JP2015065795A - 蓄電装置、蓄電制御装置および蓄電制御方法 - Google Patents
蓄電装置、蓄電制御装置および蓄電制御方法 Download PDFInfo
- Publication number
- JP2015065795A JP2015065795A JP2013199744A JP2013199744A JP2015065795A JP 2015065795 A JP2015065795 A JP 2015065795A JP 2013199744 A JP2013199744 A JP 2013199744A JP 2013199744 A JP2013199744 A JP 2013199744A JP 2015065795 A JP2015065795 A JP 2015065795A
- Authority
- JP
- Japan
- Prior art keywords
- cell
- power storage
- resonance circuit
- series
- control device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/425—Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
- H01M10/4257—Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M16/00—Structural combinations of different types of electrochemical generators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/4207—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/425—Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
- H01M10/4264—Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing with capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
- H01M10/441—Methods for charging or discharging for several batteries or cells simultaneously or sequentially
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
- H01M10/482—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M12/00—Hybrid cells; Manufacture thereof
- H01M12/04—Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
- H01M12/06—Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/5825—Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/10—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
- H02J50/12—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0013—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
- H02J7/0014—Circuits for equalisation of charge between batteries
- H02J7/0019—Circuits for equalisation of charge between batteries using switched or multiplexed charge circuits
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0068—Battery or charger load switching, e.g. concurrent charging and load supply
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/02—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M12/00—Hybrid cells; Manufacture thereof
- H01M12/04—Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
- H01M12/06—Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
- H01M12/065—Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode with plate-like electrodes or stacks of plate-like electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/425—Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
- H01M2010/4271—Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/20—Batteries in motive systems, e.g. vehicle, ship, plane
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Manufacturing & Machinery (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Computer Networks & Wireless Communication (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Secondary Cells (AREA)
Abstract
【課題】セルの電圧を均等化する際のセルの負担を抑える蓄電装置、蓄電制御装置および蓄電制御方法を提供する。
【解決手段】直列接続された複数のセルと、リアクトル及びコンデンサを含む直列共振回路と、前記セルと前記直列共振回路との接続状態を制御する蓄電制御装置と、を備え、前記蓄電制御装置は、前記直列共振回路を介して同数のセル間でエネルギーを授受させる。
【選択図】図1
【解決手段】直列接続された複数のセルと、リアクトル及びコンデンサを含む直列共振回路と、前記セルと前記直列共振回路との接続状態を制御する蓄電制御装置と、を備え、前記蓄電制御装置は、前記直列共振回路を介して同数のセル間でエネルギーを授受させる。
【選択図】図1
Description
本開示は、蓄電装置、蓄電制御装置および蓄電制御方法に関する。より詳しくは、セルに電気を蓄える蓄電装置、蓄電制御装置および蓄電制御方法に関する。
従来から、直列接続された複数のセルの電圧を均等化する技術が提案されている。例えば、特許文献1では、コンデンサの端子電圧を電荷が蓄積された昇圧素子の電圧で昇圧して二次電池に電荷を移送する電池間電圧均等化回路が提案されている。
直列接続された複数のセルの電圧を均等化する際に、各セルの電位差が大きい場合には、エネルギーを受ける側のセルに過大な電流が流れ込んで大きな負担がかかる場合がある。
本開示は、セルの電圧を均等化する際のセルの負担を抑える蓄電装置、蓄電制御装置および蓄電制御方法を提供する。
本開示に係る蓄電装置は、直列接続された複数のセルと、リアクトル及びコンデンサを含む直列共振回路と、前記セルと前記直列共振回路との接続状態を制御する蓄電制御装置と、を備え、前記蓄電制御装置は、前記直列共振回路を介して同数のセル間でエネルギーを授受させるものである。
前記蓄電制御装置は、少なくとも1つのセルを含む第1のセルを前記直列共振回路に接続させた後に、前記第1のセルと同数のセルを含み、前記第1のセルと比較して総電圧が相対的に小さい第2のセルを前記直列共振回路に接続させてもよい。
この場合、前記蓄電制御装置は、連続する複数のセルを前記第1のセルに選択し、前記第1のセルと同数の連続するセルを前記第2のセルに選択してもよい。
あるいは、前記蓄電制御装置は、前記第1のセルが前記直列共振回路に接続された後に前記直列共振回路に流れる電流の向きが変化した場合に、前記第1のセルを前記直列共振回路から切断させてもよい。この場合、前記蓄電制御装置は、前記第2のセルが前記直列共振回路に接続された後に前記直列共振回路に流れる電流の向きが変化した場合に、前記第2のセルを前記直列共振回路から切断させてもよい。この場合、前記蓄電制御装置は、前記第1及び/又は第2のセルが前記直列共振回路から切断された後に、設定された期間いずれのセルも前記直列共振回路から切断された状態を保持し、前記設定された期間中に、前記セルの電圧に基づいてエネルギーの授受を終了すべきか否かを判定してもよい。
前記直列共振回路は抵抗を含み、前記蓄電制御装置は、前記抵抗の両端の電位差に基づいて、前記直列共振回路に流れる電流の向きを検知してもよい。
前記蓄電制御装置は、前記直列共振回路と前記セルとの接続を前記直列共振回路の共振周波数で切り替えてもよい。
前記直列共振回路の共振周波数は、交流インピーダンス法で測定された前記セルの内部インピーダンスのコールコールプロットにおける虚数成分が0となる場合の周波数であってもよい。
前記蓄電制御装置は、電圧が最大のセルを前記第1のセルに含ませてもよい。この場合、前記蓄電制御装置は、電圧が最小のセルを前記第2のセルに含ませてもよい。
蓄電装置は、前記セルと前記直列共振回路とを接続又は切断するスイッチを更に備え、前記蓄電制御装置は、前記スイッチの動作を制御することで前記セルと前記直列共振回路との接続状態を制御してもよい。
前記セルは、充電率0%〜100%の区間のうちの5割以上に亘る一連の区間での電圧変化が0.25V以下となる放電特性を有してもよい。
本開示に係る蓄電制御装置は、直列接続された複数のセルとリアクトル及びコンデンサを含む直列共振回路との接続状態を制御する構成で、前記直列共振回路を介して同数のセル間でエネルギーを授受させるものである。
本開示に係る蓄電制御方法は、直列接続された複数のセルとリアクトル及びコンデンサを含む直列共振回路との接続状態を制御装置によって制御して、前記直列共振回路を介して同数のセル間でエネルギーを授受させる。
前記蓄電制御装置は、少なくとも1つのセルを含む第1のセルを前記直列共振回路に接続させた後に、前記第1のセルと同数のセルを含み、前記第1のセルと比較して総電圧が相対的に小さい第2のセルを前記直列共振回路に接続させてもよい。
この場合、前記蓄電制御装置は、連続する複数のセルを前記第1のセルに選択し、前記第1のセルと同数の連続するセルを前記第2のセルに選択してもよい。
あるいは、前記蓄電制御装置は、前記第1のセルが前記直列共振回路に接続された後に前記直列共振回路に流れる電流の向きが変化した場合に、前記第1のセルを前記直列共振回路から切断させてもよい。この場合、前記蓄電制御装置は、前記第2のセルが前記直列共振回路に接続された後に前記直列共振回路に流れる電流の向きが変化した場合に、前記第2のセルを前記直列共振回路から切断させてもよい。この場合、前記蓄電制御装置は、前記第1及び/又は第2のセルが前記直列共振回路から切断された後に、設定された期間いずれのセルも前記直列共振回路から切断された状態を保持し、前記設定された期間中に、前記セルの電圧に基づいてエネルギーの授受を終了すべきか否かを判定してもよい。
前記直列共振回路は抵抗を含み、前記蓄電制御装置は、前記抵抗の両端の電位差に基づいて、前記直列共振回路に流れる電流の向きを検知してもよい。
前記蓄電制御装置は、前記直列共振回路と前記セルとの接続を前記直列共振回路の共振周波数で切り替えてもよい。
前記直列共振回路の共振周波数は、交流インピーダンス法で測定された前記セルの内部インピーダンスのコールコールプロットにおける虚数成分が0となる場合の周波数であってもよい。
前記蓄電制御装置は、電圧が最大のセルを前記第1のセルに含ませてもよい。この場合、前記蓄電制御装置は、電圧が最小のセルを前記第2のセルに含ませてもよい。
蓄電装置は、前記セルと前記直列共振回路とを接続又は切断するスイッチを更に備え、前記蓄電制御装置は、前記スイッチの動作を制御することで前記セルと前記直列共振回路との接続状態を制御してもよい。
前記セルは、充電率0%〜100%の区間のうちの5割以上に亘る一連の区間での電圧変化が0.25V以下となる放電特性を有してもよい。
本開示に係る蓄電制御装置は、直列接続された複数のセルとリアクトル及びコンデンサを含む直列共振回路との接続状態を制御する構成で、前記直列共振回路を介して同数のセル間でエネルギーを授受させるものである。
本開示に係る蓄電制御方法は、直列接続された複数のセルとリアクトル及びコンデンサを含む直列共振回路との接続状態を制御装置によって制御して、前記直列共振回路を介して同数のセル間でエネルギーを授受させる。
本開示によれば、セルの電圧を均等化する際のセルの負担を抑えることができる。
以下、本開示を実施するための好適な形態について図面を参照しながら説明する。以下に説明する複数の実施形態は、本開示の代表的な実施形態の一例を示したものであり、これにより本開示の範囲が狭く解釈されることはない。また、各実施形態において、互いに対応する構成要素については、同一の符号を付して重複する説明は省略する。説明は以下の順序で行う。
1.第1の実施形態
(同数のセル間でエネルギーを授受する蓄電装置の例)
2.第1の実施形態の第1の変形例
(セル数が同一のセル群間でエネルギーを授受する蓄電装置の例)
3.第1の実施形態の第2の変形例
(一部のセルが重複するセル数が同一のセル群間でエネルギーを授受する蓄電装置の例)
