodiment, the present invention is directed to said medical implant for the treatment of inflammatory diseases, microbial diseases, neoplastic diseases, viral diseases and / or bone-degrading diseases. . Preferably, the additive is curcumin and the medical implant is for the treatment of inflammatory diseases.
別の実施形態において、本発明は、
UHMWPEを含む材料と、抗炎症物質、抗微生物物質、抗腫瘍物質、抗ウイルス物質及び/又は骨刺激物質からなる群から選択される、ある分量の添加剤とを混合するステップと、
前記混合物を、UHMWPEの融点より高い温度の適用によって成形して、プレフォームを作製するステップと
を含む、良好な身体応答特性を有するUHMWPE材料の加工方法を対象とする。
In another embodiment, the present invention provides:
Mixing a material comprising UHMWPE with an amount of an additive selected from the group consisting of an anti-inflammatory substance, an antimicrobial substance, an antitumor substance, an antiviral substance and / or a bone stimulating substance;
The method is directed to a method of processing UHMWPE material having good body response characteristics, comprising forming the mixture by applying a temperature above the melting point of UHMWPE to produce a preform.
本発明の別の実施形態においては、抗炎症物質、抗微生物物質、抗腫瘍物質、抗ウイルス物質及び/又は骨刺激物質からなる群から選択される添加剤を、拡散によってプレフォーム又は最終インプラント中に組み入れることができる。拡散は、プレフォーム又は最終インプラントを純粋な添加剤又は適切な溶媒中の添加剤溶液中に直接浸漬することによって実施できる。添加剤は、限定するものではないが超臨界二酸化炭素などの超臨界ガスの助けを借りて、プレフォーム又は最終インプラント中に組み入れることもできる。 In another embodiment of the invention, an additive selected from the group consisting of an anti-inflammatory substance, an antimicrobial substance, an antitumor substance, an antiviral substance and / or a bone stimulating substance is diffused into the preform or final implant. Can be incorporated into. Diffusion can be performed by immersing the preform or final implant directly in a pure additive or additive solution in a suitable solvent. The additive can also be incorporated into the preform or final implant with the aid of a supercritical gas such as, but not limited to, supercritical carbon dioxide.
前記方法の好ましい実施形態において、前記添加剤は、クルクミン、ジンゲロール、ジンゲロン、ヘレナリン、サリシン、サリチル酸、カンナビクロメン、フラボノイドの形態、特にケルセチン、レスベラトロール及び/若しくはミリセチン、タンニン、テルペン、マルビイン及び/若しくはステロイド系抗炎症薬、特に副腎皮質ステロイドの形態の抗炎症物質、並びに/又は抗微生物物質、例えば、ペプチド系物質、特にラクトフェリン若しくは非ペプチド系物質、特にペニシリン及び/若しくは銀、並びに/又は抗腫瘍物質、例えば、アントラサイクリン、クルクミン及び/若しくはヘレナリン、並びに/又は抗ウイルス物質、例えば、タンニン、並びに/又は骨刺激物質、例えば、ペプチド系物質、特にラクトフェリン及び/若しくは非ペプチド系物質、特にケルセチン及び/若しくはジホスホン酸塩の形態のもの、及び/若しくは成長因子、特にBMPファミリー(特にBMP-2)のうち1種又は複数である。 In a preferred embodiment of the method, the additive is in the form of curcumin, gingerol, gingerone, Helenaline, salicin, salicylic acid, cannabichromene, flavonoids, in particular quercetin, resveratrol and / or myricetin, tannin, terpene, malubiin and / or Or anti-inflammatory substances in the form of steroidal anti-inflammatory drugs, in particular corticosteroids, and / or antimicrobial substances, for example peptide substances, in particular lactoferrin or non-peptide substances, in particular penicillin and / or silver, and / or anti Tumor substances such as anthracyclines, curcumin and / or helenalin and / or antiviral substances such as tannins and / or bone stimulating substances such as peptide-based substances, in particular lactoferrin and / or non-peptide systems Quality, in particular in the form of quercetin and / or diphosphonates, and / or growth factors, is especially one or more of the BMP family (especially BMP-2).
本発明の一部の実施形態によるUHMWPE材料の形成は典型的には、添加剤とUHMWPE粉末との混合から開始する。下記に記載する実施例では、UHMWPE粉末は、Ticona GUR(登録商標)1020医療グレードUHMWPEからなる。このような粉末は周知であり、商業的に入手可能である。言うまでもなく、任意の他のUHMWPE粉末も使用できる(例えば、高純度のUHMWPE粉末であるTicona GUR(登録商標)1050、DSM UH210、Basell 1900)。添加剤とUHMWPE粉末との混合プロセス中に完全に均一な混合物が得られるのが好ましい。添加剤とUHMWPE粉末とを完全に混合したら、UHMWPE粉末の融点より高い温度で成形してプレフォームとする。この段階で、更なる温度指定は、成形ステップには特に重要ではない。温度を増加させると、プレフォームへの材料の成形がより迅速になるであろう。 The formation of UHMWPE material according to some embodiments of the invention typically begins with the mixing of additives and UHMWPE powder. In the examples described below, the UHMWPE powder consists of Ticona GUR® 1020 medical grade UHMWPE. Such powders are well known and are commercially available. Of course, any other UHMWPE powder can be used (eg, Ticona GUR® 1050, DSM UH210, Basell 1900, which are high purity UHMWPE powders). It is preferred that a completely uniform mixture be obtained during the mixing process of the additive and UHMWPE powder. Once the additive and UHMWPE powder are thoroughly mixed, the preform is molded at a temperature higher than the melting point of the UHMWPE powder. At this stage, further temperature designation is not particularly important for the molding step. Increasing the temperature will result in faster molding of the material into the preform.
