JP2015081806A - Ph measurement method and device - Google Patents
Ph measurement method and device Download PDFInfo
- Publication number
- JP2015081806A JP2015081806A JP2013218929A JP2013218929A JP2015081806A JP 2015081806 A JP2015081806 A JP 2015081806A JP 2013218929 A JP2013218929 A JP 2013218929A JP 2013218929 A JP2013218929 A JP 2013218929A JP 2015081806 A JP2015081806 A JP 2015081806A
- Authority
- JP
- Japan
- Prior art keywords
- indicator
- point
- color
- value
- coloring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 27
- 238000001139 pH measurement Methods 0.000 title claims abstract description 20
- 239000007793 ph indicator Substances 0.000 claims abstract description 135
- 230000014509 gene expression Effects 0.000 claims abstract description 60
- 238000010586 diagram Methods 0.000 claims abstract description 51
- 238000004040 coloring Methods 0.000 claims abstract description 41
- 238000005259 measurement Methods 0.000 claims abstract description 37
- 238000011161 development Methods 0.000 claims description 69
- 239000000178 monomer Substances 0.000 claims description 32
- 238000003860 storage Methods 0.000 claims description 13
- 238000007477 logistic regression Methods 0.000 claims description 10
- 229920000642 polymer Polymers 0.000 claims description 4
- 230000001419 dependent effect Effects 0.000 claims description 3
- 238000000691 measurement method Methods 0.000 claims 4
- 239000007864 aqueous solution Substances 0.000 description 16
- 238000001514 detection method Methods 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 229920001577 copolymer Polymers 0.000 description 9
- BELBBZDIHDAJOR-UHFFFAOYSA-N Phenolsulfonephthalein Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)C2=CC=CC=C2S(=O)(=O)O1 BELBBZDIHDAJOR-UHFFFAOYSA-N 0.000 description 5
- 230000002378 acidificating effect Effects 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000003086 colorant Substances 0.000 description 5
- 239000002609 medium Substances 0.000 description 5
- 229960003531 phenolsulfonphthalein Drugs 0.000 description 5
- 238000002845 discoloration Methods 0.000 description 4
- 238000003384 imaging method Methods 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 125000000129 anionic group Chemical group 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 239000001963 growth medium Substances 0.000 description 3
- QNILTEGFHQSKFF-UHFFFAOYSA-N n-propan-2-ylprop-2-enamide Chemical compound CC(C)NC(=O)C=C QNILTEGFHQSKFF-UHFFFAOYSA-N 0.000 description 3
- 238000012887 quadratic function Methods 0.000 description 3
- 238000000611 regression analysis Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 238000004737 colorimetric analysis Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- -1 hydrogen ions Chemical class 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 238000012417 linear regression Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- NCLLZLLMVYCRPY-UHFFFAOYSA-N C(=C)C=1C(=C(C=CC1O)N=NC1=CC=CC=C1)O Chemical compound C(=C)C=1C(=C(C=CC1O)N=NC1=CC=CC=C1)O NCLLZLLMVYCRPY-UHFFFAOYSA-N 0.000 description 1
- XVNXZQBUKYFMJM-UHFFFAOYSA-N C(C=C)(=O)O.CN(C)C1=C(C=CC=C1)N=NC1=CC=CC=C1 Chemical compound C(C=C)(=O)O.CN(C)C1=C(C=CC=C1)N=NC1=CC=CC=C1 XVNXZQBUKYFMJM-UHFFFAOYSA-N 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 239000006143 cell culture medium Substances 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000003621 irrigation water Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 229920000867 polyelectrolyte Polymers 0.000 description 1
- VSFOXJWBPGONDR-UHFFFAOYSA-M potassium;3-prop-2-enoyloxypropane-1-sulfonate Chemical compound [K+].[O-]S(=O)(=O)CCCOC(=O)C=C VSFOXJWBPGONDR-UHFFFAOYSA-M 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
Landscapes
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
Abstract
Description
本発明はpH計測方法及び装置に関し,とくにpH指示薬の示す色(以下,単に発色という)からpH値を計測する方法及び装置に関する。 The present invention relates to a pH measurement method and apparatus, and more particularly to a method and apparatus for measuring a pH value from a color (hereinafter simply referred to as color development) indicated by a pH indicator.
従来から,pH指示薬を紙等に含浸させたpH試験紙(リトマス試験紙等)を用いてpH値を簡単に把握する方法(比色分析方法)が普及している。しかし,pH試験紙は作業員が発色を目視で判断しなければならず,作業員毎にpH値の判断が相違しうるので客観性に欠けるおそれがある。そのため,細胞培養等の分野では,誰でも客観的にpH値を判断できるように,培養液中に添加されたpH指示薬の発色を分光測色計,色彩計等の測色計で直接的に測定し又はカラー画像等を介して間接的に測定し,その測定値に基づきpH値を計測する方法が開発されている(特許文献1〜3参照)。 Conventionally, a method (colorimetric analysis method) for easily grasping a pH value using a pH test paper (such as a litmus test paper) in which a paper or the like is impregnated with a pH indicator has been widely used. However, the pH test paper must be visually judged by the worker, and the judgment of the pH value may be different for each worker, so there is a risk of lack of objectivity. For this reason, in the field of cell culture, the color development of the pH indicator added to the culture solution is directly measured by a colorimeter such as a spectrophotometer or a colorimeter so that anyone can objectively determine the pH value. A method of measuring or indirectly measuring through a color image or the like and measuring a pH value based on the measured value has been developed (see Patent Documents 1 to 3).
図12(A)は,特許文献2の開示するpH値計測システムの一例を示す。図示例のシステムは,ディッシュ41の本体42と蓋44との間に封入された細胞培地43中に添加したpH指示薬(フェノールレッド)の発色から培地43のpH値を求めるものであり,ディッシュ41を載せる載置台47と,載置台47の下方からディッシュ41を照らす照明46及び照明制御装置48と,載置台47の上方からディッシュ41のカラー画像を撮影する撮像装置49と,そのカラー画像を赤色成分(R信号)と緑色成分(G成分)と青色成分(B信号)とからなるRGB信号としてコンピュータ52に送り出す撮像制御装置51とを有している。 FIG. 12A shows an example of a pH value measurement system disclosed in Patent Document 2. The system of the illustrated example obtains the pH value of the culture medium 43 from the color of the pH indicator (phenol red) added to the cell culture medium 43 enclosed between the main body 42 and the lid 44 of the dish 41. , A lighting control device 48 that illuminates the dish 41 from below the mounting table 47, an imaging device 49 that captures a color image of the dish 41 from above the mounting table 47, and the color image is red An imaging control device 51 is provided that sends an RGB signal composed of a component (R signal), a green component (G component), and a blue component (B signal) to the computer 52.
図12(A)のコンピュータ52は,カラー画像中のG信号とB信号との比(B/G比)を算出し,そのB/G比を同図(B)の関数式へ当てはめることによりpH値を算出する。同図(B)の関係式は,pH値の異なるフェノールレッド添加培地43の複数サンプルのカラー画像からそれぞれB/G比を算出し,回帰分析によって各サンプルのpH値とB/G比との関係を2次関数(線形回帰モデル)として統計的に推定したものである。pH値が変化するとフェノールレッド添加培地中のR信号よりもG信号及びB信号が大きく変化することから,同図(B)の関係式によりカラー画像中のB/G比から培地43のpH値を一義的に推定することができる。また,培地43の深さによってカラー画像中のB信号及びG信号(青色及び緑色の強度)は変動するが,両信号の比率(B/G比)は変化しないので,カラー画像中のB/G比に基づくことで培地43の深さに依存しないpH値を算出することができる。 The computer 52 in FIG. 12A calculates a ratio (B / G ratio) between the G signal and the B signal in the color image, and applies the B / G ratio to the functional expression in FIG. Calculate the pH value. The relational expression in FIG. 5B is that the B / G ratio is calculated from the color images of a plurality of samples of the phenol red-added medium 43 having different pH values, and the pH value and the B / G ratio of each sample are calculated by regression analysis. The relationship is statistically estimated as a quadratic function (linear regression model). When the pH value changes, the G signal and the B signal change more greatly than the R signal in the phenol red-added medium. Therefore, the pH value of the medium 43 is calculated from the B / G ratio in the color image according to the relational expression in FIG. Can be estimated uniquely. The B signal and G signal (blue and green intensity) in the color image vary depending on the depth of the culture medium 43, but the ratio of both signals (B / G ratio) does not change. Based on the G ratio, a pH value that does not depend on the depth of the medium 43 can be calculated.
