[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2015080455A - Continuous energization heating apparatus for fluidity food material - Google Patents

Continuous energization heating apparatus for fluidity food material Download PDF

Info

Publication number
JP2015080455A
JP2015080455A JP2013220642A JP2013220642A JP2015080455A JP 2015080455 A JP2015080455 A JP 2015080455A JP 2013220642 A JP2013220642 A JP 2013220642A JP 2013220642 A JP2013220642 A JP 2013220642A JP 2015080455 A JP2015080455 A JP 2015080455A
Authority
JP
Japan
Prior art keywords
food material
electrodes
voltage application
heating
energization heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013220642A
Other languages
Japanese (ja)
Other versions
JP6030040B2 (en
Inventor
星野 弘
Hiroshi Hoshino
弘 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Frontier Engineering Co Ltd
Original Assignee
Frontier Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Frontier Engineering Co Ltd filed Critical Frontier Engineering Co Ltd
Priority to JP2013220642A priority Critical patent/JP6030040B2/en
Publication of JP2015080455A publication Critical patent/JP2015080455A/en
Application granted granted Critical
Publication of JP6030040B2 publication Critical patent/JP6030040B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
  • Control Of Resistance Heating (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent abnormal variation of voltage and current between electrodes, collapse of an AC waveform, difficulty of control, and damage of a transformer of a power supply caused by affection of leak current from an annular electrode for energization heating, when food materials are energized and heated by applying AC voltage across adjacent annular electrodes for energization heating, in a continuous energization heating apparatus in which electrodes for grounding are disposed on the respective outsides of electrodes on both side ends, among plural annular electrodes for energization heating forming a pipe line for energization heating.SOLUTION: Two electrodes for voltage application positioned on both end sides of a pipe line for energization heating are connected to an output terminal on the reference potential side of an output transformer of an AC power supply, among three or more annular electrodes for voltage application.

Description

本発明は、パイプ内(管路内)において連続的に流動輸送可能な程度の流動性を有する食品材料、例えば液状食品材料(飲料を含む)や固体−液体混合食品材料、あるいはゲル状食品材料などについて、殺菌や調理などのために管路内を連続的に流動輸送させながら連続的に通電加熱する装置および通電加熱装置に関するものである。   The present invention relates to a food material having fluidity that can be continuously fluidized and transported in a pipe (in a pipeline), such as a liquid food material (including beverages), a solid-liquid mixed food material, or a gel food material. The present invention relates to a device for continuously energizing and heating while continuously flowing and transporting the inside of a pipe line for sterilization and cooking, and the like.

最近では、食品材料に直接通電して、食品材料の有する電気抵抗により発熱させる通電加熱(ジュール加熱)方式を利用し、殺菌や調理などのために食品材料を加熱する方法が実用化されている。そして管路内に流動性食品材料を連続的に流しながらその管路内の流動性食品材料を通電加熱により連続的に加熱する装置が、例えば特許文献1、特許文献2などにおいて提案され、実用化されている。   Recently, a method for heating food materials for sterilization, cooking, etc. has been put to practical use by applying an energization heating (Joule heating) method in which a food material is directly energized and generates heat by the electrical resistance of the food material. . An apparatus for continuously heating a flowable food material in the pipeline by energization heating while continuously flowing the flowable food material in the pipeline has been proposed in, for example, Patent Document 1, Patent Document 2, and the like. It has become.

このような連続通電加熱装置の従来の例の基本的な構成について図8〜図10を参照して説明する。なお実際の食品製造工場などにおいては、複数の通電加熱ユニットを直列状に接続して連続通電加熱装置を構成し、ある通電加熱ユニットを通過した流動性食品材料を、順次隣の通電加熱ユニットに送り込むようにすることが多いが、先ず図8には、特許文献1の図2に準拠した一つの通電加熱ユニット3を示す。   A basic configuration of a conventional example of such a continuous energization heating apparatus will be described with reference to FIGS. In an actual food manufacturing plant, etc., a plurality of current heating units are connected in series to form a continuous current heating device, and the flowable food material that has passed through one current heating unit is sequentially transferred to the adjacent current heating unit. First, FIG. 8 shows one current heating unit 3 based on FIG. 2 of Patent Document 1.

図8において、通電加熱ユニット3は、全体として、流動性食品材料が流れる流路19を有する中空の管路(通電加熱用管路)15を形成している。通電加熱用管路15は、チタンなどの導電性材料からなる複数(図示の例では6個)の環状電極5〜5を、間隔を置いて配列するとともに、各環状電極5〜5の相互間、および両端側の環状電極5、5の外側に、樹脂などの電気絶縁性材料からなる中空円筒状の絶縁管体7〜7
を配置し、全体を図示しない結合手段によって結合してなるものである。なお図8の例では、両端側の絶縁管体7、7は、フランジ部材11A、11Bを兼ねている。
In FIG. 8, the electric heating unit 3 as a whole forms a hollow pipe (electric heating pipe) 15 having a flow path 19 through which the flowable food material flows. The energization heating conduit 15 has a plurality (six in the illustrated example) of annular electrodes 5 1 to 5 6 made of a conductive material such as titanium arranged at intervals, and each of the annular electrodes 5 1 to 5. The hollow cylindrical insulating tubes 7 1 to 7 7 made of an electrically insulating material such as a resin are disposed between the annular electrodes 5 1 and 5 6 on both ends and outside the annular electrodes 5 1 and 5 6.
And the whole is coupled by coupling means (not shown). In the example of FIG. 8, the insulating tube bodies 7 1 and 7 7 on both ends also serve as the flange members 11A and 11B.

さらに各環状電極5〜5は、隣り合う電極間で電位差が生じるように、交流電源4に接続されている。ここで、交流電源4としては、例えば1〜30kHz程度の周波数で、有効電圧が50〜3000V程度の交流高周波電流を発生する高周波電源が用いられる。そしてその高周波交流電源4の一方の出力端子(第1の出力端子)4aに、図8の左方から数えて奇数番目の環状電極5、5、5が配線6Aを介して電気的に接続され、他方の出力端子4bに、図8の左方から数えて偶数番目の環状電極5、5、5が配線6Bを介して電気的に接続されている。 Each annular electrode 5 1 to 5 6 Further, as the potential difference between adjacent electrodes occurs, is connected to an AC power source 4. Here, as the AC power source 4, for example, a high frequency power source that generates an AC high frequency current with an effective voltage of about 50 to 3000 V at a frequency of about 1 to 30 kHz is used. Then, odd-numbered annular electrodes 5 1 , 5 3 , 5 5 counted from the left in FIG. 8 are electrically connected to one output terminal (first output terminal) 4a of the high-frequency AC power supply 4 via the wiring 6A. The even-numbered annular electrodes 5 2 , 5 4 , 5 6 counted from the left in FIG. 8 are electrically connected to the other output terminal 4b via the wiring 6B.

このような通電加熱ユニット3における通電加熱用管路15に、例えば図8の左方から流動性食品材料を供給して、図8の右方に流動性食品材料を流せば、食品材料は、間隔を置いて配列された各環状電極5〜5の内面に順次接しながら移動する。このとき、隣り合う環状電極の間、すなわち環状電極5、5、5と環状電極5、5、5とのそれぞれの間には高周波電圧が加えられて、それらの電極間に交番的に電位差が生じるため、電極間において流動性食品材料に電流が流れる。これによって流動性食品材料が有する電気抵抗によって食品材料が発熱(ジュール発熱)し、食品材料の温度が上昇する。すなわちジュール加熱がなされる。その結果、食品材料が殺菌もしくは滅菌されたり、また食品材料の加熱調理(変性)が進行したりする。 For example, if the fluid food material is supplied from the left side of FIG. 8 to the current heating conduit 15 in the current heating unit 3 and the fluid food material is flowed to the right side of FIG. sequentially moving while in contact with the inner surface of the annular electrode 5 1 to 5 6 arranged at intervals. At this time, a high frequency voltage is applied between the adjacent annular electrodes, that is, between each of the annular electrodes 5 1 , 5 3 , 5 5 and the annular electrodes 5 2 , 5 4 , 5 6. Since a potential difference occurs alternately between the electrodes, a current flows through the fluid food material between the electrodes. As a result, the food material generates heat (joule heat) due to the electrical resistance of the fluid food material, and the temperature of the food material rises. That is, Joule heating is performed. As a result, the food material is sterilized or sterilized, and the food material is cooked (modified).

ところで、通電加熱装置は、食品材料に電流を流して、抵抗発熱(ジュール発熱)によって食品材料自体が発熱することを利用したものであるから、食品材料自体が導電性を有していることを前提としている。そのため。管路の最も両端に近い箇所に位置する環状電極5、5の外側(管路延長方向側)にも、管路内を流れる食品材料を通じて漏れ電流が流れてしまう。このような漏れ電流は、作業者等の感電事故を招いてしまうおそれがある。 By the way, the current heating device uses the fact that the food material itself generates heat due to resistance heat generation (Joule heat generation) by passing an electric current through the food material, so that the food material itself has conductivity. It is assumed. for that reason. Leakage current also flows through the food material flowing in the pipes outside the annular electrodes 5 1 , 5 6 (on the pipe extension direction side) located at locations closest to both ends of the pipes. Such a leakage current may cause an electric shock accident of an operator or the like.

そこで実際の通電加熱ユニットにおいては、例えば図9に示されるように、両端側の環状電極5、5のさらに外側に、前記各環状電極5〜5と同様なアース用環状電極9A、9Bを、絶縁管体7、7を介して配設しておき、さらにそのアース用環状電極9A、9Bの外側にフランジ部材11A、11Bを設けておくことが行われている(例えば特許文献2の図2参照)。この場合、アース用環状電極9A、9Bを、アース配線6C,6Dを介してグラウンド電位の部材、例えば地面GNに差し込まれたアース棒33に接続しておく。このようにアース用環状電極9A、9Bを設けておけば、環状電極5、5から外側への漏れ電流を、地面GNに流してしまうことによって、アース用環状電極9A、9Bよりも外側(管路延長方向)まで漏れ電流が流れ出ることを防止し、作業者等が感電するなどの危険な事態の発生を防止することができる。 Therefore, in an actual energization heating unit, for example, as shown in FIG. 9, a grounding annular electrode 9 </ b> A similar to each of the annular electrodes 5 1 to 5 6 is provided further outside the annular electrodes 5 1 and 5 6 on both ends. , 9B are disposed via insulating tube bodies 7 1 , 7 7 , and flange members 11A, 11B are further provided outside the grounding annular electrodes 9A, 9B (for example, (See FIG. 2 of Patent Document 2). In this case, the grounding annular electrodes 9A and 9B are connected to a ground potential member, for example, a grounding rod 33 inserted into the ground GN, through the grounding wires 6C and 6D. If the grounding annular electrodes 9A and 9B are provided in this way, the leakage current from the annular electrodes 5 1 and 5 6 to the outside flows to the ground GN, so that the grounding annular electrodes 9A and 9B are outside. It is possible to prevent leakage current from flowing out (to the pipe extension direction) and to prevent occurrence of a dangerous situation such as an electric shock of an operator or the like.

なお、一般にフランジ部材11A、11Bは、導電性の金属によって作られることが多く、そこで、場合によってはアース用環状電極9A、9Bを設けずに、フランジ部材11A、11Bにアース配線6C、6Dを接続して、フランジ部材11A、11B自体にアース用環状電極としての機能を持たせることも行われている。   In general, the flange members 11A and 11B are often made of a conductive metal. Therefore, in some cases, the ground members 6A and 6D are provided on the flange members 11A and 11B without providing the grounding annular electrodes 9A and 9B. The flange members 11A and 11B themselves are also provided with a function as an annular electrode for grounding by connecting them.

図10には、図9に示される通電加熱ユニット3の複数のもの、例えば3基のものを組み込んだ連続通電加熱装置1の全体構成を示す。なお、3基の通電加熱ユニットには3A、3B、3Cの符号を付しているが、各通電加熱ユニット3A、3B、3Cは、それぞれ図9において符号3で示した通電加熱ユニットと同じ構成のものである。   FIG. 10 shows the overall configuration of the continuous energization heating apparatus 1 incorporating a plurality of, for example, three units of the energization heating unit 3 shown in FIG. In addition, although the code | symbol of 3A, 3B, 3C is attached | subjected to the three electric heating units, each electric heating unit 3A, 3B, 3C is respectively the same structure as the electric heating unit shown with the code | symbol 3 in FIG. belongs to.

この連続通電加熱装置1は、例えば鋼やアルミなどの金属製の角材を組み合わせて全体として矩形状のフレーム構造とした枠体5内に、3基の通電加熱ユニット3A、3B、3Cが、それぞれ水平面に対して若干傾斜した状態で、上下に配列されている。そして各通電加熱ユニット3A、3B、3Cは、配管8によって直列状に連結されている。なお実際には、通電加熱ユニット3A、3B、3Cおよび配管8は、主として鋼やアルミなどからなる図示しない支持部材によって、枠体5内で固定されている。そして通電加熱ユニット3A、3B、3Cのアース用環状電極9A、9B(もしくはアース用環状電極機能を有するフランジ部材)は、アース配線(上流側アース配線)6C、6Dによって枠体5のフレームに接続しておき、枠体5の適宜の箇所に、別のアース配線(下流側アース配線)6Eを接続して、その下流側アース配線6Eを、グラウンド電位の部材、例えば地面GNに差し込まれたアース棒33に接続することが多い。   This continuous energization heating apparatus 1 includes, for example, three energization heating units 3A, 3B, and 3C in a frame body 5 that has a rectangular frame structure as a whole by combining square bars made of metal such as steel and aluminum. They are arranged vertically with a slight inclination with respect to the horizontal plane. And each electricity heating unit 3A, 3B, 3C is connected in series by the piping 8. FIG. In practice, the electric heating units 3A, 3B, 3C and the pipe 8 are fixed in the frame 5 by a support member (not shown) mainly made of steel, aluminum or the like. Then, the grounding annular electrodes 9A, 9B (or the flange member having the grounding annular electrode function) of the current heating units 3A, 3B, 3C are connected to the frame of the frame body 5 by ground wirings (upstream side ground wirings) 6C, 6D. In addition, another ground wiring (downstream ground wiring) 6E is connected to an appropriate portion of the frame body 5, and the downstream ground wiring 6E is grounded to a ground potential member, for example, the ground GN. Often connected to the rod 33.

前述のように各通電加熱ユニットにおける、通電加熱用管路15の両端側にアース用環状電極を配設しておいたり、両端のフランジ部材にアース用環状電極機能を付与しておけば、漏れ電流がアース用環状電極もしくはフランジ部材の外側まで流れてしまうことを防止することが可能である。しかしながら、実操業に使用される程度の規模の大型の連続通電加熱装置を構成した場合、高周波交流電源との接続関係によっては、漏れ電流による影響と思われる電極間印加電圧や食品材料中を流れる電流値の異常な変動が生じたり、また高周波波形の崩れが生じたりするという異常現象が生じ、さらには過大な電流が電源の変圧トランスに流れて、トランスが損傷してしまうなどの問題、また制御性の低下などの問題が生じることを認識した。
ここで、電極間印加電圧や食品材料中を流れる電流に異常な変動が生じれば、食品材料を所要の温度まで加熱できずに、加熱不足、殺菌不足が生じたり、また逆に食品材料が過度に高温となって、食品材料が変質してしまったり、環状電極の内表面に焼付いたりしてしまうおそれがある。またこのような電圧や電流の異常変動や交流波形の崩れなどによって、食品材料を所要の温度に加熱するための制御が困難となってしまうことがある。
As described above, if each of the energization heating units is provided with grounding annular electrodes on both ends of the energization heating pipe line 15 or the grounding annular electrode function is provided to the flange members on both ends, leakage occurs. It is possible to prevent the current from flowing to the outside of the grounding annular electrode or the flange member. However, when a large continuous energization heating device of a scale that is used for actual operation is configured, depending on the connection relationship with the high-frequency AC power supply, it flows in the applied voltage between the electrodes and the food material that seems to be affected by the leakage current. Problems such as abnormal fluctuations in the current value and the occurrence of an abnormal phenomenon in which the high-frequency waveform is disrupted, and excessive current flowing through the transformer of the power supply, causing damage to the transformer, Recognized that problems such as loss of controllability occur.
If abnormal fluctuations occur in the voltage applied between the electrodes or the current flowing through the food material, the food material cannot be heated to the required temperature, resulting in insufficient heating or sterilization. There is a possibility that the food material may be altered by excessively high temperature, or may be seized on the inner surface of the annular electrode. Moreover, the control for heating the food material to a required temperature may be difficult due to such abnormal fluctuations in voltage and current and collapse of the AC waveform.

特開2006−320402号公報JP 2006-320402 A 特開2001−169733号公報JP 2001-169733 A

本発明は以上の事情を背景としてなされたもので、前述のように一つの通電加熱用管路を構成している複数の通電加熱用環状電極のうち、両端側の二つの通電加熱用環状電極のそれぞれの外側にアース用環状電極が配設されている連続通電加熱装置において、交流電圧を隣り合う通電加熱用環状電極間に印加して食品材料を通電加熱するにあたって、前記二つの通電加熱用環状電極から外側への漏れ電流の影響によって、電極間電圧や電流が異常変動したり、交流波形が崩れたり、制御が困難となったり、さらには電源のトランスが損傷したりすることを、有効に防止し得るようにした連続通電加熱装置を提供することを課題としている。   The present invention has been made against the background of the above circumstances, and among the plurality of energization heating annular electrodes constituting one energization heating conduit as described above, two energization heating annular electrodes on both ends are provided. In the continuous energization heating device in which the grounding annular electrode is disposed outside each of the two, when the food material is energized and heated by applying an AC voltage between the adjacent energization heating annular electrodes, the two energization heating devices It is effective that the inter-electrode voltage and current fluctuate abnormally, the AC waveform collapses, control becomes difficult, and the power transformer is damaged due to the influence of the leakage current from the annular electrode to the outside. It is an object of the present invention to provide a continuous energization heating device that can be prevented.

上述の課題を解決するために本発明者等が種々実験・検討を重ねた結果、図9、図10に示されるような通電加熱ユニットもしくは連続通電加熱装置では、次のような理由から、漏れ電流に起因する電圧や電流の異常変動の発生を確実には抑制し得ないことが判明した。
すなわち、図9に示す通電加熱ユニットにおいては、通電加熱用管路15を構成している環状電極5〜5のうち、管路の一端側に位置する環状電極5は、電源4の一方の出力端子4aに接続され、管路の他端端側に位置する環状電極5は、電源4の他方の出力端子4bに接続されている。したがって管路両端側に位置する環状電極5、5との間には、実質的に常に電位差が存在することになる。
As a result of repeated experiments and examinations by the present inventors in order to solve the above-described problems, in the energization heating unit or the continuous energization heating apparatus as shown in FIGS. It has been found that the occurrence of abnormal fluctuations in voltage and current due to current cannot be reliably suppressed.
That is, in the electric heating unit shown in FIG. 9, of the annular electrode 5 1 to 5 6 constituting the electric heating conduit 15, the annular electrode 5 1 located at one end of the conduit, the power 4 It is connected to one output terminal 4a, the annular electrode 5 6 located at the other end end of the conduit is connected to the other output terminal 4b of the power supply 4. Therefore, there is always a potential difference between the annular electrodes 5 1 , 5 6 located at both ends of the conduit.

ここで、管路の一端側の環状電極5から外側への漏れ電流は、アース用環状電極9Aを経て、アース用配線6C、6D(および6E)を通り、地面GNに逃がされ、管路の他端側の環状電極5から外側への漏れ電流は、アース用環状電極9Bから、アース用配線 6D(および6E)を経て地面GNに逃がされる。 Here, the leakage current from the annular electrode 5 1 at one end of the conduit to the outside, through the grounding ring electrodes 9A, ground line 6C, 6D (and 6E) as, escapes to the ground GN, tube leakage current from the annular electrode 5 6 on the other end side of the road to the outside from the ground ring electrodes 9B, is released into the ground GN through ground line 6D (and 6E).

ところが、前述のように管路両端側に位置する環状電極5、5に電位差があれば、これらの環状電極5、5の外側のアース用環状電極9A、9Bの間にも、ある瞬間(特に高周波波形のピーク時)には、漏れ電流によって大きな電位差が生じる。 However, as described above, if there is a potential difference between the annular electrodes 5 1 , 5 6 located on both ends of the pipe line, between the annular electrodes for grounding 9A, 9B outside these annular electrodes 5 1 , 5 6 , At a certain moment (especially at the peak of the high-frequency waveform), a large potential difference occurs due to the leakage current.

また、実際の大型の通電加熱装置では、アース用環状電極9A、9Bからグラウンド電位の地面GNに至るまでの電気的経路の長さは、数m以上に及ぶことが多い。一方、管路の一端側のアース用環状電極9Aと他端側のアース用環状電極9Bとは、アース配線(例えばアース配線6C)によって電気的に接続されている。そしてアース用環状電極9A、9B間を結ぶ電気的経路の長さは、これらのアース用環状電極9A、9Bから地面GNに至るまでの電気的経路の長さよりも格段に短いのが通常である。特に図10に示すように、各通電加熱ユニットの両端側のアース用環状電極9A、9Bを、上流側のアース配線によって例えば鋼からなる枠体5のフレームに接続し、その枠体5の別の箇所から下流側のアース配線によって地面GNに接続した場合、銅などの電気抵抗が低いアース配線と比較して、枠体の鋼製フレームの電気抵抗は格段に高いため、電気抵抗を考慮した実効的な電気的経路は、きわめて長くなる。   Moreover, in an actual large-sized electric heating apparatus, the length of the electrical path from the grounding annular electrodes 9A and 9B to the ground GN having the ground potential often reaches several meters or more. On the other hand, the grounding annular electrode 9A on one end side of the pipe line and the grounding annular electrode 9B on the other end side are electrically connected by a ground wiring (for example, ground wiring 6C). The length of the electrical path connecting the grounding annular electrodes 9A and 9B is usually much shorter than the length of the electrical path from the grounding annular electrodes 9A and 9B to the ground GN. . In particular, as shown in FIG. 10, the grounding annular electrodes 9A and 9B on both ends of each energization heating unit are connected to the frame of a frame 5 made of steel, for example, by upstream ground wiring. When connecting to the ground GN by the ground wiring on the downstream side from this point, the electrical resistance of the steel frame of the frame body is much higher than the ground wiring with low electrical resistance such as copper, so the electrical resistance was considered The effective electrical path is very long.

そして上述のようなアース用環状電極9A、9Bの相互間の瞬間的な大きな電位差と、電気的経路の実効的な長さの大きな差が相俟って、漏れ電流は、アース用環状電極9A、9Bから地面GNにはほとんど流れず、アース用環状電極9A、9Bの相互間を結ぶ電気的経路(アース配線6C)によりショートカットされて、一方のアース用環状電極から他方のアース用環状電極に流れ込んでしまう。このようなショートカットされた漏れ電流の流れを、図9中に実線矢印P1で示す。なお本来の地面GNに流れるべき漏れ電流の流れを、図9中に破線矢印P2で示す。このようなアース用環状電極9A、9B間の漏れ電流のショートカットの流れの結果、アース用環状電極も含め、各電極間の電流、電圧が変動してしまう。ここで、漏れ電流の大きさは、管路内を流れる流動性食品材料の状態によって時々刻々と変化するから、上述のような漏れ電流に起因する電圧、電流の変動を予測することは困難であり、したがって予期し得ない異常変動と言わざるを得ない。   The large current difference between the grounding annular electrodes 9A and 9B as described above and the large difference in the effective length of the electrical path are combined, and the leakage current is caused by the grounding annular electrode 9A. , 9B hardly flows to the ground GN, and is short-cut by an electrical path (ground wiring 6C) connecting between the grounding annular electrodes 9A and 9B, so that one grounding annular electrode is connected to the other grounding annular electrode. It will flow in. Such a short-circuited leakage current flow is indicated by a solid arrow P1 in FIG. In addition, the flow of the leakage current that should flow to the original ground GN is indicated by a broken line arrow P2 in FIG. As a result of the shortcut flow of the leakage current between the grounding annular electrodes 9A and 9B, the current and voltage between the electrodes including the grounding annular electrode vary. Here, since the magnitude of the leakage current changes from moment to moment depending on the state of the flowable food material flowing in the pipeline, it is difficult to predict the voltage and current fluctuations caused by the leakage current as described above. Therefore, it must be said that it is an unexpected variation.

また、図10に示すように、複数の通電加熱ユニット3A、3B、3Cを直列に連結して、一つの枠体5内に設置した場合、各通電加熱ユニットの相互間のアース側電気的経路も近くなってしまうため、ある通電ユニットで生じた漏れ電流が、他の通電加熱ユニットのアース用環状電極に流れ込み、そのユニット側にも前述のような電圧、電流の異常変動が生じてしまうことがある。   In addition, as shown in FIG. 10, when a plurality of energization heating units 3A, 3B, 3C are connected in series and installed in one frame 5, an electrical path on the earth side between the respective energization heating units. As a result, the leakage current generated in one current-carrying unit flows into the grounding annular electrode of another current-carrying heating unit, and the abnormal fluctuations in voltage and current described above also occur on that unit side. There is.

そこで、以上のような漏れ電流に起因する異常現象の発生を抑えるべく、本発明者等がさらに検討を重ねた結果、本発明をなすに至った。
すなわち、上記の異常現象は、通電加熱ユニットの管路の両端側の環状電極に電位差があることが主な原因であるところから、管路の両端側の環状電極が常に同電位となるように構成すれば、上記の異常現象の発生を抑制し得ると考え、実際に実験を重ねた結果、確かに漏れ電流による異常現象の発生を抑え得ることを見出し、本発明をなすに至った。
Therefore, as a result of further studies by the present inventors in order to suppress the occurrence of the abnormal phenomenon due to the leakage current as described above, the present invention has been made.
That is, the above abnormal phenomenon is mainly caused by the potential difference between the annular electrodes on both ends of the conduit of the energizing heating unit, so that the annular electrodes on both ends of the conduit are always at the same potential. If configured, it is considered that the occurrence of the abnormal phenomenon can be suppressed, and as a result of actual experiments, it has been found that the occurrence of the abnormal phenomenon due to the leakage current can surely be suppressed, and the present invention has been made.

具体的には、本発明の基本的な態様(第1の態様)の流動性食品材料の連続通電加熱装置は、
少なくとも内周面を導電材料で形成した3個以上の電圧印加用環状電極と、少なくとも内周面を電気絶縁材料で構成した4個以上の絶縁管体とを、共通の軸線に沿って交互に配置して通電加熱用管路を形成し、流動性を有する食品材料を前記通電加熱用管路内においてその長さ方向に連続的に流動移送させつつ、交流電源装置によって隣り合う電圧印加用電極間に交流電圧を加えることにより、管路内の流動性食品材料に対し管路の長さ方向に連続的に通電して加熱するようにした流動性食品材料の連続通電加熱装置において、
前記通電加熱用管路の両端側に位置する二つの電圧印加用電極よりも管路延長方向両側に、絶縁管体を介して、少なくとも内周面を導電材料で構成した環状の接地機能部材が配設されていて、それらの接地機能部材が電気的に接地され、
さらに前記交流電源装置は、その出力トランスの2次側巻線から、基準電位側の出力端子と、基準電位に対して電位が正負に反転する1以上の交番電位側の出力端子が引き出されており、
前記電圧印加用環状電極のうち、通電加熱用管路の両端側に位置する前記二つの電圧印加用電極が、前記出力トランスにおける基準電位側の出力端子に共通に接続されていることを特徴とするものである。
なおここで、接地機能部材とは、電圧印加用環状電極と同様なアース用環状電極、もしくは通電加熱用管路の両端に導電性を有するフランジ部材を設けた場合の、導電性フランジ部材を意味している。
Specifically, the continuous energization heating device for the flowable food material of the basic aspect (first aspect) of the present invention is:
Three or more voltage application annular electrodes having at least an inner peripheral surface made of a conductive material and four or more insulating tubes having at least an inner peripheral surface made of an electrically insulating material are alternately arranged along a common axis. An electrode for applying voltage adjacent to each other by an AC power supply device while forming a current-carrying heating pipeline and continuously fluidly transferring a fluid food material in the lengthwise direction in the current-heating channel. In a continuous energization heating device for fluid food material that is heated by energizing the fluid food material in the pipeline continuously in the length direction of the pipeline by applying an alternating voltage between
An annular grounding functional member having at least an inner peripheral surface made of a conductive material on both sides in the pipe extension direction from the two voltage application electrodes located on both ends of the energization heating pipe via an insulating pipe. Disposed, and those grounding functional members are electrically grounded,
Further, in the AC power supply apparatus, the output terminal on the reference potential side and one or more output terminals on the alternating potential side whose potential is inverted to positive and negative with respect to the reference potential are drawn from the secondary winding of the output transformer. And
Among the voltage application annular electrodes, the two voltage application electrodes located on both ends of the current heating conduit are commonly connected to a reference potential side output terminal of the output transformer. To do.
Here, the grounding functional member means a conductive flange member in the case where a grounding annular electrode similar to the voltage application annular electrode or a conductive flange member is provided at both ends of the current heating conduit. doing.

また本発明の第2の態様の流動性食品材料の連続通電加熱装置は、前記第1の態様の連続通電加熱装置において、
前記通電加熱用管路の一端側の接地機能部材と、他端側の接地機能部材とが、その間を結ぶ配線によって電気的に接続されており、かつ少なくとも一方の接地機能部材からアース配線が引き出されて、電気的に接地されていることを特徴とするものである。
Moreover, the continuous electric heating apparatus of the fluid food material of the second aspect of the present invention is the continuous electric heating apparatus of the first aspect,
The grounding functional member on one end side and the grounding functional member on the other end side of the energization heating conduit are electrically connected by a wiring connecting between them, and the ground wiring is drawn from at least one grounding functional member. And is electrically grounded.

さらに本発明の第3の態様の流動性食品材料の連続通電加熱装置は、前記第1もしくは第2の態様の連続通電加熱装置において、
前記通電加熱用管路が、その長さ方向に複数のゾーンに区分されており、あるゾーン内の電圧印加用環状電極間に印加する電圧と、他のゾーン内の電圧印加用環状電極間に印加する電圧とが異なるように、各電圧印加用環状電極が前記電源装置の出力トランスに接続されていることを特徴とするものである。
Furthermore, the continuous energization heating device of the fluid food material according to the third aspect of the present invention is the continuous energization heating device according to the first or second aspect,
The energization heating pipe is divided into a plurality of zones in the length direction, and a voltage applied between the voltage application ring electrodes in one zone and a voltage application ring electrode in another zone. Each voltage application ring-shaped electrode is connected to an output transformer of the power supply device so that a voltage to be applied is different.

また本発明の第4の態様の流動性食品材料の連続通電加熱装置は、
少なくとも内周面を導電材料で形成した3個以上の電圧印加用環状電極と、少なくとも内周面を電気絶縁材料で構成した4個以上の絶縁管体とを、共通の軸線に沿って交互に配置して通電加熱用管路を形成し、流動性を有する食品材料を前記通電加熱用管路内においてその長さ方向に連続的に流動移送させつつ、隣り合う電圧印加用電極間に交流電源装置によって交流電圧を加えることにより、管路内の流動性食品材料に対し管路の長さ方向に連続的に通電して加熱するようにした、複数個の通電加熱ユニットを備え、
前記各通電加熱ユニットにおける通電加熱用管路の両端側に位置する二つの電圧印加用電極よりも管路延長方向両側に、絶縁管体を介して、少なくとも内周面を導電材料で構成した環状の接地機能部材が配設されていて、それらの接地機能部材が電気的に接地されており、
前記交流電源装置は、その出力トランスの2次側巻線から、基準電位側の出力端子と、基準電位に対して電位が正負に反転する1以上の交番電位側の出力端子が引き出されており、
さらにこれらの複数個の通電加熱ユニットが直列状に連結されており、
しかもある通電加熱ユニットにおける通電加熱用管路の両端側に位置する二つの電圧印加用電極と、他の通電加熱ユニットにおける通電加熱用管路の両端側に位置する二つの電圧印加用電極とが、前記出力トランスにおける基準電位側の出力端子に共通に接続されていることを特徴とするものである。
Moreover, the continuous electricity heating apparatus of the fluid food material according to the fourth aspect of the present invention comprises:
Three or more voltage application annular electrodes having at least an inner peripheral surface made of a conductive material and four or more insulating tubes having at least an inner peripheral surface made of an electrically insulating material are alternately arranged along a common axis. An AC power source is disposed between adjacent voltage application electrodes while forming a current-carrying heating conduit and continuously fluidly transferring the fluid food material in the length direction in the current-heating conduit. A plurality of energization heating units are provided that are heated by energizing the fluid food material in the pipeline continuously in the length direction of the pipeline by applying an alternating voltage by the apparatus,
An annular structure in which at least the inner peripheral surface is made of a conductive material on both sides in the pipe extension direction from the two voltage application electrodes located at both ends of the electric heating heating pipe in each of the electric heating units. The grounding functional members are arranged, and those grounding functional members are electrically grounded,
In the AC power supply device, an output terminal on the reference potential side and one or more output terminals on the alternating potential side in which the potential is inverted positively and negatively with respect to the reference potential are drawn from the secondary winding of the output transformer. ,
In addition, a plurality of current heating units are connected in series,
Moreover, there are two voltage application electrodes located on both ends of the current heating conduit in one current heating unit, and two voltage application electrodes located on both ends of the current heating conduit in the other current heating unit. The output transformer is commonly connected to an output terminal on the reference potential side.

また本発明の第5の態様の流動性食品材料の連続通電加熱装置は、前記第4の態様の連続通電加熱装置において、
前記各通電加熱ユニットにおける通電加熱用管路の一端側の接地機能部材と、他端側の接地機能部材とが、その間を結ぶ配線によって電気的に接続されており、かつ少なくとも一方の接地機能部材からアース配線が引き出されて、電気的に接地されていることを特徴とするものである。
Moreover, the continuous electric heating apparatus of the fluid food material of the fifth aspect of the present invention is the continuous electric heating apparatus of the fourth aspect,
The grounding functional member on one end side of the current heating conduit in each of the current heating units and the grounding functional member on the other end side are electrically connected by a wiring connecting between them, and at least one grounding functional member The ground wiring is drawn out from the ground and is electrically grounded.

さらに本発明の第6の態様の流動性食品材料の連続通電加熱装置は、前記第4もしくは第5の態様の連続通電加熱装置において、
ある通電加熱ユニット内の電圧印加用環状電極間に印加する電圧と、他の通電加熱ユニット内の電圧印加用環状電極間に印加する電圧とが異なるように、各電圧印加用環状電極が前記電源装置の出力トランスに接続されていることを特徴とするものである。
Furthermore, the continuous energization heating device of the fluid food material according to the sixth aspect of the present invention is the continuous energization heating device according to the fourth or fifth aspect,
Each voltage application annular electrode is connected to the power source so that the voltage applied between the voltage application annular electrodes in one energization heating unit is different from the voltage applied between the voltage application annular electrodes in another energization heating unit. It is connected to the output transformer of the apparatus.

本発明によれば、一つの通電加熱用管路を構成している複数の通電加熱用環状電極のうち、両端側の二つの通電加熱用環状電極のそれぞれの外側にアース用環状電極が配設されている流動性食品材料の連続通電加熱装置において、交流電圧を隣り合う通電加熱用環状電極間に印加して流動性食品材料を通電加熱するにあたって、前記二つの通電加熱用環状電極から外側への漏れ電流の影響、とりわけアース用環状電極から漏れ電流を逃がす際の影響によって、電極間電圧や食品材料を流れる電流が異常変動したり、交流波形が崩れたり、さらには電源のトランスが損傷したり、制御性が低下したりすることを、有効に防止することができる。   According to the present invention, the grounding annular electrode is disposed on the outer side of each of the two energizing heating annular electrodes on both ends among the plurality of energizing heating annular electrodes constituting one energizing heating conduit. In the continuous energization heating apparatus for fluid food materials that is used, when an AC voltage is applied between adjacent annular electrodes for heating and heating to energize and heat the flowable food materials, the two annular electrodes for heating and heating are outward. Due to the effects of leakage current, especially the leakage current from the earth ring electrode, the inter-electrode voltage and the current flowing through the food material may fluctuate abnormally, the AC waveform may be disrupted, and the power transformer may be damaged. Or the controllability can be effectively prevented.

本発明の連続通電加熱装置に使用される通電加熱ユニットの一例を示す側面図である。It is a side view which shows an example of the electricity heating unit used for the continuous electricity heating apparatus of this invention. 図1に示される通電加熱ユニットの横断平面図である。FIG. 2 is a transverse plan view of the energization heating unit shown in FIG. 1. 図2に示される通電加熱ユニットの要部を拡大して示す拡大横断平面図である。FIG. 3 is an enlarged cross-sectional plan view showing an enlarged main part of the energization heating unit shown in FIG. 2. 通電加熱ユニット内の電圧印加用電極間に印加される交流電圧波形の一例を模式的に示す波形図である。It is a wave form diagram which shows typically an example of the alternating voltage waveform impressed between the electrodes for voltage application in an energization heating unit. 本発明の連続通電加熱装置に使用される通電加熱ユニットの他の例を示す図で、図2と同様な位置での横断平面図である。It is a figure which shows the other example of the electricity heating unit used for the continuous electricity heating apparatus of this invention, and is a cross-sectional top view in the same position as FIG. 図1〜図3に示される通電加熱ユニットを3基組み込んで構成した連続通電加熱装置の全体構成の一例を示す側面図である。It is a side view which shows an example of the whole structure of the continuous electricity heating apparatus comprised by incorporating the three electricity heating units shown by FIGS. 1-3. 図6に示される連続通電加熱装置の、電気的接続関係を示す模式図である。It is a schematic diagram which shows the electrical connection relationship of the continuous electricity heating apparatus shown by FIG. 従来の連続通電加熱装置に使用される通電ユニットの一例を示す略解図である。It is a schematic solution figure which shows an example of the electricity supply unit used for the conventional continuous electricity heating apparatus. 従来の連続通電加熱装置に使用される通電ユニットの他の例を示す略解図である。It is a schematic diagram which shows the other example of the electricity supply unit used for the conventional continuous electricity heating apparatus. 図9に示される通電加熱ユニット3基を組み込んで構成した連続通電加熱の全体構成を示す略解図である。FIG. 10 is a schematic illustration showing an overall configuration of continuous energization heating configured by incorporating the three energization heating units shown in FIG. 9.

以下に、本発明の実施形態について、図面を参照して詳細に説明する。   Embodiments of the present invention will be described below in detail with reference to the drawings.

図1〜図3には、本発明による連続通電加熱装置に使用される通電加熱ユニット3の一例を示す。   1 to 3 show an example of an electric heating unit 3 used in the continuous electric heating apparatus according to the present invention.

図1〜図3において、通電加熱ユニット3は、基本的には、複数個(本実施形態では7個)の電圧印加用環状電極5〜5と、一対のアース用環状電極(アース機能部材)9A、9Bと、電圧印加用環状電極5〜5のうちの、両端側を除いた5個の電圧印加用環状電極5〜5の相互の間の絶縁管体7〜7、および両端側の電圧印加用環状電極5、5とアース用環状電極9A、9Bとのそれぞれの間の絶縁管体7、7とを有する構成とされている。また、単位通電加熱ユニット3は、上記の電圧印加用環状電極5〜5およびアース用環状電極9A、9Bを連結して支持するための構成部材として、一対のフランジ部材11A、11Bと、複数本(全体として例えば2本または4本)の連結用軸棒11とを備えている。 1 to 3, the energization heating unit 3 basically includes a plurality (seven in this embodiment) of voltage application ring electrodes 5 1 to 5 7 and a pair of ground ring electrodes (ground function). members) 9A, 9B and, among the voltage application annular electrode 5 1-5 7, insulating tube 7 2 to between five mutual voltage applying annular electrode 5 2-5 6 except for both ends 7 7 , and insulating tube bodies 7 1 , 7 8 between the voltage application annular electrodes 5 1 , 5 7 and the grounding annular electrodes 9 A, 9 B on both ends, respectively. The unit energization heating unit 3 includes a pair of flange members 11A and 11B as constituent members for connecting and supporting the voltage application annular electrodes 5 1 to 5 7 and the ground annular electrodes 9A and 9B, A plurality of (for example, two or four as a whole) connecting shaft rods 11 are provided.

前記各電圧印加用環状電極5〜5は、少なくとも内周面が導電材料によって中空のリング状に作られたものであり、本実施形態では、各電圧印加用環状電極5〜5の全体が導電性の金属材料によって作られている。
またアース用環状電極9A、9Bも、電圧印加用環状電極5〜5と同様に、少なくとも内周面が導電材料によって中空のリング状に作られたものであり、本実施形態では、各アース用環状電極9A、9Bの全体が導電性の金属材料によって作られている。
Each of the voltage application annular electrodes 5 1 to 5 7 is formed into a hollow ring shape with at least an inner peripheral surface made of a conductive material, and in this embodiment, each voltage application annular electrode 5 1 to 5 7. Is entirely made of a conductive metal material.
The grounding ring electrode 9A, 9B, like the voltage applying annular electrode 5 1-5 7, which at least the inner circumferential surface is made into a hollow ring shape by a conductive material, in this embodiment, each The whole of the grounding annular electrodes 9A and 9B is made of a conductive metal material.

電圧印加用環状電極5〜5およびアース用環状電極9A、9Bに使用される金属材料としては、アルミニウム、アルミニウム合金、銅、銅合金、あるいはステンレス鋼などの鉄系材料を用いてもよいが、耐食性、耐酸化性、軽量性が良好で、しかも食品材料に対して悪影響を与えない金属材料として、Ti(チタン)もしくはTi合金が推奨される。 Voltage applying annular electrode 5 1-5 7 and the earth ring electrodes 9A, as the metal material used to 9B, aluminum, aluminum alloy, copper, may be used iron-based material such as copper alloy, or stainless steel However, Ti (titanium) or a Ti alloy is recommended as a metal material that has good corrosion resistance, oxidation resistance, and light weight and that does not adversely affect food materials.

一方、前記各絶縁管体7〜7は、樹脂やセラミックなどの電気絶縁性の材料によって中空の短円筒状に作られたものであり、例えばPEI樹脂、PEEK樹脂などの硬質樹脂によって作られている。 On the other hand, each of the insulating tube bodies 7 1 to 7 8 is made into a hollow short cylindrical shape by an electrically insulating material such as resin or ceramic, and is made of a hard resin such as PEI resin or PEEK resin. It has been.

電圧印加用環状電極5〜5、アース用環状電極9A、9B、および絶縁管体7〜7は、各電極の間に絶縁管体が位置しかつ両端側にアース用環状電極が位置するように、電極と絶縁管体とが交互に位置するように、しかもそれぞれ緊密に接するように直列状に配列されて、全体として通電加熱用管路15が形成されている。すなわち、電圧印加用環状電極5〜5の相互の間にそれぞれ絶縁管体7〜7が位置し、かつ両端側の両端側の電圧印加用環状電極5、5の外側(延長方向)に、絶縁管体7、7を介してアース用環状電極9A、9Bが位置するように、各電極と各絶縁管体とが交互に配列されて、全体として、通電加熱すべき流動性食品材料が通る流路19を内側に有する、一端側から他端側まで連続する通電加熱用管路15が形成されている。なおここで、電圧印加用環状電極5〜5については、図1、図2の左端の電圧印加用環状電極を第1番目の電圧印加用環状電極5とし、それから右方に数えてN個目の電圧印加用環状電極を、第N番目の電圧印加用環状電極5としている。 The voltage-applying annular electrodes 5 1 to 5 7 , the grounding annular electrodes 9A and 9B, and the insulating tube bodies 7 1 to 7 8 are each provided with an insulating tube body between the electrodes, and the grounding annular electrodes are provided at both ends. The electrodes and insulating tube bodies are alternately arranged so as to be alternately arranged in series so as to be in close contact with each other, and a current-carrying heating conduit 15 is formed as a whole. That is, the insulating tube bodies 7 2 to 7 7 are positioned between the voltage application ring electrodes 5 1 to 5 7 , respectively, and the outsides of the voltage application ring electrodes 5 1 , 5 7 on both ends on both ends ( In the extending direction), the electrodes and the insulating tube bodies are alternately arranged so that the grounding annular electrodes 9A and 9B are positioned via the insulating tube bodies 7 1 and 7 8 , and are heated as a whole. A current-carrying heating conduit 15 that is continuous from one end side to the other end side and has a flow path 19 through which the fluid food material to be passed passes is formed. Incidentally, where the voltage application annular electrode 5 1-5 7, FIG. 1, the left end of the voltage application ring electrode of FIG. 2 1st and voltage applying annular electrode 5 1, and then counted to the right The Nth voltage application ring electrode is the Nth voltage application ring electrode 5N .

さらに上記の電極および絶縁管体の配列構造の外側(通電加熱用管路15の両端側)には、フランジ部材11A、11Bが配設されている。これらのフランジ部材11A、11Bは、ステンレス鋼あるいはチタン、チタン合金などの金属あるいは硬質樹脂などからなるものであり、中空円盤部11aの一方の盤面側に中空筒部11bを一体に突出形成した形状とされている。そして、フランジ部材11A、11Bの中空円盤部11aおよび中空筒部11bの内側の中空部分は、前述の通電加熱用管路15内の食品材料流路19に連通している。また各フランジ部材11A、11Bの中空円盤部11aの他方の盤面は、それぞれアース用環状電極9A、9Bの側面に接している。したがって、一方のフランジ部材11Aと、他方のフランジ部材11Bとの間に、通電加熱用管路15を構成する各電極および絶縁管体が挟まれていることになる。   Further, flange members 11A and 11B are disposed outside the arrangement structure of the electrodes and the insulating tube bodies (both ends of the energization heating conduit 15). These flange members 11A and 11B are made of a metal such as stainless steel, titanium, titanium alloy, or a hard resin, and have a shape in which a hollow cylindrical portion 11b is integrally protruded on one side of the hollow disk portion 11a. It is said that. And the hollow part inside the hollow disk part 11a of the flange members 11A and 11B and the hollow cylinder part 11b is connected to the food material flow path 19 in the above-mentioned conduit 15 for electric heating. The other disk surface of the hollow disk portion 11a of each flange member 11A, 11B is in contact with the side surface of each of the grounding annular electrodes 9A, 9B. Therefore, each electrode and insulating tube constituting the energization heating conduit 15 are sandwiched between the one flange member 11A and the other flange member 11B.

そして管路の一端側のフランジ部材11Aの中空円盤部11aの外周寄りの箇所と、管路の他端側のフランジ部材11Bの中空円盤部11bの外周寄りの箇所との間が、通電加熱用管路15と平行な複数(例えば4本;図1、図2では2本のみがあらわれている)の連結用軸棒13によって連結されて、全体として通電加熱ユニット3が組み立てられている。すなわち、各連結用軸棒13は、先端部にねじ部を形成したものであって、一方のフランジ部材11Aの中空円盤部11aと、他方のフランジ部材11Bの中空円盤部11bを貫通して、中空円盤部11a、11b間をナット13aによって締め付けることにより、一方のフランジ部材11Aから他方のフランジ部材11Bに至るまでの各部材(各絶縁管体および各環状電極)の相互の接触面(側面)が密に接している。なお実際上は、図3に示しているように、各部材の相互間に平板環状のガスケット14を介在させて、各部材間を封止するのが通常である。   And between the location near the outer periphery of the hollow disk portion 11a of the flange member 11A on one end side of the pipe line and the location near the outer periphery of the hollow disk portion 11b of the flange member 11B on the other end side of the pipe line is for electric heating. The electric heating unit 3 is assembled as a whole by being connected by a plurality of connecting shaft bars 13 (for example, four; only two are shown in FIGS. 1 and 2) parallel to the pipe line 15. That is, each connecting shaft rod 13 is formed with a threaded portion at the tip, and penetrates the hollow disk portion 11a of one flange member 11A and the hollow disk portion 11b of the other flange member 11B, Mutual contact surfaces (side surfaces) of each member (each insulating tube and each annular electrode) from one flange member 11A to the other flange member 11B by tightening between the hollow disk portions 11a and 11b with a nut 13a Are in close contact. In practice, as shown in FIG. 3, it is usual to seal each member by interposing a flat annular gasket 14 between the members.

なお、通電加熱ユニット3の適宜の箇所には、通電加熱ユニット3を、後述する枠体5内の所定の位置において固定保持するための支持部材21A、21Bが取り付けられている。本実施形態では、支持部材21A、21Bはリング状または中央の中空部を有する矩形状に作られており、その周辺部分を、前記連結用軸棒13が貫通するように構成されている。   Support members 21 </ b> A and 21 </ b> B for fixing and holding the electric heating unit 3 at a predetermined position in the frame 5 to be described later are attached to appropriate portions of the electric heating unit 3. In the present embodiment, the support members 21A and 21B are formed in a ring shape or a rectangular shape having a central hollow portion, and are configured so that the connecting shaft rod 13 penetrates the peripheral portion thereof.

通電加熱ユニット3内の電圧印加用環状電極5〜5は、電圧印加用配線27、29を介して電源装置23に接続されている。電源装置23は、基本的には、外部からの商用交流を用いて1〜30kHz程度の高周波電流を発生する高周波電源231と、50〜3000V程度に昇圧して出力するための出力トランス(変圧器)232と、出力電流(電力)や波形、出力タイミングなどを制御するための制御回路233とを有する構成とされている。 The voltage application annular electrodes 5 1 to 5 7 in the energization heating unit 3 are connected to the power supply device 23 via voltage application wires 27 and 29. The power supply device 23 basically includes a high-frequency power source 231 that generates a high-frequency current of about 1 to 30 kHz using commercial AC from the outside, and an output transformer (transformer) that boosts the output to about 50 to 3000 V and outputs it. ) 232 and a control circuit 233 for controlling output current (power), waveform, output timing, and the like.

出力トランス(変圧器)232では、その2次側(高圧側)巻線232Aにおける適宜のタップ位置(一般には2次側巻線の端部)からは基準電位側の出力端子23Aが引き出され、他の互いに異なるタップ位置から、それぞれ複数(図示の例では三つ)の交番電位側の出力端子(第1〜第3の出力端子)23B〜23Dが引き出されている。なお2次側巻線232Aは、接地電位から浮かせているものとする。そして基準電位側の出力端子23Aと交番電位側の第1〜第3の出力端子23B〜23Dと間に、例えば1〜30kHz程度の高周波の例えば200〜800V程度の交流電圧が現われるようになっている。   In the output transformer (transformer) 232, the output terminal 23A on the reference potential side is drawn from an appropriate tap position (generally, the end of the secondary winding) in the secondary side (high voltage side) winding 232A. A plurality (three in the illustrated example) of alternating potential side output terminals (first to third output terminals) 23B to 23D are drawn from other different tap positions. The secondary winding 232A is assumed to float from the ground potential. An AC voltage of about 200 to 800 V, for example, having a high frequency of about 1 to 30 kHz appears between the output terminal 23A on the reference potential side and the first to third output terminals 23B to 23D on the alternating potential side. Yes.

具体的には、例えば交番電位側の第1の出力端子23Bと基準電位側の出力端子23Aとの間にはV=200V、交番電位側の第2の出力端子23Cと基準電位側の出力端子23Aとの間にはV=600V、交番電位側の第3の出力端子23Dと基準電位側の出力端子23Aとの間にはV=800Vの電位差が生じるように2次側(高圧側)巻線232Aのタップ位置が定められている。 Specifically, for example, V 1 = 200 V between the first output terminal 23B on the alternating potential side and the output terminal 23A on the reference potential side, and the second output terminal 23C on the alternating potential side and the output on the reference potential side The secondary side (high voltage) has a potential difference of V 2 = 600 V between the terminal 23A and V 3 = 800 V between the third output terminal 23D on the alternating potential side and the output terminal 23A on the reference potential side. Side) The tap position of the winding 232A is determined.

そして、交番電位側の第1〜第3の出力端子23B〜23Dのうちの選択された出力端子(図示の例では第2の出力端子23C)と基準電位側の端子23Aから、通電加熱用の交流(高周波)電流が配線27、29を介して電圧印加用環状電極5〜5に供給されるようになっている。 Then, from the selected output terminal (second output terminal 23C in the illustrated example) and the reference potential side terminal 23A among the first to third output terminals 23B to 23D on the alternating potential side and the reference potential side terminal 23A. AC so that the (high-frequency) current is supplied to the voltage application annular electrode 5 1-5 7 via the wiring 27 and 29.

なお電源装置23から出力される高周波の波形は特に限定されるものではなく、正弦波、パルス状矩形波、三角波、鋸歯状波など、適宜選択すればよい。   The high-frequency waveform output from the power supply device 23 is not particularly limited, and may be appropriately selected from a sine wave, a pulsed rectangular wave, a triangular wave, a sawtooth wave, and the like.

ここで、電圧印加用環状電極5〜5のうち、両端側の電極5、5を含んで一つ置きの電極が電源装置23における基準電位側の出力端子23Aに接続されている。すなわち、食品材料供給側から数えて奇数番目の電圧印加用環状電極5、5、5、5は、第1の電圧印加用配線27を介して基準電位側の出力端子23Aに接続されている。一方、それらの電極5、5、5、5の間の電極、すなわち食品材料供給側から数えて偶数番目の電圧印加用環状電極5、5、5は、第2の電圧印加用配線29を介して交番電位側の例えば第2の出力端子23Cに接続されている。 Here, among the voltage application annular electrodes 5 1 to 5 7 , every other electrode including the electrodes 5 1 and 5 7 on both ends is connected to the output terminal 23 A on the reference potential side in the power supply device 23. . That is, the odd-numbered voltage application annular electrodes 5 1 , 5 3 , 5 5 , 5 7 as counted from the food material supply side are connected to the output terminal 23 A on the reference potential side via the first voltage application wiring 27. Has been. On the other hand, the electrodes 5 1 , 5 3 , 5 5 , 5 7 , that is, the even-numbered annular electrodes for voltage application 5 2 , 5 4 , 5 6 counted from the food material supply side, For example, the second output terminal 23 </ b> C on the alternating potential side is connected via the voltage application wiring 29.

一方、通電加熱ユニット3内のアース用環状電極9A、9Bは、アース用配線31、32を介して、グラウンド電位の部位、例えば地面GNに差し込まれたアース棒33に接続されている。   On the other hand, the grounding annular electrodes 9A and 9B in the energization heating unit 3 are connected to a ground potential portion, for example, a grounding rod 33 inserted into the ground GN via grounding wirings 31 and 32.

以上のように構成された通電加熱ユニット3により流動性食品材料を加熱する状況について次に説明する。なおここでは、図1〜図3における左方、すなわちフランジ部材11Aの側から流動性食品材料が供給されるものとする。   Next, a situation where the fluid food material is heated by the energization heating unit 3 configured as described above will be described. Here, it is assumed that the fluid food material is supplied from the left side in FIGS. 1 to 3, that is, from the flange member 11 </ b> A side.

図示しない加圧ポンプから送り出された流動性食品材料は、適宜の入側供給管路35を経て、一方のフランジ部材11Aの中空筒部11bに至り、通電加熱用管路15の流路19内を連続的に圧送されて、他方のフランジ部材11Bの中空筒部11bから適宜の出側供給管路37に向けて排出される。   The fluid food material fed from a pressure pump (not shown) passes through an appropriate inlet-side supply pipe 35, reaches the hollow cylinder portion 11b of one flange member 11A, and enters the flow path 19 of the electric heating and heating pipe line 15 Are continuously pumped and discharged from the hollow cylindrical portion 11b of the other flange member 11B toward the appropriate outlet supply pipe 37.

通電加熱用管路15の流路19内においては、流動性食品材料は、連続的に電圧印加用環状電極5〜5の内表面に接する。そして隣り合う電圧印加用環状電極の間、すなわち奇数番目の電圧印加用環状電極5、5、5、5と偶数番目の電圧印加用環状電極5、5、5との間に高周波電圧が印加され、これによって食品材料には、隣り合う電圧印加用環状電極の間において高周波電流が流れ、食品材料の電気抵抗によって発熱し、ジュール加熱が進行する。 In the flow path 19 of the electric heating conduit 15, fluid food material is continuously in contact with the inner surface of the voltage application annular electrode 5 1-5 7. Between the adjacent voltage application ring electrodes, that is, between the odd number voltage application ring electrodes 5 1 , 5 3 , 5 5 , 5 7 and the even number voltage application ring electrodes 5 2 , 5 4 , 5 6 . A high-frequency voltage is applied between them, whereby a high-frequency current flows in the food material between adjacent annular electrodes for voltage application, heat is generated by the electrical resistance of the food material, and Joule heating proceeds.

例えば、電圧印加用環状電極5は基準電位側の出力端子23Aに接続されているから、その基準電位をVとし、隣の電圧印加用環状電極5は交番電位側の第2の出力端子23Cに接続されていてその電位をVとすれば、図4に示すように、それらの電極5、5の間に、交番的に〔V+V〕、〔V−V〕の電位差が与えられる。 For example, since the voltage applying annular electrode 5 1 is connected to the output terminal 23A of the reference potential side, and the reference potential and V 0, the voltage applying annular electrode 5 2 next to the second output of the alternating voltage side if the potential of the V 2 have been connected to the terminal 23C, as shown in FIG. 4, between the electrodes 5 1, 5 2, alternately [V 0 + V 2), (V 0 -V 2 ] is given.

ここで、通電加熱用管路15の一端側(食品材料供給側)の電圧印加用環状電極5と、それより外側のアース用環状電極9Aとの間には、主として食品材料自体が電気伝導性を有することから、漏れ電流が流れる。この漏れ電流は、アース用配線31、32を経て地面GNに逃がされる。同様に、通電加熱用管路15の他端側(食品材料排出側)の電圧印加用環状電極5と、それより外側のアース用環状電極9Bとの間にも、漏れ電流が流れる。この漏れ電流は、アース用配線32を通って地面GNに逃がされる。このように漏れ電流が電圧印加用環状電極5、5からアース用環状電極9A、9Bを経て、アース用配線によって地面GNに逃がされる間の電流経路にはかなりの電気抵抗があるため、アース用環状電極9A、9Bの電位は地面GNの接地電位(0V)とはならず、アース用環状電極9A、9Bから地面GNに至るまでの電気抵抗分布に応じた電位となる。 Here, the voltage applying annular electrode 5 1 at one end of the electric heating conduit 15 (food material supply side), it more between the outer grounding ring electrode 9A, mainly food material itself electrically conductive Therefore, a leakage current flows. This leakage current is released to the ground GN through the grounding wires 31 and 32. Similarly, the voltage applying annular electrode 5 7 on the other end side of the electric heating conduit 15 (food material discharge side), it more even between the outer grounding ring electrode 9B, leakage current flows. This leakage current is released to the ground GN through the ground wiring 32. As described above, since the leakage current flows from the voltage application ring electrodes 5 1 and 5 7 through the ground ring electrodes 9A and 9B to the ground GN by the ground wiring, there is a considerable electric resistance. The potentials of the grounding annular electrodes 9A and 9B do not become the ground potential (0V) of the ground GN, but become the potential corresponding to the electrical resistance distribution from the grounding annular electrodes 9A and 9B to the ground GN.

ところで、一端側(食品材料供給側)の電圧印加用環状電極5と他端側(食品材料排出側)の電圧印加用環状電極5は、いずれも基準電位側の端子23Aに接続されているから、どのタイミングにおいても、一端側(食品材料供給側)の電圧印加用環状電極5と他端側(食品材料排出側)の電圧印加用環状電極5の電位は等しいそのため、一端側(食品材料供給側)の電圧印加用環状電極5とその隣のアース用環状電極9Aとの間の電位差と、他端側(食品材料排出側)の電圧印加用環状電極5とその隣のアース用環状電極9Bとの間の電位差とは、どのタイミングでも実質的に同等となる。これは、どのタイミングでも、常に、一端側のアース用環状電極9Aと他端側のアース用環状電極9Bとの電位差が実質的にゼロであることを意味する。 Meanwhile, one end voltage applying annular electrode 5 7 of the voltage applied annular electrode 5 1 and the other end of the (food material supply side) (food material discharge side) are both connected to a reference potential side of the terminal 23A because there, at any time, the potential of the voltage application annular electrode 5 7 of the voltage applied annular electrode 5 1 and the other end side (food material discharge side) of one end side (food material supply side) is equal. Therefore, one end side of the voltage applying annular electrode 5 1 (food material supply side) and the potential difference between the grounding ring electrode 9A of the adjacent, voltage application annular electrode 5 on the other end side (food material discharge side) 7 and the potential difference between the adjacent grounding annular electrode 9B are substantially equal at any timing. This means that at any timing, the potential difference between the grounding annular electrode 9A on one end side and the grounding annular electrode 9B on the other end side is substantially zero.

そして本実施例の場合、一端側のアース用環状電極9Aと他端側のアース用環状電極9Bとは、アース用配線31によって電気的に接続されているが、アース用環状電極9A、9Bの電位は実質的に常に相等しいため、一端側のアース用環状電極から他端側のアース用環状電極に外側から漏れ電流が流れ込むことが回避される。ここで、アース用環状電極は、食品材料が流れてその食品材料を通電加熱するための管路の一部を構成しているから、アース用環状電極に外部から漏れ電流が流入すれば、食品材料に流れる電流が変動することになるが、上述のように外部からの漏れ電流の流入が回避される結果、食品材料に流れる電流も変動することなく、一定に維持することが可能となる。   In the present embodiment, the grounding annular electrode 9A on one end side and the grounding annular electrode 9B on the other end side are electrically connected by the grounding wiring 31, but the grounding annular electrodes 9A and 9B are connected to each other. Since the potentials are substantially always equal, it is possible to prevent a leakage current from flowing from the ground annular electrode on one end side to the ground annular electrode on the other end side from the outside. Here, since the grounding annular electrode constitutes a part of a conduit for the food material to flow and heat and heat the food material, if a leakage current flows into the grounding annular electrode from the outside, Although the current flowing through the material varies, the leakage current from the outside is avoided as described above. As a result, the current flowing through the food material can be kept constant without being varied.

また電圧の面で見れば、一端側のアース用環状電極から他端側のアース用環状電極へ流れ込む漏れ電流(交流)があれば、あるタイミングでその他端側のアース用環状電極の電位が、異常に高くなったり、逆に異常に低くなったりし、それに伴って、電極間の電位も変動するが、本実施例の構成では、アース用環状電極への外部からの漏れ電流の流入がないため、このような電位変動も回避される。   Also, in terms of voltage, if there is a leakage current (alternating current) flowing from the grounding annular electrode at one end to the grounding annular electrode at the other end, the potential of the grounding annular electrode at the other end is at a certain timing, Although it becomes abnormally high or conversely low, the potential between the electrodes also fluctuates accordingly. However, in the configuration of this example, there is no inflow of leakage current from the outside to the grounding annular electrode. Therefore, such potential fluctuation is also avoided.

そして各アース用環状電極9A、9Bからの漏れ電流は、その全部もしくは大部分が、アース用配線31、32を介して地面GNに逃がされることになる。   All or most of the leakage current from each grounding annular electrode 9A, 9B is released to the ground GN via the grounding wirings 31, 32.

以上のような作用により、管路の一端側のアース用環状電極から他端側の方のアース用環状電極に外部から漏れ電流が流れ込むことによる異常現象の発生を確実に防止することができる。
すなわち、通電加熱用管路15の流路19内の食品材料に流れる電流が異常に変動したり、通電加熱用管路15を構成する各電極間の電圧が異常に変動したりすることが確実に回避される。そのため、例えば管路内の食品材料が過度に加熱されて、食品材料が変質したり、電極内面に食品材料が焦げついてしまったりすることが有効に防止され、また逆に加熱不足によって殺菌が十分に行われなくなったり、調理不足が生じたりすることも防止される。
With the above-described operation, it is possible to reliably prevent an abnormal phenomenon from occurring due to leakage current flowing from the outside to the grounding annular electrode on the other end side from the grounding annular electrode on the other end side.
That is, it is certain that the current flowing through the food material in the flow path 19 of the energization heating pipe 15 fluctuates abnormally, and that the voltage between the electrodes constituting the energization heating pipe 15 fluctuates abnormally. To be avoided. For this reason, for example, it is possible to effectively prevent the food material in the pipeline from being heated excessively, causing the food material to be altered, or scorching the food material to the inner surface of the electrode, and conversely, the lack of heating can sufficiently sterilize the food material. It is also possible to prevent the occurrence of a lack of cooking or a lack of cooking.

さらに、上記のような漏れ電流があれば、わずかな位相差などによって電極間に加えられる交流電圧の波形が崩れてしまうことも防止される。すなわち、高周波の交流電圧を食品材料に印加する場合、その波形が殺菌効果に及ぼす影響があることが知られているが、漏れ電流によって波形が崩れてしまえば、殺菌効果が小さくなってしまうことも懸念される。しかいながら、本実施例では、外部からの漏れ電流の流入が回避されるけっか、予め設定した高周波交流波形が崩れてしまうおそれがなく、所要の殺菌効果を維持することができる。   Furthermore, if there is a leakage current as described above, the waveform of the AC voltage applied between the electrodes due to a slight phase difference or the like can be prevented from being broken. That is, when a high-frequency AC voltage is applied to a food material, it is known that the waveform has an effect on the sterilization effect, but if the waveform collapses due to leakage current, the sterilization effect will be reduced. Is also a concern. However, in the present embodiment, inflow of leakage current from the outside can be avoided, and there is no possibility that the preset high-frequency AC waveform will be destroyed, and the required sterilizing effect can be maintained.

また、外部からの漏れ電流によって異常に高周波交流電流のピーク値が高くなってしまえば、電源装置のトランスに、その異常にピーク値が高い電流が流れ込んでトランスが焼付いてしまうことも懸念されるが、本実施例では、そのような事態の発生も回避することができる。   In addition, if the peak value of the high-frequency alternating current is abnormally high due to the leakage current from the outside, there is a concern that the abnormally high peak current flows into the transformer of the power supply device and the transformer is burned. However, in this embodiment, such a situation can be avoided.

そしてまた流動性食品材料の実際の連続通電加熱においては、食品材料の種類(主として抵抗値)や、流量、粘度、更には入り口温度などに応じて、適切に電流、電圧、交流波形を制御することが必要であるが、前述のように外部からの漏れ電流の流入の防止によって、電流、電圧、交流波形の異常変動を防止できるため、制御に支障をきたすおそれも少ない。   In actual continuous energization heating of fluid food materials, the current, voltage, and AC waveform are appropriately controlled according to the type of food material (mainly resistance value), flow rate, viscosity, and inlet temperature. However, as described above, by preventing leakage current from flowing in from outside, abnormal fluctuations in current, voltage, and alternating current waveform can be prevented, so that there is little possibility of hindering control.

なお図2に示した電源装置23では、出力トランス232の2次側(高圧側)巻線232Aの互いに異なるタップ位置から、それぞれ複数(図示の例では三つ)の交番電位側の出力端子(第1〜第3の出力端子)23B〜23Dが引き出されていて、異なる電位差の高周波を取り出し得るようになっている。そこで、加熱すべき食品材料の種類や性状、あるいは管路内の流速、流量、更には目的とする加熱温度などに応じて、第2の電圧印加用配線29に接続する交番電位側の出力端子を変えることができる。また場合によっては、電圧印加用配線29と交番電位側の出力端子(第1〜第3の出力端子)23B〜23Dとの間に、図示しない切り替えスイッチを設けておき、必要に応じて、第2の電圧印加用配線29に接続する交番電位側の出力端子を選択的に切り替えられるように構成してもよい。   In the power supply device 23 shown in FIG. 2, a plurality of (three in the illustrated example) output terminals on the alternating potential side (three in the illustrated example) are provided from different tap positions of the secondary side (high voltage side) winding 232 </ b> A of the output transformer 232. First to third output terminals) 23B to 23D are drawn out so that high-frequency waves having different potential differences can be extracted. Therefore, the output terminal on the alternating potential side connected to the second voltage application wiring 29 according to the type and properties of the food material to be heated, the flow rate and flow rate in the pipeline, and the target heating temperature. Can be changed. In some cases, a changeover switch (not shown) is provided between the voltage application wiring 29 and the output terminals (first to third output terminals) 23B to 23D on the alternating potential side. The output terminal on the alternating potential side connected to the second voltage application wiring 29 may be selectively switched.

さらに、場合によっては一つの通電加熱ユニット3内で、食品材料供給側(流入側)のゾーン、食品材料排出側のゾーン、あるいは中間ゾーンなどごとに、電圧印加用環状電極間に印加する電圧を異ならしめることが求められることがある。例えば、一般に通電加熱用管路15の一端側(食品材料供給側)から流入した食品材料は、他端側(食品材料排出側)に向かって移動するにしたがって温度が上昇する。そして温度が上昇すれば、通常の流動性食品材料では電気抵抗が下がる。そのため各電圧印加用環状電極5〜5の相互間に印加される電圧が同じであれば、電気抵抗が低下した食品材料排出側においては、流入側よりも電極間に流れる電流が大きくなってしまい、その結果ジュール発熱量も大きくなって、過剰に温度上昇してしまうおそれがある。またこの場合、食品材料排出側においては急激に食品材料の温度が上昇して、温度制御を適切に行い得なくなるおそれがある。そこで、食品材料排出側のゾーンでは、食品材料流入側のゾーンよりも電極間電圧を低く設定することが必要となることがある。このようなケースに本発明を適用した通電加熱ユニットの例を、図5に示す。 Further, in some cases, the voltage applied between the annular electrodes for voltage application may be applied to the food material supply side (inflow side) zone, the food material discharge side zone, or the intermediate zone in one energization heating unit 3. It may be required to be different. For example, in general, the temperature of a food material flowing from one end side (food material supply side) of the energization heating conduit 15 increases as it moves toward the other end side (food material discharge side). And if temperature rises, an electrical resistance will fall in the normal fluid food material. If therefore the voltage is the same applied between mutual voltage applying annular electrode 5 1-5 7, in the food material discharge side where the electrical resistance is lowered, the current flowing between the electrodes than the inflow side is increased As a result, the amount of generated Joule heat increases and the temperature may rise excessively. In this case, on the food material discharge side, the temperature of the food material suddenly increases, and there is a possibility that the temperature cannot be controlled appropriately. Therefore, it may be necessary to set the voltage between the electrodes lower in the zone on the food material discharge side than in the zone on the food material inflow side. An example of an energization heating unit in which the present invention is applied to such a case is shown in FIG.

図5に示す通電加熱ユニットの例は、図2に示した例をもとにして、各電圧印加用電極の電源装置に対する配線接続関係を変更したものである。すなわち、流入側から数えて偶数番目の電圧印加用環状電極5、5、5のうち、電極5、5は、電源装置23における相対的に高電位V側の出力端子23Cに電圧印加用配線29Aを介して接続され、電極5は、電源装置23における相対的に低電位V側の出力端子23Bに電圧印加用配線29Bを介して接続されている。一方、食品材料供給側から数えて奇数番目の電圧印加用環状電極5、5、5、5は、図2の場合と同様に、電圧印加用配線27を介して電源装置23における基準電位側の出力端子23Aに接続されている。 The example of the energization heating unit shown in FIG. 5 is obtained by changing the wiring connection relationship of each voltage application electrode to the power supply device based on the example shown in FIG. That is, among the even-numbered voltage application annular electrodes 5 2 , 5 4 , 5 6 counted from the inflow side, the electrodes 5 2 , 5 4 are output terminals 23 C on the relatively high potential V 2 side in the power supply device 23. to be connected via a voltage applying wire 29A, the electrode 5 6 are connected through a voltage application line 29B to an output terminal 23B of a relatively low potential V 1 side of the power supply 23. On the other hand, the odd-numbered voltage application annular electrodes 5 1 , 5 3 , 5 5 , 5 7 counted from the food material supply side are connected to the power supply device 23 via the voltage application wiring 27 as in the case of FIG. It is connected to the output terminal 23A on the reference potential side.

このような構成においては、電圧印加用電極5〜5のうち、流入側の電極5から5番目の電極5までは、相対的に高い電圧が各電極間に印加され、その5番目の電極5から流出側の電極5までは、相対的に低い電圧が電極間に印加される。そのため、前述のように流出側のゾーンで、過剰に温度上昇することが回避される。 In such a configuration, among the voltage application electrode 5 1-5 7, from the electrode 5 1 on the inflow side to the fifth electrode 5 5, a relatively high voltage is applied between the electrodes, the 5 th from the electrode 5 5 to the electrode 5 7 on the outflow side, a relatively low voltage is applied between the electrodes. Therefore, it is avoided that the temperature rises excessively in the outflow side zone as described above.

そしてこのような例でも、図2に示した例と同様に、食品材料供給側の電圧印加用環状電極5と食品材料排出側の電圧印加用環状電極5は、いずれも基準電位側の端子23Aに接続されているから、どのタイミングにおいても、食品材料供給側の電圧印加用環状電極5と食品材料排出側の電圧印加用環状電極5の電位は等しいそのため、一端側(食品材料供給側)の電圧印加用環状電極5とその隣のアース用環状電極9Aとの間の電位差と、他端側(食品材料排出側)の電圧印加用環状電極5とその隣のアース用環状電極9Bとの間の電位差とは、どのタイミングでも実質的に同等となる。したがってどのタイミングでも、常に、一端側のアース用環状電極9Aと他端側のアース用環状電極9Bとの電位差が実質的にゼロとなり、一端側のアース用環状電極から他端側のアース用環状電極に外側から漏れ電流が流れ込むことが回避される。 And in such instances, as in the example shown in FIG. 2, the voltage applying annular electrode 5 1 and the food material discharge side of the voltage applying annular electrode 5 7 food material supply side are both the reference potential side from being connected to the terminal 23A, which is also at the timing, the potential of the voltage application annular electrode 5 7 for voltage application of the food material supply side annular electrode 5 1 and the food material discharge side are equal. Therefore, one end side of the voltage applying annular electrode 5 1 (food material supply side) and the potential difference between the grounding ring electrode 9A of the adjacent, voltage application annular electrode 5 on the other end side (food material discharge side) 7 and the potential difference between the adjacent grounding annular electrode 9B are substantially equal at any timing. Therefore, at any timing, the potential difference between the grounding annular electrode 9A on one end side and the grounding annular electrode 9B on the other end side is substantially zero, and the grounding annular electrode on the other end side is connected to the grounding annular electrode on the other end side. It is avoided that leakage current flows into the electrode from the outside.

ここで、図1〜図3に示される通電加熱ユニット3、あるいは図5に示した通電加熱ユニットは、いずれも単独で連続通電加熱装置として用いることができるが、実際の食品工場などにおいては、複数の通電加熱ユニットを組み合わせて、連続通電加熱装置を構成することが多い。そこで、3個の通電加熱ユニットを用いて構成した連続通電加熱装置1の全体構成を、図6、図7に示す。なお、便宜上、各通電加熱ユニットを区別するため、各通電加熱ユニットには、下段側のものから順に3A、3B、3Cの符号を付す。また図6には、図を見やすくするため、電気的接続・配線構造を省いて機械的構造を主体として連続通電加熱装置1を示し、逆に図7には、電気的接続・配線構造を主体として示す。   Here, the current heating unit 3 shown in FIGS. 1 to 3 or the current heating unit shown in FIG. 5 can be used alone as a continuous current heating device, but in actual food factories, etc. In many cases, a continuous energization heating apparatus is configured by combining a plurality of energization heating units. Therefore, the entire configuration of the continuous energization heating apparatus 1 configured using three energization heating units is shown in FIGS. For convenience, in order to distinguish each energizing heating unit, each energizing heating unit is given the symbols 3A, 3B, and 3C in order from the lower one. FIG. 6 shows the continuous energization heating device 1 with the mechanical connection as a main component, omitting the electrical connection / wiring structure, and FIG. 7 shows the electric connection / wiring structure as a main component. As shown.

図6において、枠体5は、例えば鋼やアルミなどの金属のチャンネル材や棒材などによって、全体として方形の箱の各陵線に沿うフレーム構造に組み立てたものである。その枠体の内側には、3基の通電加熱ユニット3A、3B、3Cが、それぞれ水平面に対して若干傾斜するように(食品材料流入側よりも排出側が高く位置するように)、上下に平行に配列されている。   In FIG. 6, the frame 5 is assembled into a frame structure along each line of a rectangular box as a whole by using, for example, a metal channel material or bar material such as steel or aluminum. Inside the frame body, the three energization heating units 3A, 3B, 3C are parallel to each other so that each of them is slightly inclined with respect to the horizontal plane (so that the discharge side is positioned higher than the food material inflow side). Is arranged.

そして各通電加熱ユニット3A、3B、3Cの間は、中間配管40A、40Bによって直列状に連結されており、最下段の通電加熱ユニット3Aの入り口側(左端側)には、供給配管43が連結され、さらに最上段の通電加熱ユニット3Cの排出側(右端)には、排出配管45が連結されている。通電加熱ユニット3A、3B、3Cおよび配管40A、40B、43、45は、主として鋼やアルミなどからなる支持部47A、47Bによって、枠体5内で固定されている。   And between each electric heating unit 3A, 3B, 3C, it connects in series by intermediate | middle piping 40A, 40B, and supply piping 43 is connected to the entrance side (left end side) of the lowermost electric heating unit 3A. Further, a discharge pipe 45 is connected to the discharge side (right end) of the uppermost conduction heating unit 3C. The electric heating units 3A, 3B, 3C and the pipes 40A, 40B, 43, 45 are fixed inside the frame 5 by support portions 47A, 47B mainly made of steel, aluminum, or the like.

図7に示すように、各通電加熱ユニット3A、3B、3Cのアース用環状電極9A、9Bは、アース配線(上流側アース配線)31,33によって枠体5のフレームに取り付けられたアース端子49に接続され、また枠体5の適宜の箇所に、別のアース配線(下流側アース配線)51が接続されて、その下流側アース配線33が、グラウンド電位の部材、例えば地面GNに差し込まれたアース棒33に接続されている。   As shown in FIG. 7, the grounding annular electrodes 9 </ b> A, 9 </ b> B of the energization heating units 3 </ b> A, 3 </ b> B, 3 </ b> C are grounded terminals 49 attached to the frame of the frame 5 by grounding wires (upstream side grounding wires) 31, 33. In addition, another ground wiring (downstream ground wiring) 51 is connected to an appropriate portion of the frame 5, and the downstream ground wiring 33 is inserted into a ground potential member, for example, the ground GN. It is connected to the ground bar 33.

さらに各通電加熱ユニット3A、3B、3Cに通電加熱のための電力(高周波電流)を供給する電源装置としては、本例では各ユニットに共通の単一の電源装置23が用いられている。そして各通電加熱ユニット3A、3B、3Cおける電圧印加用環状電極5〜5は、それぞれ図2を参照して説明した通電加熱ユニット3と同様に、奇数番目の電圧印加用環状電極5、5、5、5は、第1の電圧印加用配線27を介して電源装置23の基準電位側の出力端子23Aに接続され、偶数番目の電圧印加用環状電極5、5、5は、それぞれ第2の電圧印加用配線29を介して電源装置23の交番電位側の異なる出力端子23B〜23Dに接続されている。すなわち、最下段(食品材料供給側)の通電加熱ユニット3Aにおける偶数番目の電圧印加用環状電極5、5、5は、それぞれ相対的に高電位Vの出力端子23Dに接続され、中段の通電加熱ユニット3Bにおける偶数番目の電圧印加用環状電極5、5、5は、それぞれ中間の電位Vの出力端子23Cに接続され、さらに最上段(食品材料排出側側)の通電加熱ユニット3Cにおける偶数番目の電圧印加用環状電極5、5、5は、それぞれ相対的に低電位Vの出力端子23Bに接続されている。 Further, in this example, a single power supply device 23 common to each unit is used as a power supply device that supplies power (high-frequency current) for current heating to each of the current heating units 3A, 3B, and 3C. And each electrical heating units 3A, 3B, 3C definitive voltage applying annular electrode 5 1-5 7, like the electric heating unit 3 described with reference to FIG. 2, respectively, odd-numbered voltage applying annular electrode 5 1 5 3 , 5 5 , 5 7 are connected to the output terminal 23 A on the reference potential side of the power supply device 23 via the first voltage application wiring 27, and the even-numbered voltage application annular electrodes 5 2 , 5 4. , 5 6 are respectively connected to a second alternating potential different output terminal 23B~23D voltage application wiring 29 through the power supply 23. That is, the even-numbered voltage application annular electrodes 5 2 , 5 4 , 5 6 in the lowermost stage (food material supply side) current heating unit 3A are connected to the output terminal 23D of the relatively high potential V 3 , respectively. The even-numbered voltage application annular electrodes 5 2 , 5 4 , 5 6 in the middle stage heating unit 3B are respectively connected to the output terminal 23C of the intermediate potential V 2 , and further on the uppermost stage (food material discharge side). The even-numbered voltage application annular electrodes 5 2 , 5 4 , 5 6 in the energization heating unit 3C are connected to the output terminal 23B having a relatively low potential V 1 , respectively.

以上のような複数基、例えば3基の通電加熱ユニット3A、3B、3Cを組み込んだ連続通電加熱装置1においては、装置外から供給された流動性食品材料は、先ず下段の通電加熱ユニット3Aに流入して通電加熱がなされ、続いて中段の通電加熱ユニット3Bに導かれて、再び通電加熱がなされ、さらに上段の通電加熱ユニット3Aに導かれて、再々度の通電加熱がなされ、その後、装置外部に排出される。   In the continuous energization heating apparatus 1 incorporating a plurality of, for example, three energization heating units 3A, 3B, and 3C as described above, the fluid food material supplied from outside the apparatus is first supplied to the lower energization heating unit 3A. Then, it is energized and heated, then led to the middle-stage energization heating unit 3B, and again energized and heated, and further led to the upper-stage energization heating unit 3A, and then again energized and heated, and then the apparatus It is discharged outside.

以上のような連続通電加熱装置1において、各通電加熱ユニット3A、3B、3Cごとに見れば、既に図2を参照して説明したように、それぞれの両端側の電圧印加用環状電極5、5は、常に同じ基準電位となる。そのため既に述べたと同様に、同一の通電加熱ユニット内においては、両端のアース用環状電極9A、9Bの間での外部電気経路のショートカットによる漏れ電流の流入が回避される。 In the continuous electrical heating device 1 as described above, the electric heating units 3A, 3B, if you look at every 3C, as already described with reference to FIG. 2, the voltage applying annular electrode 5 1 of each both end sides, 5 and 7 always have the same reference potential. Therefore, as already described, in the same energization heating unit, inflow of leakage current due to a shortcut of the external electric path between the grounding annular electrodes 9A and 9B at both ends is avoided.

更に、上下の通電加熱ユニット間で見れば、各通電加熱ユニット3A、3B、3Cの両端のアース用環状電極9A、9Bは、アース配線33を介してすべて電気的に接続されているが、各通電加熱ユニット3A、3B、3Cの、両端側の電圧印加用環状電極5、5は、すべて常に基準電位、すなわち同電位となるから、上記のアース配線33によるショートカットによってある通電加熱ユニットのアース用環状電極から他の通電加熱ユニットのアース用環状電極に漏れ電流が流れ込むことも回避される。したがって、複数の通電加熱ユニットの相互間での漏れ電流の流入によって前記同様の異常現象が生じることが防止される。 Further, when viewed between the upper and lower electric heating units, the grounding annular electrodes 9A and 9B at both ends of the respective electric heating units 3A, 3B and 3C are all electrically connected via the ground wiring 33. Since the voltage application annular electrodes 5 1 , 5 7 of the both ends of the current heating units 3A, 3B, 3C are always at the reference potential, that is, the same potential, It is also avoided that leakage current flows from the grounding annular electrode to the grounding annular electrode of another energization heating unit. Therefore, it is possible to prevent an abnormal phenomenon similar to that described above from occurring due to leakage current flowing between the plurality of energization heating units.

なお図7に示した例では、各通電加熱ユニット3A、3B、3Cごとに各電圧印加用電極間に印加する電圧を異ならしめるように(流入側の通電加熱ユニットよりも排出側のユニットで電圧印加用電極間電圧が低くなるように)、電源装置に対して接続しているが、場合によっては、いずれのユニットでも、電圧印加用電極間電圧が同じとなるように接続してもよいことはもちろんである。   In the example shown in FIG. 7, the voltage applied between the voltage application electrodes is different for each of the current heating units 3A, 3B, 3C (the voltage on the discharge side unit is higher than that on the inflow side current heating unit). Although the connection is made to the power supply device so that the voltage between the electrodes for application is low), depending on the case, the unit may be connected so that the voltage between the electrodes for voltage application is the same. Of course.

なお、以上の実施例においては、各通電加熱ユニット3(3A、3B、3C)における通電加熱用管路15の両端側に、フランジ部材11A、11Bとは別にアース用環状電極9A、9Bを設けている。しかしながら、フランジ部材11A、11Bが導電性の金属によって作られている場合には、アース用環状電極9A、9Bを設けずに、フランジ部材11A、11Bにアース配線を接続して、フランジ部材11A、11B自体にアース用環状電極と同様な機能を持たせてもよい。すなわちフランジ部材11A、11Bによって管路の両端のアース機能部材を構成してもよい。   In the above embodiment, the grounding annular electrodes 9A and 9B are provided separately from the flange members 11A and 11B on both ends of the current heating conduit 15 in each current heating unit 3 (3A, 3B, 3C). ing. However, when the flange members 11A and 11B are made of a conductive metal, the ground members are connected to the flange members 11A and 11B without providing the ground annular electrodes 9A and 9B. 11B itself may have the same function as the annular electrode for grounding. That is, you may comprise the earth functional member of the both ends of a pipe line by the flange members 11A and 11B.

以上、本発明の好ましい実施例について説明したが、前述の実施例は、あくまで本発明の要旨の範囲内の一つの例に過ぎず、本発明の要旨から逸脱しない範囲内で、構成の付加、省略、置換、およびその他の変更が可能である。すなわち本発明は、前述した説明によって限定されることはなく、添付の特許請求の範囲によってのみ限定され、その範囲内で適宜変更可能であることはもちろんである。   The preferred embodiment of the present invention has been described above. However, the above-described embodiment is merely an example within the scope of the gist of the present invention. Omissions, substitutions, and other changes are possible. That is, the present invention is not limited by the above description, is limited only by the scope of the appended claims, and can be appropriately changed within the scope.

1・・・連続通電加熱装置
3、3A、3B、3C・・・通電加熱ユニット
、5、5、5、5、5、5・・・電圧印加用環状電極
、7、7、7、7、7、7、7・・・絶縁管体
9A、9B・・・接地機能部材としてのアース用環状電極
15・・・通電加熱用管路
23・・・電源装置
232・・・出力トランス
23A・・・基準電位側の出力端子
23B、23C、23D・・・交番電位側の出力端子
1 ... Continuous current heating device 3, 3A, 3B, 3C ... Current heating unit
5 1, 5 2, 5 3, 5 4, 5 5, 5 6, 5 7 ... voltage applying annular electrodes 7 1, 7 2, 7 3, 7 4, 7 5, 7 6, 7 7, 7 8 ... Insulating tube bodies 9A, 9B ... Grounding annular electrode 15 as grounding functional member ... Current-carrying heating conduit 23 ... Power supply device 232 ... Output transformer 23A ... Reference potential side Output terminals 23B, 23C, 23D ... output terminals on the alternating potential side

Claims (6)

少なくとも内周面を導電材料で形成した3個以上の電圧印加用環状電極と、少なくとも内周面を電気絶縁材料で構成した4個以上の絶縁管体とを、共通の軸線に沿って交互に配置して通電加熱用管路を形成し、流動性を有する食品材料を前記通電加熱用管路内においてその長さ方向に連続的に流動移送させつつ、交流電源装置によって隣り合う電圧印加用電極間に交流電圧を加えることにより、管路内の流動性食品材料に対し管路の長さ方向に連続的に通電して加熱するようにした流動性食品材料の連続通電加熱装置において、
前記通電加熱用管路の両端側に位置する二つの電圧印加用電極よりも管路延長方向両側に、絶縁管体を介して、少なくとも内周面を導電材料で構成した環状の接地機能部材が配設されていて、それらの接地機能部材が電気的に接地され、
さらに前記交流電源装置は、その出力トランスの2次側巻線から、基準電位側の出力端子と、基準電位に対して電位が正負に反転する1以上の交番電位側の出力端子が引き出されており、
前記電圧印加用環状電極のうち、通電加熱用管路の両端側に位置する前記二つの電圧印加用電極が、前記出力トランスにおける基準電位側の出力端子に共通に接続されていることを特徴とする、流動性食品材料の連続通電加熱装置。
Three or more voltage application annular electrodes having at least an inner peripheral surface made of a conductive material and four or more insulating tubes having at least an inner peripheral surface made of an electrically insulating material are alternately arranged along a common axis. An electrode for applying voltage adjacent to each other by an AC power supply device while forming a current-carrying heating pipeline and continuously fluidly transferring a fluid food material in the lengthwise direction in the current-heating channel. In a continuous energization heating device for fluid food material that is heated by energizing the fluid food material in the pipeline continuously in the length direction of the pipeline by applying an alternating voltage between
An annular grounding functional member having at least an inner peripheral surface made of a conductive material on both sides in the pipe extension direction from the two voltage application electrodes located on both ends of the energization heating pipe via an insulating pipe. Disposed, and those grounding functional members are electrically grounded,
Further, in the AC power supply apparatus, the output terminal on the reference potential side and one or more output terminals on the alternating potential side whose potential is inverted to positive and negative with respect to the reference potential are drawn from the secondary winding of the output transformer. And
Among the voltage application annular electrodes, the two voltage application electrodes located on both ends of the current heating conduit are commonly connected to a reference potential side output terminal of the output transformer. A continuous energization heating device for fluid food materials.
請求項1に記載の流動性食品材料の連続通電加熱装置において、
前記通電加熱用管路の一端側の接地機能部材と、他端側の接地機能部材とが、その間を結ぶ配線によって電気的に接続されており、かつ少なくとも一方の接地機能部材からアース配線が引き出されて、電気的に接地されていることを特徴とする、流動性食品材料の連続通電加熱装置。
In the continuous electric heating apparatus of the fluid food material according to claim 1,
The grounding functional member on one end side and the grounding functional member on the other end side of the energization heating conduit are electrically connected by a wiring connecting between them, and the ground wiring is drawn from at least one grounding functional member. A continuous energization heating device for fluid food material, characterized in that it is electrically grounded.
請求項1、請求項2のうちのいずれかの請求項に記載の流動性食品材料の連続通電加熱装置において、
前記通電加熱用管路が、その長さ方向に複数のゾーンに区分されており、あるゾーン内の電圧印加用環状電極間に印加する電圧と、他のゾーン内の電圧印加用環状電極間に印加する電圧とが異なるように、各電圧印加用環状電極が前記電源装置の出力トランスに接続されていることを特徴とする、流動性食品材料の連続通電加熱装置。
In the continuous energization heating apparatus of the fluid food material according to any one of claims 1 and 2,
The energization heating pipe is divided into a plurality of zones in the length direction, and a voltage applied between the voltage application ring electrodes in one zone and a voltage application ring electrode in another zone. A continuous energization heating device for fluid food material, wherein each voltage application annular electrode is connected to an output transformer of the power supply device so that a voltage to be applied is different.
少なくとも内周面を導電材料で形成した3個以上の電圧印加用環状電極と、少なくとも内周面を電気絶縁材料で構成した4個以上の絶縁管体とを、共通の軸線に沿って交互に配置して通電加熱用管路を形成し、流動性を有する食品材料を前記通電加熱用管路内においてその長さ方向に連続的に流動移送させつつ、隣り合う電圧印加用電極間に交流電源装置によって交流電圧を加えることにより、管路内の流動性食品材料に対し管路の長さ方向に連続的に通電して加熱するようにした、複数個の通電加熱ユニットを備え、
前記各通電加熱ユニットにおける通電加熱用管路の両端側に位置する二つの電圧印加用電極よりも管路延長方向両側に、絶縁管体を介して、少なくとも内周面を導電材料で構成した環状の接地機能部材が配設されていて、それらの接地機能部材が電気的に接地されており、
前記交流電源装置は、その出力トランスの2次側巻線から、基準電位側の出力端子と、基準電位に対して電位が正負に反転する1以上の交番電位側の出力端子が引き出されており、
さらにこれらの複数個の通電加熱ユニットが直列状に連結されており、
しかもある通電加熱ユニットにおける通電加熱用管路の両端側に位置する二つの電圧印加用電極と、他の通電加熱ユニットにおける通電加熱用管路の両端側に位置する二つの電圧印加用電極とが、前記出力トランスにおける基準電位側の出力端子に共通に接続されていることを特徴とする、流動性食品材料の連続通電加熱装置。
Three or more voltage application annular electrodes having at least an inner peripheral surface made of a conductive material and four or more insulating tubes having at least an inner peripheral surface made of an electrically insulating material are alternately arranged along a common axis. An AC power source is disposed between adjacent voltage application electrodes while forming a current-carrying heating conduit and continuously fluidly transferring the fluid food material in the length direction in the current-heating conduit. A plurality of energization heating units are provided that are heated by energizing the fluid food material in the pipeline continuously in the length direction of the pipeline by applying an alternating voltage by the apparatus,
An annular structure in which at least the inner peripheral surface is made of a conductive material on both sides in the pipe extension direction from the two voltage application electrodes located at both ends of the electric heating heating pipe in each of the electric heating units. The grounding functional members are arranged, and those grounding functional members are electrically grounded,
In the AC power supply device, an output terminal on the reference potential side and one or more output terminals on the alternating potential side in which the potential is inverted positively and negatively with respect to the reference potential are drawn from the secondary winding of the output transformer. ,
In addition, a plurality of current heating units are connected in series,
Moreover, there are two voltage application electrodes located on both ends of the current heating conduit in one current heating unit, and two voltage application electrodes located on both ends of the current heating conduit in the other current heating unit. A continuous energization heating device for fluid food material, characterized in that it is commonly connected to an output terminal on the reference potential side in the output transformer.
請求項4に記載の流動性食品材料の連続通電加熱装置において、
前記各通電加熱ユニットにおける通電加熱用管路の一端側の接地機能部材と、他端側の接地機能部材とが、その間を結ぶ配線によって電気的に接続されており、かつ少なくとも一方の接地機能部材からアース配線が引き出されて、電気的に接地されていることを特徴とする、流動性食品材料の連続通電加熱装置。
In the continuous electric heating apparatus of the fluid food material according to claim 4,
The grounding functional member on one end side of the current heating conduit in each of the current heating units and the grounding functional member on the other end side are electrically connected by a wiring connecting between them, and at least one grounding functional member A continuous energization heating device for fluid food material, characterized in that the ground wiring is drawn out from the ground and electrically grounded.
請求項4、請求項5のうちのいずれかの請求項に記載の流動性食品材料の連続通電加熱装置において、
ある通電加熱ユニット内の電圧印加用環状電極間に印加する電圧と、他の通電加熱ユニット内の電圧印加用環状電極間に印加する電圧とが異なるように、各電圧印加用環状電極が前記電源装置の出力トランスに接続されていることを特徴とする、流動性食品材料の連続通電加熱装置。
In the continuous energization heating device for fluid food material according to any one of claims 4 and 5,
Each voltage application annular electrode is connected to the power source so that the voltage applied between the voltage application annular electrodes in one energization heating unit is different from the voltage applied between the voltage application annular electrodes in another energization heating unit. A continuous energization heating device for fluid food material, characterized in that it is connected to an output transformer of the device.
JP2013220642A 2013-10-23 2013-10-23 Continuous energization heating device for fluid food materials Active JP6030040B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013220642A JP6030040B2 (en) 2013-10-23 2013-10-23 Continuous energization heating device for fluid food materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013220642A JP6030040B2 (en) 2013-10-23 2013-10-23 Continuous energization heating device for fluid food materials

Publications (2)

Publication Number Publication Date
JP2015080455A true JP2015080455A (en) 2015-04-27
JP6030040B2 JP6030040B2 (en) 2016-11-24

Family

ID=53011406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013220642A Active JP6030040B2 (en) 2013-10-23 2013-10-23 Continuous energization heating device for fluid food materials

Country Status (1)

Country Link
JP (1) JP6030040B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108566692A (en) * 2018-03-30 2018-09-21 久盛电气股份有限公司 A kind of segmentation plug-in type heating rod
JP2018201460A (en) * 2017-06-08 2018-12-27 国立研究開発法人農業・食品産業技術総合研究機構 Sterilization apparatus and sterilization method of liquid food

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5043546A (en) * 1973-08-22 1975-04-19
JPH094920A (en) * 1995-06-19 1997-01-10 Japan Steel Works Ltd:The Liquid heater
JP2001169733A (en) * 1999-12-17 2001-06-26 Frontier Engineering:Kk Continuous heater for fluid food material
JP2001291574A (en) * 2000-04-07 2001-10-19 Frontier Engineering:Kk Heating device
JP2006320402A (en) * 2005-05-17 2006-11-30 Frontier Engineering Co Ltd Heating device
JP2008221093A (en) * 2007-03-09 2008-09-25 National Institute Of Advanced Industrial & Technology Direct energization device
JP2010238639A (en) * 2009-03-31 2010-10-21 Frontier Engineering Co Ltd Refrigerant tube, electrode body, and continuous energization heating device
US20110088569A1 (en) * 2009-10-12 2011-04-21 Astepo S.R.L. Ohmic device for heat-treating foods

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5043546A (en) * 1973-08-22 1975-04-19
JPH094920A (en) * 1995-06-19 1997-01-10 Japan Steel Works Ltd:The Liquid heater
JP2001169733A (en) * 1999-12-17 2001-06-26 Frontier Engineering:Kk Continuous heater for fluid food material
JP2001291574A (en) * 2000-04-07 2001-10-19 Frontier Engineering:Kk Heating device
JP2006320402A (en) * 2005-05-17 2006-11-30 Frontier Engineering Co Ltd Heating device
JP2008221093A (en) * 2007-03-09 2008-09-25 National Institute Of Advanced Industrial & Technology Direct energization device
JP2010238639A (en) * 2009-03-31 2010-10-21 Frontier Engineering Co Ltd Refrigerant tube, electrode body, and continuous energization heating device
US20110088569A1 (en) * 2009-10-12 2011-04-21 Astepo S.R.L. Ohmic device for heat-treating foods

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018201460A (en) * 2017-06-08 2018-12-27 国立研究開発法人農業・食品産業技術総合研究機構 Sterilization apparatus and sterilization method of liquid food
CN108566692A (en) * 2018-03-30 2018-09-21 久盛电气股份有限公司 A kind of segmentation plug-in type heating rod
CN108566692B (en) * 2018-03-30 2023-09-29 久盛电气股份有限公司 Sectional insertion type heating rod

Also Published As

Publication number Publication date
JP6030040B2 (en) 2016-11-24

Similar Documents

Publication Publication Date Title
JP4842240B2 (en) Method for continuous joule heating of food materials
US9816527B2 (en) Pump with integrated heating element
JP6030040B2 (en) Continuous energization heating device for fluid food materials
KR20200029988A (en) Superheated Steam Generator
JP2011086443A (en) Energization heating device of migration body
BRPI0613360A2 (en) equipment for the application of oscillating electromagnetic fields, particularly for the treatment of liquid, pasty, semi-solid or granular products and method of use of such equipment and the system incorporating it
KR101447106B1 (en) Induction heating system for bolt
JP2001291574A (en) Heating device
JP4995164B2 (en) COOLABLE ELECTRODE BODY AND CONTINUOUS ELECTRIC HEATING DEVICE HAVING THE SAME
JP4195502B1 (en) Fluid heating device
US20220361533A1 (en) Pulsed electric field chamber
US2031975A (en) Electrical conductor
US2178721A (en) Heating pipe fixture
CN105444420B (en) Fluid heater
US2324837A (en) Electric heater
JP2002218958A (en) Apparatus for continuously and electrically heating fluid food material
JP2010238639A (en) Refrigerant tube, electrode body, and continuous energization heating device
JP6317660B2 (en) Fluid heating device
JP6290067B2 (en) Fluid heating device
JP4852013B2 (en) Joule heating method and apparatus
EP2950615B1 (en) Induction heating device
JP2013141550A (en) Heater
JP6162473B2 (en) Fluid heating device
JP2019023966A (en) Method for preventing scale on electrode surface in continuous energization heating
US20150153069A1 (en) Apparatus and method for the ohmic heating of a particulate liquid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151203

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161019

R150 Certificate of patent or registration of utility model

Ref document number: 6030040

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250