[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2015059856A - Laser doppler flow rate measuring method and apparatus - Google Patents

Laser doppler flow rate measuring method and apparatus Download PDF

Info

Publication number
JP2015059856A
JP2015059856A JP2013194241A JP2013194241A JP2015059856A JP 2015059856 A JP2015059856 A JP 2015059856A JP 2013194241 A JP2013194241 A JP 2013194241A JP 2013194241 A JP2013194241 A JP 2013194241A JP 2015059856 A JP2015059856 A JP 2015059856A
Authority
JP
Japan
Prior art keywords
light
laser
flow velocity
optical system
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013194241A
Other languages
Japanese (ja)
Other versions
JP6191000B2 (en
Inventor
正司 八賀
Tadashi Hachiga
正司 八賀
恒宣 寺西
Tsunenori Teranishi
恒宣 寺西
弘樹 石田
Hiroki Ishida
弘樹 石田
俊輔 秋口
Shunsuke Akiguchi
俊輔 秋口
嗣修 安東
Tsugunaga Ando
嗣修 安東
洋吾 高田
Yogo Takada
洋吾 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Toyama University
Osaka City University PUC
Institute of National Colleges of Technologies Japan
Original Assignee
Osaka University NUC
Toyama University
Osaka City University PUC
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC, Toyama University, Osaka City University PUC, Institute of National Colleges of Technologies Japan filed Critical Osaka University NUC
Priority to JP2013194241A priority Critical patent/JP6191000B2/en
Publication of JP2015059856A publication Critical patent/JP2015059856A/en
Application granted granted Critical
Publication of JP6191000B2 publication Critical patent/JP6191000B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)
  • Measuring Volume Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a laser Doppler flow rate measuring method and an apparatus which can perform efficient measurement in a two-dimensionally wide range by a simple optical system and an apparatus using a laser Doppler system.SOLUTION: The laser Doppler flow rate measuring apparatus comprises: a beam division element 14 for dividing a laser beam L from a laser source 12; sheet light formation optical systems 21, 22, 23, 24 for converting divided laser beams L1, L2 into planar thin sheet light Ls1, Ls2; and a condensing optical system 18 for making each of the divided sheet light Ls1, Ls2 to intersect with each other on the same plane so that the planes of two the sheet light overlap with each other. The laser Doppler flow rate measuring apparatus also comprises: an imaging optical system 26 for two-dimensionally imaging scattered light generated by particles p in fluid in an intersection area D where the sheet light Ls1, Ls2 intersects with each other; a light receiving element 32 on an imaging position of the imaging optical system 26; photoelectric conversion elements 40 for converting scattered light entering the light receiving element 32 into an electric signal; and calculation means 48 for calculating, for each photoelectric conversion element 40, a flow rate of the fluid in the intersection area D where the laser beam L is Doppler frequency-shifted.

Description

この発明は、多点同時に流速を測定可能なレーザドップラー方式により流速を測定するレーザドップラー流速測定方法及び装置に関する。   The present invention relates to a laser Doppler flow velocity measuring method and apparatus for measuring a flow velocity by a laser Doppler method capable of simultaneously measuring flow velocity at multiple points.

非接触で、圧力損失の無い計測方法である点計測LDV(Laser Doppler
Velocimeter)法は、密度・粘土の影響を受けることなく、高応答、高精度、高分解能にて、KHzオーダーの非定常流れにおける速度分布の計測が可能であり、従来広く用いられている流速測定方法である。
Point measurement LDV (Laser Doppler) is a non-contact and pressure-free measurement method
The Velocimeter method is capable of measuring velocity distribution in unsteady flow in the KHz order with high response, high accuracy, and high resolution without being affected by density and clay. Is the method.

この点計測LDV法は、1本のレーザ光をビームスプリッタ及びミラーにより二本の強度の等しい平行なビームに分け、アクロマティックレンズによって集光させ、集光させた二つのビームの交差点を測定点として、この点を通過するシーディング粒子の速度を測定する方法である。   In this point measurement LDV method, one laser beam is divided into two parallel beams of equal intensity by a beam splitter and a mirror, condensed by an achromatic lens, and the intersection of the two condensed beams is measured. As a method of measuring the velocity of seeding particles passing through this point.

しかしながら、この点計測LDV法は、流れ場を点で測定するため、情報量が非常に少なく、高精度に測定することが難しいという問題があった。そこで、本願発明者は、非特許文献1、2に示すような、流れ場を多点同時に計測可能とした線計測LDV法を開発した。   However, this point measurement LDV method has a problem that since the flow field is measured by a point, the amount of information is very small and it is difficult to measure with high accuracy. Therefore, the inventor of the present application has developed a line measurement LDV method capable of simultaneously measuring a flow field at multiple points as shown in Non-Patent Documents 1 and 2.

線計測LDV法は、1本のレーザ光をキューブビームスプリッタおよびミラーにより2本の強度の等しい平行なビームに分け、アクロマティックレンズによって集光させ、集光させる途中でロッドレンズを用い2枚の平行光の平面光にした後、各平面光を交差させるものである。各平面光は、進行方向と直交する方向であって、各平面の幅方向が平行になるようにして各平面光を交差させる。これにより、各平面光の面が交差した交差線が、測定点列となり、この交差線で干渉縞が生成され交差線上に粒子が通過することによりドップラー信号を持った散乱光が得られる。その散乱光をアバランシェフォトダイオード(APD:Avalanche Photo Diode)に導き、APDにより光信号から電気信号に変換し、FFT(Fast Fourier Transform)処理を行うことにより、粒子の流速を算出するものである。本願発明者は、この計測方法の利用例として、特許文献1に開示された、レーザドップラー血流測定方法及びその測定を開発し、特許された。   The line measurement LDV method divides one laser beam into two parallel beams of equal intensity by a cube beam splitter and a mirror, condenses them by an achromatic lens, After the plane light of parallel light is made, each plane light is crossed. Each plane light is a direction orthogonal to the traveling direction, and crosses each plane light so that the width direction of each plane is parallel. Thereby, the intersecting line where the planes of the respective plane lights intersect becomes a measurement point sequence, and interference fringes are generated at the intersecting line, and the particles pass through the intersecting line, so that scattered light having a Doppler signal is obtained. The scattered light is guided to an avalanche photodiode (APD), converted from an optical signal to an electrical signal by APD, and subjected to FFT (Fast Fourier Transform) processing to calculate the flow velocity of the particles. The inventor of the present application developed and patented a laser Doppler blood flow measurement method and measurement disclosed in Patent Document 1 as an example of use of this measurement method.

特許第5234470号公報Japanese Patent No. 5234470

Development of a Multi-point LDV by usingSemiconductor laser with FFT-based multi-channel Signal Processing;Experiments in Fluids 24 Springer-Verlag pp.70-76Development of a Multi-point LDV by usingSemiconductor laser with FFT-based multi-channel Signal Processing; Experiences in Fluids 24 Springer-Verlag pp.70-76 多点同時測定LDVとCCDエリアイメージセンサを併用した2成分流速分布同時測定法の開発;計測自動制御学会論文集Voi.39,No.3(2003)218-224Development of simultaneous measurement method of two-component flow velocity distribution using LDV and CCD area image sensor simultaneously; Proceedings of the Society of Instrument and Control Engineers Voi.39, No.3 (2003) 218-224

上述の線計測LDV法は、流れ場を点から多点同時へと計測することが可能となり測定精度も高くなったが、測定領域が1次元状の線計測であるため、情報量はまだ十分であるとは言えず、より高精度な測定技術の開発が求められていた。特に、測定範囲を二次元とした面測定技術は、未だ確立はなされていない。   The above-mentioned line measurement LDV method can measure the flow field from point to multi-point simultaneously, and the measurement accuracy is high. However, since the measurement area is a one-dimensional line measurement, the amount of information is still sufficient. However, the development of more accurate measurement technology has been demanded. In particular, a surface measurement technique with a two-dimensional measurement range has not yet been established.

この発明は、上記従来の背景技術に鑑みて成されたもので、レーザドップラー方式により、簡単な光学系及び装置により、測定精度が高く、2次元的に広い範囲を効率的に測定可能なレーザドップラー流速測定方法及び装置を提供することを目的とする。   The present invention has been made in view of the above-described conventional background art, and is a laser that can measure a two-dimensionally wide range efficiently with a high measurement accuracy by a simple optical system and apparatus using a laser Doppler method. It is an object of the present invention to provide a Doppler flow velocity measuring method and apparatus.

この発明は、レーザ光源からのレーザ光を分岐して、分岐された各レーザ光を面状の薄いシート光にして、その面同士が重なるように同一面上で互いに交差させ、前記シート光が交差した交差領域での流体内の粒子による散乱光を面状の受光部に結像させて、その結像位置で2次元的に配置された複数の受光素子に入射させ、前記受光素子に入射した前記各散乱光であって、ドップラー周波数シフトした散乱光を、光電変換素子により電気信号に変換し、前記レーザ光のドップラー周波数シフトした前記散乱光により、前記流体の流速を前記光電変換素子毎に演算するレーザドップラー流速測定方法である。   In the present invention, the laser light from the laser light source is branched, and each of the branched laser lights is made into a sheet-like thin sheet light, intersecting each other on the same surface so that the surfaces overlap each other, The scattered light from the particles in the fluid at the intersecting intersection is imaged on a planar light-receiving part, and incident on a plurality of light-receiving elements arranged two-dimensionally at the image-forming position, and incident on the light-receiving element. Each of the scattered light and the scattered light shifted by the Doppler frequency is converted into an electric signal by a photoelectric conversion element, and the flow rate of the fluid is changed for each photoelectric conversion element by the scattered light shifted by the Doppler frequency of the laser light. This is a laser Doppler flow velocity measuring method to be calculated.

前記シート状のレーザ光の前記交差領域を、前記交差領域と交差する方向に走査して、前記交差領域の流速を3次元的に求めるようにしても良い。   The intersecting region of the sheet-like laser light may be scanned in a direction intersecting the intersecting region, and the flow velocity of the intersecting region may be obtained three-dimensionally.

またこの発明は、レーザ光源と、前記レーザ光源からのレーザ光を分岐するビーム分割素子と、前記ビーム分割素子により分岐されたレーザ光を面状の薄いシート光にするシート光形成光学系と、分岐した前記各シート光をその面同士が重なるように同一面上で互いに交差させる集光光学系と、前記シート光が交差した交差領域での流体内の粒子による散乱光を2次元的に結像させる結像光学系と、前記結像光学系の結像位置に配置された受光素子と、前記受光素子に入射した前記散乱光を電気信号に変換する光電変換素子と、前記レーザ光がドップラー周波数シフトした前記交差領域での前記流体の流速を、前記電気信号を基にして前記光電変換素子毎に演算する演算手段とを備えたレーザドップラー流速測定装置である。   The present invention also includes a laser light source, a beam splitting element that splits the laser light from the laser light source, and a sheet light forming optical system that converts the laser light split by the beam splitting element into a planar thin sheet light, A condensing optical system that crosses each of the branched sheet light on the same surface so that the surfaces overlap each other, and light scattered by particles in the fluid in the intersecting region where the sheet light intersects are two-dimensionally connected. An imaging optical system for imaging, a light receiving element disposed at an imaging position of the imaging optical system, a photoelectric conversion element for converting the scattered light incident on the light receiving element into an electric signal, and the laser beam being Doppler It is a laser Doppler flow velocity measuring apparatus provided with the calculating means which calculates the flow velocity of the said fluid in the said crossing area | region shifted in frequency for every said photoelectric conversion element based on the said electrical signal.

前記結像光学系は、前記シート光の前記交差領域の面に対して直交する方向に光軸を有して配置されたものである。   The imaging optical system is arranged with an optical axis in a direction orthogonal to the plane of the intersecting region of the sheet light.

前記受光素子は、平面上に光電変換素子が一体的に配置された固体撮像素子から成るものでも良い。   The light receiving element may be composed of a solid-state imaging element in which photoelectric conversion elements are integrally arranged on a plane.

前記ビーム分割素子と前記シート光形成光学系から成る光学系の中に、音響光学素子を設けたものでも良い。   An acoustooptic element may be provided in an optical system composed of the beam splitting element and the sheet light forming optical system.

この発明のレーザドップラー流速測定方法及び装置によれば、流体の流速を測定するにあたり、2次元的な交差領域において流速の測定を行うことができ、同時に多くの流速情報を得ることができ、測定効率が高く、流量の多い流体や広い範囲での測定を効果的に行うことができる。   According to the laser Doppler flow velocity measuring method and apparatus of the present invention, when measuring the flow velocity of a fluid, the flow velocity can be measured in a two-dimensional intersection region, and a large amount of flow velocity information can be obtained at the same time. It is highly efficient and can effectively measure fluids with a large flow rate and a wide range.

この発明の一実施形態のレーザドップラー流速測定装置光学系を示す概略図である。It is the schematic which shows the laser Doppler flow velocity measuring device optical system of one Embodiment of this invention. この発明の一実施形態のレーザドップラー流速測定装置によるシート光の交差領域である測定面を示す模式図である。It is a schematic diagram which shows the measurement surface which is an intersection area | region of the sheet light by the laser Doppler flow velocity measuring apparatus of one Embodiment of this invention. この発明の一実施形態のレーザドップラー流速測定装置の光ファイバの配置を示す全体図(a)と、ファイバアレイの受光部を示す正面図(b)である。It is the whole figure (a) which shows arrangement | positioning of the optical fiber of the laser Doppler flow velocity measuring apparatus of one Embodiment of this invention, and the front view (b) which shows the light-receiving part of a fiber array. この発明の一実施形態のレーザドップラー流速測定装置の光電変換素子からコンピュータまでの機能を示すブロック図である。It is a block diagram which shows the function from the photoelectric conversion element of the laser Doppler flow velocity measuring apparatus of one Embodiment of this invention to a computer. この発明のレーザドップラー流速測定方法により測定される流速測定領域の測定点の1点での流速の5秒間の変化を示すグラフである。It is a graph which shows the change for 5 second of the flow velocity in one point of the measurement point of the flow velocity measurement area | region measured by the laser Doppler flow velocity measuring method of this invention. この発明のレーザドップラー流速測定方法により測定される流速測定領域での各測定点で流速の5秒間の変化を示すグラフである。It is a graph which shows the change for 5 second of the flow velocity in each measurement point in the flow velocity measurement area | region measured by the laser Doppler flow velocity measuring method of this invention.

以下、この発明の一実施形態について、図1〜図6を基にして説明する。この実施形態のレーザドップラー流速測定装置10は、図1に示すように、レーザダイオード等のレーザ光源12と、このレーザ光源12からのレーザ光Lを2方向に分岐するビーム分割素子であるビームスプリッタ14と、ビームスプリッタ14により2本に分岐されたレーザ光L1,L2のうちの一方を他方と平行な方向に向ける反射鏡16と、レーザ光L1,L2を所定の位置に集光させるアクロマティクレンズ等の集光光学系である集光レンズ18を備えている。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS. As shown in FIG. 1, a laser Doppler flow velocity measuring apparatus 10 according to this embodiment includes a laser light source 12 such as a laser diode and a beam splitter that is a beam splitting element that splits the laser light L from the laser light source 12 in two directions. 14, a reflecting mirror 16 that directs one of the laser beams L 1 and L 2 branched into two by the beam splitter 14 in a direction parallel to the other, and an achromaticity that focuses the laser beams L 1 and L 2 at a predetermined position. A condensing lens 18 that is a condensing optical system such as a cleansing lens is provided.

さらに、集光レンズ18の出射光側には、レーザ光L1,L2の通過位置に一致して互いに平行に配置されシート光形成光学系であるロッドレンズ21,22が設けられている。ロッドレンズ21,22は、レーザ光L1,L2を平面状に拡散させるもので、拡散したレーザ光L1,L2は、同一平面上に位置している。各ロッドレンズ21,22の光出射側近傍には、入射した平面状のレーザ光L1,L2を、平面状の平行光であるシート光Ls1,Ls2に形成するシート光形成光学系のシリンドリカルレンズ23,24が位置している。シリンドリカルレンズ23,24も互いに平行に位置し、その平面部23a,24aが、各ロッドレンズ21,22側に面している。シート光Ls1,Ls2は、互いに同一面上にシート面が位置して、所定角度2θで交差する。ここで、θは、集光レンズ18の光軸対する各レーザ光L1,L2が屈折して出射する角度である。   Further, rod lenses 21 and 22 that are sheet light forming optical systems are provided on the output light side of the condenser lens 18 so as to coincide with the passing positions of the laser beams L1 and L2 and to be parallel to each other. The rod lenses 21 and 22 diffuse the laser beams L1 and L2 in a planar shape, and the diffused laser beams L1 and L2 are located on the same plane. In the vicinity of the light emitting side of each of the rod lenses 21 and 22, the cylindrical lens 23 of the sheet light forming optical system that forms the incident planar laser beams L1 and L2 into the sheet beams Ls1 and Ls2 that are planar parallel beams. , 24 are located. Cylindrical lenses 23 and 24 are also positioned in parallel with each other, and flat portions 23a and 24a face the rod lenses 21 and 22 side. The sheet lights Ls1 and Ls2 intersect at a predetermined angle 2θ, with the sheet surfaces positioned on the same plane. Here, θ is an angle at which the laser beams L1 and L2 with respect to the optical axis of the condenser lens 18 are refracted and emitted.

シート光Ls1,Ls2の交差領域Dは、図1,図2に示すように、平行光であるシート光Ls1,Ls2の面同士が互いに一致して重なるように、同一面上で交差するので、菱形に形成され、この交差領域Dの範囲内に後述する光ファイバアレイ30による2次元的な流速測定領域を設定する。   Since the intersecting region D of the sheet light Ls1 and Ls2 intersects on the same surface so that the surfaces of the sheet light Ls1 and Ls2 that are parallel lights coincide with each other and overlap as shown in FIGS. A two-dimensional flow velocity measurement region formed by an optical fiber array 30 to be described later is set in the range of the intersection region D.

シート光Ls1,Ls2の交差領域Dの表面と直交する方向で所定距離離れた位置には、一対のアクロマティックレンズ等による結像光学系である結像レンズ26が配置され、結像レンズ26の出射光側に対面して、結像レンズ26の結像位置に、2次元的に配列された受光素子である光ファイバアレイ30の受光部30aが位置している。結像光学系の結像レンズ26は、シート光Ls1,Ls2の交差領域Dの面に対して、直交する方向に光軸を有して配置されている。   An imaging lens 26 that is an imaging optical system such as a pair of achromatic lenses is disposed at a position separated by a predetermined distance in a direction orthogonal to the surface of the intersecting region D of the sheet light Ls1 and Ls2. The light receiving portion 30a of the optical fiber array 30 that is a light receiving element arranged two-dimensionally is located at the image forming position of the image forming lens 26 facing the outgoing light side. The imaging lens 26 of the imaging optical system is arranged with an optical axis in a direction orthogonal to the plane of the intersecting region D of the sheet lights Ls1 and Ls2.

なお、この実施形態に用いたレンズ等の光学系部品の表面には、用いたレーザ光の波長の減衰を抑えるために、この波長に対する反射防止膜がコーティングされている。   The surface of an optical system component such as a lens used in this embodiment is coated with an antireflection film for this wavelength in order to suppress the attenuation of the wavelength of the used laser beam.

光ファイバレイ30は、図3に示すように、各光ファイバ32が束ねられたライトガイド束34を備え、各光ファイバ32の端面が、縦横に整列されて光ファイバレイ30の受光部30aを形成している。各光ファイバ32の他方の端部は、光ファイバ32毎に光プラグ36に接続されている。光プラグ36は、各々光レセプタクル38に接続可能に設けられている。各光レセプタクル38には、光電変換素子であるアバランシェフォトダイオード(以下、APDと称す。)40が各々設けられている。   As shown in FIG. 3, the optical fiber lay 30 includes a light guide bundle 34 in which the optical fibers 32 are bundled. The end faces of the optical fibers 32 are aligned vertically and horizontally so that the light receiving unit 30 a of the optical fiber lay 30 is arranged. Forming. The other end of each optical fiber 32 is connected to an optical plug 36 for each optical fiber 32. Each of the optical plugs 36 is provided so as to be connectable to an optical receptacle 38. Each optical receptacle 38 is provided with an avalanche photodiode (hereinafter referred to as APD) 40 which is a photoelectric conversion element.

APD40は、図4に示すように、光ファイバ32の数だけ設けられ、光ファイバ32の受光部30aの配置と同様に配列されて設けられている。APD40は、光ファイバ32により導かれた光を各々電気信号に変換し、各APD40の出力は、光ファイバ32の本数だけ設けられた各アンプ42を介して各々周波数フィルタ44に入力する。周波数フィルタ44でフィルタリングされた各信号は、データレコーダ46でA/D変換されて各々記録される。各データレコーダ46に記録されたデジタル信号は、USBコネクタ等を介してコンピュータ48に入力され、後述する流速測定のための所定の演算解析処理がコンピュータ48により行われる。   As shown in FIG. 4, the APDs 40 are provided by the number of the optical fibers 32, and are arranged in the same manner as the arrangement of the light receiving units 30 a of the optical fibers 32. The APD 40 converts each light guided by the optical fiber 32 into an electrical signal, and the output of each APD 40 is input to each frequency filter 44 through each amplifier 42 provided by the number of the optical fibers 32. Each signal filtered by the frequency filter 44 is A / D converted by the data recorder 46 and recorded. The digital signal recorded in each data recorder 46 is input to the computer 48 via a USB connector or the like, and the computer 48 performs a predetermined calculation analysis process for measuring a flow velocity, which will be described later.

次に、この実施形態のレーザドップラー流速測定方法について以下に説明する。このレーザドップラー流速測定方法は、レーザ光源12から出射されたレーザ光を、ビームスプリッタ14により分割し、図1、図2に示すように、各ロッドレンズ21,22とシリンドリカルレンズ23,24により、シート光Ls1,Ls2に形成し、所定の平面上の測定位置で交差させる。この測定位置である交差領域Dでは、交差領域Dを通過する流体の流速を、光ファイバ32を単位として、結像光学系である結像レンズ26の倍率により決まる空間分解能で求めることができる。例えば250μmの径の光ファイバ32を用いて光学系の倍率を1とすると、空間分解能は250μmとなる。   Next, the laser Doppler flow velocity measuring method of this embodiment will be described below. In this laser Doppler flow velocity measuring method, the laser light emitted from the laser light source 12 is divided by the beam splitter 14, and as shown in FIGS. 1 and 2, the rod lenses 21 and 22 and the cylindrical lenses 23 and 24, The sheet lights Ls1 and Ls2 are formed and crossed at measurement positions on a predetermined plane. In the intersecting region D that is the measurement position, the flow velocity of the fluid passing through the intersecting region D can be obtained with a spatial resolution determined by the magnification of the imaging lens 26 that is the imaging optical system, with the optical fiber 32 as a unit. For example, if an optical fiber 32 having a diameter of 250 μm is used and the magnification of the optical system is 1, the spatial resolution is 250 μm.

シート光Ls1,Ls2の交差領域Dは、シート状の平行光が互いの面を重ねるようにして交差した領域であるので、菱形状の形状になり、シート光Ls1,Ls2の位相差によって干渉縞ができる。そして、交差領域Dにおける流体中で、微小な粒子pが流体とともにその流速で通過すると、シート光Ls1,Ls2が流体中の粒子pにより反射し、散乱光が生じる。この散乱光は、粒子pの速度によるドップラー効果により、ドップラー周波数が変化する。そして、交差領域Dでの粒子pによる各散乱光は、それぞれ結像レンズ26により光ファイバレイ30の受光部30a上のそれぞれに対応する点に結像される。   The intersecting region D of the sheet light Ls1 and Ls2 is a region in which the sheet-like parallel light intersects with each other so as to overlap each other, and thus has a rhombus shape, and interference fringes are caused by the phase difference between the sheet light Ls1 and Ls2. Can do. When the minute particles p pass along with the fluid at the flow velocity in the fluid in the intersection region D, the sheet lights Ls1 and Ls2 are reflected by the particles p in the fluid, and scattered light is generated. The Doppler frequency of the scattered light changes due to the Doppler effect due to the velocity of the particles p. Then, each scattered light by the particles p in the intersection region D is imaged by the imaging lens 26 at a point corresponding to each on the light receiving portion 30a of the optical fiber array 30.

流体の流速により周波数変化した散乱光は、光ファイバアレイ30の受光部30aで受光され、各光ファイバ32を介して各APD40に入力し、電気的なビート信号として検出される。ここで検出した信号の周波数変化と強度は、流体中の粒子pの速度及び個数に対応した値である。これを受光部30aでの光ファイバ32毎に求めて、交差領域Dの対応する点での流速を算出する。各APD40により得られた入力信号は、A/D変換されてコンピュータ48入力され、そのデジタル信号を高速フーリエ変換し、さらにノイズ除去処理等を施して、ドップラー周波数を算出する。ドップラー周波数は、検出した信号の周波数スペクトルにおいて、ドップラー周波数でのピークが表れることにより求まる。ドップラー周波数が求まると、その周波数から公知の算出方向により流体中の粒子pの速度が算出され、その速度が流体の流速と等しいので、流速が算出される。   Scattered light whose frequency is changed by the flow velocity of the fluid is received by the light receiving unit 30a of the optical fiber array 30, is input to each APD 40 via each optical fiber 32, and is detected as an electrical beat signal. The frequency change and intensity of the signal detected here are values corresponding to the speed and number of particles p in the fluid. This is calculated | required for every optical fiber 32 in the light-receiving part 30a, and the flow velocity in the point corresponding to the cross | intersection area | region D is calculated. The input signal obtained by each APD 40 is A / D converted and input to the computer 48, and the digital signal is fast Fourier transformed and further subjected to noise removal processing and the like to calculate the Doppler frequency. The Doppler frequency is determined by the appearance of a peak at the Doppler frequency in the frequency spectrum of the detected signal. When the Doppler frequency is obtained, the velocity of the particle p in the fluid is calculated from the frequency in a known calculation direction, and the velocity is equal to the flow velocity of the fluid.

このようにして得られた光ファイバ32による測定結果を図5のグラフに示す。ここでは、5秒間での流体中の粒子pの速度を所定のサンプリング周期でプロットしたものである。受光部30a全体での各光ファイバ32による測定結果は、図6に示すように、交差領域Dの各光ファイバ32毎の対応箇所での流速の変化が正確に検出されている。   The measurement result obtained by the optical fiber 32 thus obtained is shown in the graph of FIG. Here, the velocity of the particles p in the fluid in 5 seconds is plotted with a predetermined sampling period. As shown in FIG. 6, the measurement result of each optical fiber 32 in the entire light receiving unit 30 a accurately detects the change in the flow velocity at the corresponding location for each optical fiber 32 in the intersection region D.

さらに、この交差領域Dをその面と直交する方向に位置を移動させて同様に流速を測定し、これを繰り返す走査を行うことにより、3次元的に交差領域Dの流速測定が可能となる。   Further, by moving the position of the intersecting region D in the direction perpendicular to the surface and measuring the flow velocity in the same manner, and repeating this scanning, the flow velocity of the intersecting region D can be measured three-dimensionally.

この実施形態のレーザドップラー流速測定方法及び装置によれば、流体の流速を測定するにあたり、2次元的な交差領域Dにおいて流量の測定を行うことができ、同時に多くの流速情報を得ることができる。しかもこの場合の空間分解能は、光学系により適宜設定可能である。   According to the laser Doppler flow velocity measuring method and apparatus of this embodiment, when measuring the flow velocity of the fluid, the flow rate can be measured in the two-dimensional intersection region D, and a large amount of flow velocity information can be obtained at the same time. . In addition, the spatial resolution in this case can be appropriately set by the optical system.

尚、この発明のレーザドップラー流速測定方法及び装置は、上記実施形態に限定されるものではなく、レーザ光源と集光レンズとの間の光学系を、音響光学素子と反射鏡等に置き換えて構成しても良く、音響光学素子を用いることにより、以下のような効果を有する。流速の正、負方向の判別がつき、ペデスタルとドップラー信号を分離でき、平均流速が低い場合の乱流測定が可能となる。さらに、平均流速が低く、変動周波数が高い場合などでも、非定常流の測定に有効である。1台の信号処理装置で、広帯域の測定が可能となり、フィルタなどの周波数特性が決められていても、信号の周波数を変化させることができるので、広帯域の信号でも、既存の測定系で測定が可能になる。その他、測定体積部に、既知の信号を与えるので、光学系の調整がやりやすく、流速ゼロでも周波数偏移分の信号が得られるので、この点でも光学系の調整がやりやすい。通常は水蒸気などのミストを測定体積に流し、信号が取れることを確認するが、透明な定規などを測定体積部に置くだけで、周波数偏移分の信号を取ることができる。   The laser Doppler flow velocity measuring method and apparatus according to the present invention is not limited to the above-described embodiment, and the optical system between the laser light source and the condenser lens is replaced with an acousto-optic element and a reflecting mirror. Alternatively, the following effects can be obtained by using an acoustooptic device. It is possible to distinguish between positive and negative flow rates, separate pedestal and Doppler signals, and measure turbulence when the average flow rate is low. Furthermore, even when the average flow velocity is low and the fluctuation frequency is high, it is effective for measurement of unsteady flow. With a single signal processing device, it is possible to measure a wide band, and even if the frequency characteristics of a filter or the like are determined, the frequency of the signal can be changed. It becomes possible. In addition, since a known signal is given to the measurement volume, it is easy to adjust the optical system, and a signal corresponding to the frequency shift can be obtained even at zero flow velocity. Normally, it is confirmed that a signal can be obtained by flowing a mist such as water vapor to the measurement volume, but a signal corresponding to the frequency shift can be obtained by simply placing a transparent ruler or the like on the measurement volume.

また、受光部や光電変換素子は、CCDやC−MOS等のイメージセンサの固体撮像素子でも良い。光ファイバも、ガラスファイバやプラスチックファイバ等、適宜選択可能である。   Further, the light receiving unit and the photoelectric conversion element may be a solid-state imaging element of an image sensor such as a CCD or a C-MOS. The optical fiber can also be selected as appropriate, such as glass fiber or plastic fiber.

10 レーザドップラー流速測定装置
12 レーザ光源
14 ビームスプリッタ
16 反射鏡
18 集光レンズ
21,22 ロッドレンズ
23,24 シリンドリカルレンズ
26 結像レンズ
30 ファイバアレイ
30a 受光部
32 光ファイバ
40 アバランシェフォトダイオード(APD)
D 交差領域
Ls1,Ls2 シート光
p 粒子
DESCRIPTION OF SYMBOLS 10 Laser Doppler flow velocity measuring apparatus 12 Laser light source 14 Beam splitter 16 Reflecting mirror 18 Condensing lens 21, 22 Rod lens 23, 24 Cylindrical lens 26 Imaging lens 30 Fiber array 30a Light receiving part 32 Optical fiber 40 Avalanche photodiode (APD)
D crossing region Ls1, Ls2 sheet light p particle

Claims (6)

レーザ光源からのレーザ光を分岐して、分岐された各レーザ光を面状の薄いシート光にして、その面同士が重なるように同一面上で互いに交差させ、
前記シート光が交差した交差領域での流体内の粒子による散乱光を面状の受光部に結像させて、その結像位置で2次元的に配置された複数の受光素子に入射させ、
前記受光素子に入射した前記各散乱光であって、ドップラー周波数シフトした散乱光を、光電変換素子により電気信号に変換し、
前記レーザ光のドップラー周波数シフトした前記散乱光により、前記流体の流速を前記光電変換素子毎に演算することを特徴とするレーザドップラー流速測定方法。
Branch the laser light from the laser light source, make each branched laser light into a sheet-like thin sheet light, intersect each other on the same surface so that the surfaces overlap,
The scattered light from the particles in the fluid in the intersecting region where the sheet light intersects is imaged on a planar light receiving unit, and is incident on a plurality of light receiving elements arranged two-dimensionally at the imaging position,
Each of the scattered light incident on the light receiving element, and the scattered light shifted by the Doppler frequency is converted into an electric signal by a photoelectric conversion element,
A laser Doppler flow velocity measuring method, wherein the flow velocity of the fluid is calculated for each photoelectric conversion element by using the scattered light shifted by the Doppler frequency of the laser light.
前記シート状のレーザ光の前記交差領域を、前記交差領域と交差する方向に走査して、前記交差領域の流速を3次元的に求める請求項1記載のレーザドップラー流速測定方法。   The laser Doppler flow velocity measuring method according to claim 1, wherein the intersecting region of the sheet-like laser light is scanned in a direction intersecting the intersecting region, and the flow velocity of the intersecting region is obtained three-dimensionally. レーザ光源と、前記レーザ光源からのレーザ光を分岐するビーム分割素子と、前記ビーム分割素子により分岐されたレーザ光を面状の薄いシート光にするシート光形成光学系と、分岐した前記各シート光をその面同士が重なるように同一面上で互いに交差させる集光光学系と、前記シート光が交差した交差領域での流体内の粒子による散乱光を2次元的に結像させる結像光学系と、前記結像光学系の結像位置に配置された受光素子と、前記受光素子に入射した前記散乱光を電気信号に変換する光電変換素子と、前記レーザ光がドップラー周波数シフトした前記交差領域での前記流体の流速を、前記電気信号を基にして前記光電変換素子毎に演算する演算手段とを備えたことを特徴とするレーザドップラー流速測定装置。   A laser light source; a beam splitting element for splitting the laser light from the laser light source; a sheet light forming optical system for converting the laser light split by the beam splitting element into a planar thin sheet light; A condensing optical system that intersects light on the same surface so that the surfaces overlap each other, and imaging optics that forms a two-dimensional image of light scattered by particles in the fluid in the intersecting region where the sheet light intersects System, a light receiving element arranged at an image forming position of the image forming optical system, a photoelectric conversion element for converting the scattered light incident on the light receiving element into an electric signal, and the crossing in which the laser light is shifted in Doppler frequency A laser Doppler flow velocity measuring apparatus, comprising: a calculating means for calculating the flow velocity of the fluid in a region for each of the photoelectric conversion elements based on the electric signal. 前記結像光学系は、前記シート光の前記交差領域の面に対して直交する方向に光軸を有して配置された請求項3記載のレーザドップラー流速測定装置。   4. The laser Doppler flow velocity measuring device according to claim 3, wherein the imaging optical system is arranged with an optical axis in a direction orthogonal to the plane of the intersecting region of the sheet light. 前記受光素子は、平面上に光電変換素子が一体的に配置された固体撮像素子から成る請求項4記載のレーザドップラー流速測定装置。   5. The laser Doppler flow velocity measuring device according to claim 4, wherein the light receiving element is a solid-state imaging element in which photoelectric conversion elements are integrally arranged on a plane. 前記ビーム分割素子と前記シート光形成光学系から成る光学系の中に、音響光学素子を設けた請求項3記載のレーザドップラー流速測定装置。
4. The laser Doppler flow velocity measuring apparatus according to claim 3, wherein an acousto-optic element is provided in an optical system comprising the beam splitting element and the sheet light forming optical system.
JP2013194241A 2013-09-19 2013-09-19 Laser Doppler flow velocity measuring method and apparatus Active JP6191000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013194241A JP6191000B2 (en) 2013-09-19 2013-09-19 Laser Doppler flow velocity measuring method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013194241A JP6191000B2 (en) 2013-09-19 2013-09-19 Laser Doppler flow velocity measuring method and apparatus

Publications (2)

Publication Number Publication Date
JP2015059856A true JP2015059856A (en) 2015-03-30
JP6191000B2 JP6191000B2 (en) 2017-09-06

Family

ID=52817502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013194241A Active JP6191000B2 (en) 2013-09-19 2013-09-19 Laser Doppler flow velocity measuring method and apparatus

Country Status (1)

Country Link
JP (1) JP6191000B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105403731A (en) * 2015-11-27 2016-03-16 天津大学 High-precision wide-range femtosecond laser doppler three-dimensional flow velocity sensing method
CN108801584A (en) * 2017-10-17 2018-11-13 沈熊 Wave current flow velocity measuring system, water hole formula swimming machine system based on Laser Doppler speed and velocity correction method
JP2019082396A (en) * 2017-10-30 2019-05-30 国立大学法人九州大学 Measurement device
CN111750972A (en) * 2020-05-26 2020-10-09 北京理工大学 Target vibration measurement method suitable for dual-frequency continuous laser radar
US20210010925A1 (en) * 2018-03-30 2021-01-14 Sysmex Corporation Flow cytometer and particle detection method
CN114563595A (en) * 2022-03-16 2022-05-31 中国人民解放军国防科技大学 System and method for measuring flow velocity of two-dimensional flow field of pipeline based on laser Doppler velocity measurement

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0332641A (en) * 1989-06-30 1991-02-13 Yokogawa Medical Syst Ltd Laser doppler imaging device
JP2671667B2 (en) * 1991-10-18 1997-10-29 三菱電機株式会社 Laser doppler velocimeter
JP2001116763A (en) * 1999-10-21 2001-04-27 Hitachi Ltd Flow velocity-measuring device
JP3492012B2 (en) * 1995-03-09 2004-02-03 キヤノン株式会社 Displacement information detection device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0332641A (en) * 1989-06-30 1991-02-13 Yokogawa Medical Syst Ltd Laser doppler imaging device
JP2671667B2 (en) * 1991-10-18 1997-10-29 三菱電機株式会社 Laser doppler velocimeter
JP3492012B2 (en) * 1995-03-09 2004-02-03 キヤノン株式会社 Displacement information detection device
JP2001116763A (en) * 1999-10-21 2001-04-27 Hitachi Ltd Flow velocity-measuring device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105403731A (en) * 2015-11-27 2016-03-16 天津大学 High-precision wide-range femtosecond laser doppler three-dimensional flow velocity sensing method
CN108801584A (en) * 2017-10-17 2018-11-13 沈熊 Wave current flow velocity measuring system, water hole formula swimming machine system based on Laser Doppler speed and velocity correction method
CN108801584B (en) * 2017-10-17 2024-04-02 沈熊 Wave flow velocity measurement system based on laser Doppler velocity measurement, water tunnel type swimming machine system and velocity correction method
JP2019082396A (en) * 2017-10-30 2019-05-30 国立大学法人九州大学 Measurement device
US20210010925A1 (en) * 2018-03-30 2021-01-14 Sysmex Corporation Flow cytometer and particle detection method
CN111750972A (en) * 2020-05-26 2020-10-09 北京理工大学 Target vibration measurement method suitable for dual-frequency continuous laser radar
CN114563595A (en) * 2022-03-16 2022-05-31 中国人民解放军国防科技大学 System and method for measuring flow velocity of two-dimensional flow field of pipeline based on laser Doppler velocity measurement

Also Published As

Publication number Publication date
JP6191000B2 (en) 2017-09-06

Similar Documents

Publication Publication Date Title
JP6191000B2 (en) Laser Doppler flow velocity measuring method and apparatus
CN100422744C (en) Optical movement information detector, movement information detection system, electronic equipment and encoder
JP7444941B2 (en) Particle characterization
US20100280398A1 (en) Laser doppler blood flow measuring method and device
CN103308142A (en) Method and device for measuring speed and frequency of ultrasonic traveling wave in liquid
CN105423911A (en) Common-path digital holographic microscopic device and method based on optical grating defocusing
JP5981443B2 (en) Observation device
Meier et al. Imaging laser Doppler velocimetry
CN106949842A (en) Two-dimensional displacement measurer and measuring method
CN103115586A (en) Micro three-dimensional sensing device based on laser interference fringes
CN203687880U (en) Optical displacement measuring system
CN109470177A (en) Three-dimensional perspective measurement method and device based on double grating
CN102252652A (en) Device and method for measuring incident angle of laser by multi-beam laser heterodyne quadratic harmonic method
RU2458352C2 (en) Detector and method of determining speed
KR20140001299A (en) Laser radar system for 3d image detection with photo-detectors array
CN106840008B (en) Optical fiber spacing measurement system and measurement method
CN113631954A (en) Phase difference detection system and method for detecting phase difference
KR101628761B1 (en) surface shape measuring appatstus using asymmetric interferometer
CN107515103A (en) A kind of focal length detection means and method using circular grating
KR101317630B1 (en) A common-path optical interferometer for measuring multi-dimensional flow velocity components
JP6052965B2 (en) In-plane displacement measuring device
CN106908004B (en) A kind of distance measurement system and its application based on vectorial field
CN103116035A (en) Micro-electromechanical systems (MEMS) Doppler velocimetry method and device based on embedded twin-core photonic crystal fiber (PCF)
KR20150021346A (en) Three demension coordinate measuring machine
CN107121071A (en) Two-dimensional displacement measurer and measuring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160914

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170706

R150 Certificate of patent or registration of utility model

Ref document number: 6191000

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250