しかし,図12のようにpH指示薬の発色(カラー画像)中のB/G比からpH値を計測する方法は,変色域が比較的狭いフェノールレッドのようなpH指示薬には適用できるが,より変色域の広いpH指示薬に適用するとpH値の計測精度が低下しうる問題点がある。すなわち,変色域がpH値=6.5〜8.5程度のフェノールレッドではB/G比との関係を2次関数(線形回帰モデル)としてモデル化できるが,pH指示薬の変色域が広くなると発色が複雑に変化するので,pH値とB/G比との関係を2次関数等でモデル化することは難しくなる。pH指示薬の変色域の広狭に拘わらず,pH指示薬の発色からpH値を精度よく推定できる技術の開発が望まれている。 However, the method of measuring the pH value from the B / G ratio in the color development (color image) of the pH indicator as shown in FIG. 12 can be applied to a pH indicator such as phenol red having a relatively narrow discoloration range. When applied to a pH indicator with a wide color change range, there is a problem that the measurement accuracy of the pH value may be lowered. That is, the phenol red with a color change range of pH = 6.5 to 8.5 can be modeled as a quadratic function (linear regression model) with the B / G ratio, but when the color change range of the pH indicator is widened Since the color development changes in a complicated manner, it becomes difficult to model the relationship between the pH value and the B / G ratio with a quadratic function or the like. Development of a technique capable of accurately estimating the pH value from the color of the pH indicator is desired regardless of the wide or narrow color change range of the pH indicator.
また,変色域を広げるために発色の異なるpH指示薬を組み合わせなければならないことも想定される。本発明者は,pH指示薬の発色が複雑な場合や複数のpH指示薬を組み合わせた場合であっても,図12のようにpH指示薬の発色中の特定の色信号(例えばB信号とG信号)だけでなく,全ての色信号(発色全体)を考慮することで,pH値と対応させることができるとの着想を得た。環境モニタリング等の分野では水,空気・大気,地質等のpHを長期間にわたり精度よく計測できるpH指示薬の研究開発が進められており(特許文献4参照),例えばpH変動幅の広い環境モニタリングの要望に対応するため,pH指示薬の示す発色全体を考慮してpH値を推定できる技術の開発が求められている。 It is also envisaged that pH indicators with different colors must be combined to widen the color change range. Even if the color development of the pH indicator is complicated or a combination of a plurality of pH indicators, the present inventor has specific color signals (for example, B signal and G signal) during the color development of the pH indicator as shown in FIG. In addition, the idea was that it was possible to correspond to the pH value by considering all the color signals (entire color development). In fields such as environmental monitoring, research and development of pH indicators that can accurately measure pH of water, air / atmosphere, geology, etc. over a long period of time is underway (see Patent Document 4). In order to meet the demand, development of a technique capable of estimating the pH value in consideration of the entire color development indicated by the pH indicator is required.
そこで本発明の目的は,pH指示薬の発色全体を考慮してpH値を推定できるpH計測方法及び装置を提供することにある。 Accordingly, an object of the present invention is to provide a pH measurement method and apparatus capable of estimating the pH value in consideration of the entire color development of the pH indicator.
図1の実施例及び図3の流れ図を参照するに,本発明によるpH計測方法は,pHが異なる標本S1,S2,……に接触させたpH指示薬Qの各々の発色を白色点Oが中央に配置された色度図M(図2参照)上にプロットしてその白色点Oが中心の極座標上の発色点C1,C2,……の偏角D1,D2,……を検出し,各標本S1,S2,……のpH値と各標本S1,S2,……に接触させたpH指示薬Qの発色点C1,C2,……の偏角D1,D2,……との関係式F(図5〜図8参照)を設定し,pH指示薬Qを計測対象Tに接触させたときの発色から発色点Ctの偏角Dtを検出し,計測対象Tに接触させたpH指示薬Qの発色点Ctの偏角Dtと関係式Fとからその計測対象TのpH値を算出してなるものである。 Referring to the embodiment of FIG. 1 and the flow chart of FIG. 3, in the pH measurement method according to the present invention, the white point O is the center of color development of each of the pH indicators Q brought into contact with the samples S1, S2,. Are plotted on a chromaticity diagram M (see FIG. 2) arranged at, and white points O are detected as declination angles D1, D2,... The relational expression F () between the pH values of the specimens S1, S2,... And the deviation angles D1, D2,... Of the coloring points C1, C2,. 5 to 8) is set, the deviation angle Dt of the color development point Ct is detected from the color development when the pH indicator Q is brought into contact with the measurement target T, and the color development point of the pH indicator Q brought into contact with the measurement subject T The pH value of the measurement target T is calculated from the deviation angle Dt of Ct and the relational expression F.
また,図1のブロック図を参照するに,本発明によるpH計測装置は,pH指示薬Qの発色信号を入力し且つその発色を白色点Oが中央に配置された色度図M(図2参照)上にプロットしてその白色点Oが中心の極座標上の発色点Cの偏角Dを検出する検出手段27,pHが異なる標本S1,S2,……のpH値と各標本S1,S2,……に接触させたpH指示薬Qの発色点C1,C2,……の偏角D1,D2,……との関係式F(図5〜図8参照)を記憶する記憶手段21,及びpH指示薬Qを計測対象Tに接触させたときの発色点Ctの偏角Dtと関係式Fとからその計測対象TのpH値を算出する算出手段29を備えてなるものである。本発明によるpH計測装置には,図1に示すように,pHが異なる標本S1,S2,……の各々のpH値と各標本S1,S2,……に接触させたpH指示薬Qの発色点C1,C2,……の偏角D1,D2,……とを入力して関係式Fを設定する設定手段28を設けることができる。 Referring to the block diagram of FIG. 1, the pH measuring device according to the present invention receives a color signal of pH indicator Q, and the color development is a chromaticity diagram M in which a white point O is arranged at the center (see FIG. 2). ) Detection means 27 for detecting the deviation angle D of the coloring point C on the polar coordinates centered on the white point O plotted on the above, the pH values of the samples S1, S2,. The storage means 21 for storing the relational expression F (see FIGS. 5 to 8) with the deviation angles D1, D2,... Of the coloring points C1, C2,. The calculation means 29 is provided for calculating the pH value of the measurement target T from the deviation angle Dt of the coloring point Ct when Q is brought into contact with the measurement target T and the relational expression F. As shown in FIG. 1, the pH measuring device according to the present invention includes the pH values of the samples S1, S2,... Having different pH values and the color development point of the pH indicator Q brought into contact with the samples S1, S2,. Setting means 28 for setting the relational expression F by inputting the declination angles D1, D2,... Of C1, C2,.
好ましくは,図1に示すように,pH指示薬Qを含むフィルム11と,そのフィルム11に臨ませた測色計12とを設け,pH指示薬Qの発色信号を測色計12の出力信号としてpH値を算出する。或いは,測色計12に代えて,pH指示薬Qを含むフィルム11とそのフィルム11のカラー画像を撮影するカメラ(図示せず)とを設け,pH指示薬Qの発色信号をカラー画像としてpH値を算出することも可能である。 Preferably, as shown in FIG. 1, a film 11 containing a pH indicator Q and a colorimeter 12 facing the film 11 are provided, and the color signal of the pH indicator Q is used as an output signal of the colorimeter 12 as a pH signal. Calculate the value. Alternatively, in place of the colorimeter 12, a film 11 containing the pH indicator Q and a camera (not shown) for taking a color image of the film 11 are provided, and the pH value is determined using the color signal of the pH indicator Q as a color image. It is also possible to calculate.
更に好ましくは,白色点Oが中央に配置された色度図Mを,図2に示すようなCIExy色度図M1,図9に示すようなRBG色空間の白色点から黒色点を見通した投影図M2,又は図10に示すようなL*a*b*色空間のa*b*平面と平行な断面図M3とする。望ましくは,関係式Fを,図5〜図8に示すように,異なる標本S1,S2,……のpH値を独立変数とし各標本S1,S2,……に接触させたpH指示薬Qの発色点C1,C2,……の偏角D1,D2,……を従属変数とするロジスティック回帰曲線とする。 More preferably, the chromaticity diagram M with the white point O arranged at the center is projected from the white point of the RBG color space as shown in FIG. 2 to the CIExy chromaticity diagram M1 as shown in FIG. A cross-sectional view M3 parallel to the a * b * plane of the L * a * b * color space as shown in FIG. M2 or FIG. Desirably, as shown in FIGS. 5 to 8, the relational expression F is expressed as the color of the pH indicator Q brought into contact with each sample S1, S2,... With the pH values of different samples S1, S2,. A logistic regression curve having the dependent angles D1, D2,... At points C1, C2,.
本発明によるpH計測方法及び装置は,pH指示薬Qの発色を白色点Oが中央に配置された色度図M上にプロットしてその白色点Oが中心の極座標上の発色点Cの偏角Dを検出し,予めpHが異なる標本S1,S2,……のpH値と各標本S1,S2,……に接触させたpH指示薬Qの発色点C1,C2,……の偏角D1,D2,……との関係式Fを設定したうえで,pH指示薬Qを計測対象Tに接触させたときの発色点Ctの偏角Dtと関係式Fとからその計測対象TのpH値を算出するので,次の効果を奏する。 The pH measuring method and apparatus according to the present invention plots the color development of the pH indicator Q on the chromaticity diagram M in which the white point O is arranged at the center, and the white point O is the declination of the color development point C on the polar coordinates of the center. D is detected, and the pH values of the samples S1, S2,... Having different pHs in advance and the declination angles D1, D2 of the coloring points C1, C2,. ,... Are set, and the pH value of the measurement target T is calculated from the deviation angle Dt of the coloring point Ct when the pH indicator Q is brought into contact with the measurement target T and the relational expression F. Therefore, it produces the following effects.
(イ)pH指示薬Qの発色を色度図M上にプロットして発色点Cの偏角Dを検出し,その偏角DからpH値を推定することにより,pH指示薬Qの示す発色全体を考慮してpH値を推定することができる。
(ロ)変色域の広いpH指示薬Qを用いた場合も,その発色全体を考慮することでpH値を精度よく計測することでき,pH指示薬Qの変色域の広狭に拘わらずpH指示薬Qの発色からpH値を計測することが可能となる。
(ハ)また,pH指示薬Qの発色全体を考慮してpH値を計測することにより,発色が複雑に変化するpH指示薬にも対応することができ,発色の異なるpH指示薬を組み合わせて幅の広いpH値を計測することも可能となる。
(A) The color development of the pH indicator Q is detected by plotting the color development of the pH indicator Q on the chromaticity diagram M, detecting the deviation angle D of the color development point C, and estimating the pH value from the deviation angle D. The pH value can be estimated in consideration.
(B) Even when the pH indicator Q having a wide color change range is used, the pH value can be accurately measured by considering the entire color change, and the color development of the pH indicator Q regardless of the range of the color change range of the pH indicator Q. It becomes possible to measure pH value from.
(C) By measuring the pH value in consideration of the entire color development of the pH indicator Q, it is possible to cope with a pH indicator in which the color development changes in a complicated manner. It is also possible to measure the pH value.
以下,添付図面を参照して本発明を実施するための形態及び実施例を説明する。
図1は,例えば工場用水・排水,農業用水,河川・湖沼,水槽・タンクその他の水質のpH管理に適用した本発明のpH計測装置の実施例を示す。図示例の計測装置はpH検出部10とpH計測部20とで構成されている。pH検出部10は,pH指示薬Qを含むフィルム11と,そのフィルム11に臨ませた測色計12と,そのフィルム11及び測色計12を組み込むホルダ14とを有し,ホルダ14は一端に設けた開口をフィルム11で塞ぐことにより内部空間を水が入らない水密構造とすることができ,その水密な内部空間に測色計12を封入している。フィルム11は適宜に交換可能とすることが望ましい。また,ホルダ14には適宜に取り付け部を設けることができ,計測対象Tに応じて検出部12を水中に設置する浸漬形とし,或いは用水又は排水配管の内部に取り付ける流通形とすることができる。 FIG. 1 shows an embodiment of the pH measuring device of the present invention applied to pH management of water quality such as factory water / drainage, agricultural water, rivers / lakes, aquariums / tanks and the like. The measuring device in the illustrated example includes a pH detection unit 10 and a pH measurement unit 20. The pH detection unit 10 includes a film 11 containing a pH indicator Q, a colorimeter 12 facing the film 11, and a holder 14 incorporating the film 11 and the colorimeter 12, and the holder 14 is at one end. By closing the provided opening with the film 11, the internal space can be made into a watertight structure in which water does not enter, and the colorimeter 12 is enclosed in the watertight internal space. It is desirable that the film 11 be appropriately exchangeable. Further, the holder 14 can be appropriately provided with an attachment portion, and can be of an immersion type in which the detection unit 12 is installed in water according to the measurement target T, or a flow-through type in which the detection unit 12 is attached to the inside of irrigation water or drainage piping. .
図示例のpH指示薬Qを含むフィルム11の一例は,特許文献4が開示するように,pH指示部位及び重合性部位を有する単量体成分(pH指示モノマー)を含んだ共重合体である。pH指示モノマーは,固有の変色域の水中において可逆的にプロトン化する分子骨格を有するものであり,他の適当な電気的中性部位及び重合性部位を有する単量体成分(非イオン性モノマー)と混合することにより水に不溶又は難溶な共重合体とすることができる。例えば,pH指示モノマーと非イオン性モノマーとを含む水に不溶な共重合体を膜状に成形してフィルム11とすることにより,計測対象Tの水質のpH値を長期間継続的に計測可能な計測装置とすることができる。ただし,本発明においてpH指示薬Qは水に不溶な膜状なものに限定されるわけではなく,例えばpH指示薬Qを可溶性とし,或いはpH指示薬Qを粉末状とすることも可能である。また,本発明において従来技術に属するフェノールレッド等のpH指示薬Qを用いることも可能であり,そのようなpH指示薬Qを用いた場合でも後述するように発色全体を考慮したpH値の計測方法を適用することにより,従来技術に比してpH値の計測範囲を広げる効果が期待できる。 An example of the film 11 containing the pH indicator Q in the illustrated example is a copolymer including a monomer component (pH indicator monomer) having a pH indicator portion and a polymerizable portion, as disclosed in Patent Document 4. The pH-indicating monomer has a molecular skeleton that can be protonated reversibly in water of a specific color change range, and is a monomer component (non-ionic monomer) having other appropriate electrically neutral sites and polymerizable sites. And a copolymer insoluble or hardly soluble in water. For example, a water-insoluble copolymer containing a pH indicator monomer and a nonionic monomer is formed into a film shape to form a film 11 so that the pH value of the water quality of the measurement target T can be continuously measured over a long period of time. Measurement device. However, in the present invention, the pH indicator Q is not limited to a film that is insoluble in water. For example, the pH indicator Q may be soluble or the pH indicator Q may be powdered. Further, in the present invention, it is possible to use a pH indicator Q such as phenol red belonging to the prior art, and even when such a pH indicator Q is used, a pH value measuring method in consideration of the entire color development as will be described later. By applying it, it is possible to expect the effect of expanding the measurement range of the pH value as compared with the prior art.
好ましくは,pH指示薬Qを,特許文献4が開示するように,pH指示モノマー(必要に応じて非イオン性ポリマーを含む)と共に,イオン性部位及び重合性部位を有する単量体成分(イオン性モノマー)を含む共重合体とする。イオン性モノマーを含む共重合体は側鎖に荷電基(解離可能な官能基)を含む高分子電解質となり,例えば共重合体中の陰イオン性モノマーに由来するセグメント近傍は水中において水素イオンが集まる領域(局所濃縮領域)となり,逆に陽イオン性モノマーに由来するセグメントの近傍は水素イオンが反発する領域(局所希釈領域)となる。共重合体中のpH指示モノマーの発色は,局所濃縮領域の影響を受けるとアルカリ性側にシフトし,局所希釈領域の影響を受けると酸性側にシフトする。このため,pH指示モノマー(必要に応じて非イオン性ポリマーを含む)とイオン性モノマーとの混合比を適当に調整することにより,共重合体の変色域をpH指示部位に固有の変色域から移動させ,或いは固有の変色域よりも広げることができる。例えば,図示例のフィルム11を,計測対象Tに応じた変色域となるようにpH指示モノマーとイオン性モノマーとの混合比を調整した不溶性共重合体を膜状に成形したものとする。このような共重合体及び単量体成分は,特許文献4に詳述されている。 Preferably, pH indicator Q is a monomer component (ionic) having an ionic moiety and a polymerizable moiety, as disclosed in Patent Document 4, together with a pH indicator monomer (including a nonionic polymer as required). Monomer). A copolymer containing an ionic monomer becomes a polyelectrolyte containing a charged group (dissociable functional group) in the side chain. For example, hydrogen ions gather in the vicinity of a segment derived from an anionic monomer in the copolymer. On the contrary, the vicinity of the segment derived from the cationic monomer is a region where the hydrogen ions repel (local dilution region). The color development of the pH indicator monomer in the copolymer shifts to the alkaline side when affected by the locally concentrated region, and shifts to the acidic side when affected by the locally diluted region. Therefore, by appropriately adjusting the mixing ratio of the pH indicator monomer (including nonionic polymer if necessary) and the ionic monomer, the color change range of the copolymer is changed from the color change range specific to the pH indicator site. It can be moved or expanded beyond the inherent color gamut. For example, it is assumed that the film 11 shown in the drawing is formed into a film of an insoluble copolymer in which the mixing ratio of the pH indicator monomer and the ionic monomer is adjusted so that the color change range corresponding to the measurement target T is obtained. Such copolymers and monomer components are described in detail in US Pat.
図示例の測色計12の一例は,測定対象に片面を接触させるフィルム11の反対面側に臨ませ,pH指示薬Qを含むフィルム11の発色を測定するセンサである。例えばpH計測部20から信号・電源ケーブル15経由で電力を供給することにより測色計12を動作させ,フィルム11の発色に対応したデジタル信号又はアナログ信号を測色計12に出力させ,その出力信号を信号・電源ケーブル15経由でpH計測部20に返送してpH値を算出する。図示例の測色部12はフィルム11に隣接させて一体型としているが,例えば光ファイバ又は光ロッド等で接続された発光部・受光部を測色計12に含めることにより,発光部・受光部のみをフィルム11に隣接させ,測色計12は離れた場所に設置することもできる。或いは,測色計12に代えて,フィルム11のカラー画像を撮影するカメラ(図示せず)をpH検出部10に含め,そのカメラの出力するカラー画像をpH計測部20に入力してpH値を算出することも可能である。 An example of the colorimeter 12 in the illustrated example is a sensor that measures the color development of the film 11 including the pH indicator Q by facing the opposite side of the film 11 that contacts one side of the measurement object. For example, the colorimeter 12 is operated by supplying power from the pH measurement unit 20 via the signal / power cable 15, and a digital signal or an analog signal corresponding to the color of the film 11 is output to the colorimeter 12, and the output The signal is returned to the pH measuring unit 20 via the signal / power cable 15 to calculate the pH value. Although the color measuring unit 12 in the illustrated example is an integrated type adjacent to the film 11, for example, a light emitting unit / light receiving unit connected by an optical fiber or an optical rod or the like is included in the colorimeter 12, so that the light emitting unit / light receiving unit is included. Only the part can be adjacent to the film 11 and the colorimeter 12 can be installed at a remote location. Alternatively, instead of the colorimeter 12, a camera (not shown) that captures a color image of the film 11 is included in the pH detection unit 10, and the color image output from the camera is input to the pH measurement unit 20 to obtain a pH value. Can also be calculated.
図示例のpH計測部20の一例は,一次記憶装置又は二次記憶装置等の記憶手段21と,キーボード・マウス等の入力装置22と,ディスプレイ・プリンタ等の出力装置23とを有するコンピュータである。記憶手段21には,後述する色度図M,関係式F等を記憶する。また内蔵プログラムとして,入力装置22を介して色度図M,関係式F等の設定を変更する操作手段24と,上述した測色計12の出力信号(又はカメラのカラー画像)を入力して計測対象TのpH値を計測するpH変換手段26と,操作手段24の操作結果及び変換手段26の計測結果を適宜に出力装置23へ出力する出力手段25とを有している。 An example of the pH measurement unit 20 in the illustrated example is a computer having storage means 21 such as a primary storage device or a secondary storage device, an input device 22 such as a keyboard / mouse, and an output device 23 such as a display / printer. . The storage means 21 stores a chromaticity diagram M, a relational expression F, etc., which will be described later. Further, as an internal program, the operation means 24 for changing the settings of the chromaticity diagram M, the relational expression F, etc., and the output signal (or the color image of the camera) described above are input via the input device 22. A pH conversion unit 26 that measures the pH value of the measurement target T, and an output unit 25 that appropriately outputs the operation result of the operation unit 24 and the measurement result of the conversion unit 26 to the output device 23 are provided.
図3は,図1の計測装置により計測対象TのpH値を計測する方法の流れ図を示す。以下,図3の流れ図を参照して図1の計測装置の作用・機能を説明する。先ず図3のステップS101において,pH検出部10のフィルム11を複数のpHが異なる標本(例えばpH値の異なる水溶液。以下,pH標本ということがある)S1,S2,……に接触させてpH指示薬Qを発色させ,そのpH指示薬Qの発色に対応した測色計12の出力信号(又はカメラのカラー画像)を計測部20の変換手段26の検出手段27に入力する。検出手段27は,入力された測色計12の出力信号を白色点Oが中央に配置された色度図M上にプロットし,図2に示すように,その白色点Oが中心の極座標上において各標本S1,S2,……に対応する発色点C1,C2,……の偏角D1,D2,……を検出する。ステップS101で使用する色度図Mは,予め操作手段24を介して記憶手段21に記憶しておくことができる。 FIG. 3 shows a flowchart of a method for measuring the pH value of the measuring object T by the measuring device of FIG. Hereinafter, the operation and function of the measuring apparatus of FIG. 1 will be described with reference to the flowchart of FIG. First, in step S101 of FIG. 3, the film 11 of the pH detecting unit 10 is brought into contact with a plurality of samples having different pH values (for example, aqueous solutions having different pH values, hereinafter referred to as pH samples) S1, S2,. The indicator Q is colored, and an output signal (or a color image of the camera) corresponding to the color of the pH indicator Q is input to the detecting means 27 of the converting means 26 of the measuring unit 20. The detecting means 27 plots the input output signal of the colorimeter 12 on a chromaticity diagram M in which the white point O is arranged at the center, and as shown in FIG. , The declination angles D1, D2,... Of the coloring points C1, C2,. The chromaticity diagram M used in step S101 can be stored in the storage unit 21 via the operation unit 24 in advance.
色度図Mの一例は,図2に示すようなCIExy色度図M1である。図2のxy色度図M1には,表色上の3原色の刺激値(X,Y,Z)に基づき全ての色が2つの数値(x,y)=(X/(X+Y+Z),Y/(X+Y+Z))として表現されており,検出手段27は,pH指示薬Qの示す発色を2つの数値の発色点C(x,y)としてプロットすることができる。また,xy色度図M1のほぼ中央には白色点Oが配置されており,その白色点Oを中心とする極座標系を想定することにより,全ての色の2つの数値(x,y)を動径r及び偏角Dに変換することができる。xy色度図M1は中心の白色点Oから周辺に行くほど鮮やかさが増して周辺境界では単光色となることから,極座標を想定して変換した動径rは各色の彩度に対応し,偏角Dは色相の変化度(変化率)に対応すると考えることができる。ステップS101において検出手段27は,pH指示薬Qの発色を色度図M上にプロットして偏角Dを検出することにより,pH指示薬Qの発色全体(色相)を1つの数値(偏角D)に変換する。なお,各発色点Cの動径r(彩度)は,フィルム11に含めるpH指示薬Qの濃度により変化させることが可能である。 An example of the chromaticity diagram M is a CIExy chromaticity diagram M1 as shown in FIG. In the xy chromaticity diagram M1 of FIG. 2, all colors are represented by two numerical values (x, y) = (X / (X + Y + Z), Y based on the stimulus values (X, Y, Z) of the three primary colors on the color specification. / (X + Y + Z)), and the detection means 27 can plot the color development indicated by the pH indicator Q as two color development points C (x, y). In addition, a white point O is arranged almost at the center of the xy chromaticity diagram M1, and by assuming a polar coordinate system centered on the white point O, two numerical values (x, y) of all colors can be obtained. It can be converted into the moving radius r and the deflection angle D. In the xy chromaticity diagram M1, the vividness increases toward the periphery from the central white point O and becomes a single light color at the peripheral boundary. Therefore, the converted radius r assuming the polar coordinates corresponds to the saturation of each color. , D can be considered to correspond to the degree of change (rate of change) in hue. In step S101, the detection means 27 plots the color development of the pH indicator Q on the chromaticity diagram M and detects the declination angle D, thereby determining the entire color development (hue) of the pH indicator Q as one numerical value (declination angle D). Convert to The radius r (saturation) of each color development point C can be changed by the concentration of the pH indicator Q included in the film 11.
ただし,本発明において色度図MはCIExy色度図M1に限定されるわけではなく,後述するようにRBG色空間の投影図M2(図9参照),又はL*a*b*色空間の断面図M3(図10参照)等を用いてpH指示薬Qの発色全体を1つの数値(偏角D)に変換することも可能である。なお,図2の色度図M1では中心の白色点O上のY軸を始線とし,各発色点C1,C2,……について白色点Oと結ぶ線分が始線となす角度を偏角D1,D2,……としているが,始線の設定は図示例に限定されるわけではない。例えばX軸を始線として偏角Dを検出し,或いはpH値が最小の発色点(又はpH値が最大の発色点)を白色点Oと結ぶ線分を始線として偏角Dを検出してもよい。 However, in the present invention, the chromaticity diagram M is not limited to the CIExy chromaticity diagram M1, and as will be described later, the projection diagram M2 of the RBG color space (see FIG. 9) or the L * a * b * color space. It is also possible to convert the entire color of the pH indicator Q into one numerical value (deflection angle D) using the cross-sectional view M3 (see FIG. 10) or the like. In the chromaticity diagram M1 of FIG. 2, the Y axis on the central white point O is the starting line, and the angle formed by the line connecting the white point O with respect to each of the coloring points C1, C2,. Although D1, D2,... Are set, the setting of the start line is not limited to the illustrated example. For example, the declination D is detected using the X axis as the start line, or the declination D is detected using the line segment connecting the color point having the minimum pH value (or color point having the maximum pH value) with the white point O as the start line. May be.
図3のステップS101において各標本S1,S2,……に対応する発色点C1,C2,……の偏角D1,D2,……を検出したのち,ステップS102において,計測部20の変換手段26の設定手段28により,各pH標本S1,S2,……のpH値と発色点C1,C2,……の偏角D1,D2,……との関係式Fを設定する。例えば図5に示すように,各標本S1,S2,……のpH値を独立変数とし,各標本S1,S2,……に接触させたpH指示薬Qの発色点C1,C2,……の偏角D1,D2,……を従属変数とする回帰分析によって関係式を求めることができる。回帰モデルとして,次の(1)式のような対数モデル(対数近似)等を用いることも可能であるが,本発明者は(2)式のようなロジスティックモデル(ロジスティック回帰曲線)を用いることにより,pH指示薬の変色域の広狭に拘わらず偏角DからpH値を精度よく推定できる関係式が得られることを見出した。
D=α・log(β・pH)+γ ………………………(1)
D=α/(1+β・exp(−γ・pH)) ………………………(2)
After detecting the declination angles D1, D2,... Of the coloring points C1, C2,... Corresponding to the samples S1, S2,. Is set to a relational expression F between the pH values of the pH samples S1, S2,... And the declination angles D1, D2,. For example, as shown in FIG. 5, the pH values of the samples S1, S2,... Are set as independent variables, and the color development points C1, C2,. The relational expression can be obtained by regression analysis with the angles D1, D2,. A logarithmic model (logarithmic approximation) such as the following equation (1) can be used as the regression model, but the present inventor uses a logistic model (logistic regression curve) such as the equation (2). Thus, it has been found that a relational expression capable of accurately estimating the pH value from the declination angle D can be obtained regardless of the extent of the color change range of the pH indicator.
D = α · log (β · pH) + γ ... (1)
D = α / (1 + β · exp (−γ · pH)) (2)
[実験例1]
pH指示モノマーであるジメチルアミノアゾベンゼンアクリレート(AABAA)と非イオン性モノマーであるN−イソプロピルアクリルアミド(NIPAAm)との混合比を調整し,必要に応じて陽イオン性モノマーである(N,N,N−トリメチル)−(2−アクリロイルエチル)−アンモニウムクロライド(TMAEACl)を添加しながら共重合させることにより,表1に示す発色域の異なる3種類のpH指示薬(ゲル)Q1,Q2a,Q2bを作成した。各pH指示薬Q1,Q2a,Q2bの発色域を図4に示す。また,TMAEAClに代えて,陰イオン性モノマーである3−スルホプロピルアクリレートカリウム塩(SPAAK)を添加して共重合させることにより,表1及び図4に示すような発色域の異なる2種類のpH指示薬(ゲル)Q3a,Q3bを作成した。更に,AABAAに代えてビニル−2’,4’ジヒドロキシアゾベンゼン(VHA)をpH指示モノマーとして非イオン性モノマー(NIPAAm)と共重合させることにより,表1及び図4に示す発色域のpH指示薬(ゲル)Q4を作成した。
[Experimental Example 1]
The mixing ratio of dimethylaminoazobenzene acrylate (AABAA), which is a pH indicator monomer, and N-isopropylacrylamide (NIPAAm), which is a nonionic monomer, is adjusted, and a cationic monomer (N, N, N) as necessary. -Trimethyl)-(2-acryloylethyl) -ammonium chloride (TMAEACl) was added while copolymerizing to prepare three types of pH indicators (gels) Q1, Q2a, and Q2b with different color development areas shown in Table 1. . The color development area of each pH indicator Q1, Q2a, Q2b is shown in FIG. In addition, instead of TMAEACl, 3-sulfopropyl acrylate potassium salt (SPAK), which is an anionic monomer, is added and copolymerized, so that two kinds of pHs having different color development ranges as shown in Table 1 and FIG. Indicators (gels) Q3a and Q3b were prepared. Furthermore, instead of AABAA, vinyl-2 ′, 4′dihydroxyazobenzene (VHA) was copolymerized with a nonionic monomer (NIPAAm) as a pH indicator monomer, whereby pH indicators in the color gamut shown in Table 1 and FIG. 4 ( Gel) Q4 was prepared.
表1に示す6種類のpH指示薬Q1〜Q4をそれぞれ,塩酸及び水酸化ナトリウムと純粋とを用いて調整したpHの異なる水溶液標本Sに浸漬して発色させ,その各々の発色を測色計12(X−rite社製,Colormunki Photo)で測定し,発色に対応する測色計12の出力信号を図2に示すCIExy色度図M1にプロットして各発色点Cの偏角Dを検出した。測色計12の出力信号がCIEL*a*b*形式であることから,出力信号をCIExy形式に変換したうえで色度図M1上にプロットした。また,pH指示薬Q1〜Q4の各々について,pH値が最小の発色点(最も酸性側の水溶液標本と接触させたときの発色点)を白色点Oと結ぶ線分を始線としたうえで,他のpH値に対応する発色点の偏角Dを検出した。 Each of the six pH indicators Q1 to Q4 shown in Table 1 is dipped in an aqueous solution sample S having a different pH adjusted using hydrochloric acid, sodium hydroxide and pure, and each color is developed. (X-rite, Colormunki Photo), and the output signal of the colorimeter 12 corresponding to color development was plotted on the CIExy chromaticity diagram M1 shown in FIG. . Since the output signal of the colorimeter 12 is in the CIE L * a * b * format, the output signal is converted into the CIExy format and plotted on the chromaticity diagram M1. For each of the pH indicators Q1 to Q4, the line segment connecting the white point O with the color point having the smallest pH value (color point when brought into contact with the most acidic aqueous solution sample) is used as the starting line. Deviation angle D of the coloring point corresponding to other pH values was detected.
図5(A)は,異なる水溶液標本Sに浸漬したpH指示薬Q1の発色点CをプロットしたCIExy色度図M1を示し,pH値の異なる複数の発色点Cが白色点Oを中心として弧を描くように並んでいることを表している。また図5(B)は,ロジスティックモデルを用いて近似した各発色点のpH値と偏角Dとの関係式F1((2)式のα=52.561,β=13.830,γ=1.3583)を示す。ロジスティックモデルは一般的に,例えば毒物の投与量と死亡率との関係のように,ある刺激xに対して反応する個体の割合yとの関係に適合するモデルとして知られている(非特許文献1参照)。同図(B)の関係式1は,pH値=0〜6程度の比較的広い変色範囲において各変色点Cがロジスティック回帰曲線F1上に精度よく当てはまっており,ロジスティックモデルに基づいて近似した関係式F1によってpH指示薬Q1の発色からpH値を精度よく推定できることを表している。 FIG. 5A shows a CIExy chromaticity diagram M1 in which the coloring point C of the pH indicator Q1 immersed in different aqueous solution specimens S is plotted. A plurality of coloring points C having different pH values are arced around the white point O. It shows that it is lined up like drawing. FIG. 5B shows a relational expression F1 (α = 52.561, β = 13.830, γ = equation (2)) between the pH value of each coloring point approximated using the logistic model and the deviation angle D. 1.3583). A logistic model is generally known as a model that fits the relationship with the proportion y of individuals that respond to a certain stimulus x, such as the relationship between the dose of a poison and the mortality rate (Non-patent Document). 1). Relational expression 1 in FIG. 5B shows that the color change points C are accurately applied to the logistic regression curve F1 in a relatively wide color change range of pH = 0 to 6 and are approximated based on the logistic model. The expression F1 indicates that the pH value can be accurately estimated from the color of the pH indicator Q1.
図6は,pH指示薬Q2a,Q2bについて,各水溶液標本SのpH値と各水溶液標本Sに浸漬したときの発色点Cの偏角Dとの関係を,ロジスティックモデルを用いて近似した関係式F2a,F2bを示す。図4のpH指示薬Q2a,Q2bの発色域とpH指示薬Q1の発色域との比較から分かるように,陽イオン性モノマー(TMAEACl)を添加して共重合することによりpH指示薬Q2a,Q2bの発色域を無添加のpH指示薬Q1より酸性側に移動させることができる。図6の関係式F2a,F2bは,発色域が酸性側に移動した場合であっても各変色点Cがロジスティック回帰曲線F2a,F2b上に精度よく当てはまっており,pH指示薬の変色域の広狭に拘わらず,ロジスティックモデルに基づいて近似した関係式F2a,F2bによってpH指示薬Q2a,Q2bの発色からpH値を精度よく推定できることを表している。 FIG. 6 shows a relational expression F2a obtained by approximating the relationship between the pH value of each aqueous solution sample S and the deviation angle D of the coloring point C when immersed in each aqueous solution sample S using the logistic model for the pH indicators Q2a and Q2b. , F2b. As can be seen from the comparison of the color development range of the pH indicators Q2a and Q2b and the color development range of the pH indicator Q1 in FIG. Can be moved to the acidic side from the non-added pH indicator Q1. The relational expressions F2a and F2b in FIG. 6 indicate that each color change point C is accurately applied to the logistic regression curves F2a and F2b even when the color development region moves to the acidic side, and the color change region of the pH indicator is wide Regardless, the relational expressions F2a and F2b approximated based on the logistic model indicate that the pH value can be accurately estimated from the color of the pH indicators Q2a and Q2b.
また図7は,pH指示薬Q3a,Q3bについて,各水溶液標本SのpH値と各水溶液標本Sに浸漬した発色点Cの偏角Dとの関係を,ロジスティックモデルを用いて近似した関係式F3a,F3bを示す。図4のpH指示薬Q3a,Q2bの発色域から分かるように,陰イオン性モノマー(SPAAK)を添加して共重合した場合は,添加量が増えるにつれて変色域をアルカリ性側に移動ないし広げることができる。図7の関係式F3a,F3bは,発色域がアルカリ性側に広がった場合でも各変色点Cがロジスティック回帰曲線F3a,F3b上に精度よく当てはまり,pH指示薬の変色域の広がりに拘わらず,ロジスティックモデルに基づいて近似した関係式F3a,F3bによってpH指示薬Q3a,Q3bの発色からpH値を精度よく推定できることを表している。 FIG. 7 shows the relational expressions F3a, Q3a, Q3b that approximate the relationship between the pH value of each aqueous solution sample S and the deviation angle D of the coloring point C immersed in each aqueous solution sample S using a logistic model. F3b is shown. As can be seen from the color development regions of the pH indicators Q3a and Q2b in FIG. 4, when an anionic monomer (SPAK) is added and copolymerized, the color change region can be moved or expanded to the alkaline side as the addition amount increases. . The relational expressions F3a and F3b in FIG. 7 indicate that each color change point C is accurately applied to the logistic regression curves F3a and F3b even when the color development range extends to the alkaline side. It is shown that the pH value can be accurately estimated from the color of the pH indicators Q3a and Q3b by the relational expressions F3a and F3b approximated based on
更に図8は,pH指示薬Q4について,各水溶液標本SのpH値と各水溶液標本Sに浸漬した発色点Cの偏角Dとの関係を,ロジスティックモデルを用いて近似した関係式F4を示す。図4のpH指示薬Q4の発色域とpH指示薬Q1〜Q3の変色域との比較から分かるように,pH指示モノマーAABAAを用いた場合は変色域が酸性側であるのに対し,pH指示モノマーVHAを用いた場合は変色域がアルカリ性側となる。図8の関係式F4は,発色域がアルカリ性側に移動した場合でも各変色点Cがロジスティック回帰曲線F4上に精度よく当てはまり,ロジスティックモデルに基づいて近似した関係式F4によってpH指示薬Q4の発色からpH値を精度よく推定できることを表している。 Further, FIG. 8 shows a relational expression F4 that approximates the relationship between the pH value of each aqueous solution sample S and the deviation angle D of the coloring point C immersed in each aqueous solution sample S using the logistic model for the pH indicator Q4. As can be seen from the comparison between the color development range of the pH indicator Q4 and the color change range of the pH indicators Q1 to Q3 in FIG. 4, when the pH indicator monomer AABAA is used, the color change range is on the acidic side, whereas the pH indicator monomer VHA. When is used, the color change range is on the alkaline side. The relational expression F4 in FIG. 8 shows that even when the color development region moves to the alkaline side, each discoloration point C is accurately applied to the logistic regression curve F4. This means that the pH value can be estimated with high accuracy.
図3の流れ図の戻り,ステップS103において,設定手段28で設定されたpH指示薬Qの関係式Fを記憶手段21に記憶する。ステップS104において関係式Fを設定すべき他のpH指示薬Qがあるか否かを判断し,他のpH指示薬Qがある場合はステップS101に戻って上述したステップS101〜S103を繰り返す。例えばpH検出部10のフィルム11を,表1に示す6種類のpH指示薬Q1〜Q4を含むフィルム11に交換しながらステップS101〜S103を繰り返すことにより,図5〜図8の6種類の関係式F1〜F4を設定することができる。変色域の異なるpH指示薬Q1〜Q4の関係式F1〜F4を記憶手段21に記憶しておけば,後述するように,複数のpH指示薬Q1〜Q4の組み合わせを用いて広範囲にわたるpH値を計測することができる。 Returning to the flowchart of FIG. 3, in step S <b> 103, the relational expression F of the pH indicator Q set by the setting unit 28 is stored in the storage unit 21. In step S104, it is determined whether or not there is another pH indicator Q for which the relational expression F should be set. If there is another pH indicator Q, the process returns to step S101 and the above-described steps S101 to S103 are repeated. For example, by repeating steps S101 to S103 while replacing the film 11 of the pH detection unit 10 with the film 11 containing the six types of pH indicators Q1 to Q4 shown in Table 1, the six types of relational expressions in FIGS. F1 to F4 can be set. If relational expressions F1 to F4 of pH indicators Q1 to Q4 having different color change ranges are stored in the storage unit 21, a wide range of pH values are measured using a combination of a plurality of pH indicators Q1 to Q4 as will be described later. be able to.
なお,上述したステップS101〜S104の関係式Fの設定処理は,必ずしもpH計測現場で行う必要はなく,例えば実験室等において適当なpH標本Sを用いて予め設定しておくことができ,その関係式FをpH計測部20の記憶手段16に記憶することも可能である。この場合は,ステップS101〜S104に代えて関係式FをpH計測部20に入力するステップを設ければ足り,pH指示薬Q毎に関係式Fを設定するステップS101〜S104は省略可能である。 Note that the setting process of the relational expression F in steps S101 to S104 described above is not necessarily performed at the pH measurement site, and can be set in advance using an appropriate pH sample S in a laboratory, for example. It is also possible to store the relational expression F in the storage unit 16 of the pH measuring unit 20. In this case, it suffices to provide a step of inputting the relational expression F to the pH measuring unit 20 instead of steps S101 to S104, and steps S101 to S104 for setting the relational expression F for each pH indicator Q can be omitted.
図3の流れ図のステップS105〜S107は,記憶手段21に記憶したpH指示薬Q毎の関係式Fに基づき,計測対象Tの水質のpH値を計測する処理を示す。ステップS105において,記憶手段16に複数のpH指示薬Qの関係式Fが記憶されている場合は,必要に応じて計測に使用するpH指示薬Q及び関係式Fを選択する。ステップS106において,pH検出部10のフィルム11を計測対象Tに接触させてpH指示薬Qを発色させ,その発色に応じた測色計12の出力信号(又はカメラのカラー画像)を変換手段26の検出手段27へ入力する。検出手段27は,上述したステップS101と同様に,入力された測色計12の出力信号を白色点Oが中央に配置された色度図M上にプロットし,白色点Oが中心の極座標上において計測対象Tの発色点Ctの偏角Dtを検出する。 Steps S105 to S107 in the flowchart of FIG. 3 show processing for measuring the pH value of the water quality of the measurement target T based on the relational expression F for each pH indicator Q stored in the storage unit 21. In step S105, if a plurality of relational expressions F of the pH indicator Q are stored in the storage unit 16, the pH indicator Q and the relational expression F used for measurement are selected as necessary. In step S106, the film 11 of the pH detector 10 is brought into contact with the measurement target T to develop the color of the pH indicator Q, and the output signal (or the color image of the camera) of the colorimeter 12 corresponding to the color development is converted by the conversion means 26. Input to the detecting means 27. Similarly to step S101 described above, the detecting means 27 plots the input output signal of the colorimeter 12 on a chromaticity diagram M in which the white point O is arranged at the center, and the white point O is on the polar coordinates at the center. The deviation angle Dt of the color development point Ct of the measurement target T is detected.
ステップS107において,計測対象Tの発色点Ctの偏角Dtを変換手段26の算出手段29へ入力する。算出手段29は,入力された偏角Dtを関係式F(例えば(2)式のロジスティックモデル)に当てはめることにより,計測対象TのpH値を算出する。ステップS108において,pH計測を終了するか否かを判断し,継続する場合はステップS105に戻って上述したステップS105〜S107を繰り返す。例えばpH変動幅の広い水質モニタリング等において,pH検出部10のフィルム11を,表1のpH指示薬Q1〜Q4pに交換しながらステップS105〜S107を繰り返すことにより,計測対象の広範囲にわたるpH値を計測することができる。 In step S <b> 107, the deviation angle Dt of the coloring point Ct of the measurement target T is input to the calculation unit 29 of the conversion unit 26. The calculating unit 29 calculates the pH value of the measurement target T by applying the input declination Dt to the relational expression F (for example, the logistic model of the expression (2)). In step S108, it is determined whether or not the pH measurement is to be ended. If the measurement is to be continued, the process returns to step S105 and the above-described steps S105 to S107 are repeated. For example, in water quality monitoring with a wide pH fluctuation range, by repeating steps S105 to S107 while replacing the film 11 of the pH detection unit 10 with pH indicators Q1 to Q4p in Table 1, the pH value over a wide range of the measurement target is measured. can do.
本発明によれば,pH指示薬Qの発色を色度図M上にプロットして発色点Cの偏角Dを検出し,その偏角DからpH値を推定することにより,pH指示薬Qの発色全体を考慮してpH値を推定することができ,発色中の特定色によってpH値を計測する場合に比して計測精度を高めることができる。また,表1を参照して上述したように,pH指示薬Qの変色域の広狭に拘わらず,pH指示薬Qの発色からpH値を計測することができる。 According to the present invention, the color development of the pH indicator Q is detected by plotting the color development of the pH indicator Q on the chromaticity diagram M, detecting the deviation angle D of the color development point C, and estimating the pH value from the deviation angle D. The pH value can be estimated in consideration of the whole, and the measurement accuracy can be improved as compared with the case where the pH value is measured by a specific color being colored. In addition, as described above with reference to Table 1, the pH value can be measured from the color of the pH indicator Q regardless of the extent of the color change range of the pH indicator Q.
こうして本発明の目的である「pH指示薬の発色全体を考慮してpH値を推定できるpH計測方法及び装置」の提供を達成することができる。 Thus, the provision of “a pH measuring method and apparatus capable of estimating the pH value in consideration of the entire color development of the pH indicator”, which is the object of the present invention, can be achieved.
図9(B)は,図3の流れ図において使用できる色度図Mの他の一例を示す。図示例の色度図M2は,図9(A)に示すRBG色空間の白色点から黒色点を見通した投影図である。RGB空間では,それぞれ255で表される赤色軸(R軸),緑色軸(G軸),青色軸(B軸)で囲まれた立方体の範囲内で全ての色(R,G,B)が表される。その立法体の色空間の白色点(255,255,255)から黒色点(0,0,0)を見通すことにより,同図(B)のように白色点Oが中央に配置された正六角形の投影図M2が得られる。同図(B)の投影図M2では,図2のxy色度図M1と同様に,pH指示薬Qの示す発色(R,G,B)を(11)式で変換することにより,2つの数値の発色点C(x,y)としてプロットすることができる。また,白色点Oを中心とする極座標系を想定することにより,その2つの数値(x,y)を動径r及び偏角Dに変換することができる。この偏角Dは,pH指示薬Qの発色全体(色相)を1つの数値(偏角D)に変換したものと考えることができる。
(x,y)
=(R−G/2−B/2,√3/2・G−√3/2・B) ………(11)
FIG. 9B shows another example of the chromaticity diagram M that can be used in the flowchart of FIG. The chromaticity diagram M2 in the illustrated example is a projection view in which the black point is viewed from the white point in the RBG color space shown in FIG. 9A. In the RGB space, all colors (R, G, B) are within the range of a cube surrounded by a red axis (R axis), a green axis (G axis), and a blue axis (B axis) represented by 255, respectively. expressed. By looking through the black point (0, 0, 0) from the white point (255, 255, 255) of the color space of the legislative body, a regular hexagon in which the white point O is arranged at the center as shown in FIG. Is obtained. In the projection diagram M2 in FIG. 5B, as in the xy chromaticity diagram M1 in FIG. 2, the color development (R, G, B) indicated by the pH indicator Q is converted by the equation (11) to obtain two numerical values. Can be plotted as the color development point C (x, y). Further, by assuming a polar coordinate system centered on the white point O, the two numerical values (x, y) can be converted into a radius vector r and a declination angle D. This declination D can be considered as a result of converting the entire color development (hue) of the pH indicator Q into one numerical value (declination D).
(X, y)
= (R−G / 2−B / 2, √3 / 2 · G−√3 / 2 · B) (11)
図11(A)は,上述した表1のpH指示薬Q3aについて,各水溶液標本Sに浸漬したときの発色(測色計12の出力信号)を図9(B)の色度図M2上にプロットして発色点Cの偏角Dを検出し,各水溶液標本SのpH値と各水溶液標本Sに浸漬した発色点Cの偏角Dとの関係を,ロジスティックモデルを用いて近似した関係式F9を示す。同図の関係式F9は,図2のxy色度図M1を用いた場合と同様に,各変色点Cがロジスティック回帰曲線上に精度よく当てはまることを示している。すなわち,この関係式F9から,図3のステップS101及びS106において発色点Cの偏角Dを検出するための色度図として,RBG色空間を白色点から黒色点を見通した図9(B)の投影図M2を使用できることが分かる。 FIG. 11 (A) plots the color development (output signal of the colorimeter 12) when immersed in each aqueous solution sample S on the chromaticity diagram M2 of FIG. 9 (B) for the pH indicator Q3a in Table 1 described above. Then, the deviation angle D of the coloring point C is detected, and the relational expression F9 approximating the relationship between the pH value of each aqueous solution specimen S and the deviation angle D of the coloring point C immersed in each aqueous solution specimen S using a logistic model. Indicates. Similar to the case of using the xy chromaticity diagram M1 in FIG. 2, the relational expression F9 in the figure shows that each discoloration point C is accurately applied to the logistic regression curve. That is, from this relational expression F9, as a chromaticity diagram for detecting the deviation angle D of the color development point C in steps S101 and S106 in FIG. 3, the RBG color space is viewed from the white point to the black point. It can be seen that the projection M2 can be used.
図10(B)は,図3の流れ図において使用できる色度図Mの更に他の一例を示す。図示例の色度図M3は,図10(A)に示すL*a*b*色空間のa*b*平面と平行な断面図である。L*a*b*色空間は,図10(A)のような直交3軸(L*軸,a*軸,b*軸)原点を中心とする球体と考えることができ,L*軸が明度に対応し,a*b*平面が色相と対応している。そのL*a*b*色空間をa*b*平面と平行に切断することにより,同図(B)のように白色点Oが中央に配置された円形断面図M3が得られる。同図(B)の断面図M3では,pH指示薬Qの発色を2つの数値の発色点C(a*,b*)としてプロットすることができ,白色点Oを中心とする極座標系の偏角Dに相当する数値hを(12)式により算出することができる。この数値hは,pH指示薬Qの発色全体(色相)を1つの数値に変換したものである。
h=tan−1(b*/a*) ………………………………(12)
FIG. 10B shows still another example of the chromaticity diagram M that can be used in the flowchart of FIG. The chromaticity diagram M3 in the illustrated example is a cross-sectional view parallel to the a * b * plane of the L * a * b * color space shown in FIG. L * a * b * color space, three orthogonal axes as shown in FIG. 10 (A) (L * axis, a * axis, b * axis) origin can be considered as a sphere centered at, is the L * axis Corresponding to the brightness, the a * b * plane corresponds to the hue. By cutting the L * a * b * color space in parallel with the a * b * plane, a circular cross-sectional view M3 in which the white point O is arranged at the center is obtained as shown in FIG. In the cross-sectional view M3 of FIG. 5B, the color development of the pH indicator Q can be plotted as two numerical color development points C (a * , b * ), and the polar angle of the polar coordinate system centered on the white point O is shown. A numerical value h corresponding to D can be calculated by equation (12). This numerical value h is obtained by converting the entire color development (hue) of the pH indicator Q into one numerical value.
h = tan −1 (b * / a * ) ……………………………… (12)
図11(B)は,上述した表1のpH指示薬Q3aについて,各水溶液標本Sに浸漬したときの発色(測色計12の出力信号)を図10(B)の色度図M3上にプロットして発色点Cの偏角Dに相当する数値hを検出し,各水溶液標本SのpH値と各水溶液標本Sに浸漬した発色点Cの偏角D(数値h)との関係を,ロジスティックモデルを用いて近似した関係式F10を示している。同図の関係式F10は,図2のxy色度図M1及び図9(B)の投影図M2を用いた場合よりも適合性が若干悪いものの,各変色点Cがロジスティック回帰曲線上に当てはまることを示している。すなわち,この関係式F10から,図3のステップS101及びS106において発色点Cの偏角Dを検出するための色度図として,図10(B)のようなL*a*b*色空間のa*b*平面と平行な断面図M3を使用できることが分かる。 FIG. 11B plots the color development (output signal of the colorimeter 12) when immersed in each aqueous solution sample S on the chromaticity diagram M3 of FIG. 10B for the pH indicator Q3a of Table 1 described above. Then, a numerical value h corresponding to the deviation angle D of the coloring point C is detected, and the relationship between the pH value of each aqueous solution sample S and the deviation angle D (numerical value h) of the coloring point C immersed in each aqueous solution sample S is logistically determined. The relational expression F10 approximated using the model is shown. The relational expression F10 in the figure is slightly worse than the case of using the xy chromaticity diagram M1 in FIG. 2 and the projection diagram M2 in FIG. 9B, but each discoloration point C is applied to the logistic regression curve. It is shown that. That is, from this relational expression F10, as a chromaticity diagram for detecting the deflection angle D of the coloring point C in steps S101 and S106 of FIG. 3, an L * a * b * color space as shown in FIG. It can be seen that a cross-sectional view M3 parallel to the a * b * plane can be used.
10…検出部 11…測定フィルム
12…測色装置 14…ホルダ
15…信号・電源ケーブル
20…pH計測部(コンピュータ) 21…記憶手段
22…入力装置 23…出力装置
24…操作手段 25…出力手段
26…pH変換手段 27…検出手段
28…設定手段 29…算出手段
41…ディッシュ 42…本体
43…培地 44…蓋
46…照明 47…載置台
48…照明制御部 49…カラー撮像装置
49a…レンズ 49b…撮像素子
51…撮像制御部 52…コンピュータ
53…表示部 54…入力器
C…発色点 D…偏角
F…関係式 M…色度図
O…白色点 Q…pH指示薬
r…動径 S…pH標本
T…検出対象
DESCRIPTION OF SYMBOLS 10 ... Detection part 11 ... Measurement film 12 ... Colorimetry apparatus 14 ... Holder 15 ... Signal / power cable 20 ... pH measurement part (computer) 21 ... Storage means 22 ... Input device 23 ... Output device 24 ... Operation means 25 ... Output means 26 ... pH conversion means 27 ... detection means 28 ... setting means 29 ... calculation means 41 ... dish 42 ... main body 43 ... medium 44 ... lid 46 ... illumination 47 ... mounting table 48 ... illumination control unit 49 ... color imaging device 49a ... lens 49b Image sensor 51 ... Imaging control unit 52 ... Computer 53 ... Display unit 54 ... Input device C ... Color development point D ... Deviation angle F ... Relational expression M ... Chromaticity diagram O ... White point Q ... pH indicator r ... Radial radius S ... pH specimen T ... Detection target
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013218929A JP6224410B2 (en) | 2013-10-22 | 2013-10-22 | pH measuring method and apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013218929A JP6224410B2 (en) | 2013-10-22 | 2013-10-22 | pH measuring method and apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015081806A true JP2015081806A (en) | 2015-04-27 |
JP6224410B2 JP6224410B2 (en) | 2017-11-01 |
Family
ID=53012481
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013218929A Active JP6224410B2 (en) | 2013-10-22 | 2013-10-22 | pH measuring method and apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6224410B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018048872A (en) * | 2016-09-21 | 2018-03-29 | 学校法人東京電機大学 | WIDE-RANGE pH INDICATOR COPOLYMER AND METHOD OF FORMING THE SAME |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001153805A (en) * | 1999-11-25 | 2001-06-08 | Kanagawa Acad Of Sci & Technol | Method of optimizing color variation of optode by digitization |
US20070092407A1 (en) * | 2005-10-26 | 2007-04-26 | General Electric Company | Optical sensor array system and method for parallel processing of chemical and biochemical information |
JP2009513978A (en) * | 2005-10-26 | 2009-04-02 | ゼネラル・エレクトリック・カンパニイ | Method and system for delivering a fluid sample to a sensor array |
JP2012163484A (en) * | 2011-02-08 | 2012-08-30 | Tokyo Denki Univ | COPOLYMER FOR pH INDICATION, AND pH MONITORING DEVICE AND pH MEASUREMENT METHOD USING THE SAME |
JP2013083648A (en) * | 2011-10-11 | 2013-05-09 | Korea Institute Of Geoscience & Minaral Resources | System and method for monitoring motion of carbon dioxide |
-
2013
- 2013-10-22 JP JP2013218929A patent/JP6224410B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001153805A (en) * | 1999-11-25 | 2001-06-08 | Kanagawa Acad Of Sci & Technol | Method of optimizing color variation of optode by digitization |
US20070092407A1 (en) * | 2005-10-26 | 2007-04-26 | General Electric Company | Optical sensor array system and method for parallel processing of chemical and biochemical information |
JP2009513978A (en) * | 2005-10-26 | 2009-04-02 | ゼネラル・エレクトリック・カンパニイ | Method and system for delivering a fluid sample to a sensor array |
JP2012163484A (en) * | 2011-02-08 | 2012-08-30 | Tokyo Denki Univ | COPOLYMER FOR pH INDICATION, AND pH MONITORING DEVICE AND pH MEASUREMENT METHOD USING THE SAME |
JP2013083648A (en) * | 2011-10-11 | 2013-05-09 | Korea Institute Of Geoscience & Minaral Resources | System and method for monitoring motion of carbon dioxide |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018048872A (en) * | 2016-09-21 | 2018-03-29 | 学校法人東京電機大学 | WIDE-RANGE pH INDICATOR COPOLYMER AND METHOD OF FORMING THE SAME |
Also Published As
Publication number | Publication date |
---|---|
JP6224410B2 (en) | 2017-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2928897T3 (en) | Method and software to analyze microbial growth | |
WO2009093453A1 (en) | Analysis device and analysis method | |
CN107403177A (en) | Brightness measurement method based on industrial camera | |
KR101776355B1 (en) | Apparatus and methods for setting up optical inspection parameters | |
CN101556251A (en) | CTP plate making quality testing method based on digital signal processor | |
KR20130046515A (en) | Color lighting control method for improving image quality of vision system | |
CN105738357A (en) | CIE1976L * a * b * color space method for sodium hydroxide solution preparation for chemical analysis | |
CN109767425A (en) | Machine vision light source uniformity assesses device and method | |
Tiuftiakov et al. | Digital color analysis for colorimetric signal processing: Towards an analytically justified choice of acquisition technique and color space | |
JP6224410B2 (en) | pH measuring method and apparatus | |
CN116297478A (en) | Method, device and system for detecting coating defects of photovoltaic glass | |
CN113596278A (en) | System, method, medium and equipment for digitalized rapid scanning of fabric | |
CN108010071B (en) | System and method for measuring brightness distribution by using 3D depth measurement | |
CN108286958A (en) | A kind of distance measuring method and range-measurement system | |
CN109632269A (en) | Method based on image grayscale infomation detection diffractive-optical element performance | |
JP2017091799A (en) | Method, device and system for measuring potential of electrolytic solution of vanadium redox flow battery | |
CN110146509B (en) | Battery detection method and battery detection equipment | |
JP2007163350A (en) | Observation device | |
KR102080920B1 (en) | Quantitative analysis method of hemoglobin level using color image of blood droplet | |
CN109085162A (en) | A kind of chlorine residue detection method | |
CN113906434B (en) | Detection method and portable terminal | |
US10345214B2 (en) | Method and system for estimating a concentration of a species in a culture medium by lensless imaging | |
CN110196249A (en) | A kind of paper chip of integration standard colour band | |
KR20210021499A (en) | Detection method and detection pad | |
JP2005233826A (en) | Surface inspection device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160603 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170308 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170308 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170425 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20171003 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20171005 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6224410 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |