[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2015095641A - ファイバレーザ装置 - Google Patents

ファイバレーザ装置 Download PDF

Info

Publication number
JP2015095641A
JP2015095641A JP2013236342A JP2013236342A JP2015095641A JP 2015095641 A JP2015095641 A JP 2015095641A JP 2013236342 A JP2013236342 A JP 2013236342A JP 2013236342 A JP2013236342 A JP 2013236342A JP 2015095641 A JP2015095641 A JP 2015095641A
Authority
JP
Japan
Prior art keywords
light
power
optical fiber
wavelength component
laser device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013236342A
Other languages
English (en)
Other versions
JP5680170B1 (ja
Inventor
晋也 生駒
Shinya Ikoma
晋也 生駒
和大 北林
Kazuhiro Kitabayashi
和大 北林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2013236342A priority Critical patent/JP5680170B1/ja
Priority to CN201480061509.5A priority patent/CN105723576B/zh
Priority to PCT/JP2014/071561 priority patent/WO2015072198A1/ja
Priority to EP14862763.1A priority patent/EP3070791B1/en
Application granted granted Critical
Publication of JP5680170B1 publication Critical patent/JP5680170B1/ja
Publication of JP2015095641A publication Critical patent/JP2015095641A/ja
Priority to US15/152,134 priority patent/US20160254637A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/30Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects
    • H01S3/302Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects in an optical fibre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06716Fibre compositions or doping with active elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/0675Resonators including a grating structure, e.g. distributed Bragg reflectors [DBR] or distributed feedback [DFB] fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/1301Stabilisation of laser output parameters, e.g. frequency or amplitude in optical amplifiers
    • H01S3/13013Stabilisation of laser output parameters, e.g. frequency or amplitude in optical amplifiers by controlling the optical pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/131Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the active medium, e.g. by controlling the processes or apparatus for excitation
    • H01S3/1312Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the active medium, e.g. by controlling the processes or apparatus for excitation by controlling the optical pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/03Suppression of nonlinear conversion, e.g. specific design to suppress for example stimulated brillouin scattering [SBS], mainly in optical fibres in combination with multimode pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/09408Pump redundancy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • H01S3/09415Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1618Solid materials characterised by an active (lasing) ion rare earth ytterbium

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

【課題】 出射光のパワーを精度良く制御することができるファイバレーザ装置を提供する。
【解決手段】 ファイバレーザ装置1は、励起光を出射する励起光源10と、前記励起光により信号光を増幅して出射する増幅用光ファイバ30と、増幅用光ファイバ30を伝搬する信号光または増幅用光ファイバ30から出射する信号光から発生する誘導ラマン散乱光のパワーを信号光のパワーよりも優先的に検出する検出部71と、検出部71で検出される光のパワーに基づいて励起光のパワーを制御する制御部80と、を備える。
【選択図】 図1

Description

本発明は、出射光のパワーの制御を行うことができるファイバレーザ装置に関し、パワーの大きな出射光を制御するファイバレーザ装置に好適なものである。
ファイバレーザ装置は、集光性に優れ、パワー密度が高く、小さなビームスポットとなる光が得られることから、レーザ加工分野、医療分野等の様々な分野において用いられている。
このようなファイバレーザ装置では、ファイバレーザ装置からの出射光が被加工体等で反射して、反射した光がファイバレーザ装置の出射端から入射する場合がある。また、出射した光が再び入射する場合以外にも、ファイバレーザ装置内で光ファイバの接続部等で光が反射する場合もある。特にパルス状の光を出射するファイバレーザ装置では、出射光の単位時間あたりの平均パワーは小さくても、パルス状の出射光のピークパワーは大きいため、反射光のピークパワーも大きくなる傾向がある。この反射光がファイバレーザ装置内で増幅し、光が入射すべきでない励起光源等の部位に増幅した反射光が入射して、当該部位に損傷を与える場合がある。
下記特許文献1には、希土類添加ファイバから励起光源側に向かう戻り光の強度を測定し、この戻り光の強度が所定値を超えた場合に励起光源の出力を減じるファイバレーザ装置が記載されている。
特許第4699131号公報
上記特許文献1に記載のファイバレーザ装置によれば、励起光の強度を調整することで、ファイバレーザ装置の損傷を防止することができる。しかし、励起光のパワーをより高い精度で制御することで、出射光のパワーをより高い精度で制御することができるファイバレーザ装置が求められている。特に近年ファイバレーザ装置の出射光のパワーが大きくなる傾向があり、出射光のパワーが大きい場合において出射光のパワーをより高い精度で制御したいという要請がある。
そこで、本発明は、パワーの大きな出射光を高い精度で制御することができるファイバレーザ装置を提供することを目的とする。
上記課題を解決するため、本発明のファイバレーザ装置は、励起光を出射する励起光源と、前記励起光により信号光を増幅して出射する増幅用光ファイバと、前記増幅用光ファイバを伝搬する前記信号光または前記増幅用光ファイバから出射する前記信号光から発生する誘導ラマン散乱光の波長成分のパワーを前記信号光の波長成分のパワーよりも優先的に検出する検出部と、前記検出部で検出される光のパワーに基づいて前記励起光のパワーを制御する制御部と、を備えることを特徴とするものである。
誘導ラマン散乱光は、光ファイバ内を伝搬する光のパワー密度が高い場合に発生する光である。従って、増幅用光ファイバにおいて信号光が増幅されると、増幅用光ファイバを伝搬する信号光や増幅用光ファイバから出射した信号光から誘導ラマン散乱光が発生する傾向がある。この誘導ラマン散乱光のパワーは、信号光のパワーに対して指数関数的に大きくなる。つまり、信号光のパワーが大きい領域においては、誘導ラマン散乱光のパワーの変化率は信号光のパワーの変化率よりも大きくなる。従って、信号光の波長成分よりも優先的に誘導ラマン散乱光の波長成分のパワーを検出して、検出した光のパワーに基づいて励起光のパワーを制御することで、誘導ラマン散乱光の基となる信号光のパワーが大きい領域において、励起光のパワーを細かく調整することができる。こうして、パワーの大きな出射光のパワーを高い精度で制御することができるのである。
なお、本明細書において、信号光とは、増幅用光ファイバで増幅される光を意味し、光に信号が含まれている必要はない。
また、上記ファイバレーザ装置は、前記増幅用光ファイバの一方側に設けられ前記信号光を反射する第1ミラーと、前記増幅用光ファイバの他方側に設けられ前記信号光を前記第1ミラーよりも低い反射率で反射する第2ミラーと、を更に備えることとしても良い。
このような構成とすることで、ファイバレーザ装置を共振型のファイバレーザ装置とすることができる。そして、検出される誘導ラマン散乱光の波長成分のパワーに基づいて、信号光のパワーが大きな領域において、励起光のパワーが細かく調整され、共振する信号光のパワーを高い精度で制御することができる。
この場合、前記検出部は、前記第1ミラーを基準として前記増幅用光ファイバとは反対側に配置されることが好ましい。
第1ミラーでは信号光の多くが反射されるため、第1ミラーを透過する光には信号光があまり含まれない。従って、検出対象である誘導ラマン散乱光の波長成分のパワーを信号とし、信号光の波長成分のパワーをノイズとすると、S/N(信号・ノイズ比)が高くなる。また、上記共振型のファイバレーザ装置では、第2ミラー側が信号光の出射側となるため、第1ミラーを透過する信号光のパワーは、第2ミラーを透過する光のパワーと比べると格段に小さい。従って、検出部が検出対象ではない信号光により損傷することを抑制することができる。
さらにこの場合、前記検出部は、前記第1ミラーを透過する光を受光する受光部を有し、前記受光部は、前記信号光の波長成分に対する受光感度よりも前記誘導ラマン散乱光の波長成分に対する受光感度が高い構成としても良い。
或いは、上記ファイバレーザ装置は、前記増幅用光ファイバに入射する信号光を出射する信号光源を更に備えることとしても良い。この場合、ファイバレーザ装置を上記の共振型のファイバレーザ装置ではなくMO−PA(Master Oscillator - Power Amplifier)型のファイバレーザ装置とすることができる。本ファイバレーザ装置でも、信号光のパワーが大きな領域において、励起光のパワーを細かく調整することができ、出射光のパワーを高い精度で制御することができる。
また、上記のファイバレーザ装置において、前記検出部は、前記増幅用光ファイバから出射する光の一部を分岐する光分岐部と、分岐された光を受光する受光部と、を有し、前記受光部は、前記信号光の波長成分に対する受光感度よりも前記誘導ラマン散乱光の波長成分に対する受光感度が高いこととしても良い。
検出部をこのような構成とすることで、信号光と誘導ラマン散乱光とを分離するための特別な部品を用いなくとも誘導ラマン散乱光の波長成分のパワーを優先的に検出することができる。従って、ファイバレーザ装置の構成を簡易にすることができる。
或いは、上記のファイバレーザ装置において、前記検出部は、前記増幅用光ファイバから出射する光の一部を分岐する光分岐部と、分岐した光を受光する受光部と、を有し、前記光分岐部は、前記信号光の波長成分よりも前記誘導ラマン散乱光の波長成分を優先的に分岐することとしても良い。
検出部において誘導ラマン散乱光の波長成分が優先的に分岐されるため、信号光の損出を抑制することができる。特に信号光が伝搬する光ファイバの一部と分岐された誘導ラマン散乱光の波長成分が伝搬する光ファイバの一部とを長手方向に沿わせた状態で一体に融着するカプラを光分岐部として用いる場合、誘導ラマン散乱光の波長成分の損失が小さい状態で、誘導ラマン散乱光の波長成分を分岐して受光部まで伝搬することができる。このため誘導ラマン散乱光の波長成分を検出しやすくすることができる。
また或いは、上記のファイバレーザ装置において、前記検出部は、前記増幅用光ファイバから出射する光の一部を分岐する光分岐部と、分岐した光のうち前記信号光の波長成分よりも前記誘導ラマン散乱光の波長成分を優先的に透過する光フィルタと、前記光フィルタを透過した光を受光する受光部と、を有することとしても良い。
光フィルタは、透過する光の波長の制御性に優れる。従って、誘導ラマン散乱光の波長成分を受光部が受光すべき信号として、他の光をノイズとする場合、S/Nの制御を自由に設定することができる。特に、光フィルタを誘導ラマン散乱光の波長成分のみを透過させる構成とすれば、S/Nを最良の状態とすることもできる。
また或いは、上記のファイバレーザ装置において、前記検出部は、前記増幅用光ファイバから出射する光の一部を吸収して熱に変換する光熱変換部と、前記光熱変換部の温度を検出する温度検出部と、を有し、前記光熱変換部は、前記信号光の波長成分よりも前記誘導ラマン散乱光の波長成分の吸収効率が良いこととしても良い。
検出部をこのような構成とすることで、受光部を用いずとも誘導ラマン散乱光の波長成分のパワーを検出することができる。従って、ファイバレーザ装置の構成を簡易にすることができる。
また、上記のファイバレーザ装置において、前記制御部は、前記検出部で検出される光のパワーが所定の大きさ以上である場合に、前記励起光のパワーを小さくすることすることが好ましい。この場合、前記制御部は、前記検出部で検出される光のパワーが所定の大きさ以上である場合に、前記励起光のパワーをゼロとすることとしても良い。
励起光のパワーを小さくしたりゼロとすることにより、出射光のパワーを小さくしたりゼロとすることができる。従って、出射光が加工体等で反射して再び増幅用光ファイバまで入射し、信号光として増幅する場合であっても、増幅用光ファイバ内の光のパワー密度を低く抑えることができる。
また、前記制御部は、前記励起光のパワーが小さくされた後、前記検出部で検出される光のパワーが所定の大きさより小さくなった場合に、前記励起光のパワーを元のパワーに戻すこととしても良い。また、前記制御部は、前記励起光のパワーがゼロとされた後、前記検出部で検出される光のパワーが所定の大きさより小さくなった場合に、前記励起光のパワーを元のパワーに戻すこととしても良い。
ファイバレーザ装置の周囲環境は時間の経過とともに変化する。例えば、上記のように反射光が増幅用光ファイバに入射して信号光として増幅する場合であっても、励起光のパワーを小さくしたりゼロとした直後に、反射光の状態が変化する場合もある。従って、検出部で検出される光のパワーが所定の大きさより小さくなった場合に、励起光のパワーを元のパワーに戻しても、再び検出部で検出される光のパワーが所定の大きさ以上となるとは限らない。このように制御することで、出来るだけパワーの大きな光を出射することができる。
以上説明したように、本発明によれば、パワーの大きな出射光を高い精度で制御することができるファイバレーザ装置が提供される。
本発明の第1実施形態に係るファイバレーザ装置を示す図である。 信号光のパワーと信号光から発生する誘導ラマン散乱光のパワーとの関係を示す図である。 信号光のパワーと誘導ラマン散乱光のパワーとを比較する図である。 本発明の第2実施形態に係るファイバレーザ装置を示す図である。 図4に示す第2光ファイバとデリバリファイバとの接続部付近の拡大図である。 光分岐部としてデリバリファイバのコアに形成された光散乱部を用いる様子を示す図である。 本発明の第3実施形態に係るファイバレーザ装置を示す図である。 光分岐部としてデリバリファイバの曲げ部を用いる様子を示す図である。 光分岐部としてスラントFBGを用いる様子を示す図である。 本発明の第4実施形態に係るファイバレーザ装置を示す図である。 本発明の第5実施形態に係るファイバレーザ装置を示す図である。 本発明の第6実施形態に係るファイバレーザ装置を示す図である。
