[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2015078910A - Ultrasonic measuring device and calibration method thereof - Google Patents

Ultrasonic measuring device and calibration method thereof Download PDF

Info

Publication number
JP2015078910A
JP2015078910A JP2013216344A JP2013216344A JP2015078910A JP 2015078910 A JP2015078910 A JP 2015078910A JP 2013216344 A JP2013216344 A JP 2013216344A JP 2013216344 A JP2013216344 A JP 2013216344A JP 2015078910 A JP2015078910 A JP 2015078910A
Authority
JP
Japan
Prior art keywords
ultrasonic
subject
calibration member
calibration
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013216344A
Other languages
Japanese (ja)
Other versions
JP6109036B2 (en
Inventor
川浪 精一
Seiichi Kawanami
精一 川浪
山本 裕子
Yuko Yamamoto
裕子 山本
幹康 浦田
Mikiyasu Urata
幹康 浦田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2013216344A priority Critical patent/JP6109036B2/en
Publication of JP2015078910A publication Critical patent/JP2015078910A/en
Application granted granted Critical
Publication of JP6109036B2 publication Critical patent/JP6109036B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable calibration of a measured value of an analyte for aging of a thin film ultrasonic vibrator while being installed in the analyte with simple and low cost means.SOLUTION: An ultrasonic vibrator 12A holds a piezoelectric substance 16 between an upper electrode 18 and a lower electrode 20, consists of a piezoelectric element 14 having the film thickness in micron unit and a calibration plate 22 fastened to the lower electrode 20, and is fixed on the surface of a pipeline T via a contact medium 24. The waveform of a reflection wave obtained by reflecting an ultrasonic pulse transmitted from the ultrasonic vibrator 12A with the pipeline T and the calibration plate 22 is displayed on a display part 12. The calibration plate 22 includes known plate thickness and material, and calibrates a temporal axis and a signal level of a measuring device including the ultrasonic vibrator 12A by using the waveform and temporal axis of the reflection wave reflected by the calibration plate 22.

Description

本発明は、薄膜状の圧電素子からなる超音波振動子を有し、簡単な手段で該超音波振動子の校正を可能にした超音波計測装置及びその校正方法に関する。   The present invention relates to an ultrasonic measurement apparatus having an ultrasonic transducer composed of a thin film piezoelectric element, and capable of calibrating the ultrasonic transducer with simple means, and a calibration method thereof.

発電プラントなどの配管の傷や減肉状況を検査する方法として、超音波を用いた検査方法がある。この方法は、超音波を被検体に照射してその反射波を受信し、その波形から傷や減肉状況を把握するものである。超音波を発生させる手段として、圧電効果を有する圧電体が用いられている。即ち、下部電極と上部電極との間に圧電体を挟持した圧電素子からなる超音波振動子を用い、超音波振動子に電圧を付加することで、被検体に超音波を発信するようにしている。   There is an inspection method using ultrasonic waves as a method for inspecting a flaw or a thinning state of a pipe of a power plant or the like. This method irradiates a subject with an ultrasonic wave, receives a reflected wave, and grasps a scratch and a thinning state from the waveform. As a means for generating ultrasonic waves, a piezoelectric body having a piezoelectric effect is used. In other words, an ultrasonic transducer composed of a piezoelectric element having a piezoelectric body sandwiched between a lower electrode and an upper electrode is used, and an ultrasonic wave is transmitted to the subject by applying a voltage to the ultrasonic transducer. Yes.

被検体に発信された超音波は被検体の傷や境界で反射する。その反射波を受信機で受信し、高周波電圧に変換し、該高周波電圧の波形をブラウン管で表示することで、欠陥や減肉の有無,存在位置及び大きさを知ることができる。
超音波振動子は信号レベルの低下や、信号を発信する時間軸のズレ等の経年変化が起るため、感度や時間軸の校正を行う必要がある。肉厚計測を行う超音波振動子の場合、一般的に、計測前後に既知の板厚を有する校正片を計測することで校正している。また,これらの校正は規格などにより,一定期間ごとに実施することが義務付けられている。
The ultrasonic wave transmitted to the subject is reflected at the scratch or boundary of the subject. The reflected wave is received by the receiver, converted into a high-frequency voltage, and the waveform of the high-frequency voltage is displayed with a cathode ray tube, so that it is possible to know the presence / absence, location, and size of defects and thinning.
Ultrasonic transducers must be calibrated for sensitivity and time axis because the signal level decreases and the secular change of the time axis for transmitting signals occurs. In the case of an ultrasonic transducer that performs wall thickness measurement, calibration is generally performed by measuring a calibration piece having a known plate thickness before and after measurement. In addition, these calibrations are required to be performed at regular intervals according to standards.

特許文献1には、超音波を用いた流量計の校正を行う方法が開示されている。流路を流れる被測定流体の流量は、流路を伝搬する超音波の伝搬時間に基づいて算出される。従来は、伝搬時間の計測起点を超音波振動子に入力される駆動信号の入力タイミングとしていた。この場合、駆動信号の入力タイミングから超音波の被測定流体への放出タイミングに至る遅延時間が一定である間は補正可能であるが、この遅延時間に経年変化が出てくれば補正が不可となる。そこで、特許文献1では、遅延時間を定期的に計測し、駆動信号の入力タイミングから超音波が受信部に到達するまでの計測時間txから遅延時間toを減算することで、経年変化が起っても伝搬時間を正確に計測できるようにしている。   Patent Document 1 discloses a method for calibrating a flow meter using ultrasonic waves. The flow rate of the fluid to be measured flowing through the flow path is calculated based on the propagation time of the ultrasonic wave propagating through the flow path. Conventionally, the measurement start point of the propagation time is used as the input timing of the drive signal input to the ultrasonic transducer. In this case, correction is possible as long as the delay time from the input timing of the drive signal to the timing at which the ultrasonic wave is released to the fluid to be measured is constant, but correction is impossible if the delay time changes over time. Become. Therefore, in Patent Document 1, the delay time is measured periodically, and the secular change occurs by subtracting the delay time to from the measurement time tx until the ultrasonic wave reaches the receiving unit from the input timing of the drive signal. However, the propagation time can be measured accurately.

近年、高温耐熱性を有する薄膜状の超音波振動子が開発されている。この超音波振動子は下部電極、上部電極及び圧電体がミクロン単位の薄膜状に形成され、配管などの被検体の表面に貼り付けられる。これによって、1年以上の長期間常時モニタリングすることが可能になる。特許文献2には、かかる薄膜状の超音波振動子が開示されている。   In recent years, thin-film ultrasonic vibrators having high temperature heat resistance have been developed. In this ultrasonic transducer, a lower electrode, an upper electrode, and a piezoelectric body are formed in a thin film form in units of microns, and are attached to the surface of an object such as a pipe. As a result, it becomes possible to constantly monitor for a long period of time of one year or more. Patent Document 2 discloses such a thin-film ultrasonic transducer.

特開2008−164465号公報JP 2008-164465 A 特開2013−098508号公報JP 2013-098508 A

特許文献1に開示された校正手段は、複雑な計測回路及び補正回路を必要とし高コストとなるという問題がある。
また、長期間の高精度な連続モニタリングを実現するためには,校正のために被検体からセンサを外したり再度設置したりする作業により生じる誤差を抑える必要があり,センサは被検体から外さず,常時設置した方がよい。そのため,前述のような、既知の板厚及び材質を有する校正片を用いる校正方法を採用できない。
The calibration means disclosed in Patent Document 1 has a problem that it requires a complicated measurement circuit and a correction circuit and is expensive.
Also, in order to achieve long-term, high-accuracy continuous monitoring, it is necessary to suppress errors caused by the work of removing or re-installing the sensor from the subject for calibration. The sensor must be removed from the subject. , It is better to always install. For this reason, the calibration method using the calibration piece having the known thickness and material as described above cannot be adopted.

本発明は、かかる従来技術の課題に鑑み、薄膜状の超音波振動子の校正を、簡易かつ低コストな手段で被検体に設置したまま可能にすることを目的とする。   An object of the present invention is to make it possible to calibrate a thin-film ultrasonic transducer while it is installed on a subject by simple and low-cost means in view of the problems of the prior art.

本発明の超音波検査装置は、下部電極と上部電極との間に圧電体を挟持してなり、被検体の表面に固定されて被検体に向けて超音波を発信し、被検体で反射した反射波を受信して高周波電圧に変換する薄膜状の超音波振動子と、該高周波電圧の波形を表示する表示部とを有する超音波計測装置に適用される。   The ultrasonic inspection apparatus of the present invention includes a piezoelectric body sandwiched between a lower electrode and an upper electrode, is fixed to the surface of the subject, transmits ultrasonic waves toward the subject, and is reflected by the subject. The present invention is applied to an ultrasonic measurement apparatus having a thin film ultrasonic transducer that receives a reflected wave and converts it into a high-frequency voltage, and a display unit that displays the waveform of the high-frequency voltage.

そして、前記目的を達成するため、既知の板厚及び材質を有して超音波振動子に固定され、超音波振動子から発信される超音波が伝搬する板状の校正部材を備え、該校正部材で反射した超音波の反射波であって、表示部で表示された該反射波の高周波電圧の波形及び時間軸(時間軸上の位置)に係る情報とから超音波振動子を含む計測装置の時間軸と信号レベルを校正するものである。   In order to achieve the above-mentioned object, a plate-like calibration member having a known plate thickness and material and fixed to the ultrasonic transducer and through which the ultrasonic wave transmitted from the ultrasonic transducer propagates is provided. A measuring device including an ultrasonic transducer based on a reflected wave of an ultrasonic wave reflected by a member, and information relating to a waveform of a high-frequency voltage of the reflected wave displayed on the display unit and a time axis (position on the time axis) This calibrates the time axis and signal level.

校正部材を伝搬する超音波の伝搬速度は校正部材の材質によって異なる。本発明では、被検体から反射する反射波の波形及び時間軸と共に、既知の板厚及び材質を有する校正部材から反射する反射波の波形及び時間軸を表示部に表示させる。既知の板厚及び材質を有する校正部材から反射する反射波の波形及び時間軸は既知である。この反射波の波形及び時間軸を用い、既知の波形及び時間軸と被検体の反射波の波形及び時間軸とを比較することで、被検体の板厚検出と同時に、超音波振動子を含む計測装置の校正を行うことができる。   The propagation speed of the ultrasonic wave propagating through the calibration member varies depending on the material of the calibration member. In the present invention, the waveform and time axis of the reflected wave reflected from the calibration member having a known plate thickness and material are displayed on the display unit together with the waveform and time axis of the reflected wave reflected from the subject. The waveform and time axis of the reflected wave reflected from the calibration member having a known plate thickness and material are known. By using the waveform and time axis of this reflected wave and comparing the known waveform and time axis with the waveform and time axis of the reflected wave of the subject, the ultrasonic transducer is included at the same time as detecting the thickness of the subject. Calibration of the measuring device can be performed.

このように、超音波振動子に既知の板厚及び材質を有する校正部材を組み込むだけの簡易かつ低コストな手段で、薄膜状の超音波振動子を配管などの被検体に被着したままで、超音波振動子を含む計測装置の校正が可能となる。また、被検体に対する超音波計測時に、同時に校正を行うことができる。
なお、校正部材は、例えば被検体が高温となる場合や、高温雰囲気に配置される場合、耐熱性材料で構成するとよい。
In this way, with a simple and low-cost means that simply incorporates a calibration member having a known plate thickness and material into the ultrasonic transducer, the thin-film ultrasonic transducer remains attached to the subject such as a pipe. The calibration of the measuring device including the ultrasonic transducer becomes possible. Further, calibration can be performed at the same time as ultrasonic measurement on the subject.
Note that the calibration member may be made of a heat resistant material, for example, when the subject has a high temperature or is placed in a high temperature atmosphere.

また、物質内を伝搬する超音波の速度はその物質の温度によっても異なってくる。そこで、本発明の一実施態様として、被検体及び校正部材の温度を検出する温度センサと、被検体と校正部材との材質及び温度の違いにより生じる被検体と校正部材との超音波伝搬速度の差を相殺する補正手段とをさらに備え、この補正手段で補正された被検体及び校正部材の超音波伝搬速度に基づいて、超音波振動子を含む計測装置の時間軸及び信号レベルを校正するようにすることができる。
これによって、被検体と校正部材の材質や温度環境が異なる場合でも、精度良い校正データを採取できる。
In addition, the speed of the ultrasonic wave propagating through the substance varies depending on the temperature of the substance. Therefore, as one embodiment of the present invention, the temperature sensor for detecting the temperature of the subject and the calibration member, and the ultrasonic propagation velocity between the subject and the calibration member caused by the difference in material and temperature between the subject and the calibration member A correction unit that cancels the difference, and calibrates the time axis and the signal level of the measuring device including the ultrasonic transducer based on the ultrasonic propagation velocity of the subject and the calibration member corrected by the correction unit. Can be.
Thereby, even when the material and temperature environment of the subject and the calibration member are different, accurate calibration data can be collected.

本発明の一実施態様として、校正部材の板厚及び材質を、被検体の反射波と校正部材の反射波とが表示部の時間軸上で重ならない板厚及び材質とすることができる。これによって、被検体に対する超音波計測時に、被検体の反射波及び校正部材の反射波の波形や時間軸を両方とも明瞭に表示できるので、被検体の計測に悪影響を与えない。   As an embodiment of the present invention, the plate thickness and material of the calibration member can be set to a plate thickness and material in which the reflected wave of the subject and the reflected wave of the calibration member do not overlap on the time axis of the display unit. This makes it possible to clearly display both the waveform of the reflected wave of the subject and the reflected wave of the calibration member and the time axis at the time of ultrasonic measurement on the subject, so that the measurement of the subject is not adversely affected.

本発明装置の一実施態様として、校正部材の板厚及び材質を、校正部材の反射波が被検体の反射波の波形及び時間軸の把握を妨げないほど校正部材の反射波の振幅が小さくなる板厚及び材質とすることができる。これによって、被検体に対する超音波計測時に、被検体の反射波及び校正部材の反射波の波形や時間軸を両方とも明瞭に表示できるので、被検体の計測に悪影響を与えない。
校正部材の材質は、例えば、金属又は樹脂を用いることができる。高温雰囲気で樹脂を用いるときは耐熱樹脂を用いる。
As an embodiment of the apparatus of the present invention, the thickness and the material of the calibration member are set such that the amplitude of the reflected wave of the calibration member is so small that the reflected wave of the calibration member does not interfere with the grasp of the waveform and time axis of the reflected wave of the subject. The thickness and material can be used. This makes it possible to clearly display both the waveform of the reflected wave of the subject and the reflected wave of the calibration member and the time axis at the time of ultrasonic measurement on the subject, so that the measurement of the subject is not adversely affected.
As the material of the calibration member, for example, metal or resin can be used. When using a resin in a high temperature atmosphere, a heat resistant resin is used.

また、校正部材の材質を被検体の材質と同一とすれば、被検体を伝搬する超音波の伝搬速度と校正部材を伝搬する超音波の伝搬速度とは同一となる。これによって、表示部に表示部される校正部材の反射波の時間軸上の位置を推定しやすくなる。
例えば、被検体が発電プラントに用いられる配管であり、該配管の材質が低合金鋼、高Cr鋼、ステンレス鋼、Ni基合金等のとき、これらと同一の材料を用いる。
If the material of the calibration member is the same as the material of the subject, the propagation speed of the ultrasonic wave propagating through the subject and the propagation speed of the ultrasonic wave propagating through the calibration member are the same. This makes it easy to estimate the position on the time axis of the reflected wave of the calibration member displayed on the display unit.
For example, when the subject is a pipe used in a power plant, and the material of the pipe is low alloy steel, high Cr steel, stainless steel, Ni-base alloy, etc., the same materials as these are used.