典型的には、添加剤材料及びUHMWPE粉末の成形は、UHMWPE粉末の融点より高いが、添加剤材料の分解温度よりは好ましくは低い温度で行う。温度がほとんどの化合物に影響を及ぼすことは明らかであり、実際に、同じことが添加剤材料にも当てはまる。成形ステップの温度をこの添加剤材料の分解温度未満に保持することは、最終製品の改善につながるので、必要ではないが好ましい。本発明の一実施形態において、UHMWPE粉末の成形は、アルゴン又は窒素などの不活性雰囲気中で行う。 Typically, the molding of the additive material and the UHMWPE powder is performed at a temperature above the melting point of the UHMWPE powder, but preferably below the decomposition temperature of the additive material. It is clear that temperature affects most compounds, and in fact the same applies to additive materials. Keeping the temperature of the molding step below the decomposition temperature of the additive material leads to improvement of the final product, but is not necessary but is preferred. In one embodiment of the invention, the UHMWPE powder is formed in an inert atmosphere such as argon or nitrogen.
典型的には、プレフォームを生成するための成形ステップは、シート、スラブ又はロッドの圧縮成形によって実施する。本発明の別の実施形態において、成形ステップは、最終インプラント若しくは成形後にわずかな機械加工のみを必要とするほぼ最終的なインプラントを直接圧縮成形することによって、又は最終インプラント若しくはほぼ最終的なインプラントを直接生成する他の手段によって、実施することもできる。更に別の態様において、プレフォームは、UHMWPE粉末ブレンドのラム押出によっても生成できる。 Typically, the molding step to produce the preform is performed by compression molding of a sheet, slab or rod. In another embodiment of the present invention, the shaping step comprises directly compressing the final implant or a nearly final implant that requires little machining after molding, or the final or nearly final implant. It can also be implemented by other means of direct generation. In yet another embodiment, the preform can also be produced by ram extrusion of a UHMWPE powder blend.
好ましい実施形態において、本発明による方法は、2〜20Mradの線量のガンマ線又は電子ビーム線のいずれかによってプレフォームの照射を行う更なるステップを含む。この照射は、空気中で周囲条件下において実施できる。別の態様において、照射は、真空下で又は窒素若しくはアルゴンガス雰囲気などの防御環境において実施することもできる。 In a preferred embodiment, the method according to the invention comprises the further step of irradiating the preform with either a 2-20 Mrad dose of gamma rays or electron beam rays. This irradiation can be carried out in air under ambient conditions. In another aspect, the irradiation can be performed under vacuum or in a protective environment such as a nitrogen or argon gas atmosphere.
代替的実施形態において、本発明による方法は、2Mrad未満の線量のガンマ線又は電子ビーム線のいずれかによってプレフォームの照射を行う更なるステップを含む。 In an alternative embodiment, the method according to the invention comprises the further step of irradiating the preform with either a dose of less than 2 Mrad of gamma rays or electron beam rays.
好ましくは、プレフォームにアニールも更なる加熱も行わない。 Preferably, the preform is not annealed or further heated.
本発明の特に好ましい実施形態による方法は、
プレフォームをインプラントに造形するステップと、
インプラントを包装し且つ2〜4Mradの間のガンマ線照射によって滅菌するか又は前記インプラントをエチレンオキシド若しくは気体プラズマへの暴露によって滅菌するステップ
の1つ又は複数を更に含む。
The method according to a particularly preferred embodiment of the invention comprises:
Shaping the preform into an implant;
It further comprises one or more of the steps of packaging the implant and sterilizing by gamma irradiation between 2-4 Mrad or sterilizing the implant by exposure to ethylene oxide or gaseous plasma.
プレフォームからの最終製品の作製は、既知の任意の標準方法を用いて行い、最も典型的には、プレフォームの不要部分の除去又は機械加工による最終造形品の形成によって行う。このプレフォームは、ISO 5834-2規格に記載された応力除去アニールプロセスに供することができる。 Production of the final product from the preform is performed using any known standard method, most typically by removing unwanted portions of the preform or forming the final shaped product by machining. This preform can be subjected to a stress relief annealing process as described in the ISO 5834-2 standard.
更なる実施形態において、本発明は、前記医療用インプラントを施すことを特徴とする、動物及びヒトにおける炎症性疾患、微生物感染症、腫瘍性疾患、ウイルス感染症及び/又は骨分解性疾患の治療方法を対象とする。 In a further embodiment, the present invention provides for the treatment of inflammatory diseases, microbial infections, neoplastic diseases, viral infections and / or osteolytic diseases in animals and humans, characterized in that the medical implant is applied Target method.
明細書の最後に示す比較例に注目すると、本発明のこの実施形態による材料のいくつかの例が示されている。これらの比較例において、添加剤材料を含まないサンプル又は添加剤材料としてクルクミンを含むサンプルが示されている。 Paying attention to the comparative example shown at the end of the specification, several examples of materials according to this embodiment of the invention are shown. In these comparative examples, samples with no additive material or samples with curcumin as additive material are shown.
実施例1に示したデータ、特に実施例1中のTable 1(表1)に示したデータに注目すると、種々の照射線量における、クルクミンを含むサンプル及びクルクミンを含まないサンプルについての、遊離基含量、老化後の最大酸化指数(最大OI)、老化後のバルク酸化指数(バルクOI)及び架橋結合間の分子量MCが示されている。示される通り、添加剤材料クルクミンを含むUHMWPEサンプルは、同じ線量のガンマ線が照射されたが本発明のこの実施形態による添加剤材料が加えられていないUHMWPE材料に匹敵する遊離基含量及び架橋結合間分子量MCを有する。しかし、人工老化後の最大酸化指数及びバルク酸化指数には大きな差異が認められる。この人工老化は、ASTM F2003の指示通りに、酸素ボンベ中において酸素圧5atm及び70℃で14日間実施した。クルクミンを含むUHMWPEサンプルは、クルクミンを含まないUHMWPEサンプルと比較した場合、老化後の最大酸化指数及びバルク酸化指数が著しく低いことが、直ちに明白になる。このような酸化指数の増大は、UHMWPEプレフォームが貯蔵中又はインプラントとしての使用時により容易に酸化し、材料の脆化及びインプラントの磨耗又は破損の増大などのかなり厄介な問題を引き起こすことを意味するので、望ましくない。 Focusing on the data shown in Example 1, especially the data shown in Table 1 in Example 1, free radical content for samples with and without curcumin at various irradiation doses. The maximum oxidation index after aging (maximum OI), the bulk oxidation index after aging (bulk OI) and the molecular weight MC between crosslinks are shown. As shown, the UHMWPE sample containing the additive material curcumin has a free radical content and cross-linking comparable to the UHMWPE material irradiated with the same dose of gamma radiation but without the additive material according to this embodiment of the invention. Has a molecular weight MC. However, there are significant differences in the maximum oxidation index and bulk oxidation index after artificial aging. This artificial aging was carried out for 14 days at an oxygen pressure of 5 atm and 70 ° C. in an oxygen cylinder as instructed by ASTM F2003. It is immediately apparent that UHMWPE samples with curcumin have significantly lower post-aging maximum and bulk oxidation indices when compared to UHMWPE samples without curcumin. This increase in oxidation index means that UHMWPE preforms oxidize more easily during storage or use as an implant, causing rather troublesome problems such as material embrittlement and increased wear or damage to the implant. This is not desirable.
材料の多くの機械的性質を、実施例2及び実施例2中のTable 2(表2)に示す。この表からわかるように、本発明のこの実施形態による材料の降伏応力、引張強さ、破断点伸び及びシャルピー衝撃強さが、添加剤を含まない標準材料と比較されている。 Many mechanical properties of the material are shown in Example 2 and Table 2 in Example 2. As can be seen from this table, the yield stress, tensile strength, elongation at break and Charpy impact strength of the material according to this embodiment of the present invention are compared to a standard material without additives.
この実施例及び実施例中の結果は、添加剤材料をそのような量で添加しても、添加剤を含むUHMWPE材料の最終的な機械的性質に有害作用をそれほど与えないことを明白に示している。したがって、本発明のこの実施形態による材料は、添加剤を含まない材料と比較して、酸化特性の改善を示すだけでなく、添加剤の組込みは最終的な機械的性質にそれほど影響を及ぼさない。また、材料が団結性を保持しており且つ依然としてインプラントとして有用であるので、材料をインプラントとして使用しようとする場合には、これはかなり有利である。 The results in this example and the examples clearly show that the addition of additive material in such amounts does not significantly adversely affect the final mechanical properties of the UHMWPE material containing the additive. ing. Thus, the material according to this embodiment of the present invention not only shows improved oxidation properties compared to the material without additive, but the incorporation of additive does not significantly affect the final mechanical properties . This is also a considerable advantage if the material is to be used as an implant since the material retains cohesion and is still useful as an implant.
実施例3によれば、2種の材料の股関節シミュレーター試験を、ヒトの歩行周期を再現するAMTI股関節シミュレーター上の28mmのセラミック球に対して、回数(frequency)1.2Hz及び潤滑剤としてのウシ新生仔血清(タンパク質濃度30g/l)を用いて行った。寛骨臼カップを0.5ミオサイクル(mio cycle)毎に秤量し且つ得られた結果を浸漬対照カップを用いて補正することによって、磨耗重量(gravimetric wear)を測定した。 According to Example 3, a hip simulator test of two materials was performed on a 28 mm ceramic ball on an AMTI hip simulator that reproduces the human walking cycle, with a frequency of 1.2 Hz and bovine neogenesis as a lubricant. It was carried out using pup serum (protein concentration 30 g / l). Gravimetric wear was measured by weighing acetabular cups every 0.5 mio cycle and correcting the results obtained with an immersion control cup.
2つのサンプルは、14Mradが照射されたクルクミン0.1重量%を含むUHMWPE材料(本発明のこの実施形態によるサンプル)及びガンマ線滅菌PEサンプル(比較)であった。図1に示されるデータからわかるように、本発明のこの実施形態によるUHMWPE材料は、股関節シミュレーターにおいて、比較のガンマ線滅菌PE材料と比較した場合に、はるかに少ない磨耗重量を示している。 The two samples were UHMWPE material containing 0.1% by weight of curcumin irradiated with 14 Mrad (sample according to this embodiment of the invention) and gamma sterilized PE sample (comparative). As can be seen from the data shown in FIG. 1, the UHMWPE material according to this embodiment of the present invention shows much less wear weight when compared to the comparative gamma sterilized PE material in the hip simulator.
実施した全ての実験の結果によれば、磨耗片が抗炎症応答を示すであろうUHMWPE材料について、以下の特性を挙げることができる。
・ 本発明による材料は、UHMWPE樹脂粉末と1種又は複数の抗炎症剤との混合物であることができる。
・ 抗炎症剤は、限定するものではないが、クルクミンであることができる。
・ 抗炎症剤は、UHMWPE粉末と混合してから、プレフォームを焼結することができる。
・ 本発明の実施形態による材料から作製された整形外科インプラント支持部材は、抗炎症特性を有する磨耗片を発生でき、それによって、炎症の結果として生じる骨溶解カスケードが減少する。
According to the results of all experiments carried out, the following properties can be mentioned for UHMWPE materials where the wear pieces will exhibit an anti-inflammatory response.
The material according to the invention can be a mixture of UHMWPE resin powder and one or more anti-inflammatory agents.
The anti-inflammatory agent can be, but is not limited to curcumin.
The anti-inflammatory agent can be mixed with UHMWPE powder before sintering the preform.
• Orthopedic implant support members made from materials according to embodiments of the present invention can generate wear pieces having anti-inflammatory properties, thereby reducing the osteolysis cascade resulting from inflammation.
先行技術と比較した本発明の実施形態の利点の1つとして、整形外科インプラントから放出される、良好な身体応答特性、特に抗炎症特性を有する磨耗粒子の放出が挙げられる。今日まで、骨溶解の減少は主に、高架橋UHMWPEを用いて磨耗粒子の数を減少させることによって達成されていた。 One advantage of embodiments of the present invention compared to the prior art is the release of wear particles released from orthopedic implants with good body response properties, particularly anti-inflammatory properties. To date, osteolysis reduction has been achieved primarily by reducing the number of wear particles using via-bridged UHMWPE.
本発明のこの実施形態は、主に抗炎症性磨耗粒子による溶骨性骨吸収の減少を示す。更に、磨耗粒子の数は、必要ではないが、ガンマ線又は電子ビーム線によるUHMWPEの架橋によって減少させることができる。 This embodiment of the present invention shows a decrease in osteolytic bone resorption primarily due to anti-inflammatory wear particles. Furthermore, the number of wear particles is not necessary, but can be reduced by crosslinking of UHMWPE with gamma rays or electron beam rays.
したがって、炎症の結果として生じる骨溶解カスケードは、粒子数の減少によってだけでなく、粒子自体の抗炎症特性によっても減少するであろう。 Thus, the osteolytic cascade that results from inflammation will be reduced not only by a decrease in the number of particles, but also by the anti-inflammatory properties of the particles themselves.
比較例
ガンマ線滅菌UHMWPEを、シートの形態に圧縮成形し(GUR(登録商標)1020、Quadrant、Germany)、機械加工し、不活性ガス雰囲気中で包装し、3Mradの線量でガンマ線滅菌した。クルクミンブレンドサンプルを、UHMWPE樹脂粉末と0.03〜0.1重量%のクルクミンとを混合することによって生成し、ブロックの形態に圧縮成形し、空気中で7〜14Mradの線量でガンマ線照射し、所望の形状に機械加工した。照射後熱処理は適用しなかった。これらの材料を用いて、以下の試験を行った。
Comparative Example Gamma sterilized UHMWPE was compression molded into sheet form (GUR® 1020, Quadrant, Germany), machined, packaged in an inert gas atmosphere, and gamma sterilized at a dose of 3 Mrad. Curcumin blend samples are generated by mixing UHMWPE resin powder and 0.03-0.1 wt% curcumin, compression molded into block form, gamma irradiated at a dose of 7-14 Mrad in air to the desired shape Machined. No post-irradiation heat treatment was applied. The following tests were performed using these materials.
(実施例)
(実施例1)
遊離基含量、酸化指数及び架橋結合間の分子量。
(Example)
(Example 1)
Free radical content, oxidation index and molecular weight between crosslinks.
酸化指数(OI)は、ASTM F2102-06に従ってフーリエ変換赤外分光法(FTIR)によって数値化した。酸化プロファイルは、表面から深さ2.5mmまで、厚さ150μmのスライスについて記録した。OI測定の前に、全てのサンプルを酸素ボンベ中で酸素圧5bar及び70℃で2週間、人工的に老化させた(ASTM F2003-02)。 The oxidation index (OI) was quantified by Fourier transform infrared spectroscopy (FTIR) according to ASTM F2102-06. The oxidation profile was recorded for slices of 150 μm thickness from the surface to a depth of 2.5 mm. Prior to OI measurements, all samples were artificially aged in an oxygen cylinder for 2 weeks at an oxygen pressure of 5 bar and 70 ° C. (ASTM F2003-02).
架橋結合間の分子量(MC)によって表される架橋密度は、ASTM D2767-95 Method Cによる材料当たり3個のサンプル(10×10×10mm)についての膨潤実験によって得た。 The crosslink density expressed by molecular weight (MC) between crosslinks was obtained by swelling experiments on 3 samples per material (10 × 10 × 10 mm) according to ASTM D2767-95 Method C.
(実施例2)
機械的性質
(Example 2)
mechanical nature
機械的試験:ダブルノッチ付きシャルピー衝撃試験を、DIN EN ISO 11542-2(材料当たり最小4個の試験片)に従って実施し、引張試験を、ASTM D638(材料当たり最小5個の試験片)に従って50mm/分の試験速度を用いて実施した。 Mechanical test: Charpy impact test with double notch is performed according to DIN EN ISO 11542-2 (minimum 4 specimens per material) and tensile test is 50mm according to ASTM D638 (minimum 5 specimens per material) Performed using a test rate of / min.
(実施例3)
股関節シミュレーターデータ
28mmセラミック球に対する股関節シミュレーター試験を、ヒトの歩行周期を再現するAMTI股関節シミュレーターで、回数1.2Hz及び潤滑剤としてのウシ新生仔血清(タンパク質濃度30g/l)を用いて行った。寛骨臼カップを0.5ミオサイクル毎に秤量し且つ得られた結果を浸漬対照カップを用いて補正することによって、磨耗重量を測定した。
(Example 3)
Hip joint simulator data
The hip joint simulator test on 28mm ceramic spheres was performed with AMTI hip joint simulator that reproduces human walking cycle, using 1.2Hz frequency and neonatal calf serum (protein concentration 30g / l) as lubricant. The wear weight was measured by weighing the acetabular cup every 0.5 myocycle and correcting the results obtained with an immersion control cup.
股関節シミュレーター試験の結果を、図1に示す。 The results of the hip joint simulator test are shown in FIG.
(実施例4)
抗炎症応答
クルクミンブレンドサンプルを、UHMWPE樹脂粉末と1重量%のクルクミンとを混合することによって生成し、ブロックの形態に圧縮成形し、空気中で14Mradの線量でガンマ線照射し、所望の形状に機械加工した。照射後熱処理は適用しなかった。対照として、標準的な従来の高架橋/再溶融材料を用いた。
(Example 4)
Anti-inflammatory response Curcumin blend sample is generated by mixing UHMWPE resin powder and 1 wt% curcumin, compression molded into block form, gamma irradiated at a dose of 14 Mrad in air, machined to desired shape processed. No post-irradiation heat treatment was applied. As a control, a standard conventional highly crosslinked / remelted material was used.
LPS刺激PMA分化型U937細胞に対する1%クルクミン含浸ポリエチレンディスクの抗炎症作用を評価した。U937ヒト単球様細胞を、それらの適切な培地中で培養し、増殖させた。24ウェルインサート中の、20nMのPMAを含む培地200μl中に細胞を播種し、インサートの外側の各ウェルに、同じPMA含有培地を更に1ml加えた。次に、プレートを37℃及び5%CO2で24時間インキュベートして、マクロファージ様細胞に分化させた。PMAと共に24時間インキュベートした後、培地を細胞から除去し、200μlの培地と交換し、インサートを、培地(PMAを含まない)1mlを含む新しい24ウェルプレートに移した。次いで、細胞を戻して、37℃及び5%CO2で更に72時間インキュベートした。72時間後、インサートを、サンプル材料(インサートはサンプル材料の上部に位置させた)及び培地500μlを含む新しい24ウェルプレートに移した。この時点で、また、培地をインサートの内側から除去し、新しい培地200μlと交換した。次に、プレートを37℃で更に24時間インキュベートした後、LPSを添加した。次いで、24時間後に、培地(インサートの内側及び外側)を適切な量のLPSを含む培地(インサートの内側に200μl及びインサートの外側に500μl)と交換することによって、0ng/ml、1ng/ml又は20ng/mlのLPSを添加した。次に、プレートを戻して、37℃で8時間インキュベートした。適切なインキュベーション時間に、インサートの内側から培地を慎重に取り出し、更なるサイトカイン評価のために-70℃で保存した。 The anti-inflammatory effect of 1% curcumin impregnated polyethylene disc on LPS-stimulated PMA differentiated U937 cells was evaluated. U937 human monocyte-like cells were cultured and grown in their appropriate medium. Cells were seeded in 200 μl of medium containing 20 nM PMA in a 24-well insert and an additional 1 ml of the same PMA-containing medium was added to each well outside the insert. The plates were then incubated for 24 hours at 37 ° C. and 5% CO 2 to differentiate into macrophage-like cells. After 24 hours incubation with PMA, the medium was removed from the cells, replaced with 200 μl of medium, and the insert was transferred to a new 24-well plate containing 1 ml of medium (without PMA). Cells were then returned and incubated for an additional 72 hours at 37 ° C. and 5% CO 2 . After 72 hours, the inserts were transferred to a new 24-well plate containing sample material (the insert was placed on top of the sample material) and 500 μl of medium. At this point, the medium was also removed from the inside of the insert and replaced with 200 μl of fresh medium. The plates were then incubated for an additional 24 hours at 37 ° C. before LPS was added. Then, after 24 hours, replace the medium (inside and outside of the insert) with medium containing the appropriate amount of LPS (200 μl inside the insert and 500 μl outside the insert) to obtain 0 ng / ml, 1 ng / ml or 20 ng / ml LPS was added. The plate was then returned and incubated at 37 ° C. for 8 hours. At the appropriate incubation time, the media was carefully removed from the inside of the insert and stored at -70 ° C for further cytokine evaluation.
培地を収集後、馴化培地を室温で解凍した。次いで、馴化培地を、TNF-αに特異的なELISAキットによって、製造業者の使用説明書に従って評価した。簡単に言えば、ELISAプレートに、適切な捕捉抗体を一晩コーティングした。次に、このプレートを洗浄緩衝液で3回洗浄し、アッセイ希釈液で室温において1時間ブロッキングした。ブロッキング後、プレートを洗浄緩衝液中で3回洗浄し、各サンプル溶液100μlをウェルに加えて、室温で2時間インキュベートした。2時間のインキュベート後、プレートを洗浄緩衝液中で5回洗浄し、特異的一次抗体と共に(TNFに対する酵素濃縮物と一緒に)室温で1時間インキュベートした後、次にプレートを洗浄した。十分に洗浄後、次にプレートを基質溶液と共に室温において暗所で30分間インキュベートした。30分後、次に各ウェルに停止液を添加し、1分間振盪後、450nm及び570nmでプレートを読み取った。 After collecting the medium, the conditioned medium was thawed at room temperature. The conditioned medium was then evaluated by an ELISA kit specific for TNF-α according to the manufacturer's instructions. Briefly, ELISA plates were coated overnight with the appropriate capture antibody. The plate was then washed 3 times with wash buffer and blocked with assay diluent for 1 hour at room temperature. After blocking, the plates were washed 3 times in wash buffer and 100 μl of each sample solution was added to the wells and incubated for 2 hours at room temperature. After 2 hours of incubation, the plates were washed 5 times in wash buffer and incubated for 1 hour at room temperature (with an enzyme concentrate against TNF) with a specific primary antibody, and then the plates were washed. After extensive washing, the plates were then incubated with substrate solution for 30 minutes in the dark at room temperature. After 30 minutes, stop solution was then added to each well and shaken for 1 minute before reading the plate at 450 nm and 570 nm.
結果: 0、1又は20ng/mlのLPSと共に8時間インキュベートした後にU937細胞(マクロファージ様細胞)から分泌されたTNFを、図2に示す。 Results: TNF secreted from U937 cells (macrophage-like cells) after 8 hours incubation with 0, 1 or 20 ng / ml LPS is shown in FIG.
クルクミンブレンドUHMWPEは、標準的な高架橋/再溶融UHMWPE(PE44)と比較して、LPSと共に8時間インキュベートした後にマクロファージ様細胞(U937)から分泌されるTNFを減少させ、したがって、ある程度の抗炎症作用を示した。 Curcumin blend UHMWPE reduces TNF secreted from macrophage-like cells (U937) after 8 hours incubation with LPS compared to standard hypercrosslinked / remelted UHMWPE (PE44) and thus has some anti-inflammatory effect showed that.
Claims (26)
クルクミン、ジンゲロール、ジンゲロン、ヘレナリン、サリシン、サリチル酸、カンナビクロメン、フラボノイドの形態、特にケルセチン、レスベラトロール及び/若しくはミリセチン、タンニン、テルペン、マルビイン及び/若しくはステロイド系抗炎症薬の形態、特に副腎皮質ステロイドの形態の抗炎症物質、並びに/又は Curcumin, gingerol, gingerone, Helenalin, salicin, salicylic acid, cannabichromene, flavonoid forms, especially quercetin, resveratrol and / or myricetin, tannin, terpene, malvinin and / or steroidal anti-inflammatory forms, especially corticosteroids Anti-inflammatory substances in the form of and / or
抗微生物物質、例えば、ペプチド系物質、特にラクトフェリン、若しくは非ペプチド系物質、特にペニシリン及び/若しくは銀、並びに/又は Antimicrobial substances such as peptide substances, in particular lactoferrin, or non-peptide substances, in particular penicillin and / or silver, and / or
抗腫瘍物質、例えば、アントラサイクリン、クルクミン及び/若しくはヘレナリン、並びに/又は Anti-tumor substances such as anthracyclines, curcumin and / or helenalin, and / or
抗ウイルス物質、例えば、タンニン、並びに/又は Antiviral substances such as tannins and / or
骨刺激物質、例えば、ペプチド系物質、特にラクトフェリン及び/若しくは非ペプチド系物質、特にケルセチン及び/若しくはジホスホン酸塩の形態のもの、及び/若しくは成長因子、特にBMPファミリー Bone stimulating substances such as peptide substances, in particular lactoferrin and / or non-peptide substances, especially in the form of quercetin and / or diphosphonates, and / or growth factors, in particular the BMP family
の1種又は複数である、請求項1に記載の使用。The use according to claim 1, which is one or more of the following.
である使用。Use that is.
クルクミン、ジンゲロール、ジンゲロン、ヘレナリン、サリシン、サリチル酸、カンナビクロメン、フラボノイドの形態、特にケルセチン、レスベラトロール及び/若しくはミリセチン、タンニン、テルペン、マルビイン及び/若しくはステロイド系抗炎症薬の形態、特に副腎皮質ステロイドの形態の抗炎症物質、並びに/又は Curcumin, gingerol, gingerone, Helenalin, salicin, salicylic acid, cannabichromene, flavonoid forms, especially quercetin, resveratrol and / or myricetin, tannin, terpene, malvinin and / or steroidal anti-inflammatory forms, especially corticosteroids Anti-inflammatory substances in the form of and / or
抗微生物物質、例えば、ペプチド系物質、特にラクトフェリン、若しくは非ペプチド系物質、特にペニシリン及び/若しくは銀、並びに/又は Antimicrobial substances such as peptide substances, in particular lactoferrin, or non-peptide substances, in particular penicillin and / or silver, and / or
抗腫瘍物質、例えば、アントラサイクリン、クルクミン及び/若しくはヘレナリン、並びに/又は Anti-tumor substances such as anthracyclines, curcumin and / or helenalin, and / or
抗ウイルス物質、例えば、タンニン、並びに/又は Antiviral substances such as tannins and / or
骨刺激物質、例えば、ペプチド系物質、特にラクトフェリン及び/若しくは非ペプチド系物質、特にケルセチン及び/若しくはジホスホン酸塩の形態のもの、及び/若しくは成長因子、特にBMPファミリー Bone stimulating substances such as peptide substances, in particular lactoferrin and / or non-peptide substances, especially in the form of quercetin and / or diphosphonates, and / or growth factors, in particular the BMP family
の1種又は複数である、請求項7に記載のUHMWPE材料。The UHMWPE material according to claim 7, wherein the UHMWPE material is one or more of the following.
前記混合物を、UHMWPEの融点より高い温度の適用によって成形して、プレフォームを作製し且つ任意選択で前記プレフォームから医療用インプラントを形成するステップと Forming the mixture by application of a temperature above the melting point of UHMWPE to produce a preform and optionally forming a medical implant from the preform;
を含むか、又は別法として、Or alternatively,
UHMWPEを含む材料を用意して、UHMWPEの融点より高い温度の適用によって前記材料を成形して、プレフォームを作製し且つ任意選択で前記プレフォームから医療用インプラントを形成するステップと、 Providing a material comprising UHMWPE, molding the material by application of a temperature above the melting point of UHMWPE, creating a preform and optionally forming a medical implant from the preform;
添加剤を拡散によって前記プレフォーム若しくは前記医療用インプラント中に組み入れ、前記拡散を、 Incorporating additives into the preform or the medical implant by diffusion,
a)前記プレフォーム若しくは前記医療用インプラントを純粋な添加剤若しく適切な溶媒中の添加剤溶液中に直接浸漬するか、 a) directly immersing the preform or the medical implant in a pure additive or additive solution in a suitable solvent,
b)1種若しくは複数の超臨界ガス、特に超臨界二酸化炭素の助けを借りて、前記添加剤を前記プレフォーム若しくは前記医療用インプラント中に組み入れる b) The additive is incorporated into the preform or the medical implant with the help of one or more supercritical gases, in particular supercritical carbon dioxide.
ことによって実施するステップとSteps to be carried out by
を含む、良好な身体応答特性を有するUHMWPE材料の加工方法。A process for processing UHMWPE materials with good body response characteristics, including:
クルクミン、ジンゲロール、ジンゲロン、ヘレナリン、サリシン、サリチル酸、カンナビクロメン、フラボノイドの形態、特にケルセチン、レスベラトロール及び/若しくはミリセチン、タンニン、テルペン、マルビイン及び/若しくはステロイド系抗炎症薬の形態、特に副腎皮質ステロイドの形態の抗炎症物質、並びに/又は Curcumin, gingerol, gingerone, Helenalin, salicin, salicylic acid, cannabichromene, flavonoid forms, especially quercetin, resveratrol and / or myricetin, tannin, terpene, malubiin and / or steroidal anti-inflammatory forms, especially corticosteroids Anti-inflammatory substances in the form of and / or
抗微生物物質、例えば、ペプチド系物質、特にラクトフェリン、若しくは非ペプチド系物質、特にペニシリン及び/若しくは銀、並びに/又は Antimicrobial substances such as peptide substances, in particular lactoferrin, or non-peptide substances, in particular penicillin and / or silver, and / or
抗腫瘍物質、例えば、アントラサイクリン、クルクミン及び/若しくはヘレナリン、並びに/又は Anti-tumor substances such as anthracyclines, curcumin and / or helenalin, and / or
抗ウイルス物質、例えば、タンニン、並びに/又は Antiviral substances such as tannins and / or
骨刺激物質、例えば、ペプチド系物質、特にラクトフェリン及び/若しくは非ペプチド系物質、特にケルセチン及び/若しくはジホスホン酸塩の形態のもの、及び/若しくは成長因子、特にBMPファミリー Bone stimulating substances such as peptide substances, in particular lactoferrin and / or non-peptide substances, especially in the form of quercetin and / or diphosphonates, and / or growth factors, in particular the BMP family
の1種又は複数である、請求項20に記載の方法。21. The method of claim 20, wherein the method is one or more.
前記インプラントを包装し且つ2〜4Mradの間のガンマ線照射によって滅菌するか又は前記インプラントをエチレンオキシド若しくは気体プラズマへの暴露によって滅菌するステップ Packaging the implant and sterilizing by gamma irradiation between 2-4 Mrad or sterilizing the implant by exposure to ethylene oxide or gas plasma
の1つ又は複数を更に含む、請求項20から24のいずれか一項に記載の方法。25. A method according to any one of claims 20 to 24, further comprising one or more of:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014191211A JP2015006444A (en) | 2014-09-19 | 2014-09-19 | Medical implant with abrasion particles excellent in response of body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014191211A JP2015006444A (en) | 2014-09-19 | 2014-09-19 | Medical implant with abrasion particles excellent in response of body |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011551044A Division JP5676489B2 (en) | 2009-02-19 | 2009-02-19 | Medical implants that produce wear particles that exhibit good body response |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2015006444A true JP2015006444A (en) | 2015-01-15 |
Family
ID=52337200
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014191211A Ceased JP2015006444A (en) | 2014-09-19 | 2014-09-19 | Medical implant with abrasion particles excellent in response of body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2015006444A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9983469B2 (en) | 2016-06-21 | 2018-05-29 | Casio Computer Co., Ltd. | Light source unit and projector having the same light source unit |
KR20240033523A (en) * | 2022-09-05 | 2024-03-12 | 한국원자력연구원 | Composition for controlling rice bacterial blight comprising irradiation substances of monoterpene and preparation method thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05262659A (en) * | 1991-11-14 | 1993-10-12 | Steigerwald Arzneimittelwerk Gmbh | Turmeric plant preparation and drug |
WO2000064505A1 (en) * | 1999-04-27 | 2000-11-02 | Agion Technologies, L.L.C. | Antimicrobial orthopedic implants |
JP2007500773A (en) * | 2003-05-19 | 2007-01-18 | レデラー,クラウス | Cross-linked ultra high molecular weight polyethylene (UHMW-PE) |
EP1779877A1 (en) * | 2005-09-30 | 2007-05-02 | DePuy Products, Inc. | Bearing materials for medical implants |
WO2007056667A2 (en) * | 2005-11-04 | 2007-05-18 | Rush University Medical Center | Plastic implant impregnated with an antibiotic |
WO2008113388A1 (en) * | 2007-03-20 | 2008-09-25 | Plus Orthopedics Ag | Oxidation resistant highly-crosslinked uhmwpe |
JP2011521023A (en) * | 2008-05-13 | 2011-07-21 | スミス・アンド・ネフュー・オルソペディクス・アーゲー | Oxidation resistant high crosslink UHMWPE |
-
2014
- 2014-09-19 JP JP2014191211A patent/JP2015006444A/en not_active Ceased
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05262659A (en) * | 1991-11-14 | 1993-10-12 | Steigerwald Arzneimittelwerk Gmbh | Turmeric plant preparation and drug |
WO2000064505A1 (en) * | 1999-04-27 | 2000-11-02 | Agion Technologies, L.L.C. | Antimicrobial orthopedic implants |
JP2007500773A (en) * | 2003-05-19 | 2007-01-18 | レデラー,クラウス | Cross-linked ultra high molecular weight polyethylene (UHMW-PE) |
EP1779877A1 (en) * | 2005-09-30 | 2007-05-02 | DePuy Products, Inc. | Bearing materials for medical implants |
WO2007056667A2 (en) * | 2005-11-04 | 2007-05-18 | Rush University Medical Center | Plastic implant impregnated with an antibiotic |
WO2008113388A1 (en) * | 2007-03-20 | 2008-09-25 | Plus Orthopedics Ag | Oxidation resistant highly-crosslinked uhmwpe |
JP2010521566A (en) * | 2007-03-20 | 2010-06-24 | スミス アンド ネフュー オーソペディックス アーゲー | Highly cross-linked oxidation resistant ultra high molecular weight polyethylene |
JP2011521023A (en) * | 2008-05-13 | 2011-07-21 | スミス・アンド・ネフュー・オルソペディクス・アーゲー | Oxidation resistant high crosslink UHMWPE |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9983469B2 (en) | 2016-06-21 | 2018-05-29 | Casio Computer Co., Ltd. | Light source unit and projector having the same light source unit |
KR20240033523A (en) * | 2022-09-05 | 2024-03-12 | 한국원자력연구원 | Composition for controlling rice bacterial blight comprising irradiation substances of monoterpene and preparation method thereof |
KR102671029B1 (en) | 2022-09-05 | 2024-05-30 | 한국원자력연구원 | Composition for controlling rice bacterial blight comprising irradiation substances of monoterpene and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5676489B2 (en) | Medical implants that produce wear particles that exhibit good body response | |
JP6563444B2 (en) | Ultra high molecular weight polyethylene for joint surfaces | |
Lambert et al. | Effects of vitamin E incorporation in polyethylene on oxidative degradation, wear rates, immune response, and infections in total joint arthroplasty: a review of the current literature | |
US11001680B2 (en) | Ultra high molecular weight polyethylene articles and methods of forming ultra high molecular weight polyethylene articles | |
JP5735443B2 (en) | Ultra high molecular weight polyethylene article and method of forming ultra high molecular weight polyethylene article | |
JP5969637B2 (en) | Ultra high molecular weight polyethylene article and method of forming ultra high molecular weight polyethylene article | |
EP3290060B1 (en) | Antibacterial polymeric material and orthopaedic prosthetic device obtained therefrom | |
JP2015006444A (en) | Medical implant with abrasion particles excellent in response of body | |
Canillas et al. | Photopolymerization for filling porous ceramic matrix: Improvement of mechanical properties and drug delivering behavior | |
Li et al. | Fabrication of ciprofloxacin loaded alginate/cockle shell powder nanobiocomposite bone scaffold |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141020 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20141020 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150928 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20151224 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20160128 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20160229 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160325 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160613 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20160913 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20161114 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161213 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20170206 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170602 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20170608 |
|
A912 | Removal of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20170630 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20180605 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20180806 |
|
A045 | Written measure of dismissal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A045 Effective date: 20190225 |