以下、本発明に係るファイバレーザ装置の好適な実施形態について図面を参照しながら詳細に説明する。
(第1実施形態)
図1は、本発明の第1実施形態に係るファイバレーザ装置を示す図である。図1に示すように、本実施形態のファイバレーザ装置1は、励起光を出射する励起光源10と、励起光源10から出射する励起光が入射し、励起光により励起される活性元素が添加される増幅用光ファイバ30と、増幅用光ファイバ30の一端に接続される第1光ファイバ41と、第1光ファイバ41に設けられる第1ミラーとしての第1FBG(Fiber Bragg Grating)45と、第1光ファイバ41に励起光を入射するためのコンバイナ50と、増幅用光ファイバ30の他端に接続される第2光ファイバ42と、第2光ファイバ42に設けられる第2ミラーとしての第2FBG46と、第2光ファイバ42に接続されるデリバリファイバ51と、第1FBG45を透過する光を受光する受光部61と、励起光源10を制御する制御部80と、を主な構成として備える。増幅用光ファイバ30と第1FBG45と第2FBG46とで共振器が形成され、本実施形態のファイバレーザ装置1は共振器型のファイバレーザ装置とされる。
励起光源10は、複数のレーザダイオード11から構成され、増幅用光ファイバ30に添加される活性元素を励起する波長の励起光を出射する。励起光源10のそれぞれのレーザダイオード11は、励起光用光ファイバ15に接続されており、レーザダイオード11から出射する光は、それぞれのレーザダイオード11に光学的に接続される励起光用光ファイバ15を伝搬する。励起光用光ファイバ15としては、例えば、マルチモードファイバを挙げることができ、この場合、励起光は励起光用光ファイバ15をマルチモード光として伝搬する。なお、後述のように増幅用光ファイバ30に添加される活性元素がイッテルビウムである場合、励起光の波長は、例えば、915nmとされる。
増幅用光ファイバ30は、コアと、コアの外周面を隙間なく囲む内側クラッドと、内側クラッドの外周面を被覆する外側クラッドと、外側クラッドの外周面を被覆する被覆層とから構成されている。増幅用光ファイバ30のコアを構成する材料としては、例えば、屈折率を上昇させるゲルマニウム等の元素、及び、励起光源10から出射する光により励起されるイッテルビウム(Yb)等の活性元素が添加された石英が挙げられる。このような活性元素としては、希土類元素が挙げられ、希土類元素としては、上記イッテルビウムの他にツリウム(Tm)、セリウム(Ce)、ネオジウム(Nd)、ユーロピウム(Eu)、エルビウム(Er)等が挙げられる。さらに活性元素として、希土類元素の他に、ビスマス(Bi)等が挙げられる。また、増幅用光ファイバ30の内側クラッドを構成する材料としては、例えば、何らドーパントが添加されていない純粋石英が挙げられる。また、増幅用光ファイバ30の外側クラッドを構成する材料としては、例えば、内側クラッドより無屈折率の低い樹脂が挙げられ、増幅用光ファイバ30の被覆層を構成する材料としては、例えば、外側クラッドを構成する樹脂とは異なる紫外線硬化樹脂が挙げられる。増幅用光ファイバは、シングルモードファイバとされるが、パワーの大きな信号光が増幅用光ファイバのコアを伝搬可能なように、コアの直径がマルチモードファイバと同様とされつつも、シングルモードの光を伝搬する構成とされても良い。また、コアを伝搬する光のビーム品質にこだわらない場合、増幅用光ファイバ30はマルチモードファイバとされても良い。
第1光ファイバ41は、コアに活性元素が添加されていない点を除き増幅用光ファイバ30と同じ構成とされる。第1光ファイバ41は、コアの中心軸が増幅用光ファイバ30のコアの中心軸と合わされて、増幅用光ファイバ30の一端に接続されている。従って、増幅用光ファイバ30のコアと第1光ファイバ41のコアとが光学的に結合し、増幅用光ファイバ30の内側クラッドと第1光ファイバ41の内側クラッドとが光学的に結合している。
また、第1FBG45は、第1光ファイバ41のコアに設けられている。こうして第1FBG45は、増幅用光ファイバ30の一端側に設けられている。第1FBG45は、第1光ファイバ41の長手方向に沿って一定の周期で屈折率が高くなる部分が繰り返されることで構成されている。この周期が調整されることにより、第1FBG45は、励起状態とされた増幅用光ファイバ30の活性元素が放出する光のうち特定波長の光を反射する。第1FBG45は、上述のように増幅用光ファイバ30に添加される活性元素がイッテルビウムである場合、例えば波長が1070nmの光を例えば99%以上の反射率で反射する。
また、コンバイナ50において、第1光ファイバ41の内側クラッドに励起光用光ファイバ15のコアが接続されている。こうして、励起光源10と接続される励起光用光ファイバ15と増幅用光ファイバ30とは、第1光ファイバ41を介して、光学的に結合される。
また、コンバイナ50において、第1光ファイバ41に光ファイバ52が接続されている。光ファイバ52は、例えば、第1光ファイバ41のコアと同じ直径のコアを有する光ファイバとされる。光ファイバ52のコアは、第1光ファイバ41のコアと接続されている。
第2光ファイバ42は、活性元素が添加されていないことを除いて増幅用光ファイバ30のコアと同様のコアと、当該コアの外周面を隙間なく囲み増幅用光ファイバ30の内側クラッドと同様の構成のクラッドと、クラッドの外周面を被覆する被覆層とから構成されている。第2光ファイバ42は、軸が増幅用光ファイバ30の軸と合わされて、増幅用光ファイバ30の他端に接続されている。従って、増幅用光ファイバ30のコアと第2光ファイバ42のコアとが光学的に結合している。
また、第2FBG46は第2光ファイバ42のコアに設けられている。こうして第2FBG46は、増幅用光ファイバ30の他端側に設けられている。第2FBG46は、第2光ファイバ42の長手方向に沿って一定の周期で屈折率が高くなる部分が繰り返されており、第1FBG45が反射する光の少なくとも一部の波長の光を第1FBG45よりも低い反射率で反射するように構成されている。第2FBG46は、例えば、第1FBG45が反射する光と同じ波長の光を50%の反射率で反射するように構成されている。
また、第2光ファイバ42の増幅用光ファイバ30側と反対側には、デリバリファイバ51が接続されている。デリバリファイバ51は、第2光ファイバ42と接続部47で融着されている。
光ファイバ52のコンバイナ50側と反対側には、受光部61が光学的に接続されている。受光部61は、信号光の波長成分に対する受光感度よりも、信号光から発生する誘導ラマン散乱光の波長成分に対する受光感度が高い構成とされる。つまり受光部61は、誘導ラマン散乱光の波長成分のパワーを信号光の波長成分のパワーよりも優先的に検出することができる。従って、本実施形態では、受光部61は、増幅用光ファイバ30を伝搬する信号光または増幅用光ファイバ30から出射する信号光から発生する誘導ラマン散乱光の波長成分のパワーを信号光の波長成分のパワーよりも優先的に検出する検出部71とされる。このような受光部61としては、例えば、誘導ラマン散乱光の波長成分に対する受光感度が、信号光の波長成分に対する受光感度よりも高いフォトダイオードを挙げることができる。受光部61からは受光部61が検出する光のパワーに係る信号が出力される。なお、検出部71は、受光部61から出力する信号がアナログの信号である場合、必要に応じてADコンバータ等を含んでいても良い。
検出部71(受光部61)には、制御部80が電気的に接続されており、検出部71からの信号は制御部80に入力する。制御部80は、例えばCPU(Central Processing Unit)を含んで構成されている。制御部80は、励起光源10を制御可能とされている。
次にファイバレーザ装置1の動作について説明する。
まず、制御部80が励起光源10を制御し、励起光源10のそれぞれのレーザダイオード11から励起光が出射する。励起光源10から出射した励起光は、励起光用光ファイバ15から第1光ファイバ41の内側クラッドを介して、増幅用光ファイバ30の内側クラッドに入射する。増幅用光ファイバ30の内側クラッドに入射した励起光は主に内側クラッドを伝搬して、増幅用光ファイバ30のコアを通過する際にコアに添加されている活性元素を励起する。励起状態とされた活性元素は、特定の波長の自然放出光を放出する。この自然放出光は、増幅用光ファイバ30のコアを伝搬して、一部の波長の光が第1FBG45により反射され、反射された光のうち第2FBG46が反射する波長の光が第2FBG46で反射されて、共振器内(第1FBG45と第2FBG46との間)を往復する。この往復する光が信号光とされる。信号光は、増幅用光ファイバ30のコアを伝搬するときに誘導放出により増幅され、レーザ発振状態となる。このようにレーザ発振状態となると、励起状態とされる活性元素のエネルギーは誘導放出に用いられるため、ASE(Amplified Spontaneous Emission)は殆ど発生しなくなる。そして、増幅された光のうち一部の光が第2FBG46を透過して、出射光として第2光ファイバ42からデリバリファイバ51に入射して、デリバリファイバ51の端部から出射する。
出射光は、被加工体等に照射されて被加工体は加工される。このとき被加工体に照射される出射光の一部が反射してデリバリファイバ51に入射することがある。デリバリファイバ51に入射する反射光の一部は、第2光ファイバ42を介して、再び増幅用光ファイバ30に入射する。増幅用光ファイバ30に入射する反射光は信号光と同じ波長であるため、当該反射光は再び信号光として増幅用光ファイバ30で増幅される。
このように増幅用光ファイバ30で信号光を増幅すると増幅用光ファイバ30、第2光ファイバ42、デリバリファイバ51等で光のパワー密度が高くなり、増幅された信号光から誘導ラマン散乱光が発生する場合がある。上記のように反射光が再び信号光として増幅される場合には更に信号光のパワー密度が高くなり誘導ラマン散乱光が発生し易くなる。図2は、信号光のパワーと信号光から発生する誘導ラマン散乱光のパワーとの関係を示す図である。図2に示すように、信号光のパワーが大きくなると誘導ラマン散乱光のパワーは、指数関数的に大きくなる。すなわち、信号光のパワーが増加する程、誘導ラマン散乱光のパワーの増加率が大きくなるのである。こうして発生する誘導ラマン散乱光は、信号光と共に一部が第2FBG46を透過して出射し、他の少なくとも一部が第1FBG45を透過する。
図3は、信号光のパワーと誘導ラマン散乱光のパワーとを比較する図である。図3(A)は、第2FBG46を透過する光の信号光のパワーと誘導ラマン散乱光のパワーとを比較する図であり、図3(B)は、第1FBG45を透過する光の信号光のパワーと誘導ラマン散乱光のパワーとを比較する図である。図3(A),(B)に示すように信号光の波長をλとして誘導ラマン散乱光の波長をλとすると、光ファイバが石英系の材料から成る場合、λ=λ+50nmとなり、誘導ラマン散乱光の波長が信号光の波長よりも50nm大きくなる。また、第2FBG46からは上記のように増幅された信号光が出射するため、図3(A)に示すように、第2FBG46を透過する光では、誘導ラマン散乱光のパワーに対して信号光のパワーが支配的となる。一方、第1FBG45は、信号光を高反射率で反射するため、図3(B)に示すように、第1FBG45を透過する光では、信号光のパワーに対して誘導ラマン散乱光のパワーが支配的となる。なお図3(B)では信号光のパワーがゼロのように見えるが、信号光のパワーは図示出来ないほど小さいことを意味している。また、上記のようにレーザ発振状態ではASEが殆ど発生しない。このため、レーザ発振状態では、信号光や誘導ラマン散乱光以外の光を考慮しても、第1FBG45を透過する光のパワーのうち、誘導ラマン散乱光のパワーが支配的となる。
第1FBG45を透過する誘導ラマン散乱光のパワー比率が大きい光は、受光部61で受光される。上記のように受光部61は信号光の波長成分に対する受光感度よりも信号光から発生する誘導ラマン散乱光の波長成分に対する受光感度が高いため、受光部61を含む検出部71では誘導ラマン散乱光の波長成分のパワーが優先的に検出される。さらに、上記のように第1FBG45を透過する光の信号光のパワー比率は小さいため、受光部61に入射する光のうち誘導ラマン散乱光の波長成分を検出すべき信号として、信号光の波長成分を検出すべきではないノイズと考える場合に、検出部71はS/Nが良い状態で誘導ラマン散乱光の波長成分のパワーを検出することができる。検出部71で検出される光のパワーを示す信号は、検出部71から制御部80に入力する。
制御部80は、検出部71から光のパワーを示す信号が入力すると、当該パワーの大きさに基づいて励起光源10を制御する。例えば、制御部80は、検出部71が検出する光のパワーが所定の大きさ以上であると判断する場合、励起光のパワーが小さくなるように励起光源10を制御する。上記のように、誘導ラマン散乱光のパワーは、信号光のパワー密度に依存するため、誘導ラマン散乱光の波長成分のパワーを優先的に検出した結果である検出部71からの信号が所定の大きさ以上となることは、信号光のパワーが相応に大きいことを示す。従って、上記のように励起光源10が励起光のパワーを小さくすることで、信号光の増幅率を抑えることができ、上記のように反射光が再び増幅用光ファイバ30に入射して再び信号光の一部として増幅する場合であっても、信号光のパワーを抑えることができる。このため、不安定な発振や、不要な光が励起光源10に入射して励起光源10が損傷することを防止することができる。なお、制御部80は、検出部71が検出する光のパワーが当該所定の大きさよりも小さくなった時点以降に再び励起光源10を制御して、励起光のパワーを大きくしても良い。つまり、誘導ラマン散乱光のパワーを用いて励起光のパワーにフィードバックをかけて、許容範囲内で出来るだけパワーの大きな信号光を出射できる様にしても良い。
なお、制御部80は、検出部71が検出する光のパワーが所定の大きさ以上であると判断する場合、励起光源10から出射する励起光がゼロとなるように励起光源10を制御しても良い。この場合、制御部80は、検出部71が検出する光のパワーが当該所定の大きさよりも小さくなった時点以降に再び励起光源10を制御して、励起光を出射させても良い。このとき励起光源10から出射する励起光のパワーがゼロとなる前の励起光のパワーより小さくなるように励起光源10を制御しても良い。こうすることで誘導ラマン散乱光のパワーが所定の大きさより大きくならないようにすることができ、ファイバレーザ装置1は、許容範囲内で出来るだけパワーの大きな信号光を出射することができる。
以上説明したように、本実施形態のファイバレーザ装置1によれば、検出部71が誘導ラマン散乱光の波長成分のパワーを信号光の波長成分よりも優先的に検出して、制御部80は当該検出結果に基づいて励起光源10を制御し励起光のパワーが調整される。図2を用いた上記説明のように誘導ラマン散乱光のパワーは、信号光のパワーに対して指数関数的に大きくなる。従って、誘導ラマン散乱光の波長成分のパワーを信号光の波長成分のパワーよりも優先的に検出して、当該パワーに基づいて励起光のパワーを制御することで、増幅された信号光のパワーの大きな領域において励起光のパワーを細かく調整することができる。従って、パワーの大きな出射光を高い精度で制御することができる。
(第2実施形態)
次に、本発明の第2実施形態について図4,5を参照して詳細に説明する。なお、第1実施形態と同一又は同等の構成要素については、特に説明する場合を除き、同一の参照符号を付して重複する説明は省略する。
図4は、本発明の第2実施形態に係るファイバレーザ装置を示す図である。図4に示すように、本実施形態のファイバレーザ装置2は、光ファイバ52のコンバイナ50側と反対側には熱変換部Eが接続され、第2光ファイバ42とデリバリファイバ51との接続部47の近傍に一端が配置される光ファイバ53を有し、光ファイバ53に受光部61が接続されている点において、第1実施形態のファイバレーザ装置1と異なる。
光ファイバ53は、例えば光ファイバ52と同様の光ファイバとされる。図5は、第2光ファイバ42とデリバリファイバ51との接続部47付近の拡大図である。なお、図5では、それぞれの光ファイバの被覆層が省略されている。光ファイバ同士が接続される場合、それぞれの光ファイバが可能な限り理想的な状態で接続されても、接続点からは光が漏れる。従って、第2光ファイバ42のコア42cからデリバリファイバ51のコア51cに光が入射する際に接続部47から漏れ光が生じる。そこで、図5に示すように、接続部47から漏れ光の一部が光ファイバ53のコア53cに入射するように、光ファイバ53の一方の端部が接続部47の近傍におけるデリバリファイバ51側に配置されると共に、光ファイバ53は当該端部の近傍がデリバリファイバ51に沿うように配置される。従って、本実施形態のファイバレーザ装置2では、漏れ光を分岐された光をして利用しているため、接続部47が光分岐部として機能する。
また、第1実施形態において説明したように受光部61は、信号光の波長成分に対する受光感度よりも、信号光から発生する誘導ラマン散乱光の波長成分に対する受光感度が高い構成とされる。従って、光分岐部である接続部47と光ファイバ53と受光部61とにより、信号光から発生する誘導ラマン散乱光の波長成分のパワーを信号光の波長成分のパワーよりも優先的に検出する検出部72が構成される。なお、検出部72は、受光部61から出力する信号がアナログの信号である場合、必要に応じてADコンバータ等を含んでいても良い。
このような構成のファイバレーザ装置2では、第1実施形態のファイバレーザ装置1と同様にして、増幅用光ファイバ30で信号光が増幅され、デリバリファイバ51から増幅された信号光が出射する。ところで第2光ファイバ42からデリバリファイバ51に入射する光には、図3を用いて説明したように増幅された信号光と誘導ラマン散乱光とが含まれる。従って、光ファイバ53に入射する光には、信号光の一部と誘導ラマン散乱光の一部とが含まれる。しかし、上記のように受光部61は、信号光の波長成分に対する受光感度よりも信号光から発生する誘導ラマン散乱光の波長成分に対する受光感度が高いため、検出部72からは、誘導ラマン散乱光の波長成分のパワーが優先的に検出された信号が出力される。
検出部72が検出する光のパワーを示す信号が、受光部61から制御部80に入力すると、制御部80は、第1実施形態のファイバレーザ装置1と同様に励起光源10を制御する。
なお、第1FBG45を透過する光は、熱変換部Eに入射して熱とされ消滅する。
本実施形態のファイバレーザ装置2によれば、信号光と誘導ラマン散乱光とを分離するための特別な部品を用いなくとも、検出部72は、誘導ラマン散乱光の波長成分のパワーを優先的に検出することができる。従って、ファイバレーザ装置2は簡易な構成で誘導ラマン散乱光の波長成分のパワーを検出とすることができる。
なお、本実施形態では、光分岐部として第2光ファイバ42とデリバリファイバ51との接続点を用いたが、例えば、増幅用光ファイバ30と第1光ファイバ41との接続点を光分岐部としても良く、増幅用光ファイバ30と第2光ファイバ42との接続点を光分岐部としても良い。或いは、信号光が伝搬するいずれかの光ファイバの途中にカプラを設けて光を分岐しても良い。ただし、カプラの数が少ないほど信号光の損失は少なく、効率良くパワーの大きな光を出射することができるため、上記のように光ファイバ同士の接続部を用いることが好ましい。
また、信号光が伝搬する光ファイバに光散乱部を形成して、この光散乱部を光分岐部としても良い。図6は、光分岐部としてデリバリファイバ51のコア51cに形成された光散乱部を用いる様子を示す図である。なお、図6では、それぞれの光ファイバの被覆層が省略されている。図6に示すように、本例では、デリバリファイバ51のコア51cの一部に光散乱部51sが設けられる。コア51cを伝搬する光の一部は光散乱部51sにおいて散乱し、デリバリファイバ51の外に漏れる。このような光散乱部51sは、例えばデリバリファイバ51のコア51cにゲルマニウムが添加されている場合には、紫外線を光散乱部51sが形成される位置に照射することで形成することができる。そして光散乱部51sからの漏れ光の一部が光ファイバ53のコア53cに入射するように、光ファイバ53の一方の端部が光散乱部51sの近傍におけるデリバリファイバ51の出射端側に配置されると共に、光ファイバ53は当該端部の近傍がデリバリファイバ51に沿うように配置される。このような構成によれば、光散乱部51sが光分岐部として機能し、分岐された光の一部が光ファイバ53を伝搬して上記実施形態と同様に受光部61で受光される。なお本例では光散乱部51sはデリバリファイバ51のコア51cに設けられたが、光散乱部は、信号光が伝搬する光ファイバのコアであれば、第2光ファイバ42等の他の光ファイバのコアに設けられても良い。
また、上記実施形態では、光ファイバ53により接続部47や光散乱部51sから漏れる光を受光部61へ入射させたが、受光部61を接続部47や光散乱部51sの隣に配置して、接続部47や光散乱部51sから漏れる光が光ファイバ53を介さずに直接受光部61に入射される構成としても良い。
(第3実施形態)
次に、本発明の第3実施形態について図7を参照して詳細に説明する。なお、第2実施形態と同一又は同等の構成要素については、特に説明する場合を除き、同一の参照符号を付して重複する説明は省略する。
図7は、本発明の第3実施形態に係るファイバレーザ装置を示す図である。図7に示すように、本実施形態のファイバレーザ装置3は、第2実施形態における接続部47の代わりにカプラ48が設けられる点において第2実施形態のファイバレーザ装置2と異なる。
カプラ48は、光ファイバ42を伝搬する信号光の波長成分をデリバリファイバ51に透過させ、信号光から発生する誘導ラマン散乱光の波長成分を分岐する光分岐部とされる。このようなカプラ48は、例えば、デリバリファイバ51における第2光ファイバ42と接続される端部近傍において、デリバリファイバ51と光ファイバ53とが沿わされて延伸融着される構成とされる。このデリバリファイバ51と光ファイバ53とが互いに沿って融着される長さが調整されることで、上記のように信号光が透過し誘導ラマン散乱光の波長成分が分岐される構成とされる。
本実施形態では、上記の光分岐部であるカプラ48と光ファイバ53と受光部61とにより、信号光から発生する誘導ラマン散乱光の波長成分のパワーを信号光の波長成分のパワーよりも優先的に検出する検出部73が構成される。なお、検出部73は、受光部61から出力する信号がアナログの信号である場合、必要に応じてADコンバータ等を含んでいても良い。
このようなファイバレーザ装置3では、第2実施形態のファイバレーザ装置2と同様にして、増幅用光ファイバ30で信号光が増幅され、デリバリファイバ51から増幅された信号光が出射する。このとき信号光から誘導ラマン散乱光が生じる場合、カプラ48において誘導ラマン散乱光の波長成分が分岐され、光ファイバ53に誘導ラマン散乱光の波長成分が入射する。従って、光ファイバ53を伝搬する光のパワーは、誘導ラマン散乱光の波長成分のパワーが支配的となる。光ファイバ53に入射した光は、受光部61で受光され、受光部61では、誘導ラマン散乱光の波長成分のパワーが信号光の波長成分のパワーよりも優先して検出される。しかも、第1実施形態において説明したように受光部61は、信号光の波長成分に対する受光感度よりも、信号光から発生する誘導ラマン散乱光の波長成分に対する受光感度が高い構成とされる。従って、信号光の波長成分が光ファイバ53をノイズとして伝搬する場合であっても、信号光の波長成分に対する受光感度と誘導ラマン散乱光の波長成分に対する受光感度が同様の受光部が用いられる場合よりも、受光部61は高い精度で誘導ラマン散乱光の波長成分のパワーを検出することができる。また、カプラ48で誘導ラマン散乱光の波長成分が分岐されるため、受光部61に入射する光のうち誘導ラマン散乱光の波長成分を検出すべき信号として、信号光の波長成分を検出すべきではないノイズと考える場合に、検出部73は、第2実施形態と同じ受光部61を用いつつも、第2実施形態のファイバレーザ装置2の検出部72と比べて、S/Nが良い状態で誘導ラマン散乱光の波長成分のパワーを検出することができる。
検出部73が検出する光のパワーを示す信号が、受光部61から制御部80に入力すると、制御部80は、第2実施形態のファイバレーザ装置2と同様に励起光源10を制御する。
本実施形態のファイバレーザ装置3によれば、信号光が伝搬するデリバリファイバ51の一部と分岐された誘導ラマン散乱光が伝搬する光ファイバ53の一部とを長手方向に沿わせた状態で一体に融着するカプラ48を光分岐部とした。このようなカプラは、誘導ラマン散乱光の波長成分の損失が小さい状態で、誘導ラマン散乱光の波長成分を分岐して受光部61まで伝搬することができる。このため誘導ラマン散乱光の波長成分のパワーを検出しやすくすることができる。
なお、本実施形態では、第2光ファイバ42とデリバリファイバ51との接続部にカプラ48を設けたが、カプラ48は、信号光が伝搬する光ファイバであれば、他の場所に設けられても良い。また、本実施形態では、受光部として信号光の波長成分に対する受光感度よりも誘導ラマン散乱光の波長成分に対する受光感度が高い受光部61が用いられたが、カプラ48において誘導ラマン散乱光の波長成分が分離されるため、受光部61の代わりに信号光の波長成分に対する受光感度と誘導ラマン散乱光の波長成分に対する受光感度が同様の受光部が用いられても、検出部73は信号光の波長成分のパワーよりも誘導ラマン散乱光の波長成分のパワーを優先的に検出することができる。ただし、受光部61を用いる場合は、上記のように光ファイバ53に信号光の波長成分がノイズとして入射する場合であっても高い精度で誘導ラマン散乱光の波長成分のパワーを検出することができるため好ましい。
また、本実施形態では、信号光の波長成分よりも誘導ラマン散乱光の波長成分を優先的に分岐する分岐部としてカプラ48を用いたが、このような光分岐部はカプラ48に限らない。図8は、光分岐部としてデリバリファイバ51の曲げ部を用いる様子を示す図である。なお、図8では、それぞれの光ファイバの被覆層が省略されている。光ファイバは、コアとクラッドとの比屈折率差、及び、光ファイバの曲げ半径がそれぞれ定まる場合に、曲げ部から漏れる光の波長が概ね定まる。例えば、第1実施形態における説明のように、信号光の波長が約1070nmであり、誘導ラマン散乱光の波長が1120nmである場合、コアとクラッドとの比屈折率が0.1%であり、信号光及び誘導ラマン散乱光が伝搬する光ファイバの曲げ半径が40mmであれば、信号光の波長成分よりも誘導ラマン散乱光の波長成分が優先的に漏れる。そこで図8に示すように、デリバリファイバ51を誘導ラマン散乱光の波長成分が信号光の波長成分よりも漏れる様な曲げ半径で曲げて曲げ部51bを形成する。そして曲げ部51bからの漏れ光の一部が光ファイバ53のコア53cに入射するように、光ファイバ53の一方の端部が曲げ部51bの近傍に配置されると共に、光ファイバ53は当該端部の近傍がデリバリファイバ51に沿うように配置される。このような構成によれば、曲げ部51bが光分岐部として機能し、信号光の波長成分よりも優先的に分岐される誘導ラマン散乱光の波長成分が光ファイバ53を伝搬して上記実施形態と同様に受光部61で受光される。なお本例では曲げ部51bはデリバリファイバ51に設けられたが、曲げ部は、信号光が伝搬する光ファイバであれば、第2光ファイバ42等の他の光ファイバに設けられても良い。
或いは、信号光の波長成分よりも誘導ラマン散乱光の波長成分を優先的に分岐する分岐部としてスラントFBGを用いることもできる。図9は、光分岐部としてスラントFBGを用いる様子を示す図である。なお、図9では、それぞれの光ファイバの被覆層が省略されている。図9に示すように、本例では、デリバリファイバ51のコア51cの一部にスラントFBG51fが設けられる。スラントFBG51fは、デリバリファイバ51の長手方向に沿って一定の周期で屈折率が高くなる部分が繰り返され、この高屈折率部及び低屈折率部が、デリバリファイバ51の長手方向に垂直な面に対して傾斜することで構成されている。この周期が調整されることにより、スラントFBG51fは、信号光の波長成分を透過して誘導ラマン散乱光の波長成分をデリバリファイバ51の外に反射する構成とされる。そしてスラントFBG51fで反射される光の一部が光ファイバ53のコア53cに入射するように、光ファイバ53の一方の端部がスラントFBG51fの近傍におけるデリバリファイバ51の出射端側に配置されると共に、光ファイバ53は当該端部の近傍がデリバリファイバ51に沿うように配置される。このような構成によれば、スラントFBG51fが光分岐部として機能し、信号光の波長成分よりも優先的に分岐される誘導ラマン散乱光の波長成分が光ファイバ53を伝搬して上記実施形態と同様に受光部61で受光される。なお本例ではスラントFBG51fsはデリバリファイバ51のコア51cに設けられたが、スラントFBGは、信号光が伝搬する光ファイバのコアであれば、第2光ファイバ42等の他の光ファイバのコアに設けられても良い。
なお、曲げ部51bやスラントFBG51fが分岐部とされる場合、光ファイバ53により曲げ部51bやスラントFBG51fから漏れる光を受光部61に入射する代わりに、受光部61を曲げ部51bやスラントFBG51fの隣に配置して、曲げ部51bやスラントFBG51fから漏れる光が光ファイバ53を介さずに直接受光部61に入射される構成としても良い。
このような曲げ部51bやスラントFBG51fを光分岐部とする場合、ファイバレーザ装置3は、誘導ラマン散乱光の波長成分が優先的に分岐されるため、信号光の損出を抑制することができる。
(第4実施形態)
次に、本発明の第4実施形態について図10を参照して詳細に説明する。なお、第2実施形態と同一又は同等の構成要素については、特に説明する場合を除き、同一の参照符号を付して重複する説明は省略する。
図10は、本発明の第3実施形態に係るファイバレーザ装置を示す図である。図10に示すように、本実施形態のファイバレーザ装置4は、光ファイバ53の途中に光フィルタ64が設けられている点において第2実施形態のファイバレーザ装置2と異なる。
光フィルタ64は、信号光の波長成分を透過せず信号光から生じる誘導ラマン散乱光の波長成分を透過する構成とされる。このような光フィルタ64は、例えば、酸化膜の積層体から形成される。本実施形態では、光分岐部である接続部47と光ファイバ53と光フィルタ64と受光部61とにより、信号光から発生する誘導ラマン散乱光の波長成分のパワーを信号光の波長成分のパワーよりも優先的に検出する検出部74が構成される。なお、検出部74は、受光部61から出力する信号がアナログの信号である場合、必要に応じてADコンバータ等を含んでいても良い。
このようなファイバレーザ装置4では、第2実施形態のファイバレーザ装置2と同様にして、増幅用光ファイバ30で信号光が増幅され、デリバリファイバ51から増幅された信号光が出射する。このとき、第2実施形態において説明したように光ファイバ53には、信号光と誘導ラマン散乱光とが入射する。しかし、光フィルタ64により、受光部61には誘導ラマン散乱光の波長成分が信号光の波長成分よりも優先的に入射する。従って、受光部61では、誘導ラマン散乱光の波長成分のパワーが信号光の波長成分のパワーよりも優先して検出される。しかも、第1実施形態において説明したように受光部61は、信号光の波長成分に対する受光感度よりも、信号光から発生する誘導ラマン散乱光の波長成分に対する受光感度が高い構成とされる。従って、信号光が光フィルタ64をノイズとして透過する場合であっても、受光部として信号光の波長成分に対する受光感度と誘導ラマン散乱光の波長成分に対する受光感度が同様の受光部が用いられる場合よりも、受光部61は高い精度で誘導ラマン散乱光の波長成分のパワーを検出することができる。また、光フィルタ64は信号光の波長成分を透過せず誘導ラマン散乱光の波長成分を透過するため、受光部61に入射する光のうち誘導ラマン散乱光の波長成分を検出すべき信号として、信号光の波長成分を検出すべきではないノイズと考える場合に、検出部74は、第2実施形態と同じ受光部61を用いつつも、第2実施形態のファイバレーザ装置2の検出部72と比べて、S/Nが良い状態で誘導ラマン散乱光の波長成分のパワーを検出することができる。
検出部74が検出する光のパワーを示す信号が、受光部61から制御部80に入力すると、制御部80は、第2実施形態のファイバレーザ装置2と同様に励起光源10を制御する。
光フィルタは、透過する光の波長の制御性に優れる。従って、光フィルタ64を透過する光の波長の設定により、誘導ラマン散乱光の波長成分を受光部が受光すべき信号として、他の光をノイズとする場合、S/Nの制御を自由に設定することができる。特に、光フィルタ64を誘導ラマン散乱光のみを透過させる構成とすれば、S/Nを最良の状態とすることもできる。
なお、本実施形態では、第2実施形態のファイバレーザ装置と同様に他の光ファイバ同士の接続点を光分岐部としても良く、信号光が伝搬するいずれかの光ファイバの途中にカプラを設けて光を分岐しても良い。
また、上記実施形態では、光ファイバ53の途中に光フィルタ64が設けられたが、接続部47から漏れる光を光ファイバ53を介さずに直接光フィルタ64に入射して、光フィルタ64から出射する光を受光部61に入射しても良い。また、信号光の波長成分よりも誘導ラマン散乱光の波長成分を優先的に透過する光フィルタであれば、光フィルタは他の構成であっても良い。
なお、第3実施形態と同様にして、受光部61の代わりに信号光の波長成分に対する受光感度と誘導ラマン散乱光の波長成分に対する受光感度が同様の受光部を用いても、光フィルタ64を信号光は透過せず誘導ラマン散乱光が透過するため、検出部74は誘導ラマン散乱光の波長成分のパワーを信号光の波長成分のパワーよりも優先的に検出することができる。ただし、受光部61を用いる場合は、上記のように光フィルタ64を信号光の波長成分がノイズとして透過する場合であっても高い精度で誘導ラマン散乱光の波長成分のパワーを検出することができるため好ましい。
(第5実施形態)
次に、本発明の第5実施形態について図11を参照して詳細に説明する。なお、第2実施形態と同一又は同等の構成要素については、特に説明する場合を除き、同一の参照符号を付して重複する説明は省略する。
図11は、本発明の第5実施形態に係るファイバレーザ装置を示す図である。図11に示すように、本実施形態のファイバレーザ装置5は、光ファイバ53、受光部61が設けられず、接続部47が樹脂65で被覆され、樹脂65の温度を検出する温度検出部66が設けられている点において、第2実施形態のファイバレーザ装置2と異なる。
樹脂65は、信号光の波長成分を透過し、誘導ラマン散乱光の波長成分を吸収する樹脂とされる。このような性質を有する樹脂としては、シリコン系の樹脂を挙げることができ、例えば、信号光の波長が1070nmである場合、図3を用いた説明より、誘導ラマン散乱光の波長は約1120nmとなるため、例えば、シリコン系の樹脂の中でも東レ・ダウコーニング社製のOE6520(商品名)を用いることができる。
温度検出部66には、例えばデジタル温度計やサーミスタを用いることができる。
本実施形態では、光分岐部である接続部47と、増幅用光ファイバから出射する光の一部を吸収して熱に変換する光熱変換部である樹脂65と、光熱変換部の温度を検出する温度検出部66とにより、信号光から発生する誘導ラマン散乱光の波長成分のパワーを信号光の波長成分のパワーよりも優先的に検出する検出部75が構成される。なお、検出部75は、温度検出部66から出力する信号がアナログの信号である場合、必要に応じてADコンバータ等を含んでいても良い。
このようなファイバレーザ装置5は、第2実施形態のファイバレーザ装置2と同様にして、増幅用光ファイバ30で信号光が増幅され、デリバリファイバから増幅された信号光を出射する。このとき、接続部47から漏れる光のうち信号光の波長成分は樹脂65を透過して、誘導ラマン散乱光の波長成分は樹脂65に吸収される。誘導ラマン散乱光の波長成分を吸収した樹脂の温度は、温度検出部66で検出される。こうして誘導ラマン散乱光の波長成分のパワーが温度として検出される。
検出部75が検出する光のパワーを示す信号が、温度検出部66から制御部80に入力し、制御部80に温度検出部から信号が入力すると、制御部80は第2実施形態のファイバレーザ装置2と同様に励起光源10を制御する。
本実施形態のファイバレーザ装置5によれば、受光部を用いずとも誘導ラマン散乱光の波長成分のパワーを検出することができる。従って、ファイバレーザ装置の構成を簡易にすることができる。
なお、本実施形態のファイバレーザ装置5では、樹脂65が接続部47を被覆するように設けられた。しかし、樹脂65は、信号光が伝搬する他の接続部を被覆する光に設けられても良い。或いは、樹脂65は、熱変換部Eの代わり光ファイバ52の端部を被覆するように設けられても良い。また、信号光が伝搬する光ファイバの被覆層を樹脂65と同様の樹脂で構成して、当該被覆層を光熱変換部として利用しても良い。また本実施形態では、光熱変換部として樹脂65を用いたが、光熱変換部は、信号光の波長成分よりも誘導ラマン散乱光の波長成分の吸収効率が良い限りにおいて、樹脂に限らず他の素材が用いられても良い。
(第6実施形態)
次に、本発明の第6実施形態について図12を参照して詳細に説明する。なお、第2実施形態と同一又は同等の構成要素については、特に説明する場合を除き、同一の参照符号を付して重複する説明は省略する。
図12は、本実施形態のファイバレーザ装置を示す図である。図12に示すようにファイバレーザ装置6は、第1光ファイバ41、第2光ファイバ42に第1FBG45、第2FBG46が設けられず、また、光ファイバ52の代わりに光ファイバ25が配置され、光ファイバ25のコンバイナ50側と反対側に信号光源20が接続される点において、第2実施形態のファイバレーザ装置2と異なる。本実施形態のファイバレーザ装置6は、MO−PA型のファイバレーザ装置とされる。
信号光源20は、例えば、レーザダイオードやファイバレーザ等からなり、信号光を出射する。この信号光源は種光源と呼ばれることがあり、信号光は種光と呼ばれることがある。信号光源20は、例えば、増幅用光ファイバ30のコアに添加される活性元素がイッテルビウムである場合、例えば、波長が1070nmの信号光を出射するよう構成される。信号光源20から出射する信号光は、光ファイバ25のコアを伝搬する。光ファイバ25としては、例えば、シングルモードファイバが挙げられ、この場合、信号光は光ファイバ25をシングルモード光として伝搬する。
本実施形態のコンバイナ50では、光ファイバ25のコアが第1光ファイバ41コアに接続されている。従って、信号光源20から出射する信号光は第1光ファイバ41のコアを介して増幅用光ファイバ30のコアに入射し、第2実施形態と同様に励起光源10から出力される励起光は第1光ファイバ41の内側クラッドを介して増幅用光ファイバ30の内側クラッドに入射する。
本実施形態のファイバレーザ装置6では、まず、制御部80からの命令により、励起光源10のそれぞれのレーザダイオード11から励起光が出射される。励起光源10のそれぞれのレーザダイオード11から出力される励起光は、上記のように増幅用光ファイバ30の内側クラッドに入射して、増幅用光ファイバ30を伝搬しながらコアに添加される活性元素を励起状態とする。
次に所定のタイミングで信号光源20から信号光が出射され、上記のように増幅用光ファイバ30のコアに入射して、当該コアを伝搬する。このとき励起状態とされた活性元素の誘導放出により、信号光が増幅されて、増幅された信号光が増幅用光ファイバ30から出射する。なお、信号光源20からパルス状の信号光が出射する場合には、増幅されたパルス状の信号光が出射する。この場合、信号光源20から連続状の信号光が出射する場合よりもピークパワーの大きな光が出射する。本実施形態のファイバレーザ装置6においても、信号光の増幅率が大きく、信号光のパワー密度が高いと信号光から誘導ラマン散乱光が発生する傾向にある。
増幅用光ファイバ30から出射する増幅された信号光は、第2光ファイバ42を介してデリバリファイバに入射して、デリバリファイバから出射する。このとき、第2光ファイバ42とデリバリファイバ51との接続部47から光が漏れ、第2実施形態と同様にして、誘導ラマン散乱光の波長成分のパワーが検出部72で検出される。その後、第2実施形態のファイバレーザ装置2と同様にして、制御部80は励起光源10を制御する。
本実施形態のファイバレーザ装置6のようにMO−PA型のファイバレーザ装置であっても、誘導ラマン散乱光の波長成分のパワーと信号光の波長成分のパワーよりも優先的に検出することで、出射光のパワーが大きな領域で、励起光のパワーを細かく調整することができ、出射光のパワーを精度よく制御することができる。
なお、本実施形態のファイバレーザ装置6は、検出部の構成を第2実施形態のファイバレーザ装置2の検出部72と同様とした。しかし、本実施形態のファイバレーザ装置であっても、検出部の構成を第3,4,5実施形態の検出部73,74,75と同様としても良い。
また、第1光ファイバ41が省略され、コンバイナ50において、励起光用光ファイバ15のコアが増幅用光ファイバ30のクラッドに接続され、光ファイバ25のコアが増幅用光ファイバ30のコアに接続されても良い。また、第2光ファイバ42が省略され、増幅用光ファイバ30とデリバリファイバ51とが直接接続されても良い。
以上、本発明について、実施形態を例に説明したが、本発明はこれらに限定されるものではなく、適宜変更することが可能である。
例えば、第1実施形態のファイバレーザ装置1では、第1FBG45を透過した光がそのまま受光部61で受光されたが、本発明はこれに限らない。例えば、第1FBGを透過する光のパワーが大きい場合、光ファイバ52の途中に光のパワーを減衰させる減衰部が設けられても良い。また、第1実施形態のファイバレーザ装置1の光ファイバ52に第2実施形態〜第6実施形態の検出部72〜76が設けられて、光ファイバ52を伝搬する光がこれらの検出部により検出されても良い。
また、上記実施形態において、第1ミラー、第2ミラーとして、第1FBG45、第2FBG46を例に説明したが、第1ミラー、第2ミラーは他の構成であっても良い。
本発明によれば、パワーの大きな出射光を高い精度で制御することができるファイバレーザ装置が提供され、レーザ加工分野、医療分野等の様々な産業において利用可能である。
1〜6・・・ファイバレーザ装置
10・・・励起光源
20・・・信号光源
30・・・増幅用光ファイバ
45・・・第1FBG(第1ミラー)
46・・・第2FBG(第2ミラー)
47・・・接続部
48・・・カプラ
50・・・コンバイナ
51・・・デリバリファイバ
61・・・受光部
64・・・光フィルタ
65・・・樹脂(光熱変換部)
66・・・温度検出部
71〜75・・・検出部
80・・・制御部

Claims (13)

  1. 励起光を出射する励起光源と、
    前記励起光により信号光を増幅して出射する増幅用光ファイバと、
    前記増幅用光ファイバを伝搬する前記信号光または前記増幅用光ファイバから出射する前記信号光から発生する誘導ラマン散乱光の波長成分のパワーを前記信号光の波長成分のパワーよりも優先的に検出する検出部と、
    前記検出部で検出される光のパワーに基づいて前記励起光のパワーを制御する制御部と、
    を備える
    ことを特徴とするファイバレーザ装置。
  2. 前記増幅用光ファイバの一方側に設けられ前記信号光を反射する第1ミラーと、
    前記増幅用光ファイバの他方側に設けられ前記信号光を前記第1ミラーよりも低い反射率で反射する第2ミラーと、
    を更に備える
    ことを特徴とする請求項1に記載のファイバレーザ装置。
  3. 前記検出部は、前記第1ミラーを基準として前記増幅用光ファイバとは反対側に配置される
    ことを特徴とする請求項2に記載のファイバレーザ装置。
  4. 前記検出部は、前記第1ミラーを透過する光を受光する受光部を有し、
    前記受光部は、前記信号光の波長成分に対する受光感度よりも前記誘導ラマン散乱光の波長成分に対する受光感度が高い
    ことを特徴とする請求項3に記載のファイバレーザ装置。
  5. 前記増幅用光ファイバに入射する信号光を出射する信号光源を更に備える
    ことを特徴とする請求項1に記載のファイバレーザ装置。
  6. 前記検出部は、
    前記増幅用光ファイバから出射する光の一部を分岐する光分岐部と、
    分岐された光を受光する受光部と、
    を有し、
    前記受光部は、前記信号光の波長成分に対する受光感度よりも前記誘導ラマン散乱光の波長成分に対する受光感度が高い
    ことを特徴とする請求項1〜3及び5のいずれか1項に記載のファイバレーザ装置。
  7. 前記検出部は、
    前記増幅用光ファイバから出射する光の一部を分岐する光分岐部と、
    分岐した光を受光する受光部と、
    を有し、
    前記光分岐部は、前記信号光の波長成分よりも前記誘導ラマン散乱光の波長成分を優先的に分岐する
    ことを特徴とする請求項1〜3及び5のいずれか1項に記載のファイバレーザ装置。
  8. 前記検出部は、
    前記増幅用光ファイバから出射する光の一部を分岐する光分岐部と、
    分岐した光のうち前記信号光の波長成分よりも前記誘導ラマン散乱光の波長成分を優先的に透過する光フィルタと、
    前記光フィルタを透過した光を受光する受光部と、
    を有する
    ことを特徴とする請求項1〜3及び5のいずれか1項に記載のファイバレーザ装置。
  9. 前記検出部は、
    前記増幅用光ファイバから出射する光の一部を吸収して熱に変換する光熱変換部と、
    前記光熱変換部の温度を検出する温度検出部と、
    を有し、
    前記光熱変換部は、前記信号光の波長成分よりも前記誘導ラマン散乱光の波長成分の吸収効率が良い
    ことを特徴とする請求項1〜3及び5のいずれか1項に記載のファイバレーザ装置。
  10. 前記制御部は、前記検出部で検出される光のパワーが所定の大きさ以上である場合に、前記励起光のパワーを小さくする
    ことを特徴とする請求項1〜9のいずれか1項に記載のファイバレーザ装置。
  11. 前記制御部は、前記励起光のパワーが小さくされた後、前記検出部で検出される光のパワーが所定の大きさより小さくなった場合に、前記励起光のパワーを元のパワーに戻す
    ことを特徴とする請求項10に記載のファイバレーザ装置。
  12. 前記制御部は、前記検出部で検出される光のパワーが所定の大きさ以上である場合に、前記励起光のパワーをゼロとする
    ことを特徴とする請求項10に記載のファイバレーザ装置。
  13. 前記制御部は、前記励起光のパワーがゼロとされた後、前記検出部で検出される光のパワーが所定の大きさより小さくなった場合に、前記励起光のパワーを元のパワーに戻す
    ことを特徴とする請求項12に記載のファイバレーザ装置。
JP2013236342A 2013-11-14 2013-11-14 ファイバレーザ装置 Active JP5680170B1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013236342A JP5680170B1 (ja) 2013-11-14 2013-11-14 ファイバレーザ装置
CN201480061509.5A CN105723576B (zh) 2013-11-14 2014-08-18 光纤激光装置
PCT/JP2014/071561 WO2015072198A1 (ja) 2013-11-14 2014-08-18 ファイバレーザ装置
EP14862763.1A EP3070791B1 (en) 2013-11-14 2014-08-18 Fiber laser device
US15/152,134 US20160254637A1 (en) 2013-11-14 2016-05-11 Fiber laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013236342A JP5680170B1 (ja) 2013-11-14 2013-11-14 ファイバレーザ装置

Publications (2)

Publication Number Publication Date
JP5680170B1 JP5680170B1 (ja) 2015-03-04
JP2015095641A true JP2015095641A (ja) 2015-05-18

Family

ID=52684795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013236342A Active JP5680170B1 (ja) 2013-11-14 2013-11-14 ファイバレーザ装置

Country Status (5)

Country Link
US (1) US20160254637A1 (ja)
EP (1) EP3070791B1 (ja)
JP (1) JP5680170B1 (ja)
CN (1) CN105723576B (ja)
WO (1) WO2015072198A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017073610A1 (ja) 2015-10-30 2017-05-04 株式会社フジクラ ファイバレーザシステム
WO2017073609A1 (ja) * 2015-10-30 2017-05-04 株式会社フジクラ ファイバレーザシステム、その耐反射性評価方法および耐反射性向上方法、ならびにファイバレーザ
WO2017086301A1 (ja) 2015-11-17 2017-05-26 株式会社フジクラ ファイバレーザシステム及びレーザ光出力方法
WO2017130542A1 (ja) 2016-01-26 2017-08-03 株式会社フジクラ ファイバレーザシステム、製造方法、及び加工方法
JP2018125405A (ja) * 2017-01-31 2018-08-09 株式会社フジクラ ファイバレーザシステム、及び、その制御方法
WO2018143284A1 (ja) 2017-01-31 2018-08-09 株式会社フジクラ ファイバレーザ、供給方法、及び製造方法
JP2018129389A (ja) * 2017-02-08 2018-08-16 株式会社フジクラ ファイバレーザ
WO2018193816A1 (ja) * 2017-04-19 2018-10-25 株式会社フジクラ レーザ装置、レーザシステム
WO2019146452A1 (ja) 2018-01-23 2019-08-01 株式会社フジクラ モニタ装置、レーザ装置、モニタ方法、及びレーザ装置の製造方法
WO2019146627A1 (ja) 2018-01-23 2019-08-01 株式会社フジクラ フィルタ素子、レーザ装置、ファイバレーザ装置、フィルタ方法、及びレーザ装置の製造方法
WO2019189459A1 (ja) 2018-03-30 2019-10-03 株式会社フジクラ ファイバレーザ装置、ファイバレーザ装置の製造方法、及び、設定方法
US10522967B2 (en) 2016-01-26 2019-12-31 Fujikura Ltd. Fiber laser system, fiber laser system production method, and processing method
JP2021082748A (ja) * 2019-11-21 2021-05-27 株式会社フジクラ レーザ装置
JP2021150527A (ja) * 2020-03-19 2021-09-27 株式会社フジクラ ファイバレーザ装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6534999B2 (ja) * 2014-07-04 2019-06-26 古河電気工業株式会社 光ファイバレーザ装置
EP3266078B1 (en) * 2015-03-05 2022-01-12 Nufern Method and apparatus for providing amplified radiation
US11329444B2 (en) 2016-09-20 2022-05-10 Nec Corporation Optical amplifier and control method therefor
JP6879879B2 (ja) 2017-10-10 2021-06-02 株式会社フジクラ 光検出装置及びレーザ装置
JP6596544B1 (ja) * 2018-06-22 2019-10-23 株式会社フジクラ 光検出装置及びレーザ装置
CN108695680B (zh) * 2018-06-22 2020-10-02 电子科技大学 一种全光纤化ld泵浦的多模光纤级联拉曼随机激光器
JP2020060658A (ja) * 2018-10-09 2020-04-16 株式会社フジクラ 光デバイスおよびレーザ装置
US20220123515A1 (en) * 2019-02-27 2022-04-21 Fujikura Ltd. Laser device
CN118302921A (zh) * 2022-04-21 2024-07-05 三菱电机株式会社 激光装置及激光加工机
CN114843870A (zh) * 2022-04-29 2022-08-02 长沙大科激光科技有限公司 一种光纤激光器受激拉曼光防护方法
US20240055825A1 (en) * 2022-08-10 2024-02-15 Gip Technology Corporation Control system for a laser source and method for controlling an output power of the laser source
CN117543327A (zh) * 2023-10-12 2024-02-09 武汉锐科光纤激光技术股份有限公司 一种光纤激光装置的控制方法以及光纤激光装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5489681A (en) * 1977-12-26 1979-07-16 Ritsuo Hasumi Light power monitor element
JP3230708B2 (ja) * 1993-03-15 2001-11-19 日本電信電話株式会社 光増幅器
US6389186B1 (en) * 1999-04-30 2002-05-14 Lucent Technologies Inc. Optical waveguide lasers and amplifiers with pump power monitors
JP2001015845A (ja) * 1999-07-01 2001-01-19 Nippon Telegr & Teleph Corp <Ntt> ラマン分布増幅器を利用した波長多重光伝送システム
JP2004014708A (ja) * 2002-06-05 2004-01-15 Mitsubishi Cable Ind Ltd 光増幅器の制御方法、並びに、その制御に用いられるコンピュータプログラム及びそのコンピュータプログラムを記録した記録媒体
JP4293921B2 (ja) * 2004-02-16 2009-07-08 大崎電気工業株式会社 偏波無依存型多心光アイソレータ
US7440177B2 (en) * 2004-12-02 2008-10-21 Edc Optical Networks Inc. Method and system for improved eye protection safety of high output power lumped optical amplifiers
US7371019B2 (en) * 2004-12-13 2008-05-13 Nufern Method and apparatus for sensing light
JP4699131B2 (ja) 2005-08-05 2011-06-08 株式会社フジクラ 光ファイバレーザ、光ファイバ増幅器、mopa方式光ファイバレーザ
KR100714102B1 (ko) * 2005-09-13 2007-05-02 한국전자통신연구원 채널 출력 평탄화 기능을 가지는 광증폭 장치
JP2008042096A (ja) * 2006-08-09 2008-02-21 Fujitsu Ltd 光増幅器および光伝送システム
US7969647B2 (en) * 2007-10-08 2011-06-28 Jds Uniphase Corporation Apparatus and method for flattening gain profile of an optical amplifier
JP5294114B2 (ja) * 2009-01-26 2013-09-18 株式会社メガオプト 光学モジュール
KR101723802B1 (ko) * 2009-05-11 2017-04-06 오에프에스 피텔 엘엘씨 고 전력 레벨들에서 직렬 라만 레이징을 위한 시스템들 및 방법들
US8964801B2 (en) * 2009-06-11 2015-02-24 Esi-Pyrophotonics Lasers, Inc. Method and system for stable and tunable high power pulsed laser system
US8755649B2 (en) * 2009-10-19 2014-06-17 Lockheed Martin Corporation In-line forward/backward fiber-optic signal analyzer
JP5595307B2 (ja) * 2011-03-03 2014-09-24 株式会社日立製作所 光通信用モジュール及び光ファイバ通信システム
JP6003255B2 (ja) * 2012-06-07 2016-10-05 富士通株式会社 増幅装置および制御方法

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017073609A1 (ja) * 2015-10-30 2017-05-04 株式会社フジクラ ファイバレーザシステム、その耐反射性評価方法および耐反射性向上方法、ならびにファイバレーザ
US9966727B2 (en) 2015-10-30 2018-05-08 Fujikura Ltd. Fiber laser system
US10530118B2 (en) 2015-10-30 2020-01-07 Fujikura Ltd. Fiber laser system, reflection resistance evaluation method and reflection resistance improvement method for same, and fiber laser
WO2017073610A1 (ja) 2015-10-30 2017-05-04 株式会社フジクラ ファイバレーザシステム
US10250009B2 (en) 2015-11-17 2019-04-02 Fujikura Ltd. Fiber laser system and method of outputting laser beam
WO2017086301A1 (ja) 2015-11-17 2017-05-26 株式会社フジクラ ファイバレーザシステム及びレーザ光出力方法
WO2017130542A1 (ja) 2016-01-26 2017-08-03 株式会社フジクラ ファイバレーザシステム、製造方法、及び加工方法
US10522967B2 (en) 2016-01-26 2019-12-31 Fujikura Ltd. Fiber laser system, fiber laser system production method, and processing method
WO2018143284A1 (ja) 2017-01-31 2018-08-09 株式会社フジクラ ファイバレーザ、供給方法、及び製造方法
US10797463B2 (en) 2017-01-31 2020-10-06 Fujikura Ltd. Fiber laser system and method for controlling same
WO2018142857A1 (ja) 2017-01-31 2018-08-09 株式会社フジクラ ファイバレーザシステム、及び、その制御方法
JP2018125405A (ja) * 2017-01-31 2018-08-09 株式会社フジクラ ファイバレーザシステム、及び、その制御方法
JP2018129389A (ja) * 2017-02-08 2018-08-16 株式会社フジクラ ファイバレーザ
WO2018193816A1 (ja) * 2017-04-19 2018-10-25 株式会社フジクラ レーザ装置、レーザシステム
WO2019146627A1 (ja) 2018-01-23 2019-08-01 株式会社フジクラ フィルタ素子、レーザ装置、ファイバレーザ装置、フィルタ方法、及びレーザ装置の製造方法
WO2019146452A1 (ja) 2018-01-23 2019-08-01 株式会社フジクラ モニタ装置、レーザ装置、モニタ方法、及びレーザ装置の製造方法
JPWO2019146627A1 (ja) * 2018-01-23 2021-01-14 株式会社フジクラ フィルタ素子、レーザ装置、ファイバレーザ装置、フィルタ方法、及びレーザ装置の製造方法
JPWO2019146452A1 (ja) * 2018-01-23 2021-01-28 株式会社フジクラ モニタ装置、レーザ装置、モニタ方法、及びレーザ装置の製造方法
US11316315B2 (en) 2018-01-23 2022-04-26 Fujikura Ltd. Filter element, laser device, fiber laser device, filter method, and method for manufacturing laser device
JP2019179891A (ja) * 2018-03-30 2019-10-17 株式会社フジクラ ファイバレーザ装置、ファイバレーザ装置の製造方法、及び、設定方法
WO2019189459A1 (ja) 2018-03-30 2019-10-03 株式会社フジクラ ファイバレーザ装置、ファイバレーザ装置の製造方法、及び、設定方法
US11451006B2 (en) 2018-03-30 2022-09-20 Fujikura Ltd. Fiber laser device, production method for fiber laser device, and setting method
JP2021082748A (ja) * 2019-11-21 2021-05-27 株式会社フジクラ レーザ装置
JP2021150527A (ja) * 2020-03-19 2021-09-27 株式会社フジクラ ファイバレーザ装置

Also Published As

Publication number Publication date
US20160254637A1 (en) 2016-09-01
EP3070791A1 (en) 2016-09-21
EP3070791B1 (en) 2019-09-25
WO2015072198A1 (ja) 2015-05-21
JP5680170B1 (ja) 2015-03-04
EP3070791A4 (en) 2017-06-28
CN105723576A (zh) 2016-06-29
CN105723576B (zh) 2019-02-22

Similar Documents

Publication Publication Date Title
JP5680170B1 (ja) ファイバレーザ装置
JP6007238B2 (ja) ファイバレーザ装置およびレーザ光照射位置の位置決め方法
EP2560251A1 (en) Optical fiber amplifier, and fiber laser device using same
US9203205B2 (en) Fiber laser device
US8902494B2 (en) Amplification optical fiber with optical component and fiber laser device including the same
JP2016051859A (ja) ファイバレーザ装置
US9356417B2 (en) Fiber laser
US7283293B2 (en) High efficiency optical amplifying fiber
US11835776B2 (en) Filter device and laser apparatus
JP6734683B2 (ja) 光モニタ装置及びレーザ装置
JP2013161875A (ja) 光学部品、及び、これを用いた光ファイバ増幅器、及び、ファイバレーザ装置
JP5222970B2 (ja) 光学部品、及び、これを用いた光ファイバ増幅器、及び、ファイバレーザ装置
JP5202676B2 (ja) 増幅用光学部品、及び、これを用いた光ファイバ増幅器、並びに、ファイバレーザ装置
JP6276969B2 (ja) 増幅用光ファイバのストークス光検出方法、及び、これを用いたファイバレーザ装置
WO2019021565A1 (ja) ファイバレーザ装置
JP2018174206A (ja) レーザ装置
WO2018193816A1 (ja) レーザ装置、レーザシステム
WO2024241977A1 (ja) ファイバレーザ装置
JP2018037578A (ja) ファイバレーザ装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150106

R151 Written notification of patent or utility model registration

Ref document number: 5680170

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250