本発明装置の一実施態様として、校正部材を下部電極と被検体との間に配置することができる。これによって、校正部材が上部電極などの配置のじゃまにならず、かつ校正部材と被検体の温度条件をほぼ同一にできる。物質を伝搬する超音波の伝搬速度は、物質の材質だけでなく、温度によっても影響を受ける。本実施態様では、校正部材の温度と被検体の温度をほぼ同一とすることで、表示部に表示される被検体の反射波と校正部材の反射波の時間軸上の位置は、両者の板厚で一義的に決まる。そのため、両者の反射波の重なりをなくすように表示させることが容易になる。   As one embodiment of the apparatus of the present invention, the calibration member can be disposed between the lower electrode and the subject. As a result, the calibration member does not interfere with the arrangement of the upper electrode and the temperature conditions of the calibration member and the subject can be made substantially the same. The propagation speed of ultrasonic waves propagating a substance is affected not only by the material of the substance but also by the temperature. In this embodiment, by making the temperature of the calibration member and the temperature of the subject substantially the same, the position of the reflected wave of the subject displayed on the display unit and the reflected wave of the calibration member on the time axis is determined by both plates. It is uniquely determined by the thickness. Therefore, it becomes easy to display so as to eliminate the overlapping of the reflected waves of both.

本発明装置の一実施態様として、校正部材を上部電極の表面に固定することができる。これによって、圧電素子と被検体との間に校正部材がなくなるので、超音波が被検体に達するまでの超音波の減衰を低減できる。そのため、被検体で反射される反射波を高感度で計測できる。   As one embodiment of the apparatus of the present invention, the calibration member can be fixed to the surface of the upper electrode. This eliminates the calibration member between the piezoelectric element and the subject, so that attenuation of the ultrasonic wave until the ultrasonic wave reaches the subject can be reduced. Therefore, the reflected wave reflected from the subject can be measured with high sensitivity.

本発明装置の一実施態様として、下部電極を既知の板厚及び材質を有する板状の校正部材で構成することができる。このように、下部電極を校正部材として兼用させることで、別途校正部材を設ける必要がなくなり、超音波振動子の構成を簡素化かつ低コスト化できる。
この場合、下部電極は校正部材の反射波と被検体の反射波とが表示部の時間軸上で重ならない厚さ及び材質を有しているとよい。これによって、被検体の超音波計測時に、被検体の反射波及び校正部材の反射波の波形や時間軸を両方とも明瞭に把握できる。これによって、被検体の計測に悪影響を与えることなく、被検体の傷や板厚を正確に計測できる。
As one embodiment of the apparatus of the present invention, the lower electrode can be constituted by a plate-like calibration member having a known plate thickness and material. Thus, by using the lower electrode also as a calibration member, it is not necessary to provide a separate calibration member, and the configuration of the ultrasonic transducer can be simplified and reduced in cost.
In this case, the lower electrode may have a thickness and a material so that the reflected wave of the calibration member and the reflected wave of the subject do not overlap on the time axis of the display unit. This makes it possible to clearly grasp both the waveform of the reflected wave of the subject and the reflected wave of the calibration member and the time axis during ultrasonic measurement of the subject. As a result, it is possible to accurately measure the scratch and thickness of the subject without adversely affecting the measurement of the subject.

本発明の超音波計測装置の校正方法は、下部電極と上部電極との間に圧電体を挟持してなり、被検体の表面に固定されて被検体に向けて超音波を発信し、被検体で反射した反射波を受信して高周波電圧に変換する超音波振動子と、高周波電圧の波形を表示する表示部とを有する超音波計測装置に適用されるものである。   The ultrasonic measurement apparatus calibration method of the present invention includes a piezoelectric body sandwiched between a lower electrode and an upper electrode, is fixed to the surface of the subject, transmits ultrasonic waves toward the subject, The present invention is applied to an ultrasonic measurement apparatus having an ultrasonic transducer that receives a reflected wave reflected by the laser beam and converts it into a high-frequency voltage and a display unit that displays a waveform of the high-frequency voltage.

本発明方法は、前記目的を達成するため、被検体及び既知の板厚及び材質を有して超音波振動子に固定された板状の校正部材に超音波を伝搬させる第1工程と、被検体及び校正部材で夫々反射した超音波の反射波を超音波振動子で受信し、高周波電圧に変換する第2工程と、被検体及び校正部材の高周波電圧の波形を表示部に表示させ、校正部材の高周波電圧の波形及び時間軸に係る情報から、超音波振動子を含む計測装置の時間軸及び信号レベルを校正する第3工程とを含むものである。   In order to achieve the above object, the method of the present invention includes a first step of propagating ultrasonic waves to a subject and a plate-like calibration member having a known plate thickness and material and fixed to the ultrasonic transducer, The second step of receiving the reflected ultrasonic waves reflected by the specimen and the calibration member by the ultrasonic transducer and converting them to a high frequency voltage, and displaying the waveform of the high frequency voltage of the subject and the calibration member on the display unit for calibration And a third step of calibrating the time axis and the signal level of the measuring device including the ultrasonic transducer from the information on the waveform of the high frequency voltage of the member and the time axis.

本発明方法では、超音波振動子から被検体に超音波を照射した時、表示部に表示される被検体からの反射波の波形及び時間軸と、既知の板厚及び材質を有する校正部材からの反射波の波形及び時間軸を比較することで、被検体の板厚の計測と同時に、超音波振動子を含む計測装置の校正を行うことができる。
従って、超音波振動子に既知の板厚及び材質を有する校正部材を組み込むだけの簡易かつ低コストな手段で、超音波振動子を配管などの被検体に被着したままで、被検体から反射する反射波の校正が可能となる。
In the method of the present invention, when the subject is irradiated with ultrasonic waves from the ultrasonic transducer, the waveform and time axis of the reflected wave displayed from the subject displayed on the display unit, and a calibration member having a known plate thickness and material are used. By comparing the waveform of the reflected wave and the time axis, the measurement apparatus including the ultrasonic transducer can be calibrated simultaneously with the measurement of the thickness of the subject.
Therefore, the ultrasonic transducer can be reflected from the subject while being attached to the subject such as a pipe with a simple and low-cost means by simply incorporating a calibration member having a known thickness and material into the ultrasonic transducer. Calibration of reflected waves is possible.

本発明方法の一実施態様として、被検体及び校正部材の温度を検出する温度検出工程と、被検体と校正部材との材質及び温度の違いにより生じる被検体と校正部材との超音波伝搬速度の差を補正する補正工程とをさらに含み、前記第3工程では、補正工程で補正された被検体及び校正部材の超音波伝搬速度に基づいて、超音波振動子を含む計測装置の時間軸及び信号レベルを校正することができる。
これによって、被検体と校正部材の材質や温度環境が異なる場合でも、精度良い校正データを採取できる。
As one embodiment of the method of the present invention, the temperature detection step of detecting the temperature of the subject and the calibration member, and the ultrasonic propagation speed of the subject and the calibration member caused by the difference in material and temperature between the subject and the calibration member A correction step for correcting the difference, and in the third step, based on the ultrasonic propagation velocity of the subject and the calibration member corrected in the correction step, the time axis and signal of the measuring device including the ultrasonic transducer The level can be calibrated.
Thereby, even when the material and temperature environment of the subject and the calibration member are different, accurate calibration data can be collected.

本発明によれば、薄膜状の超音波振動子に校正部材を組み込むことで、超音波振動子を含む計測装置を、簡易かつ低コストで被検体に設置したまま可能となる。また、被検体の計測と同時に校正を行うことができる。   According to the present invention, by incorporating a calibration member into a thin-film ultrasonic transducer, a measurement apparatus including the ultrasonic transducer can be easily and inexpensively installed on the subject. Further, calibration can be performed simultaneously with measurement of the subject.

本発明の第1実施形態に係る超音波計測装置の構成図である。1 is a configuration diagram of an ultrasonic measurement apparatus according to a first embodiment of the present invention. 前記超音波計測装置の超音波振動子の断面図である。It is sectional drawing of the ultrasonic transducer | vibrator of the said ultrasonic measurement apparatus. 配管に固定された前記超音波振動子の斜視図である。It is a perspective view of the above-mentioned ultrasonic vibrator fixed to piping. 前記超音波計測装置による処理フローを示すフロー図である。It is a flowchart which shows the processing flow by the said ultrasonic measuring device. (A)は従来の超音波振動子で計測した反射波の波形を示し、(B)及び(C)は第1実施形態の超音波振動子で計測した反射波の波形を示す線図である。(A) shows the waveform of the reflected wave measured by the conventional ultrasonic transducer, and (B) and (C) are diagrams showing the waveform of the reflected wave measured by the ultrasonic transducer of the first embodiment. . 前記超音波振動子の校正時期を示すフロー図である。It is a flowchart which shows the calibration time of the said ultrasonic transducer | vibrator. 本発明の第2実施形態に係る超音波振動子の断面図である。It is sectional drawing of the ultrasonic transducer | vibrator which concerns on 2nd Embodiment of this invention. (A)及び(B)は第2実施形態の超音波振動子で計測した反射波の波形を示す線図である。(A) And (B) is a diagram which shows the waveform of the reflected wave measured with the ultrasonic transducer | vibrator of 2nd Embodiment. 本発明の第3実施形態に係る超音波振動子の断面図である。It is sectional drawing of the ultrasonic transducer | vibrator which concerns on 3rd Embodiment of this invention. 第3実施形態の超音波振動子で計測した反射波の波形を示す線図である。It is a diagram which shows the waveform of the reflected wave measured with the ultrasonic transducer | vibrator of 3rd Embodiment. 温度と超音波伝搬速度との関係を示す線図である。It is a diagram which shows the relationship between temperature and an ultrasonic wave propagation velocity.

以下、本発明を図に示した実施形態を用いて詳細に説明する。但し、この実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではない。   Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in this embodiment are not intended to limit the scope of the present invention to that unless otherwise specified.

(実施形態1)
次に、本発明の第1実施形態を図1〜図6に基づいて説明する。本実施形態は、発電プラントに用いられた配管の傷や減肉状況を検査する例である。図1は、本実施形態に係る超音波計測装置10の構成を示す。図1において、被検体である配管Tの表面に超音波振動子12Aが固定されている。超音波振動子12Aは、圧電素子14と圧電素子14に固定された校正板22とで構成されている。圧電素子14は、四角形を有した膜状の圧電体16と、圧電体16の上面に被着された銀製の膜状の上部電極18と、圧電体16より大きな面積を有し、圧電体16の下面に被着された四角形の膜状の下部電極20とで構成されている。
(Embodiment 1)
Next, a first embodiment of the present invention will be described with reference to FIGS. The present embodiment is an example of inspecting a flaw or a thinning state of piping used in a power plant. FIG. 1 shows a configuration of an ultrasonic measurement apparatus 10 according to the present embodiment. In FIG. 1, an ultrasonic transducer 12A is fixed to the surface of a pipe T that is a subject. The ultrasonic transducer 12 </ b> A includes a piezoelectric element 14 and a calibration plate 22 fixed to the piezoelectric element 14. The piezoelectric element 14 has a film-shaped piezoelectric body 16 having a quadrangular shape, a silver film-shaped upper electrode 18 deposited on the upper surface of the piezoelectric body 16, and a larger area than the piezoelectric body 16. And a lower electrode 20 in the form of a square film deposited on the lower surface of the substrate.

圧電体16はセラミックス製で下部電極20の表面に焼付けにより固着されている。下部電極20はステンレス鋼で構成されている。圧電体16、上部電極18及び下部電極20は、夫々ミクロン単位の膜厚を有している。下部電極20の下面には校正板22が固着されている。校正板22は、下部電極20と同一形及び同一面積を有し、配管Tと同一の材質で構成されているとよい。例えば、配管Tが低合金鋼、高Cr鋼、ステンレス鋼、Ni基合金等で構成されているとき、校正板22もこれらの材質で構成される。   The piezoelectric body 16 is made of ceramic and fixed to the surface of the lower electrode 20 by baking. The lower electrode 20 is made of stainless steel. The piezoelectric body 16, the upper electrode 18, and the lower electrode 20 each have a thickness in units of microns. A calibration plate 22 is fixed to the lower surface of the lower electrode 20. The calibration plate 22 preferably has the same shape and the same area as the lower electrode 20 and is made of the same material as the pipe T. For example, when the pipe T is made of low alloy steel, high Cr steel, stainless steel, Ni-base alloy or the like, the calibration plate 22 is also made of these materials.

図2に示すように、超音波振動子12Aは、校正板22が耐熱性の接触媒質24に接触した状態で、接触媒質24を介して配管Tの表面に固定されている。超音波振動子12Aを配管Tの表面に固定する固定方法は、例えば、超音波振動子12Aを粘着性のフィルムで覆うことで配管Tの表面に固定する。あるいは接着性を有する接触媒質24を用いて配管Tに接着するようにする。
図3に示すように、超音波振動子12Aは、傷の有無や減肉状況の検査を必要とする配管Tの領域に、複数箇所に亘って固定される。
As shown in FIG. 2, the ultrasonic transducer 12 </ b> A is fixed to the surface of the pipe T through the contact medium 24 with the calibration plate 22 in contact with the heat-resistant contact medium 24. For example, the ultrasonic transducer 12A is fixed to the surface of the pipe T by covering the ultrasonic transducer 12A with an adhesive film. Or it is made to adhere to piping T using contact medium 24 which has adhesiveness.
As shown in FIG. 3, the ultrasonic transducer 12 </ b> A is fixed over a plurality of locations in a region of the pipe T that requires inspection for the presence or absence of a flaw and a thinning state.

上部電極18及び下部電極20は、夫々導線26及び28で探傷器本体30に接続されている。導線26及び28はコード29に束ねられている。超音波振動子12Aから超音波パルスが配管T及び校正板22に発信される。超音波は音響特性の異なる媒体間で反射するという特性がある。そのため、超音波振動子12Aから発信された超音波パルスは、下部電極20、校正板22及び配管Tの表面及び裏面で反射する。各反射波は超音波振動子12Aで受信され高周波電圧に変換される。探傷器本体30は表示部32を有している。前記高周波電圧は導線26及び28を介して表示部32に送られ、表示部32に横軸を時間軸とした該高周波電圧の波形が表示される。   The upper electrode 18 and the lower electrode 20 are connected to the flaw detector body 30 by conducting wires 26 and 28, respectively. The conducting wires 26 and 28 are bundled with a cord 29. An ultrasonic pulse is transmitted from the ultrasonic transducer 12 </ b> A to the pipe T and the calibration plate 22. Ultrasonic waves have a characteristic of reflecting between media having different acoustic characteristics. Therefore, the ultrasonic pulse transmitted from the ultrasonic transducer 12 </ b> A is reflected by the lower electrode 20, the calibration plate 22, and the front and back surfaces of the pipe T. Each reflected wave is received by the ultrasonic transducer 12A and converted into a high-frequency voltage. The flaw detector main body 30 has a display unit 32. The high-frequency voltage is sent to the display unit 32 via the conductors 26 and 28, and the waveform of the high-frequency voltage is displayed on the display unit 32 with the horizontal axis as the time axis.

超音波振動子12Aが固定された領域に隣接した配管Tの表面には熱電対34が貼設されている。熱電対34で検出した温度は、ケーブル36を介して探傷器本体30に送信される。校正板22を伝搬する超音波パルスの伝搬速度は、校正板22の板厚及び材質のみならず、校正板22の温度で決められる。図11は、ある材質の金属を伝搬する超音波の温度と伝搬速度との関係を示す線図の一例である。   A thermocouple 34 is attached to the surface of the pipe T adjacent to the region where the ultrasonic transducer 12A is fixed. The temperature detected by the thermocouple 34 is transmitted to the flaw detector main body 30 via the cable 36. The propagation speed of the ultrasonic pulse propagating through the calibration plate 22 is determined not only by the thickness and material of the calibration plate 22 but also by the temperature of the calibration plate 22. FIG. 11 is an example of a diagram showing the relationship between the temperature and propagation speed of an ultrasonic wave propagating through a metal of a certain material.

