[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2015099880A - Work machine - Google Patents

Work machine Download PDF

Info

Publication number
JP2015099880A
JP2015099880A JP2013240032A JP2013240032A JP2015099880A JP 2015099880 A JP2015099880 A JP 2015099880A JP 2013240032 A JP2013240032 A JP 2013240032A JP 2013240032 A JP2013240032 A JP 2013240032A JP 2015099880 A JP2015099880 A JP 2015099880A
Authority
JP
Japan
Prior art keywords
power
electrode
power transmission
guide beam
head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013240032A
Other languages
Japanese (ja)
Other versions
JP6322391B2 (en
Inventor
緒方 雄二
Yuji Ogata
雄二 緒方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hanwha Vision Co Ltd
Original Assignee
Samsung Techwin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Techwin Co Ltd filed Critical Samsung Techwin Co Ltd
Priority to JP2013240032A priority Critical patent/JP6322391B2/en
Priority to KR1020140002088A priority patent/KR101915203B1/en
Publication of JP2015099880A publication Critical patent/JP2015099880A/en
Application granted granted Critical
Publication of JP6322391B2 publication Critical patent/JP6322391B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components
    • H05K13/0404Pick-and-place heads or apparatus, e.g. with jaws
    • H05K13/0406Drive mechanisms for pick-and-place heads, e.g. details relating to power transmission, motors or vibration damping
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/0015Orientation; Alignment; Positioning
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components
    • H05K13/046Surface mounting

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Supply And Installment Of Electrical Components (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a work machine in which a work head moves along a linear guide beam and which can transmit electric power to the work head contactlessly and stably.SOLUTION: A work machine in which a work head 10 moves along a linear guide beam 20 comprises: on the guide beam 20 side, power-transmitting electrodes 21 continuously along the guide beam; and, on the work head 10 side, power-receiving electrodes 12 opposed to the power-transmitting electrodes 21. Electric power is transmitted from the power-transmitting electrodes 21 to the power-receiving electrodes 12 by an electric field coupling system.

Description

本発明は、作業ヘッドが直線状のガイドビームに沿って移動する作業機械に関する。   The present invention relates to a work machine in which a work head moves along a linear guide beam.

かかる作業機械の一例として、ICチップ等の電子部品をプリント基板上に実装する電子部品実装装置が挙げられる。   An example of such a working machine is an electronic component mounting apparatus that mounts an electronic component such as an IC chip on a printed circuit board.

電子部品実装装置は、図5に示すように、作業ヘッドとして、ノズルを備えた実装ヘッド100を有する。実装ヘッド100はガイドビームとしてのX方向ビーム200に沿ってX方向に移動可能に取り付けられている。また、X方向ビーム200は、これと直交しX方向に所定の間隔をおいて配置された一対(2本)のY方向ビーム300間に架け渡されるとともに、Y方向ビーム300にY方向に沿って移動可能に取り付けられている。このように、X方向ビーム200とY方向ビーム300の組合せにより、実装ヘッド100は、水平面内でX方向及びY方向に自在に移動可能である。そして、実装ヘッド100は、X方向及びY方向の移動の組合せにより、部品供給部(図示省略)に移動してそのノズルによって電子部品を吸着し、更に実装位置に搬送されてきたプリント基板(図示省略)上の所定位置に移動してそのプリント基板上の所定位置に電子部品を実装する。   As shown in FIG. 5, the electronic component mounting apparatus includes a mounting head 100 having a nozzle as a work head. The mounting head 100 is attached so as to be movable in the X direction along an X direction beam 200 as a guide beam. The X-direction beam 200 is bridged between a pair (two) of Y-direction beams 300 that are orthogonal to the X-direction beam and disposed at a predetermined interval in the X direction. It is movably attached. As described above, the combination of the X direction beam 200 and the Y direction beam 300 allows the mounting head 100 to freely move in the X direction and the Y direction within a horizontal plane. The mounting head 100 is moved to a component supply unit (not shown) by a combination of movement in the X direction and the Y direction, sucks the electronic component by the nozzle, and is further conveyed to the mounting position (illustrated). (Omitted) The electronic component is mounted at a predetermined position on the printed circuit board by moving to a predetermined position.

このような電子部品実装装置を駆動させるには、実装ヘッド100等に電力を供給する必要がある。従来、実装ヘッド100への電力の供給は、外部電源からケーブルを介して行っており、このとき、実装ヘッド100のX方向の可動範囲をケーブルやスリップリング等の直接給電手段が移動可能なようにケーブルベア(登録商標)210が設置される(例えば特許文献1)。   In order to drive such an electronic component mounting apparatus, it is necessary to supply power to the mounting head 100 or the like. Conventionally, power is supplied to the mounting head 100 from an external power source via a cable. At this time, the direct feeding means such as a cable and a slip ring can move within the movable range of the mounting head 100 in the X direction. Is installed with a cable bear (registered trademark) 210 (for example, Patent Document 1).

しかし、これらの電力供給方法では摩耗や断線を完全になくすことはできず、実装ヘッド毎にケーブルベア(登録商標)を設置する場合は、実装ヘッドのX−Y方向への可動範囲を制限する要因となっていた。したがって、実装効率を向上させるために、1本のX方向ビームに複数の実装ヘッドを搭載しようとしても、各実装ヘッドの可動範囲を十分に確保することができず、現実的には1本のX方向ビームに複数の実装ヘッドを搭載することは困難であった。   However, these power supply methods cannot completely eliminate wear and disconnection. When a cable bear (registered trademark) is installed for each mounting head, the movable range of the mounting head in the XY direction is limited. It was a factor. Therefore, in order to improve the mounting efficiency, even if a plurality of mounting heads are mounted on one X-direction beam, a sufficient movable range of each mounting head cannot be ensured. It was difficult to mount a plurality of mounting heads on the X direction beam.

このような電力供給上の問題は、電子部品実装装置に限定されず、作業ヘッドがガイドビームに沿って移動する作業機械に共通の問題である。   Such a power supply problem is not limited to the electronic component mounting apparatus, and is a problem common to work machines in which the work head moves along the guide beam.

これらのことから、近年、上述のような作業機械に非接触給電機構を適用する試みがなされており、特許文献2にはそのための非接触給電装置が開示されている。   For these reasons, in recent years, attempts have been made to apply a non-contact power feeding mechanism to the above-described work machine, and Patent Document 2 discloses a non-contact power feeding device for that purpose.

この特許文献2の非接触給電装置は、その段落0026及び図5に示されているように、複数枚の円板状の送電電極と、この送電電極と略同径に形成された1枚の受電電極とを備えている。このように特許文献2の非接触給電装置において送電電極は、作業ヘッドである部品採取ヘッドの移動方向に連続しておらず、間隔をおいて設けられている。しかし、送電電極が作業ヘッドの移動方向に連続していないことから、作業ヘッドが移動する際に送電電極が設けられていない領域では電力伝送の効率が低下し、安定した電力伝送を行うことができない。   As shown in the paragraph 0026 and FIG. 5, the non-contact power feeding device of Patent Document 2 includes a plurality of disk-shaped power transmission electrodes and a single sheet formed to have substantially the same diameter as the power transmission electrodes. And a power receiving electrode. As described above, in the non-contact power feeding device of Patent Document 2, the power transmission electrodes are not continuous in the moving direction of the component sampling head which is the work head, and are provided at intervals. However, since the power transmission electrode is not continuous in the direction of movement of the work head, the efficiency of power transmission is reduced in a region where the power transmission electrode is not provided when the work head moves, and stable power transmission can be performed. Can not.

特開2008−243839号公報JP 2008-243839 A 特開2013−62924号公報JP2013-62924A

本発明が解決しようとする課題は、作業ヘッドが直線状のガイドビームに沿って移動する作業機械において、作業ヘッドへの電力伝送を非接触で安定的に行うことができるようにすることにある。   The problem to be solved by the present invention is to enable stable power transmission to a work head in a non-contact manner in a work machine in which the work head moves along a linear guide beam. .

本発明の一観点によれば、作業ヘッドが直線状のガイドビームに沿って移動する作業機械において、前記ガイドビーム側に当該ガードビームに沿って連続して送電電極を設けるとともに、前記作業ヘッド側に前記送電電極と対向する受電電極を設け、前記送電電極から前記受電電極に、電界結合方式により電力を伝送することを特徴とする作業機械が提供される。   According to an aspect of the present invention, in a work machine in which a work head moves along a linear guide beam, a power transmission electrode is continuously provided along the guard beam on the guide beam side, and the work head side Provided with a power receiving electrode opposed to the power transmitting electrode, and electric power is transmitted from the power transmitting electrode to the power receiving electrode by an electric field coupling method.

本発明において前記送電電極及び前記受電電極は、電界結合容量を増やすために相互に入れ子状に対向するように配置することが好ましく、また、前記送電電極は前記ガイドビームに一体的に設けることが好ましい。   In the present invention, the power transmission electrode and the power reception electrode are preferably disposed so as to be opposed to each other so as to increase the electric field coupling capacity, and the power transmission electrode is provided integrally with the guide beam. preferable.

本発明では、ガードビームに沿って連続して送電電極から、作業ヘッド側に設けた受電電極に電界結合方式により電力を伝送する。すなわち、作業ヘッドがガイドビームに沿って移動したとしても常に送電電極と受電電極が対向するので、作業ヘッドへの電力伝送を非接触で安定的に行うことができる。   In the present invention, electric power is transmitted from the power transmitting electrode continuously along the guard beam to the power receiving electrode provided on the work head side by the electric field coupling method. That is, even if the working head moves along the guide beam, the power transmission electrode and the power receiving electrode always face each other, so that power transmission to the working head can be stably performed without contact.

また、送電電極及び受電電極を相互に入れ子状に対向するように配置すると、電界結合方式で有効に作用する電極面積を大きくすることができるので、コンパクトな形状で大容量の電力を伝送することができる。   In addition, if the power transmitting electrode and the power receiving electrode are arranged so as to face each other in a nested manner, the electrode area that effectively acts in the electric field coupling method can be increased, so that a large amount of power can be transmitted in a compact shape. Can do.

更に、送電電極をガイドビームに一体的に設けると、独立して送電電極を設ける場合に比べ、装置の小型化が可能となる。また、一般的に作業ヘッドをガイドするガイドビームは、作業ヘッド側との位置関係において高精度に組み立てられている。したがって、ガイドビームに送電電極を一体的に設けると、送電電極と受電電極との電極間距離(ギャップ)を高精度に維持することができる。そうすると、電極間距離を小さくすることが容易となり、電界結合方式による電力伝送効率を向上させることができる。   Furthermore, when the power transmission electrode is provided integrally with the guide beam, the apparatus can be downsized as compared with the case where the power transmission electrode is provided independently. In general, the guide beam for guiding the work head is assembled with high accuracy in the positional relationship with the work head side. Therefore, when the power transmission electrode is provided integrally with the guide beam, the distance (gap) between the power transmission electrode and the power reception electrode can be maintained with high accuracy. Then, it becomes easy to reduce the distance between electrodes, and the power transmission efficiency by the electric field coupling method can be improved.

本発明を適用した電子部品実装装置の基本構成を示す概念図である。It is a conceptual diagram which shows the basic composition of the electronic component mounting apparatus to which this invention is applied. 本発明において作業ヘッドに電力を伝送するための構成の一例を概念的に示す説明図である。It is explanatory drawing which shows notionally an example of the structure for transmitting electric power to a working head in this invention. 図2の電力伝送系の等価回路を示す。3 shows an equivalent circuit of the power transmission system of FIG. 本発明において送電電極をガイドビームに一体的に設けた例を概念的に示す断面図である。It is sectional drawing which shows notionally the example which provided the power transmission electrode in the guide beam integrally in this invention. 従来の電子部品実装装置の基本構成を示す概念図である。It is a conceptual diagram which shows the basic composition of the conventional electronic component mounting apparatus.

以下、本発明を電子部品実装装置に適用した実施例に基づき、本発明の実施の形態を説明する。   Embodiments of the present invention will be described below based on examples in which the present invention is applied to an electronic component mounting apparatus.

図1は、電子部品実装装置の基本構成を示す概念図である。電子部品実装装置は、電子部品を吸着しプリント基板上に実装するために実装ヘッド10を有する。実装ヘッド10には、1本又は複数本のノズル11がX方向及びY方向に直交するZ方向に移動可能、すなわち上下移動可能に組み込まれている。   FIG. 1 is a conceptual diagram showing a basic configuration of an electronic component mounting apparatus. The electronic component mounting apparatus has a mounting head 10 for sucking electronic components and mounting them on a printed board. One or a plurality of nozzles 11 are incorporated in the mounting head 10 so as to be movable in the Z direction orthogonal to the X direction and the Y direction, that is, movable up and down.

図1の電子部品実装装置は、直線状のガイドビームとしての1本のX方向ビーム20に3個の実装ヘッド10を、それぞれX方向ビーム20に沿ってX方向に移動可能に搭載している。これらの3個の実装ヘッドの種類としては、複数本のノズルを備えたロータリー式又はリニア式、あるいは1本のノズルを備えたものなど、公知のものとすることができ、3個の実装ヘッド10は、複数種類の組合せ、又は全て同一種類とすることができる。これらの実装ヘッド10は、X方向ビーム20に沿って、隣り合う実装ヘッドとの衝突及び干渉を避けながら、公知の最適化されたプログラムにより自在に移動する。   In the electronic component mounting apparatus of FIG. 1, three mounting heads 10 are mounted on one X direction beam 20 as a linear guide beam so as to be movable in the X direction along the X direction beam 20. . The types of these three mounting heads may be known ones such as a rotary type or linear type having a plurality of nozzles, or one having a single nozzle, and three mounting heads. 10 can be a combination of a plurality of types, or all the same type. These mounting heads 10 move freely along the X-direction beam 20 according to a known optimized program while avoiding collision and interference with adjacent mounting heads.

X方向ビーム20は、これと直交しX方向に所定の間隔をおいて配置された一対(2本)のY方向ビーム30間に架け渡されるとともに、Y方向ビーム30にY方向に沿って移動可能に取り付けられている。このように、X方向ビーム20とY方向ビーム30の組合せにより、実装ヘッド10は、水平面内でX方向及びY方向に自在に移動可能である。そして、実装ヘッド10は、X方向及びY方向の移動の組合せにより、部品供給部(図示省略)に移動してそのノズル11によって電子部品を吸着し、更に実装位置に搬送されてきたプリント基板(図示省略)上の所定位置に移動してそのプリント基板上の所定位置に電子部品を実装する。   The X-direction beam 20 is bridged between a pair of (two) Y-direction beams 30 orthogonal to the X-direction beam and arranged at a predetermined interval in the X direction, and moves along the Y direction to the Y-direction beam 30. It is attached as possible. As described above, the combination of the X direction beam 20 and the Y direction beam 30 allows the mounting head 10 to freely move in the X direction and the Y direction within a horizontal plane. The mounting head 10 moves to a component supply unit (not shown) by a combination of movement in the X direction and the Y direction, sucks the electronic component by the nozzle 11, and is further transported to the mounting position ( The electronic component is mounted at a predetermined position on the printed board by moving to a predetermined position on the printed board.

なお、図1では、X方向ビームを1本のみ示すが、図5に示したように一対(2本)のX方向ビーム20をY方向ビーム30間に架け渡し、各X方向ビーム20に一又は複数個の実装ヘッド10を搭載することもできる。また、図1では、1本のX方向ビーム20に3個の実装ヘッド10を搭載した例を示したが、これには限定されず、本発明では直線状のガイドビームとしての1本のX方向ビーム20に一又は複数個の実装ヘッド10を、X方向ビーム20に沿ってX方向に移動可能に搭載することができる。更に、Y方向ビーム30も一対(2本)には限定されず、1本とすることもできる。この場合、補助のため片方にガイドレールによる支えを設けるなど、様々な形態とすることができる。   In FIG. 1, only one X-direction beam is shown, but as shown in FIG. 5, a pair (two) of X-direction beams 20 are bridged between the Y-direction beams 30 so that each X-direction beam 20 has one. Alternatively, a plurality of mounting heads 10 can be mounted. 1 shows an example in which three mounting heads 10 are mounted on one X-direction beam 20, but the present invention is not limited to this. In the present invention, one X as a linear guide beam is shown. One or a plurality of mounting heads 10 can be mounted on the direction beam 20 so as to be movable along the X direction beam 20 in the X direction. Further, the Y-direction beams 30 are not limited to a pair (two), but may be one. In this case, it is possible to adopt various forms such as providing a support by a guide rail on one side for assistance.

図2は、本発明において実装ヘッド10に電力を伝送するための構成の一例を概念的に示す説明図である。図2に示すように、X方向ビーム20側に一対の送電電極21がX方向ビーム20に沿って連続して設けられ、実装ヘッド10側に送電電極21と対向する一対の受電電極12が設けられている。そして、送電電極21から受電電極12に電界結合方式により電力が伝送される。この図2の電力伝送系は図3に示す等価回路で表すことができる。すなわち、送電電極21と受電電極12との電界結合により、電力が送電電極21から受電電極12に伝送され、その電力により、実装ヘッド10が駆動する。   FIG. 2 is an explanatory diagram conceptually showing an example of a configuration for transmitting power to the mounting head 10 in the present invention. As shown in FIG. 2, a pair of power transmission electrodes 21 are continuously provided along the X direction beam 20 on the X direction beam 20 side, and a pair of power reception electrodes 12 facing the power transmission electrode 21 are provided on the mounting head 10 side. It has been. Then, power is transmitted from the power transmission electrode 21 to the power reception electrode 12 by the electric field coupling method. The power transmission system of FIG. 2 can be represented by the equivalent circuit shown in FIG. That is, electric power is transmitted from the power transmitting electrode 21 to the power receiving electrode 12 by electric field coupling between the power transmitting electrode 21 and the power receiving electrode 12, and the mounting head 10 is driven by the power.

この図2の例において送電電極21及び受電電極12は、相互に入れ子状に対向している。具体的には送電電極21及び受電電極12はそれぞれ櫛歯状に形成され、これらが相互に噛み合うように組み合わされている。このように送電電極21及び受電電極12を櫛歯状に形成するほか、鋸歯状や波状に形成して相互に噛み合うように組み合わせることもできる。要するに送電電極21及び受電電極12を相互に入れ子状に対向させればよい。このような構成にすることで、電界結合方式で有効に作用する電極面積を大きくすることができるので、コンパクトな形状で大容量の電力を伝送することができる。   In the example of FIG. 2, the power transmission electrode 21 and the power reception electrode 12 face each other in a nested manner. Specifically, the power transmission electrode 21 and the power reception electrode 12 are each formed in a comb-teeth shape, and are combined so as to mesh with each other. As described above, the power transmitting electrode 21 and the power receiving electrode 12 may be formed in a comb-teeth shape, or may be combined in a sawtooth shape or a wave shape so as to mesh with each other. In short, the power transmission electrode 21 and the power reception electrode 12 may be nested and face each other. With such a configuration, the electrode area that effectively acts in the electric field coupling method can be increased, so that a large amount of power can be transmitted in a compact shape.

また、図2の例では、櫛歯状(入れ子状)の送電電極21及び受電電極12を水平方向に配置したが、鉛直方向に配置してもよい。ただし、鉛直方向に配置すると、対向する送電電極21と受電電極12との間に異物が落下して挟まりやすくなるので、図2の例のように水平方向に配置することが好ましい。   In the example of FIG. 2, the comb-like (nested) power transmission electrode 21 and the power reception electrode 12 are arranged in the horizontal direction, but may be arranged in the vertical direction. However, when arranged in the vertical direction, foreign matter is likely to fall between the transmitting electrode 21 and the receiving electrode 12 facing each other, so that it is preferable to arrange in the horizontal direction as in the example of FIG.

以上の例では、送電電極21をX方向ビーム20と独立して設けたが、送電電極21はX方向ビーム20に一体的に設けることができる。   In the above example, the power transmission electrode 21 is provided independently of the X direction beam 20, but the power transmission electrode 21 can be provided integrally with the X direction beam 20.

図4は、その一例を概念的に示す断面図である。この図4の例では、実装ヘッド10は円筒状の軸受け13aを有するリニアガイド13を介して、X方向ビーム20に、その長手方向(X方向)に沿って移動可能に取り付けられている。すなわち、実装ヘッド10は、X方向ビーム20と常に一定の間隔を保ちながらX方向に自在に移動する。なお、リニアガイドの構成は図4の例には限定されず、様々な形態とすることができる。   FIG. 4 is a sectional view conceptually showing an example thereof. In the example of FIG. 4, the mounting head 10 is attached to the X direction beam 20 via a linear guide 13 having a cylindrical bearing 13a so as to be movable along the longitudinal direction (X direction). In other words, the mounting head 10 moves freely in the X direction while always maintaining a certain distance from the X direction beam 20. The configuration of the linear guide is not limited to the example shown in FIG. 4, and various forms can be adopted.

このような構成において、X方向ビーム20のリニアガイド13との対向面側に、X方向ビーム20と一体的に送電電極21が設けられ、実装ヘッド10と一体的に設けられているリニアガイド13に、送電電極21と対向する受電電極12が設けられている。   In such a configuration, the power transmission electrode 21 is provided integrally with the X-direction beam 20 on the side facing the linear guide 13 of the X-direction beam 20, and the linear guide 13 provided integrally with the mounting head 10. Further, the power receiving electrode 12 facing the power transmitting electrode 21 is provided.

このように、送電電極21をX方向ビーム20に一体的に設けると、図2のように独立して送電電極21を設ける場合に比べ、装置の小型化が可能となる。また、もともとリニアガイド13は、X方向ビーム20に対して数十μm以下の誤差で組み立てられているので、送電電極21をX方向ビーム20に一体的に設け、受電電極12をリニアガイド13に一体的に設けることで、送電電極21と受電電極12との電極間距離(ギャップ)を高精度に維持することができる。そうすると、電極間距離を小さくすることが容易となり、電界結合方式による電力伝送効率を向上させることができる。   Thus, when the power transmission electrode 21 is provided integrally with the X-direction beam 20, it is possible to reduce the size of the apparatus as compared with the case where the power transmission electrode 21 is provided independently as shown in FIG. Since the linear guide 13 is originally assembled with an error of several tens of μm or less with respect to the X-direction beam 20, the power transmission electrode 21 is provided integrally with the X-direction beam 20, and the power reception electrode 12 is connected to the linear guide 13. By providing them integrally, the inter-electrode distance (gap) between the power transmitting electrode 21 and the power receiving electrode 12 can be maintained with high accuracy. Then, it becomes easy to reduce the distance between electrodes, and the power transmission efficiency by the electric field coupling method can be improved.

本発明は、電子部品実装装置のみならず、溶接ヘッドがガイドビームに沿って移動する溶接装置など、作業ヘッドがガイドビームに沿って移動する作業機械に適用可能である。   The present invention is applicable not only to an electronic component mounting apparatus but also to a work machine in which a work head moves along a guide beam, such as a welding apparatus in which a welding head moves along a guide beam.

10 実装ヘッド(作業ヘッド)
11 ノズル
12 受電電極
13 リニアガイド
13a 軸受け
20 X方向ビーム(ガイドビーム)
21 送電電極
30 Y方向ビーム
10 Mounting head (working head)
11 Nozzle 12 Power receiving electrode 13 Linear guide 13a Bearing 20 X direction beam (guide beam)
21 Transmission electrode 30 Y direction beam

Claims (3)

作業ヘッドが直線状のガイドビームに沿って移動する作業機械において、
前記ガイドビーム側に当該ガードビームに沿って連続して送電電極を設けるとともに、前記作業ヘッド側に前記送電電極と対向する受電電極を設け、
前記送電電極から前記受電電極に、電界結合方式により電力を伝送することを特徴とする作業機械。
In a work machine in which a work head moves along a linear guide beam,
While providing a power transmission electrode continuously along the guard beam on the guide beam side, providing a power reception electrode facing the power transmission electrode on the working head side,
A working machine that transmits electric power from the power transmitting electrode to the power receiving electrode by an electric field coupling method.
前記送電電極及び前記受電電極が、相互に入れ子状に対向している請求項1に記載の作業機械。   The work machine according to claim 1, wherein the power transmission electrode and the power reception electrode face each other in a nested manner. 前記送電電極が前記ガイドビームに一体的に設けられている請求項1又は2に記載の作業機械。   The work machine according to claim 1, wherein the power transmission electrode is provided integrally with the guide beam.
JP2013240032A 2013-11-20 2013-11-20 Work machine Active JP6322391B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013240032A JP6322391B2 (en) 2013-11-20 2013-11-20 Work machine
KR1020140002088A KR101915203B1 (en) 2013-11-20 2014-01-07 A working machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013240032A JP6322391B2 (en) 2013-11-20 2013-11-20 Work machine

Publications (2)

Publication Number Publication Date
JP2015099880A true JP2015099880A (en) 2015-05-28
JP6322391B2 JP6322391B2 (en) 2018-05-09

Family

ID=53376307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013240032A Active JP6322391B2 (en) 2013-11-20 2013-11-20 Work machine

Country Status (2)

Country Link
JP (1) JP6322391B2 (en)
KR (1) KR101915203B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017011819A (en) * 2015-06-18 2017-01-12 株式会社アルバック Non-contact power supply system
WO2017146082A1 (en) * 2016-02-22 2017-08-31 株式会社ExH Power supply system
JP2019068581A (en) * 2017-09-29 2019-04-25 国立大学法人豊橋技術科学大学 Power transmission electrode device and wireless power supply system using the same
CN110247481A (en) * 2018-03-08 2019-09-17 莫列斯有限公司 Contactless is to electric installation
US11289947B2 (en) 2017-08-29 2022-03-29 Exh Corporation Electric power transmission system, and manufacturing method for electric power transmission system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001274597A (en) * 2000-03-24 2001-10-05 Matsushita Electric Ind Co Ltd Manufacturing system and method and component mounting apparatus and method
JP2012110118A (en) * 2010-11-17 2012-06-07 Fuji Mach Mfg Co Ltd Reciprocating device
JP2012160676A (en) * 2011-02-03 2012-08-23 Fuji Mach Mfg Co Ltd Substrate work device
JP2013062924A (en) * 2011-09-13 2013-04-04 Fuji Mach Mfg Co Ltd Non-contact power feeding device
WO2014006685A1 (en) * 2012-07-02 2014-01-09 富士機械製造株式会社 Capacitive coupling contactless power supply device
JP2014007200A (en) * 2012-06-21 2014-01-16 Samsung Techwin Co Ltd Working machine
WO2014049869A1 (en) * 2012-09-28 2014-04-03 富士機械製造株式会社 Non-contact power-feed apparatus
JP2014168370A (en) * 2013-01-31 2014-09-11 Furukawa Electric Co Ltd:The Carrier system and carrier device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007123332A (en) 2005-10-25 2007-05-17 Nikon Corp Stage device, exposure device and manufacturing method of device
DE102009003846A1 (en) * 2009-04-29 2010-11-04 Weidmüller Interface GmbH & Co. KG System for the contactless energy and data supply of bus subscriber modules

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001274597A (en) * 2000-03-24 2001-10-05 Matsushita Electric Ind Co Ltd Manufacturing system and method and component mounting apparatus and method
JP2012110118A (en) * 2010-11-17 2012-06-07 Fuji Mach Mfg Co Ltd Reciprocating device
JP2012160676A (en) * 2011-02-03 2012-08-23 Fuji Mach Mfg Co Ltd Substrate work device
JP2013062924A (en) * 2011-09-13 2013-04-04 Fuji Mach Mfg Co Ltd Non-contact power feeding device
JP2014007200A (en) * 2012-06-21 2014-01-16 Samsung Techwin Co Ltd Working machine
WO2014006685A1 (en) * 2012-07-02 2014-01-09 富士機械製造株式会社 Capacitive coupling contactless power supply device
WO2014049869A1 (en) * 2012-09-28 2014-04-03 富士機械製造株式会社 Non-contact power-feed apparatus
JP2014168370A (en) * 2013-01-31 2014-09-11 Furukawa Electric Co Ltd:The Carrier system and carrier device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017011819A (en) * 2015-06-18 2017-01-12 株式会社アルバック Non-contact power supply system
WO2017146082A1 (en) * 2016-02-22 2017-08-31 株式会社ExH Power supply system
US11289947B2 (en) 2017-08-29 2022-03-29 Exh Corporation Electric power transmission system, and manufacturing method for electric power transmission system
JP2019068581A (en) * 2017-09-29 2019-04-25 国立大学法人豊橋技術科学大学 Power transmission electrode device and wireless power supply system using the same
CN110247481A (en) * 2018-03-08 2019-09-17 莫列斯有限公司 Contactless is to electric installation
US10797519B2 (en) 2018-03-08 2020-10-06 Molex, Llc Contactless power feeding apparatus
CN110247481B (en) * 2018-03-08 2022-10-18 莫列斯有限公司 Contactless power supply device

Also Published As

Publication number Publication date
KR20150057923A (en) 2015-05-28
KR101915203B1 (en) 2018-11-05
JP6322391B2 (en) 2018-05-09

Similar Documents

Publication Publication Date Title
JP6322391B2 (en) Work machine
JP5897072B2 (en) Reciprocating device
CN101798024A (en) Magnetic force delivering device
US10340163B2 (en) Mounting apparatus
CN102887636B (en) Dividing apparatus
KR101642573B1 (en) Industrial robot
JP6141613B2 (en) Linear motion robot
CN103338625B (en) Double-head overhead type inserter
CN110199586B (en) Working machine
KR102365098B1 (en) Substrate machining apparatus
CN205305346U (en) Self -correcting chip mounter suction nozzle structure and use its high accuracy chip mounter
CN213864031U (en) Battery step-sending device and step-sending line
CN104202911A (en) Chip mounting machine
US9530557B2 (en) Working machine powered in a non-contact manner
JP6439716B2 (en) Substrate processing equipment
KR102365097B1 (en) Substrate machining apparatus
JP2018015924A (en) Break device
JP2017095195A (en) Conveying device
JP6063241B2 (en) Bending machine
KR101190846B1 (en) Work-table transfer apparatus for circuit-pattern print device
RU86517U1 (en) CROSS TABLE
CN202784979U (en) Novel corrugated paper cutting machine
CN109465871A (en) A kind of pcb board cutting on line device
JP2019003984A (en) Board support device and component mounting machine including the same
CN203566249U (en) Moving platform

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180409

R150 Certificate of patent or registration of utility model

Ref document number: 6322391

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250