4.第2の実施形態
(相対的に電圧が大きい第1のセルと相対的に電圧が小さい第2のセルとの間でエネルギーを授受する蓄電装置の例)
5.第2の実施形態の第1の変形例
(複数のセルを含む第1のセルと、第1のセルと同数のセルを含む第2のセルとの間でエネルギーを授受する蓄電装置の例)
6.第3の実施形態
(電流0Aになったことに応じてセルと直列共振回路との接続を切り替える蓄電装置の例)
7.第3の実施形態の第1の変形例
(電流の向きの変化に応じてセルと直列共振回路との接続を切り替える蓄電装置の例)
8.第4の実施形態
(第2のセルの直列共振回路からの切断から次の第1のセルの直列共振回路への接続までの間に設定された期間すべてのセルが直列共振回路から切断された状態を保持する蓄電装置の例)
9.第4の実施形態の第1の変形例
(第1のセルの直列共振回路からの切断から第2のセルの直列共振回路への接続までの間にも設定された期間すべてのセルが直列共振回路から切断された状態を保持する蓄電装置の例)
10.第5の実施形態
(直列共振回路が抵抗を備える蓄電装置の例)
11.第5の実施形態の第1の変形例
(抵抗に基づいて共振電流の向きを検知する蓄電装置の例)
12.第5の実施形態の第2の変形例
(直列共振回路の抵抗が寄生抵抗である蓄電装置の例)
13.第6の実施形態
(セルと直列共振回路との接続を直列共振回路の共振周波数で切り替える蓄電装置の例)
14.第7の実施形態
(直列共振回路がコールコールプロットに適応した共振周波数を有する蓄電装置の例)
15.第7の実施形態の第1の変形例
(充電率ごとのコールコールプロットを考慮して直流共振回路の共振周波数が設定された蓄電装置の例)
16.第8の実施形態
(実質的にフラットな放電特性を有するセルを適用した蓄電装置の例)
1.第1の実施形態
(同数のセル間でエネルギーを授受する蓄電装置の例)
2.第1の実施形態の第1の変形例
(セル数が同一のセル群間でエネルギーを授受する蓄電装置の例)
3.第1の実施形態の第2の変形例
(一部のセルが重複するセル数が同一のセル群間でエネルギーを授受する蓄電装置の例)
4.第2の実施形態
(相対的に電圧が大きい第1のセルと相対的に電圧が小さい第2のセルとの間でエネルギーを授受する蓄電装置の例)
5.第2の実施形態の第1の変形例
(複数のセルを含む第1のセルと、第1のセルと同数のセルを含む第2のセルとの間でエネルギーを授受する蓄電装置の例)
6.第3の実施形態
(電流0Aになったことに応じてセルと直列共振回路との接続を切り替える蓄電装置の例)
7.第3の実施形態の第1の変形例
(電流の向きの変化に応じてセルと直列共振回路との接続を切り替える蓄電装置の例)
8.第4の実施形態
(第2のセルの直列共振回路からの切断から次の第1のセルの直列共振回路への接続までの間に設定された期間すべてのセルが直列共振回路から切断された状態を保持する蓄電装置の例)
9.第4の実施形態の第1の変形例
(第1のセルの直列共振回路からの切断から第2のセルの直列共振回路への接続までの間にも設定された期間すべてのセルが直列共振回路から切断された状態を保持する蓄電装置の例)
10.第5の実施形態
(直列共振回路が抵抗を備える蓄電装置の例)
11.第5の実施形態の第1の変形例
(抵抗に基づいて共振電流の向きを検知する蓄電装置の例)
12.第5の実施形態の第2の変形例
(直列共振回路の抵抗が寄生抵抗である蓄電装置の例)
13.第6の実施形態
(セルと直列共振回路との接続を直列共振回路の共振周波数で切り替える蓄電装置の例)
14.第7の実施形態
(直列共振回路がコールコールプロットに適応した共振周波数を有する蓄電装置の例)
15.第7の実施形態の第1の変形例
(充電率ごとのコールコールプロットを考慮して直流共振回路の共振周波数が設定された蓄電装置の例)
16.第8の実施形態
(実質的にフラットな放電特性を有するセルを適用した蓄電装置の例)
<1.第1の実施形態>
[装置の構成例]
図1は、本実施形態の蓄電装置100の構成例を模式的に示す全体図である。図1に示すように、蓄電装置100は、複数のセル110a、110bと、直列共振回路120と、蓄電制御装置130とを備える。
[装置の構成例]
図1は、本実施形態の蓄電装置100の構成例を模式的に示す全体図である。図1に示すように、蓄電装置100は、複数のセル110a、110bと、直列共振回路120と、蓄電制御装置130とを備える。
[セル110a、110b]
図1に示すように、各セル110a、110bは、直列接続されている。各セル110a、110bは、いずれも充放電可能とされている。すなわち、各セル110a、110bは、充電の際には、不図示の充電装置から供給された充電電流を電荷として蓄積し、放電の際には、蓄積された電荷を放電電流として不図示の負荷に供給することができる。
図1に示すように、各セル110a、110bは、直列接続されている。各セル110a、110bは、いずれも充放電可能とされている。すなわち、各セル110a、110bは、充電の際には、不図示の充電装置から供給された充電電流を電荷として蓄積し、放電の際には、蓄積された電荷を放電電流として不図示の負荷に供給することができる。
セル110a、110bの個数は、複数であれば図1に示すような2つに限定されない。各セル110a、110bは、同一規格で構成されていてもよく、または、別規格で構成されていてもよい。各セル110a、110bは、それぞれが単電池および組電池のいずれであってもよい。セル110a、110bを組電池とする場合、組電池内での接続は、直列または並列もしくはこれらの双方であってもよい。より好ましいセル110a、110bの形態については、後述の<16.第8の実施形態>に説明を譲る。
[直列共振回路120]
図1に示すように、直列共振回路120は、リアクトル121およびコンデンサ122を有する。リアクトル121およびコンデンサ122は直列接続されている。
図1に示すように、直列共振回路120は、リアクトル121およびコンデンサ122を有する。リアクトル121およびコンデンサ122は直列接続されている。
直列共振回路120には、リアクトル121の誘導性リアクタンスおよびコンデンサ122の容量性リアクタンスに応じた電流が流れる。リアクトル121の自己インダクタンス[H]およびコンデンサ122の静電容量[F]は限定されない。より好ましい直列共振回路120の態様については、後述の<14.第7の実施形態>に説明を譲る。
[蓄電制御装置130]
蓄電制御装置130は、セル110a、110bと直列共振回路120との電気的な接続状態を制御する。ここで、図1には、蓄電制御装置130の制御によって形成されるセル110a、110bと直列共振回路120との接続状態が、双方向矢印Aによって模式的に示されている。また、図1には、蓄電制御装置130が接続状態を制御する構成であることが、図中の破線によって模式的に示されている。さらに、図1Aには、1つのセル110aと直列共振回路120とが接続され、かつ、他の1つのセル110bと直列共振回路120とが切断された状態が示されている。一方、図1Bには、1つのセル110aと直列共振回路120とが切断され、かつ、他の1つのセル110bと直列共振回路120とが接続された状態が示されている。
蓄電制御装置130は、セル110a、110bと直列共振回路120との電気的な接続状態を制御する。ここで、図1には、蓄電制御装置130の制御によって形成されるセル110a、110bと直列共振回路120との接続状態が、双方向矢印Aによって模式的に示されている。また、図1には、蓄電制御装置130が接続状態を制御する構成であることが、図中の破線によって模式的に示されている。さらに、図1Aには、1つのセル110aと直列共振回路120とが接続され、かつ、他の1つのセル110bと直列共振回路120とが切断された状態が示されている。一方、図1Bには、1つのセル110aと直列共振回路120とが切断され、かつ、他の1つのセル110bと直列共振回路120とが接続された状態が示されている。
電圧均等化処理の際に、エネルギーを授ける給電側のセルとエネルギーを受ける受電側のセルとの電位差が大きい場合には、受電側のセルに過大な電流が流れ込み、受電側のセルにダメージを与える虞がある。本開示では、給電側のセルと受電側のセルとの電位差に基づく受電側のセルへの負担を抑えることを目的の1つとして、蓄電制御装置130が、同数のセル間でエネルギーを授受させる構成となっている。具体的には、蓄電制御装置130は、例えば、図1Aおよび図1Bに示す接続状態を選択的に形成することで、直列共振回路120を介して同数のセル間でエネルギーを授受させる。
ここで、本開示における同数のセル間でのエネルギーの授受は、n個(但し、nは任意の自然数)の給電側のセルから直列共振回路にエネルギーを移動させること及び該エネルギーを直列共振回路からn個の受電側のセルに移動させることによって行われる。換言すれば、本開示における同数のセル間でのエネルギーの授受は、直列共振回路に対してn個の給電側のセルおよびn個の受電側のセルを選択的に接続することによって行われる。また、本開示における同数のセル間でのエネルギーの授受は、該同数のセル以外のセルや直列共振回路のコンデンサ以外のコンデンサ等といった、該同数のセル及び直列共振回路のいずれにも該当しない蓄電素子とのエネルギーの授受はともなわない。
蓄電制御装置130は、セル110a、110bと直列共振回路120とを接続または切断する電子装置等を電気的に制御することで、セル110a、110bと直列共振回路120との接続状態を制御してもよい。この場合、電子装置は、スイッチングデバイス等を含んでもよい。
蓄電制御装置130は、電子装置等によって構成してもよい。この場合、電子装置は、CPU(Central Processing Unit)やMPU(Micro-Processing Unit)等の演算処理装置およびRAM(Random Access Memory)やROM(Read Only Memory)などの記憶装置等を備えてもよい。ROMには、蓄電制御装置130の機能を実現するためのプログラムすなわちコンピュータを蓄電制御装置130として機能させるプログラムやデータを格納してもよい。演算処理装置は、ROMに格納されたプログラムを実行することで、蓄電制御装置130の機能を実現してもよい。RAMは、演算処理装置の作業領域等として利用してもよい。ただし、このような構成に限定されない。
[装置の動作例]
蓄電装置100の動作例を以下に述べる。以下の動作例は、本開示に係る蓄電制御方法の一実施形態を含む。ただし、本開示に係る蓄電制御方法は、蓄電装置100以外の構成で具現化されてもよい。
蓄電装置100の動作例を以下に述べる。以下の動作例は、本開示に係る蓄電制御方法の一実施形態を含む。ただし、本開示に係る蓄電制御方法は、蓄電装置100以外の構成で具現化されてもよい。
本実施形態では、蓄電制御装置130によってセル110a、110bと直列共振回路120との接続状態が図1Aおよび図1Bの如く制御されることで、セル110a、110bが直列共振回路120に選択的に接続される。直列共振回路120に接続されたセル110a、110bは、直列共振回路120との間で、電流の授受によってエネルギーを移動させる。これにより、直列共振回路120を介した両セル110a、110b間でのエネルギーの授受が行われる。例えば、1つのセル110aが保有するエネルギーが、他の1つのセル110bが保有するエネルギーよりも大きい場合には、直列共振回路120を介してセル110aからセル110bにエネルギーが供給される。エネルギーの供給後は、両セル110a、110b間のエネルギーのばらつきが低減もしくは解消される。
以上のように、本実施形態の蓄電装置100によれば、蓄電制御装置130により、同数のセル間すなわち1つのセル110aと他の1つのセル110bとの間といった電位差が少ない条件下で、セル同士が少ない電流によってエネルギーを授受することができる。仮に直列共振回路120を昇圧素子で昇圧した場合には、少ない電流でのエネルギーの授受は困難となる。また、直列共振回路120を介してエネルギーを授受することができるので、コンデンサのみを用いる場合よりも電圧均等化処理の速度を速くすることができ、リアクトルのみを用いる場合よりもセルの短絡の防止能力が高い。すなわち、本実施形態の蓄電装置100によれば、セル110への負担が少なく、効率的で安全な電圧均等化処理すなわちアクティブセルバランス処理が可能となる。
<2.第1の実施形態の第1の変形例>
図2は、本実施形態の第1の変形例の蓄電装置100の構成を模式的に示す全体図である。本変形例の蓄電装置100は、図1の蓄電装置100に対して、セルの配置態様および蓄電制御装置130によって形成されるセルと直列共振回路120との接続状態が相違する。以下、相違点を詳細に説明する。
図2は、本実施形態の第1の変形例の蓄電装置100の構成を模式的に示す全体図である。本変形例の蓄電装置100は、図1の蓄電装置100に対して、セルの配置態様および蓄電制御装置130によって形成されるセルと直列共振回路120との接続状態が相違する。以下、相違点を詳細に説明する。
図2に示すように、本変形例の蓄電装置100は、直列接続された4つのセル110a、110b、110c、110dを備える。
図2には、蓄電制御装置130の制御によって形成されるセル110a〜110dと直列共振回路120との接続状態が模式的に示されている。具体的には、図2Aには、2つのセル110a、110bが直列共振回路120に接続された状態が示されている。また、図2Aには、他の2つのセル110c、110dが直列共振回路120から切断された状態が示されている。一方、図2Bには、図2Aにおいて直列共振回路120に接続されていた2つのセル110a、110bが直列共振回路120から切断された状態が示されている。また、図2Bには、図2Aにおいて直列共振回路120から切断されていた2つのセル110c、110dが直列共振回路120に接続された状態が示されている。
蓄電制御装置130は、図2Aおよび図2Bに示すような接続状態を選択的に形成することで、直列共振回路120を介してセル数が同一のセル群間でエネルギーを授受させる。その他の構成および動作は、図1の蓄電装置100と基本的に共通する。
本変形例によれば、図1の蓄電装置100と同様の作用効果を奏することができ、また、セル群同士でエネルギーを授受させることで、電位差が更に緩和された更に少ない電流での電圧均等化処理が可能となる。さらに、電圧均等化処理の態様の自由度を向上させることができる。
<3.第1の実施形態の第2の変形例>
図3は、本実施形態の第2の変形例の蓄電装置100の構成を模式的に示す全体図である。本変形例の蓄電装置100は、図1および図2の蓄電装置100に対して、セルの配置態様および蓄電制御装置130によって形成されるセルと直列共振回路120との接続状態が相違する。以下、相違点を詳細に説明する。
図3は、本実施形態の第2の変形例の蓄電装置100の構成を模式的に示す全体図である。本変形例の蓄電装置100は、図1および図2の蓄電装置100に対して、セルの配置態様および蓄電制御装置130によって形成されるセルと直列共振回路120との接続状態が相違する。以下、相違点を詳細に説明する。
図3に示すように、本変形例の蓄電装置100は、直列接続された3つのセル110a、110b、110cを備える。
図3には、蓄電制御装置130によって選択的に形成されるセル110a〜110cと直列共振回路120との接続状態が模式的に示されている。具体的には、図3Aには、2つのセル110a、110bと直列共振回路120とが接続され、他の1つのセル110cと直列共振回路120とが切断された状態が示されている。図3Bには、図3Aとは異なる組み合わせの2つのセル110b、110cと直列共振回路120とが接続され、他の1つのセル110aと直列共振回路120とが切断された状態が示されている。要するに、本変形では、1つのセル110bが、いずれの接続状態の場合にも直列共振回路120に接続される。このような場合も、2つのセル110a、110bと、他の組み合わせの2つのセル110b、110cといった同数のセル間でエネルギーが授受されるため、本開示の範囲内である。その他の構成および動作は、図1および図2の蓄電装置100と基本的に共通する。
本変形例によれば、図1および図2の蓄電装置100と同様の作用効果を奏することができ、また、電圧均等化処理の態様の自由度を向上させることができる。
<4.第2の実施形態>
[装置の構成例]
図4は、本実施形態の蓄電装置100の構成例を模式的に示す全体図である。本実施形態の蓄電装置100は、図1の蓄電装置100に対して、蓄電制御装置130の構成が特定されている。すなわち、蓄電制御装置130は、少なくとも1つのセルを含む第1のセルを直列共振回路120に接続させた後に、第1のセルと同数のセルを含み第1のセルと比較して総電圧が相対的に小さい第2のセルを直列共振回路120に接続させる構成である。図4のように、セル110a、110bの総数が2つの場合には、第1のセルおよび第2のセルは1つずつとなる。
[装置の構成例]
図4は、本実施形態の蓄電装置100の構成例を模式的に示す全体図である。本実施形態の蓄電装置100は、図1の蓄電装置100に対して、蓄電制御装置130の構成が特定されている。すなわち、蓄電制御装置130は、少なくとも1つのセルを含む第1のセルを直列共振回路120に接続させた後に、第1のセルと同数のセルを含み第1のセルと比較して総電圧が相対的に小さい第2のセルを直列共振回路120に接続させる構成である。図4のように、セル110a、110bの総数が2つの場合には、第1のセルおよび第2のセルは1つずつとなる。
第1のセルと第2のセルとを直列共振回路120に順次選択的に接続させるための具体的な構成の一例として、図4に示すように、蓄電装置100は、スイッチ140a、140b、140c、140dおよびセル電圧検出部150a、150bを備える。蓄電制御装置130は、スイッチ140a〜140dの動作を制御することで、セル110a、110bと直列共振回路120との接続状態を制御する構成である。
[スイッチ140a〜140d]
図4に示すように、4つのスイッチ140a〜140dは、各セル110a、110bにそれぞれ対応して設けられている。具体的には、スイッチ140a〜140dは、セル110a、110b毎に2つずつ対応して配置されており、各セル110a、110bのそれぞれの正極および負極に1つずつ接続される構成となっている。
図4に示すように、4つのスイッチ140a〜140dは、各セル110a、110bにそれぞれ対応して設けられている。具体的には、スイッチ140a〜140dは、セル110a、110b毎に2つずつ対応して配置されており、各セル110a、110bのそれぞれの正極および負極に1つずつ接続される構成となっている。
より具体的には、1つのスイッチ140aは、セル110aの正極に接続される。他の1つのスイッチ140bは、セル110aの負極に接続される。他の1つのスイッチ140cは、セル110bの正極に接続される。残りの1つのスイッチ140dは、セル110bの負極に接続される。
さらに詳述すると、1つのスイッチ140aは、セル110aの正極と直列共振回路120の第1の端部120aとを接続する接続ライン161上に配置されている。スイッチ140aは、蓄電制御装置130から入力されるスイッチ制御信号にしたがってオン状態またはオフ状態になることで、接続ライン161を閉路または開路する。
他の1つのスイッチ140bは、セル110aの負極と直列共振回路120の第2の端部120bとを接続する接続ライン162上に配置されている。スイッチ140bは、蓄電制御装置130から入力されるスイッチ制御信号にしたがって接続ライン162を開閉する。
他の1つのスイッチ140cは、セル110bの正極と直列共振回路120の第1の端部120aとを接続する接続ライン163上に配置されている。接続ライン163は、第1の端部120aに向かう他の接続ライン161とノードN1において接続されている。スイッチ140cは、蓄電制御装置130から入力されるスイッチ制御信号にしたがって接続ライン163を開閉する。
残りの1つのスイッチ140dは、セル110bの負極と直列共振回路120の第2の端部120bとを接続する接続ライン164上に配置されている。接続ライン164は、第2の端部120bに向かう他の接続ライン162とノードN2において接続されている。スイッチ140dは、蓄電制御装置130から入力されるスイッチ制御信号にしたがって接続ライン164を開閉する。
以下、各スイッチ140a〜140dのうち、第1のセルの正極に接続されるスイッチを、第1の正極側のスイッチと称し、第1のセルの負極に接続されるスイッチを、第1の負極側のスイッチと称する。また、第2のセルの正極に接続されるスイッチを、第2の正極側のスイッチと称し、第2のセルの負極に接続されるスイッチを、第2の負極側のスイッチと称する。
スイッチ140a〜140dの態様は限定されず、例えば、スイッチ140a〜140dを半導体素子等によって構成してもよい。半導体素子は、トランジスタ等であってもよい。トランジスタは、電界効果トランジスタ等であってもよい。電界効果トランジスタは、MOSFET(metal-oxide-semiconductor field-effect transistor)等であってもよい。電界効果トランジスタを採用することで、消費電力を抑えることができる。
[セル電圧検出部150a、150b]
図4に示すように、セル電圧検出部150a、150bは、各セル110a、110bにそれぞれ対応して設けられている。各セル電圧検出部150a、150bは、対応するセル110a、110bに並列接続されている。各セル電圧検出部150a、150bは、対応するセル110a、110bの電圧すなわち端子電圧を検出し、検出結果をセル電圧情報として蓄電制御装置130に出力する。このとき、セル電圧情報は、蓄電制御装置130側でセル電圧情報に対応するセルを特定可能な態様で出力されてもよい。例えば、セル電圧情報は、蓄電制御装置130のセル110a、110b毎の入力端子に向けて出力されたり、セルの番号の情報が対応付けられたりしてもよい。
図4に示すように、セル電圧検出部150a、150bは、各セル110a、110bにそれぞれ対応して設けられている。各セル電圧検出部150a、150bは、対応するセル110a、110bに並列接続されている。各セル電圧検出部150a、150bは、対応するセル110a、110bの電圧すなわち端子電圧を検出し、検出結果をセル電圧情報として蓄電制御装置130に出力する。このとき、セル電圧情報は、蓄電制御装置130側でセル電圧情報に対応するセルを特定可能な態様で出力されてもよい。例えば、セル電圧情報は、蓄電制御装置130のセル110a、110b毎の入力端子に向けて出力されたり、セルの番号の情報が対応付けられたりしてもよい。
セル電圧検出部150a、150bの態様は限定されず、セル110a、110bの電圧を検出可能な種々の電子装置を採用することができる。電子装置は、集積回路等を含んでもよい。
[蓄電制御装置130]
図5は、本実施形態における蓄電制御装置130の構成例を模式的に示す図である。図5に示すように、蓄電制御装置130は、セル電圧情報取得部131およびスイッチ制御部132を有する。セル電圧情報取得部131は、セル電圧検出部150a、150bから出力されたセル電圧情報を取得する。スイッチ制御部132は、セル電圧情報取得部131が取得したセル電圧情報に応じたスイッチ制御信号をスイッチ140a〜140dに出力する。スイッチ制御信号の内容は、第1のセルを直列共振回路120に接続させた後に、第2のセルを直列共振回路120に接続させることである。スイッチ制御信号は、例えば、電界効果トランジスタに印加されるゲート電圧等であってもよい。セル電圧情報取得部131およびスイッチ制御部132は、ハードウェアまたはソフトウェアもしくはこれらの双方によって具現化してもよい。
図5は、本実施形態における蓄電制御装置130の構成例を模式的に示す図である。図5に示すように、蓄電制御装置130は、セル電圧情報取得部131およびスイッチ制御部132を有する。セル電圧情報取得部131は、セル電圧検出部150a、150bから出力されたセル電圧情報を取得する。スイッチ制御部132は、セル電圧情報取得部131が取得したセル電圧情報に応じたスイッチ制御信号をスイッチ140a〜140dに出力する。スイッチ制御信号の内容は、第1のセルを直列共振回路120に接続させた後に、第2のセルを直列共振回路120に接続させることである。スイッチ制御信号は、例えば、電界効果トランジスタに印加されるゲート電圧等であってもよい。セル電圧情報取得部131およびスイッチ制御部132は、ハードウェアまたはソフトウェアもしくはこれらの双方によって具現化してもよい。
[装置の動作例]
図6は、本実施形態の蓄電装置100の動作例を示すフローチャートである。図6に示す動作例は、本開示に係る蓄電制御方法の一実施形態を含む。
図6は、本実施形態の蓄電装置100の動作例を示すフローチャートである。図6に示す動作例は、本開示に係る蓄電制御方法の一実施形態を含む。
説明の便宜上、図6の初期状態では、いずれのスイッチ140a〜140dもオフ状態、すなわち、いずれのセル110a、110bも直列共振回路120から切断された状態であるものとする。
そして、初期状態から、先ず、図6のステップ61(S61)において、蓄電制御装置130により、セル電圧情報に基づいて、第1のセルおよび第2のセルを決定する。例えば、蓄電制御装置130は、セル110aに対応するセル電圧検出部150aからのセル電圧情報が、セル110bに対応するセル電圧検出部150aからのセル電圧情報よりも大きい電圧を示す場合には、セル110aを第1のセルに決定する。同時に、蓄電制御装置130は、セル110bを第2のセルに決定する。
次いで、ステップ62(S62)において、蓄電制御装置130により、ステップ61(S61)において決定された第1のセルに対応する第1の正極側のスイッチおよび第1の負極側のスイッチをオン状態に切り替える。一方、蓄電制御装置130は、ステップ61(S61)において決定された第2のセルに対応する第2の正極側のスイッチおよび第2の負極側のスイッチについては、オフ状態に維持する。
これにより、第1のセルのみが、第1の正極側のスイッチによって閉路された接続ラインおよび第1の負極側のスイッチによって閉路された接続ラインを介して直列共振回路120に接続される。そして、第1のセルから直列共振回路120に電流が流れて、第1のセルから直列共振回路120にエネルギーが移動される。
次いで、ステップ63(S63)において、蓄電制御装置130により、ステップ62(S62)においてオン状態に切り替えられた第1の正極側のスイッチおよび第1の負極側のスイッチをオフ状態に切り替える。
次いで、ステップ64(S64)において、蓄電制御装置130により、ステップ61(S61)において決定された第2のセルに対応する第2の正極側のスイッチおよび第2の負極側のスイッチをオン状態に切り替える。このとき、蓄電制御装置130は、第1の正極側のスイッチおよび第1の負極側のスイッチについては、オフ状態に維持する。
これにより、第2のセルのみが、第2の正極側のスイッチによって閉路された接続ラインおよび第2の負極側のスイッチによって閉路された接続ラインを介して直列共振回路120に接続される。そして、直列共振回路120から第2のセルに電流が流れて、ステップ62(S62)において直列共振回路120に移動されたエネルギーが、直列共振回路120から第2のセルに移動される。
次いで、ステップ65(S65)において、蓄電制御装置130により、ステップ64(S64)においてオン状態に切り替えられた第2の正極側のスイッチおよび第2の負極側のスイッチをオフ状態に切り替える。その後は、電圧均等化処理を終了するか、または、必要に応じてステップ62(S62)もしくはステップ64(S64)に戻る。
以上のように、本実施形態の蓄電装置100によれば、第1のセルが直列共振回路120にエネルギーを引き渡した後に、第2のセルが直列共振回路120からエネルギーを受け取ることができるので、簡便かつ適切な電圧均等化処理が可能となる。また、スイッチ140a〜140dを含む簡易な構成によってセル110a、110bと直列共振回路120との接続状態を制御することができる。
<5.第2の実施形態の第1の変形例>
[装置の構成例]
図7は、本実施形態の第1の変形例の蓄電装置100の構成を模式的に示す全体図である。本変形例の蓄電装置100は、図4の蓄電装置100に対して、セルの配置態様および蓄電制御装置130によって形成されるセルと直列共振回路120との接続状態が相違する。以下、相違点を詳細に説明する。
[装置の構成例]
図7は、本実施形態の第1の変形例の蓄電装置100の構成を模式的に示す全体図である。本変形例の蓄電装置100は、図4の蓄電装置100に対して、セルの配置態様および蓄電制御装置130によって形成されるセルと直列共振回路120との接続状態が相違する。以下、相違点を詳細に説明する。
本変形例において、蓄電制御装置130は、複数のセルを含む第1のセルを直列共振回路120に接続させた後に、第1のセルと同数の複数のセルを含む第2のセルを直列共振回路120に接続させる構成である。また、蓄電制御装置130は、連続する複数のセルを第1のセルに選択し、第1のセルと同数の連続する複数のセルを第2のセルに選択する構成である。さらに、蓄電制御装置130は、直列接続された複数のセルのうちの電圧が最大のセルを第1のセルに含ませ、電圧が最小のセルを第2のセルに含ませる構成である。
図7に示すように、本変形例の蓄電装置110は、図4の構成に対して、2つのセル110c、110dおよび各セル110c、110dにそれぞれ対応する2つのセル電圧検出部150c、150dが追加されている。また、本変形例では、4つのスイッチ140e、140f、140g、140hおよび4つの接続ライン165、166、167、168が更に追加されている。追加された構成の具体的な配置は以下の通りである。
セル110cの負極は、セル110dの正極に接続されている。セル110cの正極は、セル110bの負極に接続されている。つまり、本変形例では、4つのセル110a〜110dが、セル全体の正極端子Pから負極端子Nに向かって110a、110b、110c、110dという順番で直列接続されている。
セル電圧検出部150c、150dは、対応するセル110c、110dに並列接続されている。セル電圧検出部150c、150dは、対応するセル110c、110dの電圧を検出して、検出結果をセル電圧情報として蓄電制御装置130に出力する。
スイッチ140eは、正極端子Pから数えて3番目のセル110cの正極と直列共振回路120の第1の端部120aとを接続する接続ライン165上に配置されている。接続ライン165は、2番目のセル110bの正極から直列共振回路120の第1の端部120aに向かう他の接続ライン163と、ノードN3において接続されている。スイッチ140eは、蓄電制御装置130から入力されるスイッチ制御信号にしたがって接続ライン165を開閉する。
スイッチ140fは、3番目のセル110cの負極と直列共振回路120の第2の端部120bとを接続する接続ライン166上に配置されている。接続ライン166は、4番目のセル110dの負極から直列共振回路120の第2の端部120bに向かう他の接続ライン168と、ノードN4において接続されている。また、接続ライン166は、2番目のセル110bの負極から直列共振回路120の第2の端部120bに向かう他の接続ライン164と、ノードN5において接続されている。スイッチ140fは、蓄電制御装置130から入力されるスイッチ制御信号にしたがって接続ライン166を開閉する。
スイッチ140gは、4番目のセル110dの正極と直列共振回路120の第1の端部120aとを接続する接続ライン167上に配置されている。接続ライン167は、3番目のセルの正極から直列共振回路120の第1の端部120aに向かう他の接続ライン165と、ノードN6において接続されている。スイッチ140gは、蓄電制御装置130から入力されるスイッチ制御信号にしたがって接続ライン167を開閉する。
スイッチ140hは、4番目のセル110dの負極と直列共振回路120の第2の端部120bとを接続する接続ライン168上に配置されている。スイッチ140hは、蓄電制御装置130から入力されるスイッチ制御信号にしたがって接続ライン168を開閉する。
[装置の動作例]
本変形性の動作例を、図7を参照して説明する。以下の動作例は、本開示に係る蓄電制御方法の一実施形態を含む。
本変形性の動作例を、図7を参照して説明する。以下の動作例は、本開示に係る蓄電制御方法の一実施形態を含む。
説明の便宜上、初期状態において、蓄電制御装置130は、1番目のセル110aの電圧が最大、3番目のセル110cの電圧が最小であることを検知しているものとする。また、スイッチ140a〜140hはすべてオフ状態になっているものとする。
そして、初期状態から、先ず、蓄電制御装置130は、1番目のセル110aおよびこれに連続する2番目のセル110bを第1のセルに決定する。同時に、蓄電制御装置130は、3番目のセル110cおよびこれに連続する4番目のセル110dを第2のセルに決定する。
次いで、蓄電制御装置130は、1番目のセル110aの正極に対応するスイッチ140aすなわち第1の正極側のスイッチをオン状態に切り替える。同時に、蓄電制御装置130は、2番目のセル110bの負極に対応するスイッチ140dすなわち第1の負極側のスイッチをオン状態に切り替える。この切り替えで、1番目のセル110aの正極が直列共振回路120の第1の端部120aに接続され、2番目のセル110bの負極が直列共振回路120の第2の端部120bに接続される。これにより、連続すなわち隣接する2つのセル110a、110bからなる第1のセルから、直列共振回路120に向けてエネルギーが移動される。
次いで、蓄電制御装置130は、スイッチ140a、140dをオフ状態に切り替える。このとき、直列共振回路120に移動されたエネルギーは、直列共振回路120に保持される。
次いで、蓄電制御装置130は、3番目のセル110cの正極に対応するスイッチ140eすなわち第2の正極側のスイッチをオン状態に切り替える。同時に、蓄電制御装置130は、4番目のセル110dの負極に対応するスイッチ140hすなわち第2の負極側のスイッチをオン状態に切り替える。この切り替えで、3番目のセル110cの正極が直列共振回路120の第1の端部120aに接続され、4番目のセル110dの負極が直列共振回路120の第2の端部120bに接続される。これにより、連続する2つのセル110c、110dからなる第2のセルに向けて、直列共振回路120からエネルギーが移動される。
このようにして、セル数が同一のセル群間で、直列共振回路120を介してエネルギーが授受される。ただし、図7の構成において、1つのセルと他の1つのセルとの間でエネルギーが授受されることも、本開示の範囲内である。
本変形例によれば、最大電圧のセルを第1のセルに選び、最小電圧のセルを第2のセルに選んで効率的なエネルギーの授受を実現しつつも、第1のセル、第2のセルをセル群とすることで、給電側のセルと受電側のセルとの電位差を更に有効に緩和することができる。また、隣接するセル同士を第1または第2のセルに選ぶ構成とすることで、隣接しないセル同士を第1または第2のセルに選ぶ構成とする場合に比較して、配線を簡素化することができる。
<6.第3の実施形態>
[装置の構成例]
図8は、本実施形態の蓄電装置100の構成例を模式的に示す全体図である。本実施形態の蓄電装置100は、図4の蓄電装置100に対して、セルと直列共振回路120との接続の切り替えタイミングが特定されている。以下、詳細に説明する。
[装置の構成例]
図8は、本実施形態の蓄電装置100の構成例を模式的に示す全体図である。本実施形態の蓄電装置100は、図4の蓄電装置100に対して、セルと直列共振回路120との接続の切り替えタイミングが特定されている。以下、詳細に説明する。
本実施形態において、蓄電制御装置130は、第1のセルが直列共振回路120に接続された後に直列共振回路120に流れる電流が0Aになった場合に、第1のセルを直列共振回路120から切断させる構成である。また、蓄電制御装置130は、第2のセルが直列共振回路120に接続された後に直列共振回路120に流れる電流が0Aになった場合に、第2のセルを直列共振回路120から切断させる構成である。
図8に示すように、蓄電装置100は、ノードN1と直列共振回路120の第1の端部120aとの間に、共振電流検出部170を有している。共振電流検出部170は、直列共振回路120に流れる共振電流を検出し、検出結果を電流値情報として蓄電制御装置130に出力する。
[蓄電制御装置130]
図9に示すように、本実施形態の蓄電制御装置130は、図5の蓄電制御装置130に対して、電流値情報取得部133が追加されている。電流値情報取得部133は、共振電流検出部170から出力された電流値情報を取得する。スイッチ制御部132は、セル電圧情報取得部131が取得したセル電圧情報および電流値情報取得部133が取得した電流値情報に応じたスイッチ制御信号をスイッチ140a〜140dに出力する。スイッチ制御信号の内容は、直列共振回路120に流れる電流値が0Aになった場合にその時点で直列共振回路120に接続されているセルを直列共振回路120から切断させることである。電流値情報取得部133は、ハードウェアまたはソフトウェアもしくはこれらの双方によって具現化してもよい。
図9に示すように、本実施形態の蓄電制御装置130は、図5の蓄電制御装置130に対して、電流値情報取得部133が追加されている。電流値情報取得部133は、共振電流検出部170から出力された電流値情報を取得する。スイッチ制御部132は、セル電圧情報取得部131が取得したセル電圧情報および電流値情報取得部133が取得した電流値情報に応じたスイッチ制御信号をスイッチ140a〜140dに出力する。スイッチ制御信号の内容は、直列共振回路120に流れる電流値が0Aになった場合にその時点で直列共振回路120に接続されているセルを直列共振回路120から切断させることである。電流値情報取得部133は、ハードウェアまたはソフトウェアもしくはこれらの双方によって具現化してもよい。
[装置の動作例]
本実施形態の蓄電装置100の動作は、図10に示す蓄電装置100の等価回路の動作として説明することができる。図10では、第1のセル(Cell1)に対応する第1の正極側のスイッチと第1の負極側のスイッチとが、1つのスイッチSW1として表現されている。また、図10では、第2のセル(Cell2)に対応する第2の正極側のスイッチと第2の負極側のスイッチとが、1つのスイッチSW2として表現されている。共振電流検出部170は、第1のセルが直列共振回路120に接続された状態すなわちスイッチSW1のオン状態において、第1のセルから直列共振回路120に向かう共振電流iを検出する。また、共振電流検出部170は、第2のセルが直列共振回路120に接続された状態すなわちスイッチSW2のオン状態において、直列共振回路120から第2のセルに向かう共振電流iを検出する。
本実施形態の蓄電装置100の動作は、図10に示す蓄電装置100の等価回路の動作として説明することができる。図10では、第1のセル(Cell1)に対応する第1の正極側のスイッチと第1の負極側のスイッチとが、1つのスイッチSW1として表現されている。また、図10では、第2のセル(Cell2)に対応する第2の正極側のスイッチと第2の負極側のスイッチとが、1つのスイッチSW2として表現されている。共振電流検出部170は、第1のセルが直列共振回路120に接続された状態すなわちスイッチSW1のオン状態において、第1のセルから直列共振回路120に向かう共振電流iを検出する。また、共振電流検出部170は、第2のセルが直列共振回路120に接続された状態すなわちスイッチSW2のオン状態において、直列共振回路120から第2のセルに向かう共振電流iを検出する。
[タイムチャート]
図11は、図10の等価回路のタイムチャートである。
図11は、図10の等価回路のタイムチャートである。
図11のタイムチャートには、共振電流i(図11A参照)が0Aとなる時刻t1からの動作が示されている。時刻t1は、動作開始時刻であってもよい。時刻t1では、共振電流検出部170によって0Aが検出され、蓄電制御装置130が、共振電流検出部170の検出結果に基づいて、図11Cに示すようにスイッチSW1をオン状態に切り替える。時刻t1が動作開始時刻である場合には、時刻t1では、第1のセルおよび第2のセルの決定を契機としたスイッチSW1の切り替えが行われてもよい。
スイッチSW1がオン状態に切り替わることで、図10中の端子電圧Vin[V]は第1のセルの電圧E1[V]となり、第1のセルから直列共振回路120に向かう正方向に、共振電流iが流れる。これにより、第1のセルから直列共振回路120への放電が行われる。正方向の共振電流iの振幅は、正弦波的に時間変化し、正のピーク値ipp(図11A参照)に達した後に、時刻t2において0Aになる。このとき、共振電流検出部170によって0Aが検出されることで、蓄電制御装置130が、スイッチSW1をオフ状態に切り替え、かつ、スイッチSW2をオン状態に切り替える。
スイッチSW2がオン状態に切り替わることで、端子電圧Vin[V]は第2のセルの電圧E2[V]となり、方向を逆転させた共振電流iが、直列共振回路120から第2のセルに流れ込む。これにより、直列共振回路120から第2のセルへの充電が行われる。逆方向の共振電流iの振幅は、正弦波的に時間変化し、負のピーク値ipn(図11A参照)に達した後に、時刻t3において0Aになる。このとき、共振電流検出部170によって再び0Aが検出されることで、蓄電制御装置130が、スイッチSW2をオフ状態に切り替え、かつ、必要に応じてスイッチSW1をオン状態に切り替える。
このような1周期分の動作を必要に応じて繰り返すことで、第1のセルと第2のセルとの間での直列共振回路120を介したエネルギーの授受が行われ、両セルの電圧が均等化される。
本実施形態によれば、スイッチの開閉にともなう電力のロスを抑えることができるので、同数のセル間でエネルギーを効率的に授受することができる。
<7.第3の実施形態の第1の変形例>
[装置の構成例]
本変形例の蓄電装置100は、図8の蓄電装置100に対して、セルと直列共振回路120との接続を切り替えるための構成が相違する。以下、詳細に説明する。
[装置の構成例]
本変形例の蓄電装置100は、図8の蓄電装置100に対して、セルと直列共振回路120との接続を切り替えるための構成が相違する。以下、詳細に説明する。
本変形例の蓄電制御装置130は、第1のセルが直列共振回路120に接続された後に直列共振回路120に流れる電流の向きが変化した場合に、第1のセルを直列共振回路120から切断させる構成である。また、蓄電制御装置130は、第2のセルが直列共振回路120に接続された後に直列共振回路120に流れる電流の向きが変化した場合に、第2のセルを直列共振回路120から切断させる構成である。
図12は、本変形例の蓄電装置100に備えられた共振電流方向検出部180の構成例を示す回路図である。共振電流方向検出部180は、大別して、ホール素子181、第1、第2の比較器182、183、第1、第2のAND回路184、185、第1、第2のD型フリップフロップ186、187および第1、第2のNOT回路188、189によって構成されている。
ホール素子181は、第1の比較器182の非反転入力端子(+)および第2の比較器183の反転入力端子(−)に接続されている。第1の比較器182の反転入力端子(−)および第2の比較器183の非反転入力端子(+)は、接地されている。第1の比較器182の出力端子は、第1のD型フリップフロップ186の入力端子(D)および第1のAND回路184の入力端子に接続されている。第2の比較器183の出力端子は、第2のD型フリップフロップ187の入力端子(D)および第2のAND回路185の入力端子に接続されている。第1のD型フリップフロップ186の出力端子(Q)は、第1のNOT回路188の入力端子に接続されている。第2のD型フリップフロップ187の出力端子(Q)は、第2のNOT回路189の入力端子に接続されている。第1のNOT回路188の出力端子は、第1のAND回路184の入力端子に接続されている。第2のNOT回路189の出力端子は、第2のAND回路185の入力端子に接続されている。第1および第2のD型フリップフロップ186、187は、共振電流の共振周波数よりも十分に高い周波数のクロック信号CKが入力される構成である。
共振電流方向検出部180の動作例を、図13のタイムチャートを参照して説明する。
先ず、時刻t1では、図13Aに示すように、共振電流iすなわち共振電流の向きが、逆方向すなわち直列共振回路120からセルに向かう方向から、正方向すなわちセルから直列共振回路120に向かう方向に切り替わる。換言すれば、時刻t1では、共振電流iの値が、負から正に切り替わる。
これにより、第1の比較器182は、ホール素子181から正方向の共振電流iに対応する電気信号が入力されることで、非反転入力端子(+)の値が反転入力端子(−)の値よりも高くなる。この結果、図13Bに示すように、時刻t1では、第1の比較器182の出力が「High」(同図におけるH)すなわち「1」となる。
一方、第2の比較器183は、ホール素子181から正方向の共振電流iに対応する電気信号が入力されることで、非反転入力端子(+)の値が反転入力端子(−)の値よりも低くなる。これにより、図13Cに示すように、時刻t1では、第2の比較器183の出力が「Low」(同図におけるL)すなわち「0」となる。
第1のD型フリップフロップ186は、第1の比較器182からの出力「High」がD端子に入力されるものの、クロック信号の入力値が「Low」(図示せず)であることにより、前ステートにおける第1のD型フリップフロップ186の出力Qを保持する。これにより、図13Dに示すように、時刻t1では、第1のD型フリップフロップ186(第1のD型FF)の出力は「Low」となる。
一方、第2のD型フリップフロップ187は、第2の比較器183からの出力「Low」がD端子に入力されるものの、クロック信号の入力値が「Low」(図示せず)であることにより、前ステートにおける第2のD型フリップフロップ187の出力Qを保持する。これにより、図13Eに示すように、時刻t1では、第2のD型フリップフロップ187(第2のD型FF)の出力は「High」となる。
第1のAND回路184には、第1の比較器182の出力「High」と、第1のD型フリップフロップ186の出力を否定した第1のNOT回路188の出力「High」とが入力される。これにより、図13Fに示すように、時刻t1では、第1のAND回路184の出力すなわち論理積は「High」となる。
一方、第2のAND回路185には、第2の比較器183の出力「Low」と、第2のD型フリップフロップ187の出力を否定した第2のNOT回路189の出力「Low」とが入力される。これにより、図13Gに示すように、時刻t1では、第2のAND回路185の出力は「Low」となる。
以上のように、共振電流方向検出部180によれば、時刻t1における電流の向きが正方向であることが、第1のAND回路184の出力「High」および第2のAND回路185の出力「Low」によって検出される。そして、共振電流方向検出部180は、検出結果を蓄電制御装置130に出力する。
次に、時刻t1から僅かに時間が経過した時刻t2では、第1、第2のD型フリップフロップ186、187に入力されるクロック信号が、図示はしないが、「Low」から「High」に切り替わる。これにより、図13Dに示すように、第1のD型フリップフロップ186の出力は、D端子の入力値である「High」に切り替わる。また、図13Eに示すように、第2のD型フリップフロップ187の出力は、D端子の入力値である「Low」に切り替わる。これにより、時刻t2において、第1のAND回路184の出力は「Low」に切り替わる。一方、第2のAND回路185の出力は「Low」を維持する。
次に、時刻t3では、共振電流iの向きが、正方向から逆方向に切り替わる。共振電流方向検出部180の動作は、時刻t1のときと「High」、「Low」が逆転する。すなわち、時刻t3では、電流の向きが逆方向であることが、第1のAND回路184の出力「Low」および第2のAND回路185の出力「High」によって検出される。
なお、共振電流方向検出部180は、図12に示した構成に限定されない。
[装置の動作例]
図14は、本実施形態の蓄電装置100の動作例を示すフローチャートである。図14に示す動作例は、本開示に係る蓄電制御方法の一実施形態を含む。
図14は、本実施形態の蓄電装置100の動作例を示すフローチャートである。図14に示す動作例は、本開示に係る蓄電制御方法の一実施形態を含む。
図14の動作例は、図6に対して、以下の点が相違する。すなわち、図14では、ステップ62(S62)とステップ63(S63)との間に、ステップ141(S141)とステップ142(S142)を実行する。また、図14では、ステップ64(S64)の後に、ステップ143(S143)〜ステップ146(S146)を実行する。
具体的には、ステップ141(S141)では、共振電流方向検出部180により、共振電流iの向きを検出する。
ステップ142(S142)では、蓄電制御装置130により、ステップ141(S141)の検出結果に基づいて、i≦0か否かすなわち共振電流iの向きが変化したか否かを判定する。そして、ステップ142(S142)において肯定的な判定結果が得られた場合には、ステップ63(S63)に進み、否定的な判定結果が得られた場合には、ステップ141(S141)に戻る。
ステップ143(S143)では、共振電流方向検出部180により、共振電流iの向きを検出する。
ステップ144(S144)では、蓄電制御装置130により、ステップ143(S143)の検出結果に基づいて、i≧0か否かすなわち共振電流iの向きが変化したか否かを判定する。そして、ステップ144(S144)において肯定的な判定結果が得られた場合には、ステップ145(S145)に進み、否定的な判定結果が得られた場合には、ステップ143(S143)に戻る。
ステップ145(S145)では、蓄電制御装置130により、電圧均等化処理を終了すべきか否かを判定する。この判定は、例えば、蓄電制御装置130に対する外部制御信号の入力の有無や、第1のセルと第2のセルとの電圧差が規定値以内になったか否か等に基づいてもよい。そして、ステップ145(S145)において肯定的な判定結果が得られた場合には、ステップ65(S65)に進み、否定的な判定結果が得られた場合には、ステップ146(S146)に進む。
ステップ146(S146)では、蓄電制御装置130により、第2の正極側のスイッチおよび第2の負極側のスイッチをオフ状態に切り替えて、ステップ62(S62)に進む。
電圧均等化処理を必要に応じて複数回すなわち複数周期分繰り返す場合、各回のそれぞれにおいて同数セル間でのエネルギー授受がなされれば、異なる回同士の間でエネルギー授受がなされるセル数が異なる場合も、本開示の範囲内である。
本変形例の蓄電装置100によれば、第1のセルまたは第2のセルと直列共振回路120との間でのエネルギーの移動が完了したとみなせるタイミングを、電流の向きの変化といった簡便な手法で検知して、セルを直列共振回路120から切断することができる。これにより、さらに迅速かつ低コストの電圧均等化処理が可能となる。また、共振電流方向検出部180により、共振電流の方向を迅速かつ正確に検出することができる。
<8.第4の実施形態>
[装置の構成例]
本実施形態の蓄電装置100は、図8および図12の蓄電装置100に対して、セルと直列共振回路120との接続の切り替えタイミングが相違する。以下、詳細に説明する。
[装置の構成例]
本実施形態の蓄電装置100は、図8および図12の蓄電装置100に対して、セルと直列共振回路120との接続の切り替えタイミングが相違する。以下、詳細に説明する。
本実施形態の蓄電制御装置130は、第2のセルが直列共振回路120から切断された後に、設定された期間(以下、待機期間と称する)いずれのセルも直列共振回路120から切断された状態を保持する構成である。また、蓄電制御装置130は、待機期間中に、セルの電圧に基づいてエネルギーの授受すなわち電圧均等化処理を終了すべきか否かを判定する構成である。
待機期間の態様は限定されず、セルの電圧の測定および電圧均等化処理の是非の判定に好適な時間が蓄電制御装置130に設定されていてもよい。待機期間は変更可能であってもよい。
[装置の動作例]
[タイムチャート]
図15は、本実施形態の蓄電装置100の動作例を、図11と同様のタイムチャートとして示す図である。
[タイムチャート]
図15は、本実施形態の蓄電装置100の動作例を、図11と同様のタイムチャートとして示す図である。
図15のタイムチャートでは、時刻t3においてスイッチSW2をオフに切り替えた後に、待機期間Tが経過した時刻t4においてスイッチSW1をオンに切り替える。待機期間T中には、蓄電制御装置130が、セル電圧の検出結果に基づいて、電圧均等化処理を終了すべきか否かを判定する。待機期間Tでは、共振電流iが0Aになっているため、待機期間Tに測定されたセル電圧は、セルの内部インピーダンスの影響を受けない正確な値となる。このような正確なセル電圧に基づいて電圧均等化処理の終了の是非を判定すれば、適切な判定結果を得ることができる。なお、蓄電制御装置130は、待機期間T中に電圧均等化処理を終了すべきと判定した場合には、時刻t4においてスイッチSW1をオンに切り替えない。
[フローチャート]
図16は、本実施形態の蓄電装置100の動作例を、フローチャートとして示す図である。図16のフローチャートは、図14のフローチャートに対して、ステップ144(S144)の後の処理が相違する。具体的には、図16では、ステップ144(S144)において肯定的な判定結果が得られた後に、ステップ65(S65)、ステップ161(S161)およびステップ162(S162)を順次実行する。
図16は、本実施形態の蓄電装置100の動作例を、フローチャートとして示す図である。図16のフローチャートは、図14のフローチャートに対して、ステップ144(S144)の後の処理が相違する。具体的には、図16では、ステップ144(S144)において肯定的な判定結果が得られた後に、ステップ65(S65)、ステップ161(S161)およびステップ162(S162)を順次実行する。
具体的には、ステップ161(S161)では、蓄電制御装置130により、直列共振回路120への第1のセルの次の接続を待機期間待って、この待機期間中にセル電圧を測定する。セル電圧は、図4に示したセル電圧検出部150a、150bに測定させてもよい。
ステップ162(S162)では、蓄電制御装置130により、ステップ161(S161)におけるセル電圧の測定結果に基づいて、電圧均等化処理を終了すべきか否かを判定する。そして、ステップ162(S162)において肯定的な判定結果が得られた場合には、処理を終了し、否定的な判定結果が得られた場合には、ステップ62(S62)に進む。
本実施形態によれば、待機期間中に測定された正確なセル電圧に基づいて、電圧均等化処理の終了の是非を適切に判定することができ、ひいては、電圧均等化処理を更に好適化することができる。
<9.第4の実施形態の第1の変形例>
[装置の構成例]
本実施形態の蓄電装置100は、図15および図16に示した蓄電装置100に対して、セルと直列共振回路120との接続の切り替えタイミングが相違する。以下、詳細に説明する。
[装置の構成例]
本実施形態の蓄電装置100は、図15および図16に示した蓄電装置100に対して、セルと直列共振回路120との接続の切り替えタイミングが相違する。以下、詳細に説明する。
本実施形態の蓄電制御装置130は、第1のセルが直列共振回路120から切断された後にも、待機期間いずれのセルも直列共振回路120から切断された状態を保持し、待機期間中に、電圧均等化処理の終了の是非を判定する構成である。この待機期間も、蓄電制御装置130に対して変更可能に設定されていてもよい。
[装置の動作例]
[タイムチャート]
図17は、本実施形態の蓄電装置100の動作例を示すタイムチャートである。図17のタイムチャートでは、時刻t2においてスイッチSW1をオフに切り替えた後に、第2の待機期間T2が経過した時刻t3においてスイッチSW2をオンに切り替える。また、図17のタイムチャートでは、時刻t4においてスイッチSW2をオフに切り替えた後に、第1の待機期間T1が経過した時刻t5においてスイッチSW1をオンに切り替える。待機期間T1、T2中には、蓄電制御装置130が、セル電圧の検出結果に基づいて、電圧均等化処理を終了すべきか否かを判定する。待機期間T1、T2は、互いに同一であってもよく、または、互いに異なってもよい。
[タイムチャート]
図17は、本実施形態の蓄電装置100の動作例を示すタイムチャートである。図17のタイムチャートでは、時刻t2においてスイッチSW1をオフに切り替えた後に、第2の待機期間T2が経過した時刻t3においてスイッチSW2をオンに切り替える。また、図17のタイムチャートでは、時刻t4においてスイッチSW2をオフに切り替えた後に、第1の待機期間T1が経過した時刻t5においてスイッチSW1をオンに切り替える。待機期間T1、T2中には、蓄電制御装置130が、セル電圧の検出結果に基づいて、電圧均等化処理を終了すべきか否かを判定する。待機期間T1、T2は、互いに同一であってもよく、または、互いに異なってもよい。
[フローチャート]
図18は、本実施形態の蓄電装置100の動作例を示すフローチャートである。図18のフローチャートは、図16のフローチャートに対して、ステップ63(S63)とステップ64(S64)との間にステップ181(S181)とステップ182(S182)を実行する点で相違する。
図18は、本実施形態の蓄電装置100の動作例を示すフローチャートである。図18のフローチャートは、図16のフローチャートに対して、ステップ63(S63)とステップ64(S64)との間にステップ181(S181)とステップ182(S182)を実行する点で相違する。
具体的には、ステップ181(S181)では、蓄電制御装置130により、直列共振回路120への第2のセルの接続を第2の待機期間待って、この第2の待機期間中にセル電圧を測定する。
ステップ182(S182)では、蓄電制御装置130により、ステップ181(S181)におけるセル電圧の測定結果に基づいて、電圧均等化処理を終了すべきか否かを判定する。そして、ステップ182(S182)において肯定的な判定結果が得られた場合には、処理を終了し、否定的な判定結果が得られた場合には、ステップ64(S64)に進む。
本変形例の蓄電装置100によれば、電圧均等化処理の終了の是非を正確に判定する機会を増やすことができる。
<10.第5の実施形態>
[装置の構成例]
図19は、本実施形態の蓄電装置100における直列共振回路120の構成例を示す図である。本実施形態における直列共振回路120は、第1〜第4の実施形態の直列共振回路120に対して、リアクトル121およびコンデンサ122に加えて、抵抗123を有する点が相違する。すなわち、本実施形態における直列共振回路120は、RLC直列共振回路である。
[装置の構成例]
図19は、本実施形態の蓄電装置100における直列共振回路120の構成例を示す図である。本実施形態における直列共振回路120は、第1〜第4の実施形態の直列共振回路120に対して、リアクトル121およびコンデンサ122に加えて、抵抗123を有する点が相違する。すなわち、本実施形態における直列共振回路120は、RLC直列共振回路である。
[装置の動作例]
本実施形態の蓄電装置100の動作例は、図20に示す蓄電装置100の等価回路の動作例として説明することができる。
本実施形態の蓄電装置100の動作例は、図20に示す蓄電装置100の等価回路の動作例として説明することができる。
図20の等価回路において、第1のセル(Cell1)および第2のセル(Cell2)に流れる共振電流iのピーク値Ipeak[A]は、次の式(1)に示す値となる。
Ipeak=(E1−E2)/(2×R) (1)
但し、式(1)において、E1は、第1のセルの電圧[V]である。E2は、第2のセルの電圧[V]である。Rは、抵抗123の値[Ω]である。
Ipeak=(E1−E2)/(2×R) (1)
但し、式(1)において、E1は、第1のセルの電圧[V]である。E2は、第2のセルの電圧[V]である。Rは、抵抗123の値[Ω]である。
式(1)に示すように、ピーク値Ipeakは抵抗123の値に応じて異なり、抵抗値が大きいほど小さいピーク値Ipeakが得られる。
共振電流i[A]は次の式(2)に示す値となる。
i={(E1−E2)/(2×R)}×sinω0t (2)
但し、式(2)において、ω0は、次の式(3)で表される共振角周波数[rad/s]である。
ω0=1/(L×C)1/2 (3)
但し、式(3)において、Lは、リアクトル121の自己インダクタンス[H]であり、Cは、コンデンサ122の静電容量[F]である。
なお、式(3)から、共振周波数f0は、ω0/2πとなる。
i={(E1−E2)/(2×R)}×sinω0t (2)
但し、式(2)において、ω0は、次の式(3)で表される共振角周波数[rad/s]である。
ω0=1/(L×C)1/2 (3)
但し、式(3)において、Lは、リアクトル121の自己インダクタンス[H]であり、Cは、コンデンサ122の静電容量[F]である。
なお、式(3)から、共振周波数f0は、ω0/2πとなる。
式(2)では、前半の半周期すなわちω0tが0〜π[rad]の期間において、第1のセルから直列共振回路120に放電が行われる。一方、後半の半周期すなわちω0tがπ〜2π[rad]の期間においては、直列共振回路120から第2のセルへの充電が行われる。前半の半周期での平均放電電流Icha[A]および後半の半周期での平均充電電流Idis[A]は、式(2)を共振周波数の半周期ずつ積分して平均することで求めることができる。具体的には、平均放電電流Ichaおよび平均充電電流Idisは、次の式(4)に示す値となる。
Icha=Idis=(E1−E2)/(π×R) (4)
iが0Aになったタイミングもしくはiの方向変化のタイミングでセルと直列共振回路120との接続を切り替えれば、第1のセルから第2のセルに、式(4)に相当する電荷を供給することができる。
Icha=Idis=(E1−E2)/(π×R) (4)
iが0Aになったタイミングもしくはiの方向変化のタイミングでセルと直列共振回路120との接続を切り替えれば、第1のセルから第2のセルに、式(4)に相当する電荷を供給することができる。
本実施形態の蓄電装置100によれば、抵抗123によってピーク電流Ipeakを抑えることができるので、セルへの負担をより有効に低減させることができる。
<11.第5の実施形態の第1の変形例>
図21は、本変形例の蓄電装置100の要部を示す図である。本変形例の蓄電装置100は、蓄電制御装置130が、直列共振回路120の抵抗123の両端の電位差に基づいて、直列共振回路120に流れる電流の向き、大きさを検知する構成である。抵抗123の両端の電位差は、電圧検出部190によって検出してもよい。
図21は、本変形例の蓄電装置100の要部を示す図である。本変形例の蓄電装置100は、蓄電制御装置130が、直列共振回路120の抵抗123の両端の電位差に基づいて、直列共振回路120に流れる電流の向き、大きさを検知する構成である。抵抗123の両端の電位差は、電圧検出部190によって検出してもよい。
本変形例の蓄電装置100によれば、共振電流を検知するために図8の共振電流検出部170や図12の共振電流方向検出部180を設ける場合よりも、更にコストを低減させることができる。
<12.第5の実施形態の第2の変形例>
図22は、本変形例の蓄電装置100における直列共振回路120を示す図である。図22の直列共振回路120は、図19の直列共振回路120に対して、抵抗121が寄生抵抗である点で相違する。寄生抵抗は、リアクトル121、回路配線およびスイッチの少なくとも1つの寄生抵抗であってもよい。本変形例によれば、少ない部品点数によって共振電流のピーク値を抑えることができる。
図22は、本変形例の蓄電装置100における直列共振回路120を示す図である。図22の直列共振回路120は、図19の直列共振回路120に対して、抵抗121が寄生抵抗である点で相違する。寄生抵抗は、リアクトル121、回路配線およびスイッチの少なくとも1つの寄生抵抗であってもよい。本変形例によれば、少ない部品点数によって共振電流のピーク値を抑えることができる。
<13.第6の実施形態>
[装置の構成例]
本実施形態の蓄電装置100は、第1〜第5の実施形態の蓄電装置100に対して、セルと直列共振回路120との接続を切り替えるための構成が相違する。以下、詳細に説明する。
[装置の構成例]
本実施形態の蓄電装置100は、第1〜第5の実施形態の蓄電装置100に対して、セルと直列共振回路120との接続を切り替えるための構成が相違する。以下、詳細に説明する。
本変形例の蓄電制御装置130は、直列共振回路120とセルとの接続を直列共振回路120の共振周波数で切り替える構成である。
ここで、図11における時刻t1と時刻t2との間の期間のように、1つのセルが直列共振回路120に接続されてから、その1つのセルに替わって他のセルが直列共振回路120に接続されるまでの期間を接続切り替え周期と定義する。接続切り替え周期は、直列共振回路120の共振周期の半周期であるので、π(L×C)1/2[s]となる。本変形例の蓄電制御装置130は、このような接続切り替え周期毎に直列共振回路120とセルとの接続を切り替える構成ということもできる。
蓄電制御装置130は、共振周波数や接続切り替え周期等の情報が記憶され、この記憶された情報に基づいて、接続の切り替えタイミングを割り出して動作する構成でもよい。
[装置の動作例]
図23は、本実施形態の蓄電装置100の動作例を示すフローチャートである。図23では、先ず、ステップ231(S231)において、蓄電制御装置130により、給電側のセルを直列共振回路120に接続させる。
図23は、本実施形態の蓄電装置100の動作例を示すフローチャートである。図23では、先ず、ステップ231(S231)において、蓄電制御装置130により、給電側のセルを直列共振回路120に接続させる。
次いで、ステップ232(S232)において、蓄電制御装置130により、直列共振回路120の共振周波数に基づく接続の切り替えタイミングになったか否かを判定する。そして、ステップ232(S232)において肯定的な判定結果が得られた場合には、ステップ233(S233)に進み、否定的な判定結果が得られた場合には、ステップ232(S232)に戻る。
次いで、ステップ233(S233)において、蓄電制御装置130により、給電側のセルを直列共振回路120から切断させる。
次いで、ステップ234(S234)において、蓄電制御装置130により、受電側のセルを直列共振回路120に接続させる。
次いで、ステップ235(S235)において、蓄電制御装置130により、直列共振回路120の共振周波数に基づく接続の切り替えタイミングになったか否かを判定する。そして、ステップ235(S235)において肯定的な判定結果が得られた場合には、ステップ236(S236)に進み、否定的な判定結果が得られた場合には、ステップ235(S235)を繰り返す。
次いで、ステップ236(S236)において、蓄電制御装置130により、受電側のセルを直列共振回路120から切断させる。
次いで、ステップ237(S237)において、蓄電制御装置130は、電圧均等化処理を終了すべき場合には処理を終了し、電圧均等化処理を継続すべき場合にはステップ231(S231)に戻る。電圧均等化処理を終了すべきか否かの判断は、ステップ237(S237)以前に行ってもよい。
本実施形態の蓄電装置100によれば、直列共振回路120に流れる電流を監視する必要なく、エネルギーの授受に好適なタイミングでセルの接続を切り替えることができる。
<14.第7の実施形態>
本実施形態の蓄電装置100は、第1〜第6の実施形態の蓄電装置100に対して、直列共振回路120の共振周波数が相違する。
本実施形態の蓄電装置100は、第1〜第6の実施形態の蓄電装置100に対して、直列共振回路120の共振周波数が相違する。
具体的には、本実施形態における直列共振回路120の共振周波数は、交流インピーダンス法で測定されたセルの内部インピーダンスのコールコールプロットにおける虚数成分が0となる場合の周波数である。
ここで、交流インピーダンス法では、セルに交流を印加して周波数を変化させながら、周波数毎の内部インピーダンスを測定する。コールコールプロットは、交流インピーダンス法の測定結果を図示する方法の1つである。コールコールプロットでは、内部インピーダンスの実数成分を横軸にとり、内部インピーダンスの虚数成分を縦軸にとった複素平面上に、交流インピーダンス法で求められた周波数毎のセルの内部インピーダンスをプロットする。
コールコールプロットの一例を図24に示す。図24の横軸は、セルの内部インピーダンスの実部であり、図24の縦軸は、セルの内部インピーダンスの虚数部である。図24では、内部インピーダンスの虚数成分が0となる場合の周波数が、fmin[Hz]となっている。この場合、fminが共振周波数となるように直列共振回路120を設計すればよい。具体的には、fmin=1/{2π×(L×C)1/2}を満足するように、予めリアクトル121の自己インダクタンスLおよびコンデンサ122の静電容量Cを選択すればよい。なお、fminは、1k[Hz]〜10k[Hz]であってもよい。
本実施形態の蓄電装置100では、セルと直列共振回路120との間を流れる電流にとって、セルの内部インピーダンスは最小となる。したがって、エネルギーを効率的に授受することができる。
<15.第7の実施形態の第1の変形例>
本変形例の蓄電装置100は、図24を参照して説明した蓄電装置100に対して、直列共振回路120の共振周波数の設定の態様が相違する。
本変形例の蓄電装置100は、図24を参照して説明した蓄電装置100に対して、直列共振回路120の共振周波数の設定の態様が相違する。
本変形例の蓄電装置100を説明するためのコールコールプロットの一例を図25に模式的に示す。図25の横軸Z’は、セルの内部インピーダンスの実部であり、図25の縦軸Z”は、セルの内部インピーダンスの虚数部である。図25には、セルの充電率の一例としてのSOC(State of Charge)[%]ごとのコールコールプロットが示されている。図25のコールコールプロットは、FRA (Frequency Response Analyzer)によるセルの内部インピーダンスの測定結果に基づくプロットである。図25中の具体的な数値はあくまで一例であり、本開示の範囲を何ら限定するものではない。
図25に示すように、コールコールプロットは、SOCに応じて異なる場合がある。コールコールプロットにおける虚数成分が0となる場合の周波数fminがSOCに応じて異なる場合、fminをSOC毎に求め、求められたSOC毎のfminを総合的に考慮して直流共振回路120の共振周波数を設定してもよい。例えば、SOC毎のfminの平均値を求め、この平均値が共振周波数となるように直流共振回路120を設計してもよい。
本変形例によれば、SOCの変化を加味したエネルギーの効率的な授受が可能となる。
<16.第8の実施形態>
本実施形態の蓄電装置100は、第1〜第7の実施形態の蓄電装置100に対して、セルが特定されている。
本実施形態の蓄電装置100は、第1〜第7の実施形態の蓄電装置100に対して、セルが特定されている。
具体的には、本実施形態におけるセルは、充電率0%〜100%の区間のうちの5割以上に亘る一連の区間での電圧変化が0.25V以下となる放電特性を有するものである。
このような放電特性の一例として、正極材がオリビン型リン酸鉄とされたリチウムイオン二次電池を1C放電した場合の放電曲線を図26に示す。図26の放電曲線は、横軸が、充電率の一例としてのSOC[%]であり、縦軸が、セルの端子電圧[V]である。図26の放電曲線は、充電率0%〜100%の区間のうちの5割以上に亘る一連の区間での電圧変化が0.25V以下となっている。具体的には、図26の放電曲線は、充電率20%〜90%の区間における電圧変化が約0.1Vとなっている。図26の放電曲線は、放電開始直後は内部抵抗による電圧降下が大きいが、その後はフラットな特性が続くことから、直列接続で構成した組電池内における電圧のばらつきは小さくなる。セルは、オリビン型リン酸鉄を用いたリチウムイオン二次電池に限定されない。
ここで、蓄電装置100は、装置内の温度分布が比較的一様で、負荷電流も自動車などと比較すると変動が少ないため、セル間の電圧のばらつきは小さい。よって、蓄電装置100では、電圧均等化処理で大電流を使って高速にセル間電圧のばらつきを解消するよりも、少ない電流で無駄なくセルバランスを確保する方が望ましい。そして、本実施形態のような放電特性がフラットなセルを適用すれば、少ない電流での電圧均等化処理の実効性を確保することができる。
上述の各実施形態および変形例は、これらを適宜組み合わせてもよい。
各実施形態および変形例に記載された作用効果はあくまで例示であって限定されるものでは無く、他の作用効果があってもよい。本開示は、各実施形態および変形例に記載された複数の作用効果のいずれか一つを奏すればよい。
また、本開示は、以下のような構成をとることもできる。
(1)直列接続された複数のセルと、
リアクトル及びコンデンサを含む直列共振回路と、
前記セルと前記直列共振回路との接続状態を制御する蓄電制御装置と、を備え、
前記蓄電制御装置は、前記直列共振回路を介して同数のセル間でエネルギーを授受させる構成の蓄電装置。
(2)前記蓄電制御装置は、少なくとも1つのセルを含む第1のセルを前記直列共振回路に接続させた後に、前記第1のセルと同数のセルを含み、前記第1のセルと比較して総電圧が相対的に小さい第2のセルを前記直列共振回路に接続させる構成の(1)記載の蓄電装置。
(3)前記蓄電制御装置は、連続する複数のセルを前記第1のセルに選択し、前記第1のセルと同数の連続するセルを前記第2のセルに選択する構成の(2)記載の蓄電装置。
(4)前記蓄電制御装置は、前記第1のセルが前記直列共振回路に接続された後に前記直列共振回路に流れる電流の向きが変化した場合に、前記第1のセルを前記直列共振回路から切断させる構成の(2)または(3)記載の蓄電装置。
(5)前記蓄電制御装置は、前記第2のセルが前記直列共振回路に接続された後に前記直列共振回路に流れる電流の向きが変化した場合に、前記第2のセルを前記直列共振回路から切断させる構成の(4)記載の蓄電装置。
(6)前記蓄電制御装置は、前記第1及び/又は第2のセルが前記直列共振回路から切断された後に、設定された期間いずれのセルも前記直列共振回路から切断された状態を保持し、前記設定された期間中に、セルの電圧に基づいてエネルギーの授受を終了すべきか否かを判定する構成の(5)記載の蓄電装置。
(7)前記直列共振回路は抵抗を含み、
前記蓄電制御装置は、前記抵抗の両端の電位差に基づいて、前記直列共振回路に流れる電流の向きを検知する構成の(1)、(4)〜(6)のいずれかに記載の蓄電装置。
(8)前記蓄電制御装置は、前記直列共振回路と前記セルとの接続を前記直列共振回路の共振周波数で切り替える構成の(1)〜(3)のいずれかに記載の蓄電装置。
(9)前記直列共振回路の共振周波数は、交流インピーダンス法で測定された前記セルの内部インピーダンスのコールコールプロットにおける虚数成分が0となる場合の周波数である(1)〜(8)のいずれかに記載の蓄電装置。
(10)前記蓄電制御装置は、電圧が最大のセルを前記第1のセルに含ませる構成の(2)〜(9)のいずれかに記載の蓄電装置。
(11)前記蓄電制御装置は、電圧が最小のセルを前記第2のセルに含ませる構成の(2)〜(10)のいずれかに記載の蓄電装置。
(12)前記セルと前記直列共振回路とを接続又は切断するスイッチを更に備え、
前記蓄電制御装置は、前記スイッチの動作を制御することで前記セルと前記直列共振回路との接続状態を制御する構成の(1)〜(11)のいずれかに記載の蓄電装置。
(13)前記セルは、充電率0%〜100%の区間のうちの5割以上に亘る一連の区間での電圧変化が0.25V以下となる放電特性を有する(1)〜(12)のいずれかに記載の蓄電装置。
(14)コンピュータを、
直列接続された複数のセルとリアクトル及びコンデンサを含む直列共振回路との接続状態を制御して、前記直列共振回路を介して同数のセル間でエネルギーを授受させる手段
として機能させる蓄電制御プログラム。
(1)直列接続された複数のセルと、
リアクトル及びコンデンサを含む直列共振回路と、
前記セルと前記直列共振回路との接続状態を制御する蓄電制御装置と、を備え、
前記蓄電制御装置は、前記直列共振回路を介して同数のセル間でエネルギーを授受させる構成の蓄電装置。
(2)前記蓄電制御装置は、少なくとも1つのセルを含む第1のセルを前記直列共振回路に接続させた後に、前記第1のセルと同数のセルを含み、前記第1のセルと比較して総電圧が相対的に小さい第2のセルを前記直列共振回路に接続させる構成の(1)記載の蓄電装置。
(3)前記蓄電制御装置は、連続する複数のセルを前記第1のセルに選択し、前記第1のセルと同数の連続するセルを前記第2のセルに選択する構成の(2)記載の蓄電装置。
(4)前記蓄電制御装置は、前記第1のセルが前記直列共振回路に接続された後に前記直列共振回路に流れる電流の向きが変化した場合に、前記第1のセルを前記直列共振回路から切断させる構成の(2)または(3)記載の蓄電装置。
(5)前記蓄電制御装置は、前記第2のセルが前記直列共振回路に接続された後に前記直列共振回路に流れる電流の向きが変化した場合に、前記第2のセルを前記直列共振回路から切断させる構成の(4)記載の蓄電装置。
(6)前記蓄電制御装置は、前記第1及び/又は第2のセルが前記直列共振回路から切断された後に、設定された期間いずれのセルも前記直列共振回路から切断された状態を保持し、前記設定された期間中に、セルの電圧に基づいてエネルギーの授受を終了すべきか否かを判定する構成の(5)記載の蓄電装置。
(7)前記直列共振回路は抵抗を含み、
前記蓄電制御装置は、前記抵抗の両端の電位差に基づいて、前記直列共振回路に流れる電流の向きを検知する構成の(1)、(4)〜(6)のいずれかに記載の蓄電装置。
(8)前記蓄電制御装置は、前記直列共振回路と前記セルとの接続を前記直列共振回路の共振周波数で切り替える構成の(1)〜(3)のいずれかに記載の蓄電装置。
(9)前記直列共振回路の共振周波数は、交流インピーダンス法で測定された前記セルの内部インピーダンスのコールコールプロットにおける虚数成分が0となる場合の周波数である(1)〜(8)のいずれかに記載の蓄電装置。
(10)前記蓄電制御装置は、電圧が最大のセルを前記第1のセルに含ませる構成の(2)〜(9)のいずれかに記載の蓄電装置。
(11)前記蓄電制御装置は、電圧が最小のセルを前記第2のセルに含ませる構成の(2)〜(10)のいずれかに記載の蓄電装置。
(12)前記セルと前記直列共振回路とを接続又は切断するスイッチを更に備え、
前記蓄電制御装置は、前記スイッチの動作を制御することで前記セルと前記直列共振回路との接続状態を制御する構成の(1)〜(11)のいずれかに記載の蓄電装置。
(13)前記セルは、充電率0%〜100%の区間のうちの5割以上に亘る一連の区間での電圧変化が0.25V以下となる放電特性を有する(1)〜(12)のいずれかに記載の蓄電装置。
(14)コンピュータを、
直列接続された複数のセルとリアクトル及びコンデンサを含む直列共振回路との接続状態を制御して、前記直列共振回路を介して同数のセル間でエネルギーを授受させる手段
として機能させる蓄電制御プログラム。
100 蓄電装置
110a、110b セル
120 直列共振回路
121 リアクトル
122 コンデンサ
130 蓄電制御装置
110a、110b セル
120 直列共振回路
121 リアクトル
122 コンデンサ
130 蓄電制御装置
Claims (15)
- 直列接続された複数のセルと、
リアクトル及びコンデンサを含む直列共振回路と、
前記セルと前記直列共振回路との接続状態を制御する蓄電制御装置と、を備え、
前記蓄電制御装置は、前記直列共振回路を介して同数のセル間でエネルギーを授受させる構成の蓄電装置。 - 前記蓄電制御装置は、少なくとも1つのセルを含む第1のセルを前記直列共振回路に接続させた後に、前記第1のセルと同数のセルを含み、前記第1のセルと比較して総電圧が相対的に小さい第2のセルを前記直列共振回路に接続させる構成の請求項1記載の蓄電装置。
- 前記蓄電制御装置は、連続する複数のセルを前記第1のセルに選択し、前記第1のセルと同数の連続するセルを前記第2のセルに選択する構成の請求項2記載の蓄電装置。
- 前記蓄電制御装置は、前記第1のセルが前記直列共振回路に接続された後に前記直列共振回路に流れる電流の向きが変化した場合に、前記第1のセルを前記直列共振回路から切断させる構成の請求項2記載の蓄電装置。
- 前記蓄電制御装置は、前記第2のセルが前記直列共振回路に接続された後に前記直列共振回路に流れる電流の向きが変化した場合に、前記第2のセルを前記直列共振回路から切断させる構成の請求項4記載の蓄電装置。
- 前記蓄電制御装置は、前記第1及び/又は第2のセルが前記直列共振回路から切断された後に、設定された期間いずれのセルも前記直列共振回路から切断された状態を保持し、前記設定された期間中に、前記セルの電圧に基づいてエネルギーの授受を終了すべきか否かを判定する構成の請求項5記載の蓄電装置。
- 前記直列共振回路は抵抗を含み、
前記蓄電制御装置は、前記抵抗の両端の電位差に基づいて、前記直列共振回路に流れる電流の向きを検知する構成の請求項1記載の蓄電装置。 - 前記蓄電制御装置は、前記直列共振回路と前記セルとの接続を前記直列共振回路の共振周波数で切り替える構成の請求項1記載の蓄電装置。
- 前記直列共振回路の共振周波数は、交流インピーダンス法で測定された前記セルの内部インピーダンスのコールコールプロットにおける虚数成分が0となる場合の周波数である請求項1記載の蓄電装置。
- 前記蓄電制御装置は、電圧が最大のセルを前記第1のセルに含ませる構成の請求項2記載の蓄電装置。
- 前記蓄電制御装置は、電圧が最小のセルを前記第2のセルに含ませる構成の請求項10記載の蓄電装置。
- 前記セルと前記直列共振回路とを接続又は切断するスイッチを更に備え、
前記蓄電制御装置は、前記スイッチの動作を制御することで前記セルと前記直列共振回路との接続状態を制御する構成の請求項2記載の蓄電装置。 - 前記セルは、充電率0%〜100%の区間のうちの5割以上に亘る一連の区間での電圧変化が0.25V以下となる放電特性を有する請求項2記載の蓄電装置。
- 直列接続された複数のセルとリアクトル及びコンデンサを含む直列共振回路との接続状態を制御する構成で、前記直列共振回路を介して同数のセル間でエネルギーを授受させる構成の蓄電制御装置。
- 直列接続された複数のセルとリアクトル及びコンデンサを含む直列共振回路との接続状態を制御装置によって制御して、前記直列共振回路を介して同数のセル間でエネルギーを授受させる蓄電制御方法。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013199744A JP2015065795A (ja) | 2013-09-26 | 2013-09-26 | 蓄電装置、蓄電制御装置および蓄電制御方法 |
EP14847838.1A EP3051660B1 (en) | 2013-09-26 | 2014-08-12 | Electricity storage device and electricity storage control method |
US15/022,511 US10559860B2 (en) | 2013-09-26 | 2014-08-12 | Power storage device, power storage control device, and power storage control method |
CN201480051609.XA CN105556794A (zh) | 2013-09-26 | 2014-08-12 | 蓄电装置、蓄电控制装置和蓄电控制方法 |
CA2923589A CA2923589C (en) | 2013-09-26 | 2014-08-12 | Power storage device, power storage control device, and power storage control method |
KR1020167006643A KR102145090B1 (ko) | 2013-09-26 | 2014-08-12 | 축전 장치, 축전 제어 장치 및 축전 제어 방법 |
PCT/JP2014/071266 WO2015045660A1 (ja) | 2013-09-26 | 2014-08-12 | 蓄電装置、蓄電制御装置および蓄電制御方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013199744A JP2015065795A (ja) | 2013-09-26 | 2013-09-26 | 蓄電装置、蓄電制御装置および蓄電制御方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2015065795A true JP2015065795A (ja) | 2015-04-09 |
Family
ID=52742815
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013199744A Pending JP2015065795A (ja) | 2013-09-26 | 2013-09-26 | 蓄電装置、蓄電制御装置および蓄電制御方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US10559860B2 (ja) |
EP (1) | EP3051660B1 (ja) |
JP (1) | JP2015065795A (ja) |
KR (1) | KR102145090B1 (ja) |
CN (1) | CN105556794A (ja) |
CA (1) | CA2923589C (ja) |
WO (1) | WO2015045660A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018133851A (ja) * | 2017-02-13 | 2018-08-23 | NExT−e Solutions株式会社 | 制御装置、バランス補正装置、蓄電システム、及び、装置 |
JP2019502920A (ja) * | 2015-12-22 | 2019-01-31 | ヴィート エヌブイ | 高電圧バッテリの特性を測定するための装置 |
JP2019537409A (ja) * | 2016-10-12 | 2019-12-19 | オッポ広東移動通信有限公司 | バッテリ管理回路と方法、バランス回路と方法及び被充電機器 |
WO2023026716A1 (ja) | 2021-08-26 | 2023-03-02 | 株式会社今仙電機製作所 | アクティブバランサー |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101984811B1 (ko) | 2012-10-23 | 2019-06-03 | 삼성전자주식회사 | 무선 전력 전송 시스템용 자계조절 3차원 플렉서블 공진기 |
DE102015002077B3 (de) * | 2015-02-18 | 2016-06-09 | Audi Ag | Batteriezelle für eine Batterie eines Kraftfahrzeugs, Batterie, Kraftfahrzeug und Verfahren zum Betreiben einer Batteriezelle |
CN105048602B (zh) * | 2015-08-31 | 2017-12-05 | 矽力杰半导体技术(杭州)有限公司 | 电池平衡电路及电池装置 |
JP6496288B2 (ja) * | 2016-09-13 | 2019-04-03 | 本田技研工業株式会社 | 車両用充電部配置構造 |
US11056896B2 (en) | 2016-10-12 | 2021-07-06 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Terminal and device |
JP6862877B2 (ja) * | 2017-02-06 | 2021-04-21 | 富士通株式会社 | 電池残量計測回路、電子機器および電池残量計測方法 |
EP3398818B1 (en) * | 2017-05-04 | 2022-07-06 | Volvo Car Corporation | Voltage supply unit, battery balancing method |
CN110015130B (zh) * | 2017-08-31 | 2021-01-19 | 比亚迪股份有限公司 | 电池均衡系统、车辆、电池均衡方法及存储介质 |
CN116232049A (zh) * | 2023-01-04 | 2023-06-06 | 科华数据股份有限公司 | 电压均衡电路及电源 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6633154B1 (en) * | 2000-01-04 | 2003-10-14 | William B. Duff, Jr. | Method and circuit for using polarized device in AC applications |
GB2451138A (en) | 2007-07-20 | 2009-01-21 | Frazer Nash Technology Ltd | Battery cell charge balancing system |
EP2291905A1 (en) * | 2008-06-17 | 2011-03-09 | ABB Research Ltd. | A power apparatus for a high voltage electrical power system |
JP5051264B2 (ja) * | 2010-04-08 | 2012-10-17 | 株式会社デンソー | 電池電圧監視装置 |
JP2012029382A (ja) | 2010-07-20 | 2012-02-09 | Toshiba Corp | 蓄電装置及びエネルギバランス調整方法 |
JP2012034446A (ja) * | 2010-07-28 | 2012-02-16 | Toshiba Corp | 蓄電装置及びエネルギバランス調整方法 |
WO2012036086A1 (ja) * | 2010-09-14 | 2012-03-22 | ソニー株式会社 | 蓄電ユニット群、充電器、電子機器、電動車両、蓄電ユニット群の充電方法及び放電方法、電力供給・受給方法、並びに、蓄電ユニット群における充放電ルート決定方法 |
JP5870276B2 (ja) | 2010-10-08 | 2016-02-24 | パナソニックIpマネジメント株式会社 | 発電システムおよび発電ユニット |
AU2012258672A1 (en) * | 2011-05-24 | 2014-01-16 | Fastcap Systems Corporation | Power system for high temperature applications with rechargeable energy storage |
JP2013013291A (ja) | 2011-06-30 | 2013-01-17 | Hitachi Ltd | 電池間電圧均等化回路 |
US9203121B2 (en) | 2011-10-12 | 2015-12-01 | Texas Instruments Incorporated | Inductor-based active balancing for batteries and other power supplies |
TW201332192A (zh) | 2011-10-13 | 2013-08-01 | Tokushu Tokai Paper Co Ltd | 電化學元件用分隔件及其製造方法 |
US9711670B2 (en) * | 2012-08-21 | 2017-07-18 | Fluxphoton Corporation | Self-charging electronic devices |
-
2013
- 2013-09-26 JP JP2013199744A patent/JP2015065795A/ja active Pending
-
2014
- 2014-08-12 KR KR1020167006643A patent/KR102145090B1/ko active IP Right Grant
- 2014-08-12 WO PCT/JP2014/071266 patent/WO2015045660A1/ja active Application Filing
- 2014-08-12 EP EP14847838.1A patent/EP3051660B1/en active Active
- 2014-08-12 CN CN201480051609.XA patent/CN105556794A/zh active Pending
- 2014-08-12 US US15/022,511 patent/US10559860B2/en active Active
- 2014-08-12 CA CA2923589A patent/CA2923589C/en active Active
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019502920A (ja) * | 2015-12-22 | 2019-01-31 | ヴィート エヌブイ | 高電圧バッテリの特性を測定するための装置 |
JP2019537409A (ja) * | 2016-10-12 | 2019-12-19 | オッポ広東移動通信有限公司 | バッテリ管理回路と方法、バランス回路と方法及び被充電機器 |
JP2021153384A (ja) * | 2016-10-12 | 2021-09-30 | オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. | バッテリ管理回路と方法、バランス回路と方法及び被充電機器 |
JP2018133851A (ja) * | 2017-02-13 | 2018-08-23 | NExT−e Solutions株式会社 | 制御装置、バランス補正装置、蓄電システム、及び、装置 |
TWI762522B (zh) * | 2017-02-13 | 2022-05-01 | 日商艾達司股份有限公司 | 控制裝置、平衡校正裝置及蓄電系統 |
WO2023026716A1 (ja) | 2021-08-26 | 2023-03-02 | 株式会社今仙電機製作所 | アクティブバランサー |
Also Published As
Publication number | Publication date |
---|---|
KR20160064089A (ko) | 2016-06-07 |
US20160233556A1 (en) | 2016-08-11 |
EP3051660A4 (en) | 2017-04-26 |
CN105556794A (zh) | 2016-05-04 |
WO2015045660A1 (ja) | 2015-04-02 |
EP3051660A1 (en) | 2016-08-03 |
CA2923589A1 (en) | 2015-04-02 |
CA2923589C (en) | 2021-06-01 |
US10559860B2 (en) | 2020-02-11 |
KR102145090B1 (ko) | 2020-08-14 |
EP3051660B1 (en) | 2023-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015045660A1 (ja) | 蓄電装置、蓄電制御装置および蓄電制御方法 | |
US10730398B2 (en) | Battery control method and apparatus, battery module, and battery pack | |
EP3185388B1 (en) | Battery control method and apparatus, and battery pack | |
US20180062403A1 (en) | Battery management apparatus and system | |
US20150316974A1 (en) | Method and apparatus for generating slave device identifier | |
US9851413B2 (en) | Method and apparatus for estimating current | |
JP5625045B2 (ja) | 電気システムおよび充電式電池の充電方法 | |
JP6106269B2 (ja) | 蓄電池監視装置 | |
JP7479516B2 (ja) | バッテリー制御装置、バッテリーシステム、電源供給システム及びバッテリー制御方法 | |
US20160308257A1 (en) | Method for Transferring a Minimum and/or a Maximum Value of a Battery System Parameter and Battery System for Carrying Out such a Method | |
JPWO2015087487A1 (ja) | 電池管理装置および電源装置 | |
WO2015045661A1 (ja) | 蓄電装置、蓄電制御装置および蓄電制御方法 | |
JP2015070681A (ja) | 電池監視装置、蓄電装置および電池監視方法 | |
WO2019040428A1 (en) | EARLY PRELOAD VALIDATION FOR A PEER POWER APPLICATION IN NETZERO POWER DEVICES | |
JP2022542913A (ja) | バッテリー管理装置 | |
JP2022524032A (ja) | 漏電検出装置、漏電検出方法及び電気車両 | |
CN104965177B (zh) | 电池电芯的电荷状态的估计和再调整的方法 | |
La et al. | Synthesis of balancing topologies for parallel-connected battery cells by principle of duality | |
KR101567423B1 (ko) | 소형 다중 권선 변압기를 이용한 ess용 액티브 배터리 관리 시스템용 균등 제어장치 | |
JP6268357B1 (ja) | 蓄電装置及びその制御方法 | |
Sagar et al. | Series battery equalization using sequential difference algorithm | |
JP6234049B2 (ja) | バランス補正装置および蓄電システム | |
JP6133110B2 (ja) | バランス補正装置および蓄電システム | |
JP2018068036A (ja) | 蓄電素子の電圧均等化回路 | |
Huang et al. | Charge shuttling with ultracapacitors for fast equalization of power lithium-ion battery |