本実施形態では、校正板22と配管Tとは隣接配置されているので、校正板22の温度は熱電対34で検出した配管Tの温度と同等とみなすことができる。
図1に示すように、熱電対34で検出した検出信号はケーブル36を介して探傷器本体30に内蔵された伝搬速度算出部38に入力される。伝搬速算出部38では、検出した検出信号と、配管T及び校正板22の材質から配管T及び校正板22を伝搬する超音波の伝搬速度を算出する。補正部40では、配管Tと校正板22との材質及び温度の違いにより生じる配管Tと校正板22との超音波伝搬速度の差を相殺する補正処理を行う。
In this embodiment, since the calibration plate 22 and the pipe T are disposed adjacent to each other, the temperature of the calibration plate 22 can be regarded as equivalent to the temperature of the pipe T detected by the thermocouple 34.
As shown in FIG. 1, the detection signal detected by the thermocouple 34 is input via a cable 36 to a propagation velocity calculation unit 38 built in the flaw detector main body 30. The propagation speed calculation unit 38 calculates the propagation speed of the ultrasonic wave that propagates through the pipe T and the calibration plate 22 from the detected detection signal and the material of the pipe T and the calibration plate 22. The correction unit 40 performs a correction process that cancels out the difference in ultrasonic propagation speed between the pipe T and the calibration plate 22 that is caused by the difference in material and temperature between the pipe T and the calibration plate 22.

本実施形態では、配管T及び校正板22の温度条件を同一とみなしているので、温度の違いを考慮する必要はない。さらに、配管T及び校正板22の材質が同じであるならば、補正部40による補正処理を行う必要はない。従って、補正部40は不要となる。
補正部40による補正処理を行った後、出力部42に配管Tの減肉状況の計測結果が出力される。表示部32に表示された波形及び時間軸に関するデータ、及び出力部42に出力されたデータは記憶部44に記憶される。
In the present embodiment, since the temperature conditions of the pipe T and the calibration plate 22 are regarded as the same, it is not necessary to consider the difference in temperature. Furthermore, if the materials of the pipe T and the calibration plate 22 are the same, it is not necessary to perform correction processing by the correction unit 40. Therefore, the correction unit 40 is not necessary.
After performing the correction process by the correction unit 40, the measurement result of the thinning state of the pipe T is output to the output unit 42. Data relating to the waveform and time axis displayed on the display unit 32 and data output to the output unit 42 are stored in the storage unit 44.

この処理フローを図4に示す。図4において、熱電対34で校正板22に隣接した配管Tの表面温度を検出する(S10)。この検出温度は校正板22の温度とみなすことができる。次に、必要な場合、補正部40による補正処理を行い(S14)、その後、配管Tの減肉状況の計測と校正とが同時に行われる(S16)。   This processing flow is shown in FIG. In FIG. 4, the surface temperature of the pipe T adjacent to the calibration plate 22 is detected by the thermocouple 34 (S10). This detected temperature can be regarded as the temperature of the calibration plate 22. Next, if necessary, correction processing by the correction unit 40 is performed (S14), and then the measurement of the thinning state of the pipe T and calibration are performed simultaneously (S16).

図5は、表示部32に表示された各反射波の高周波電圧の波形を示している。図中、横軸が時間軸である。図5(A)は、比較例として超音波振動子12Aに校正板22を組み込まない場合の前記高周波電圧の波形を示している。図中、波形Sは配管Tの表面で反射した反射波の波形であり、B1及びB2は配管Tの裏面で1回以上反射した多重反射波の波形である。h1は配管Tの肉厚を示している。
図5(B)は、本実施形態の超音波振動子12Aで受信した反射波を高周波電圧に変換した波形を示している。図中、S1は校正板22の表面で反射した反射波の波形であり、S2、S3及びS4は、校正板22の裏面で1回以上反射した多重反射波の波形である。h2は校正板22の板厚を示している。
FIG. 5 shows the waveform of the high-frequency voltage of each reflected wave displayed on the display unit 32. In the figure, the horizontal axis is the time axis. FIG. 5A shows the waveform of the high-frequency voltage when the calibration plate 22 is not incorporated in the ultrasonic transducer 12A as a comparative example. In the figure, a waveform S is a waveform of a reflected wave reflected on the surface of the pipe T, and B1 and B2 are waveforms of a multiple reflected wave reflected at least once on the back surface of the pipe T. h1 indicates the thickness of the pipe T.
FIG. 5B shows a waveform obtained by converting the reflected wave received by the ultrasonic transducer 12A of this embodiment into a high-frequency voltage. In the figure, S1 is the waveform of the reflected wave reflected on the surface of the calibration plate 22, and S2, S3 and S4 are the waveforms of the multiple reflected wave reflected at least once on the back surface of the calibration plate 22. h2 indicates the thickness of the calibration plate 22.

なお、図5(C)も、本実施形態の超音波振動子12Aで受信した反射波を高周波電圧に変換した波形であるが、図5(B)は、板厚が厚く、かつ超音波の伝搬速度が遅い材質の校正板を用いた場合であり、これに対し、図5(C)は、板厚が薄く、かつ超音波の伝搬速度が速い校正板を用いた場合である。
本実施形態では、配管Tで反射した反射波S、B1、B2と校正板22で反射した反射波S1〜S4とを比較し、両者の波形及び時間軸の差異に基づき、前記処理工程を経て、配管Tの減肉状況の計測を行う。校正は計測と同時になされる。
FIG. 5C is also a waveform obtained by converting the reflected wave received by the ultrasonic transducer 12A of the present embodiment into a high-frequency voltage, but FIG. 5B is a plate having a large thickness and an ultrasonic wave. This is a case where a calibration plate made of a material having a low propagation speed is used. On the other hand, FIG. 5C shows a case where a calibration plate having a thin plate thickness and a high ultrasonic propagation speed is used.
In this embodiment, the reflected waves S, B1, and B2 reflected by the pipe T are compared with the reflected waves S1 to S4 reflected by the calibration plate 22, and based on the difference between the waveforms and the time axis, the processing steps are performed. Measure the thickness reduction of the pipe T. Calibration is done at the same time as the measurement.

図6は、配管Tに固定された超音波振動子12Aの校正作業を行う時期を示している。まず、校正板22が組み込まれた超音波振動子12Aを配管Tに固定する(S20)。次に、超音波振動子12Aの経時変化の校正を行った後(S22)、配管Tの傷及び減肉状況の検査を定期的に行う(S24及びS26)。次に、前回の校正(S22)から一定期間Pが過ぎたら、超音波振動子12Aの経時変化の校正を行う(S28)。期間Pは例えば6か月〜1年とする。こうして発電プラントの運転を継続しながら配管Tの傷や減肉状況を検査し、配管Tの寿命が来たら配管Tを廃却する。   FIG. 6 shows the time when the ultrasonic transducer 12A fixed to the pipe T is calibrated. First, the ultrasonic transducer 12A in which the calibration plate 22 is incorporated is fixed to the pipe T (S20). Next, after calibrating the change over time of the ultrasonic transducer 12A (S22), the pipe T is periodically inspected for scratches and thinning (S24 and S26). Next, when the fixed period P has passed since the previous calibration (S22), the temporal change of the ultrasonic transducer 12A is calibrated (S28). The period P is, for example, 6 months to 1 year. In this way, while continuing the operation of the power plant, the pipe T is inspected for scratches and thinning, and when the pipe T reaches the end of its life, the pipe T is discarded.

本実施形態によれば、超音波振動子12Aに既知の板厚及び材質を有する校正部材22を組み込むだけの簡易かつ低コストな手段で、超音波振動子12Aを配管Tに被着したままの状態で、薄膜状の超音波振動子12Aの校正が可能となる。また、配管Tの超音波検査と同時に、配管Tの反射波の校正を行うことができる。   According to the present embodiment, the ultrasonic transducer 12A remains attached to the pipe T with simple and low-cost means by simply incorporating the calibration member 22 having a known plate thickness and material into the ultrasonic transducer 12A. In this state, the thin film ultrasonic transducer 12A can be calibrated. In addition, the reflected wave of the pipe T can be calibrated simultaneously with the ultrasonic inspection of the pipe T.

また、図5(B)及び(C)に示すように、本実施形態では、校正板22の温度条件を考慮しつつ、校正板22の板厚及び材質を、配管Tの反射波の波形と校正板22の反射波の波形とが重ならないか、あるいは配管Tの反射波の波形及び時間軸の把握を妨げないように選定している。これによって、配管Tの傷や減肉状況の検査に悪影響を与えることなく、これらを正確に把握できると共に、超音波振動子12Aの経時変化を正確に把握できる。   5B and 5C, in the present embodiment, the thickness and material of the calibration plate 22 are changed to the waveform of the reflected wave of the pipe T while considering the temperature condition of the calibration plate 22. The waveform is selected so as not to overlap with the waveform of the reflected wave of the calibration plate 22 or to prevent grasping of the waveform of the reflected wave of the pipe T and the time axis. Accordingly, these can be accurately grasped without adversely affecting the inspection of the pipe T and the thinning state, and the change with time of the ultrasonic transducer 12A can be accurately grasped.

また、校正板22及び配管Tの温度及び材質を同一とすれば、校正板22を伝搬する超音波パルスの伝搬速度と配管Tを伝搬する超音波パルスの伝搬速度とが同一となる。そのため、表示部32に表示される校正板22の反射波の時間軸上の位置が推定しやすくなり、配管Tの反射波と重ならない位置に表示するのが容易になる。
また、校正板22を下部電極20と配管Tとの間に配置しているので、校正板22が上部電極18の配置にじゃまにならない。さらに、校正板22と配管Tとの温度条件を同一としているので、表示部32に表示される配管Tの反射波と校正部材22の反射波の時間軸上の位置は、両者の板厚で一義的に決まり、両者の反射波の重なりをなくすことがさらに容易になる。
Further, if the temperature and material of the calibration plate 22 and the pipe T are the same, the propagation speed of the ultrasonic pulse propagating through the calibration plate 22 and the propagation speed of the ultrasonic pulse propagating through the pipe T are the same. Therefore, the position on the time axis of the reflected wave of the calibration plate 22 displayed on the display unit 32 can be easily estimated, and the position can be easily displayed at a position that does not overlap with the reflected wave of the pipe T.
Further, since the calibration plate 22 is arranged between the lower electrode 20 and the pipe T, the calibration plate 22 does not interfere with the arrangement of the upper electrode 18. Furthermore, since the temperature conditions of the calibration plate 22 and the pipe T are the same, the position of the reflected wave of the pipe T displayed on the display unit 32 and the reflected wave of the calibration member 22 on the time axis is the thickness of both. It is determined uniquely, and it becomes easier to eliminate the overlapping of the reflected waves of both.

以下、校正板22の具体的構成の例を示す。
(1)反射波S2が反射波B1より後に現れるケース(図5(B)のケース)
配管Tが低合金鋼(伝搬速度5,900m/秒)で板厚が10mmの場合、
・校正板22が低合金鋼のとき、校正板22の板厚を10mmより厚くする。
・校正板22が耐熱樹脂(伝搬速度2,360mm/秒)のとき、校正板22の板厚を4mmより厚くする。
(2)反射波S2が反射波B1より前に現れるケース(図5(C)のケース)
配管Tが低合金鋼(伝搬速度5,900m/秒)で板厚が10mmの場合、
・校正板22が低合金鋼のとき、校正板22の板厚を5mmより薄くする。
・校正板22が耐熱樹脂(伝搬速度2,360mm/秒)のとき、校正板22の板厚を2mmより薄くする。
Hereinafter, an example of a specific configuration of the calibration plate 22 is shown.
(1) Case in which reflected wave S2 appears after reflected wave B1 (case in FIG. 5B)
When the pipe T is a low alloy steel (propagation speed 5,900 m / sec) and the plate thickness is 10 mm,
When the calibration plate 22 is low alloy steel, the calibration plate 22 is made thicker than 10 mm.
When the calibration plate 22 is heat resistant resin (propagation speed 2,360 mm / second), the calibration plate 22 is made thicker than 4 mm.
(2) Case in which reflected wave S2 appears before reflected wave B1 (case in FIG. 5C)
When the pipe T is a low alloy steel (propagation speed 5,900 m / sec) and the plate thickness is 10 mm,
When the calibration plate 22 is low alloy steel, the calibration plate 22 is made thinner than 5 mm.
When the calibration plate 22 is heat resistant resin (propagation speed 2,360 mm / second), the thickness of the calibration plate 22 is made thinner than 2 mm.

(実施形態2)
次に、本発明の第2実施形態を図7及び図8に基づいて説明する。図7において、本実施形態は、超音波振動子12Bに組み込まれる校正板22が、上部電極18の上面に固定されている例である。その他の構成は前記第1実施形態と同一である。
図8(A)は、板厚が厚く、かつ超音波の伝搬速度が遅い材質の校正板を用いた場合であり、図8(B)は、板厚が薄く、かつ超音波の伝搬速度が速い校正板を用いた場合である。図8(A)及び(B)において、BS1は圧電素子14に最も近い校正板22の底面で反射した反射波の波形であり、BS2、BS3及びBS4は校正板22の表面で1回以上反射した多重反射波である。
(Embodiment 2)
Next, a second embodiment of the present invention will be described with reference to FIGS. In FIG. 7, the present embodiment is an example in which a calibration plate 22 incorporated in the ultrasonic transducer 12 </ b> B is fixed to the upper surface of the upper electrode 18. Other configurations are the same as those of the first embodiment.
FIG. 8A shows a case where a calibration plate made of a material having a large plate thickness and a low ultrasonic propagation speed is used, and FIG. 8B shows a thin plate thickness and an ultrasonic propagation speed. This is the case where a fast calibration plate is used. 8A and 8B, BS1 is a waveform of a reflected wave reflected from the bottom surface of the calibration plate 22 closest to the piezoelectric element 14, and BS2, BS3, and BS4 are reflected at the surface of the calibration plate 22 one or more times. Multiple reflected waves.

本実施形態においても、校正板22の板厚及び材質は、校正板22の温度を考慮しながら、配管Tの反射波の波形と重ならないか、あるいは重なっても配管Tの反射波を識別できるように波形が十分小さくなる板厚及び材質に選定されている。   Also in the present embodiment, the thickness and material of the calibration plate 22 do not overlap with the waveform of the reflected wave of the pipe T, or the reflected wave of the pipe T can be identified even when overlapping with the waveform of the reflected wave of the pipe T. Thus, the plate thickness and material are selected so that the waveform is sufficiently small.

本実施形態によれば、圧電素子14と配管Tとの間に校正板22がないため、超音波振動子12Bから照射された超音波パルスが校正板22で減衰されず、かつ校正板22の境界面で反射されることなく、配管Tに伝搬するので、配管Tの傷や減肉状況の計測感度を高く維持できる。   According to the present embodiment, since there is no calibration plate 22 between the piezoelectric element 14 and the pipe T, the ultrasonic pulse irradiated from the ultrasonic transducer 12B is not attenuated by the calibration plate 22 and the calibration plate 22 Since it propagates to the pipe T without being reflected at the boundary surface, it is possible to maintain a high measurement sensitivity for the damage to the pipe T and the thickness reduction condition.

(実施形態3)
次に、本発明の第3実施形態を図9及び図10に基づいて説明する。図9において、本実施形態の超音波振動子12Cでは、下部電極20は校正板を兼用している。そのため、下部電極20はミクロン単位以上の板厚(例えば3mm以上)を有する板状体をなし、配管Tと同一材質で構成されている。
また、下部電極20の板厚は、配管Tの想定される減肉の計測範囲に多重反射波が重ならないように、配管Tの肉厚と比べて小さくされている。その他の構成は、第1実施形態と同一である。
(Embodiment 3)
Next, a third embodiment of the present invention will be described with reference to FIGS. In FIG. 9, in the ultrasonic transducer 12C of this embodiment, the lower electrode 20 also serves as a calibration plate. Therefore, the lower electrode 20 is a plate-like body having a plate thickness of 3 microns or more (for example, 3 mm or more) and is made of the same material as the pipe T.
Further, the plate thickness of the lower electrode 20 is made smaller than the wall thickness of the pipe T so that multiple reflected waves do not overlap with the expected thickness reduction range of the pipe T. Other configurations are the same as those of the first embodiment.

本実施形態によれば、下部電極20を校正板22として兼用させることで、超音波振動子12Cの構成を簡素化かつ低コスト化できる。
なお、下部電極20の板厚が厚くなることで、配管Tの表面への倣い性が低下する懸念がある。そのため、超音波振動子12Cの製造時、予め下部電極20の形状を配管Tの形状に倣う形状としておくとよい。
According to the present embodiment, by using the lower electrode 20 as the calibration plate 22, the configuration of the ultrasonic transducer 12C can be simplified and reduced in cost.
In addition, there exists a possibility that the copying property to the surface of the piping T may fall because the plate | board thickness of the lower electrode 20 becomes thick. Therefore, at the time of manufacturing the ultrasonic transducer 12C, the shape of the lower electrode 20 may be set to follow the shape of the pipe T in advance.

本発明によれば、薄膜状の超音波振動子の経時変化に対し、被検体の計測値の校正が、簡易かつ低コストな手段で、被検体に設置したまま、被検体の計測と同時に可能となる。   According to the present invention, the measurement value of the subject can be calibrated simultaneously with the measurement of the subject while being installed on the subject with a simple and low-cost means with respect to the temporal change of the thin-film ultrasonic transducer. It becomes.

10 超音波計測装置
12A、12B、12C 超音波振動子
14 圧電素子
16 圧電体
18 上部電極
20 下部電極
22 校正板
24 接触媒質
26,28 導線
29 コード
30、50 探傷器本体
32 表示部
34 熱電対
36 ケーブル
38 伝搬速算出部
40 補正部
42 出力部
44 記憶部
B1、B2、BS1、BS2、BS3、BS4、S、S1、S2、S3、SS1、SS2、SS3、SS4 反射波
T 配管(被検体)
DESCRIPTION OF SYMBOLS 10 Ultrasonic measuring device 12A, 12B, 12C Ultrasonic vibrator 14 Piezoelectric element 16 Piezoelectric body 18 Upper electrode 20 Lower electrode 22 Calibration board 24 Contact medium 26, 28 Conductor 29 Code 30, 50 Flaw detector main body 32 Display part 34 Thermocouple 36 Cable 38 Propagation speed calculation unit 40 Correction unit 42 Output unit 44 Storage unit B1, B2, BS1, BS2, BS3, BS4, S, S1, S2, S3, SS1, SS2, SS3, SS4 Reflected wave T Piping (subject) )

Claims (10)

下部電極と上部電極との間に圧電体を挟持してなり、被検体の表面に固定されて前記被検体に向けて超音波を発信し、前記被検体で反射した反射波を受信して高周波電圧に変換する薄膜状の超音波振動子と、前記高周波電圧の波形を表示する表示部とを有する超音波計測装置において、
既知の板厚及び材質を有して前記超音波振動子に固定され、前記超音波振動子から発信された超音波が伝搬する板状の校正部材とを備え、
前記校正部材で反射した超音波の反射波であって、前記表示部で表示された該反射波の高周波電圧の波形及び時間軸に係る情報から、前記超音波振動子を含む計測装置の時間軸及び信号レベルを校正することを特徴とする超音波計測装置。
A piezoelectric body is sandwiched between the lower electrode and the upper electrode, is fixed to the surface of the subject, transmits ultrasonic waves toward the subject, receives reflected waves reflected by the subject, and receives high-frequency waves. In an ultrasonic measurement device having a thin-film ultrasonic transducer that converts voltage, and a display unit that displays the waveform of the high-frequency voltage,
A plate-shaped calibration member that has a known plate thickness and material, is fixed to the ultrasonic transducer, and propagates ultrasonic waves transmitted from the ultrasonic transducer;
It is a reflected wave of the ultrasonic wave reflected by the calibration member, and the time axis of the measuring device including the ultrasonic transducer is obtained from the information on the waveform and time axis of the high frequency voltage of the reflected wave displayed on the display unit. And an ultrasonic measurement apparatus calibrating the signal level.
前記被検体及び前記校正部材の温度を検出する温度センサと、
前記被検体と前記校正部材との材質及び温度の違いにより生じる前記被検体と前記校正部材との超音波伝搬速度の差を相殺する補正手段とをさらに備え、
前記補正手段で補正された前記被検体及び前記校正部材の超音波伝搬速度に基づいて、前記超音波振動子を含む計測装置の時間軸及び信号レベルを校正することを特徴とする請求項1に記載の超音波計測装置。
A temperature sensor for detecting temperatures of the subject and the calibration member;
Correction means for canceling out a difference in ultrasonic propagation speed between the subject and the calibration member caused by a difference in material and temperature between the subject and the calibration member;
The time axis and signal level of the measuring device including the ultrasonic transducer are calibrated based on the ultrasonic propagation velocity of the subject and the calibration member corrected by the correction unit. The ultrasonic measurement apparatus described.
前記校正部材の板厚及び材質を、前記被検体の反射波と前記校正部材の反射波とが前記表示部の時間軸上で重ならない板厚及び材質とすることを特徴とする請求項1に記載の超音波計測装置。   2. The plate thickness and material of the calibration member are set such that the reflected wave of the subject and the reflected wave of the calibration member do not overlap on the time axis of the display unit. The ultrasonic measurement apparatus described. 前記校正部材の板厚及び材質を、前記校正部材の反射波が前記被検体の反射波の波形及び時間軸の把握を妨げないほど前記校正部材の反射波の振幅が小さくなる板厚及び材質とすることを特徴とする請求項1に記載の超音波計測装置。   The plate thickness and material of the calibration member, the plate thickness and material of which the amplitude of the reflected wave of the calibration member is so small that the reflected wave of the calibration member does not hinder the grasp of the waveform and time axis of the reflected wave of the subject. The ultrasonic measurement apparatus according to claim 1, wherein: 前記校正部材が、前記下部電極と前記被検体との間に配置されていることを特徴とする請求項1に記載の超音波計測装置。   The ultrasonic measurement apparatus according to claim 1, wherein the calibration member is disposed between the lower electrode and the subject. 前記校正部材が、前記上部電極の表面に固定されていることを特徴とする請求項1に記載の超音波計測装置。   The ultrasonic measurement apparatus according to claim 1, wherein the calibration member is fixed to a surface of the upper electrode. 前記下部電極が既知の板厚及び材質を有する板状の校正部材で構成されていることを特徴とする請求項1に記載の超音波計測装置。   The ultrasonic measurement apparatus according to claim 1, wherein the lower electrode is configured by a plate-shaped calibration member having a known plate thickness and material. 前記下部電極は、該下部電極の反射波と前記被検体の反射波とが前記表示部の時間軸上で重ならない厚さ及び材質を有していることを特徴とする請求項6に記載の超音波計測装置。   The said lower electrode has the thickness and material which the reflected wave of this lower electrode and the reflected wave of the said test object do not overlap on the time axis of the said display part, The material of Claim 6 characterized by the above-mentioned. Ultrasonic measuring device. 下部電極と上部電極との間に圧電体を挟持してなり、被検体の表面に固定されて前記被検体に向けて超音波を発信し、前記被検体で反射した反射波を受信して高周波電圧に変換する薄膜状の超音波振動子と、前記高周波電圧の波形を表示する表示部とを有する超音波計測装置の校正方法において、
前記被検体及び前記既知の板厚及び材質を有して前記超音波振動子に固定された板状の校正部材に超音波を伝搬させる第1工程と、
前記被検体及び前記校正部材で夫々反射した超音波の反射波を前記超音波振動子で受信し、高周波電圧に変換する第2工程と、
前記被検体及び前記校正部材の高周波電圧の波形を前記表示部に表示させ、前記校正部材の高周波電圧の波形及び時間軸に係る情報から、前記超音波振動子を含む計測装置の時間軸及び信号レベルを校正する第3工程とを含むことを特徴とする超音波計測装置の校正方法。
A piezoelectric body is sandwiched between the lower electrode and the upper electrode, is fixed to the surface of the subject, transmits ultrasonic waves toward the subject, receives reflected waves reflected by the subject, and receives high-frequency waves. In a method for calibrating an ultrasonic measurement device having a thin-film ultrasonic transducer that converts to a voltage and a display unit that displays a waveform of the high-frequency voltage,
A first step of propagating ultrasonic waves to the subject and the plate-like calibration member having the known plate thickness and material and fixed to the ultrasonic transducer;
A second step of receiving reflected waves of ultrasonic waves respectively reflected by the subject and the calibration member by the ultrasonic transducer and converting them into a high-frequency voltage;
The waveform of the high frequency voltage of the subject and the calibration member is displayed on the display unit, and the time axis and signal of the measuring device including the ultrasonic transducer are obtained from the information about the waveform of the high frequency voltage of the calibration member and the time axis. And a third step of calibrating the level. A method for calibrating an ultrasonic measuring device.
前記被検体及び校正部材の温度を検出する温度検出工程と、
前記被検体と前記校正部材との材質及び温度の違いにより生じる前記被検体と前記校正部材との超音波伝搬速度の差を補正する補正工程とをさらに含み、
前記第3工程では、前記補正工程で補正された前記被検体及び前記校正部材の超音波伝搬速度に基づいて、前記超音波振動子を含む計測装置の時間軸及び信号レベルを校正することを特徴とする請求項9に記載の超音波計測装置の校正方法。
A temperature detecting step for detecting temperatures of the subject and the calibration member;
A correction step of correcting a difference in ultrasonic propagation speed between the subject and the calibration member caused by a difference in material and temperature between the subject and the calibration member;
In the third step, the time axis and signal level of the measuring device including the ultrasonic transducer are calibrated based on the ultrasonic wave propagation speed of the subject and the calibration member corrected in the correction step. The method for calibrating an ultrasonic measurement apparatus according to claim 9.
JP2013216344A 2013-10-17 2013-10-17 Ultrasonic measuring device and calibration method thereof Expired - Fee Related JP6109036B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013216344A JP6109036B2 (en) 2013-10-17 2013-10-17 Ultrasonic measuring device and calibration method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013216344A JP6109036B2 (en) 2013-10-17 2013-10-17 Ultrasonic measuring device and calibration method thereof

Publications (2)

Publication Number Publication Date
JP2015078910A true JP2015078910A (en) 2015-04-23
JP6109036B2 JP6109036B2 (en) 2017-04-05

Family

ID=53010442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013216344A Expired - Fee Related JP6109036B2 (en) 2013-10-17 2013-10-17 Ultrasonic measuring device and calibration method thereof

Country Status (1)

Country Link
JP (1) JP6109036B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190082583A (en) * 2018-01-02 2019-07-10 조선대학교산학협력단 Apparatus and method for detecting defects in pipeline
JP2019113468A (en) * 2017-12-26 2019-07-11 日立Geニュークリア・エナジー株式会社 Ultrasonic inspection system
JP2019215249A (en) * 2018-06-13 2019-12-19 日立Geニュークリア・エナジー株式会社 Ultrasonic wave inspection system
JP2020063975A (en) * 2018-10-17 2020-04-23 日立Geニュークリア・エナジー株式会社 Ultrasonic inspection system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007052601A1 (en) * 2005-10-31 2007-05-10 Omron Corporation Viscoelasticity measuring device and viscoelasticity measuring method, and process device
JP2008082864A (en) * 2006-09-27 2008-04-10 Hitachi Ltd Ultrasonic flaw detector and ultrasonic flaw detecting method
JP2013197541A (en) * 2012-03-22 2013-09-30 Mitsubishi Heavy Ind Ltd Manufacturing method of ultrasonic thickness sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007052601A1 (en) * 2005-10-31 2007-05-10 Omron Corporation Viscoelasticity measuring device and viscoelasticity measuring method, and process device
JP2008082864A (en) * 2006-09-27 2008-04-10 Hitachi Ltd Ultrasonic flaw detector and ultrasonic flaw detecting method
JP2013197541A (en) * 2012-03-22 2013-09-30 Mitsubishi Heavy Ind Ltd Manufacturing method of ultrasonic thickness sensor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019113468A (en) * 2017-12-26 2019-07-11 日立Geニュークリア・エナジー株式会社 Ultrasonic inspection system
US11002709B2 (en) 2017-12-26 2021-05-11 Hitachi-Ge Nuclear Energy, Ltd. Ultrasonic inspection system
KR20190082583A (en) * 2018-01-02 2019-07-10 조선대학교산학협력단 Apparatus and method for detecting defects in pipeline
KR102008805B1 (en) * 2018-01-02 2019-08-08 조선대학교산학협력단 Apparatus and method for detecting defects in pipeline
JP2019215249A (en) * 2018-06-13 2019-12-19 日立Geニュークリア・エナジー株式会社 Ultrasonic wave inspection system
US11473908B2 (en) 2018-06-13 2022-10-18 Hitachi-Ge Nuclear Energy, Ltd. Ultrasonic inspection system
JP2020063975A (en) * 2018-10-17 2020-04-23 日立Geニュークリア・エナジー株式会社 Ultrasonic inspection system
US20200124412A1 (en) * 2018-10-17 2020-04-23 Hitachi-Ge Nuclear Energy, Ltd. Ultrasonic Inspection System
JP7094192B2 (en) 2018-10-17 2022-07-01 日立Geニュークリア・エナジー株式会社 Ultrasonography system
US11506488B2 (en) 2018-10-17 2022-11-22 Hitachi-Ge Nuclear Energy, Ltd. Ultrasonic inspection system

Also Published As

Publication number Publication date
JP6109036B2 (en) 2017-04-05

Similar Documents

Publication Publication Date Title
US8192075B2 (en) Method for performing ultrasonic testing
US8434936B2 (en) Method for performing ultrasonic testing
EP2598866B1 (en) Ultrasonic pipe inspection with signal processing arrangement
JP2019113468A (en) Ultrasonic inspection system
CN104380100A (en) Method and system for correcting for temperature variations in ultrasonic testing systems
JP6109036B2 (en) Ultrasonic measuring device and calibration method thereof
JP2009036516A (en) Nondestructive inspection device using guide wave and nondestructive inspection method
US8336365B2 (en) Automatic calibration error detection for ultrasonic inspection devices
CN112771360B (en) Signal processing
JP6458164B2 (en) Apparatus and method for measuring deposit thickness using ultrasonic waves
KR20120117119A (en) Calibration method of contract transducer for absolute measurement of nonlinearity parameter, apparatus for calibration by using the method, and method and apparatus for absolute measurement of the parameter by using the method
JP5893538B2 (en) Nondestructive inspection method and apparatus using guide wave
JP6529853B2 (en) Residual stress evaluation method
JP4682921B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP2009236620A (en) Ultrasonic flaw detection method
US10620162B2 (en) Ultrasonic inspection methods and systems
KR100258747B1 (en) Apparatus and method for measuring the thickness of solid material and the ultrasonic velocity
KR101452442B1 (en) Elasticity Test method
JP2010048817A (en) Nondestructive inspection device and method using guide wave
JP2006300854A (en) Piping plate thickness measuring device
CA3100826C (en) Condition monitoring of ultrasonic transducers and probes
CN117168667A (en) Method, device and medium for calibrating ultrasonic detection of stress under protective paint layer
JP5750066B2 (en) Non-destructive inspection method using guided waves
JP2011128043A (en) Method and device for nondestructive inspection using guide wave
JPH06258297A (en) Ultrasonic material testing device and material testing method by using ultrasonic wave

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170307

R150 Certificate of patent or registration of utility model

Ref document number: 6109036

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees