JP2015051646A - Automatic traveling device of vehicle, vehicle and automatic traveling method of vehicle - Google Patents
Automatic traveling device of vehicle, vehicle and automatic traveling method of vehicle Download PDFInfo
- Publication number
- JP2015051646A JP2015051646A JP2013183757A JP2013183757A JP2015051646A JP 2015051646 A JP2015051646 A JP 2015051646A JP 2013183757 A JP2013183757 A JP 2013183757A JP 2013183757 A JP2013183757 A JP 2013183757A JP 2015051646 A JP2015051646 A JP 2015051646A
- Authority
- JP
- Japan
- Prior art keywords
- vehicle speed
- traveling
- road
- vehicle
- target vehicle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 29
- 239000000446 fuel Substances 0.000 claims abstract description 43
- 238000002347 injection Methods 0.000 claims abstract description 16
- 239000007924 injection Substances 0.000 claims abstract description 16
- 238000002485 combustion reaction Methods 0.000 claims description 20
- 238000012423 maintenance Methods 0.000 claims description 10
- 238000013459 approach Methods 0.000 claims description 6
- 230000007935 neutral effect Effects 0.000 abstract description 46
- 239000000243 solution Substances 0.000 abstract 1
- 230000005540 biological transmission Effects 0.000 description 28
- 230000007423 decrease Effects 0.000 description 19
- 230000005484 gravity Effects 0.000 description 10
- 238000005381 potential energy Methods 0.000 description 7
- 230000001133 acceleration Effects 0.000 description 4
- 230000001172 regenerating effect Effects 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 230000001934 delay Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/18—Propelling the vehicle
- B60W30/18009—Propelling the vehicle related to particular drive situations
- B60W30/18072—Coasting
- B60W2030/1809—Without torque flow between driveshaft and engine, e.g. with clutch disengaged or transmission in neutral
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2552/00—Input parameters relating to infrastructure
- B60W2552/20—Road profile, i.e. the change in elevation or curvature of a plurality of continuous road segments
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2720/00—Output or target parameters relating to overall vehicle dynamics
- B60W2720/10—Longitudinal speed
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
Landscapes
- Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
- Control Of Transmission Device (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
- Controls For Constant Speed Travelling (AREA)
- Regulating Braking Force (AREA)
Abstract
Description
本発明は、車両の自動走行装置、車両、及び車両の自動走行方法に関し、より詳細には、車両の速度を予め設定した目標車速になるように自動で制御することができる車両の自動走行装置、車両、及び車両の自動走行方法に関する。 The present invention relates to a vehicle automatic traveling device, a vehicle, and a vehicle automatic traveling method, and more particularly, a vehicle automatic traveling device capable of automatically controlling a vehicle speed to a preset target vehicle speed. The present invention relates to a vehicle and a method for automatically driving the vehicle.
従来技術の車両のオートクルーズ(自動走行制御)においては、道路勾配の変化によらず、目標車速を維持するように制御していた。このため、道路勾配が頻繁に変化する道路、所謂アンジュレーション(うねり)を伴う道路において、燃費が悪化していた。 In the conventional vehicle auto-cruise (automatic traveling control), control is performed so as to maintain the target vehicle speed regardless of changes in road gradient. For this reason, the fuel efficiency has deteriorated on a road where the road gradient frequently changes, that is, a road with so-called undulation.
これに関して、大気圧とGPSデータから算出された道路勾配に基づいて、車両が目標車速を維持して走行するように、エンジンから車輪に伝達される駆動力又は制動力を運転者の操作によらずに調節する装置が提案されている(例えば、特許文献1参照)。この装置は、車両の如何なる走行状態でも、極めて信頼性の高い道路勾配に基づいて、定速クルーズの内部アクセル制御を行っている。 In this regard, based on the road gradient calculated from the atmospheric pressure and GPS data, the driving force or braking force transmitted from the engine to the wheels is determined by the driver's operation so that the vehicle travels while maintaining the target vehicle speed. An apparatus that adjusts without any change has been proposed (see, for example, Patent Document 1). This device performs internal accelerator control of constant speed cruise based on a highly reliable road gradient in any driving state of the vehicle.
しかし、上記の装置では、従来技術のオートクルーズと同様に、車両が目標車速を維持して走行するように制御されているため、目標車速を維持し続けるための不要なシフトダウンが行われたり、ニュートラル惰性走行の機会が減少したりする。そのため、燃費悪化を避ける効果が限定されてしまう。 However, in the above-described device, as in the case of the conventional auto-cruise, since the vehicle is controlled to travel while maintaining the target vehicle speed, an unnecessary downshift is performed in order to keep the target vehicle speed. Or the chance of neutral inertia running. Therefore, the effect which avoids a fuel consumption deterioration will be limited.
本発明は、上記の問題を鑑みてなされたものであり、その課題は、運行時間を大幅に増加することなく、燃料消費量を低減することができる車両の自動走行装置、車両、及び車両の自動走行方法を提供することである。 The present invention has been made in view of the above-mentioned problems, and the problem is that an automatic traveling device for a vehicle, a vehicle, and a vehicle that can reduce fuel consumption without significantly increasing operation time. It is to provide an automatic driving method.
上記の課題を解決するための本発明の車両の自動走行装置は、内燃機関を搭載した車両の走行を、予め設定された目標車速に車速を維持する目標車速維持走行とする制御を行う目標車速維持走行制御手段と、車両の走行を、前記内燃機関の燃料噴射を停止した惰性走行とする制御を行う惰性走行制御手段とを備える車両の自動走行装置において、前方道路の道路状況を取得する道路状況取得手段と、車速を含む車両状況を取得する車両状況取得手段と、前記道路状況と前記車両状況に基づいて、前方道路の走行を惰性走行とすると予測した場合の予測車速が、前記目標車速よりも遅い速度に予め設定された下限目標車速を下回るか否かを判断する惰性走行予測手段を備え、前記惰性走行予測手段を実施して、前記予測車速が前記下限目標車速を下回らないと判断した場合に、前記惰性走行制御手段を実施して、前方道路の走行を惰性走行にするように構成される。 In order to solve the above-described problems, an automatic traveling device for a vehicle according to the present invention has a target vehicle speed for performing a control of a vehicle mounted with an internal combustion engine as a target vehicle speed maintaining traveling for maintaining the vehicle speed at a preset target vehicle speed. A road for acquiring a road condition of a front road in an automatic traveling device for a vehicle, comprising maintenance traveling control means and inertial traveling control means for controlling the traveling of the vehicle to be inertial traveling with the fuel injection of the internal combustion engine stopped. A predicted vehicle speed when it is predicted that traveling on the front road is coasting based on the road status and the vehicle status; the target vehicle speed; An inertia traveling prediction unit that determines whether or not the lower limit target vehicle speed is lower than a preset lower limit target vehicle speed. The inertia traveling prediction unit is implemented so that the predicted vehicle speed is the lower limit target vehicle speed. If it is determined that no less than, and performing the coasting control unit, configured to coasting running of the road ahead.
なお、ここでいう前方道路とは、車両の現在位置から車両の進行方向に延在する道路のことであり、この前方道路の距離は、前方道路の状況によって定めるとよい。例えば、前方道路に登坂路があれば、少なくともその登坂路の終点(頂点)を含むことが好ましく、さらにその登坂路の終点から始まる降坂路の途中又は終点を含むことがより好ましい。 The forward road here is a road extending from the current position of the vehicle in the traveling direction of the vehicle, and the distance of the forward road may be determined according to the situation of the forward road. For example, if there is an uphill road on the road ahead, it is preferable to include at least the end point (vertex) of the uphill road, and it is more preferable to include the middle or end point of the downhill road starting from the end point of the uphill road.
また、ここでいう道路状況取得手段とは、車両を自動走行するために必要な前方道路の状況を取得する手段である。例えば、衛星測位システムなどを利用して現在位置を確認し、地図情報などのデータベースから前方道路の走行路面の勾配、標高、信号の有無、及びカーブなどを取得したり、天気情報などを利用して前方道路の路面状況を類推したり、センサにより前走車や並走車などを検知し、周囲の走行車両との距離や車速差を取得したりする手段である。また、走行履歴を記憶させておき、その走行履歴から走行路面の勾配、標高、信号の有無、及びカーブなどを取得してもよい。 Moreover, the road condition acquisition means here is a means for acquiring the condition of the front road necessary for automatically driving the vehicle. For example, the current position is confirmed using a satellite positioning system, etc., and the road surface gradient, elevation, presence / absence of signals and curves are obtained from a database such as map information, and weather information is used. In this way, the road surface condition of the road ahead is inferred, and a preceding vehicle or a parallel vehicle is detected by a sensor to obtain a distance from the surrounding traveling vehicle or a vehicle speed difference. Alternatively, a travel history may be stored, and a slope, altitude, presence / absence of a signal, a curve, and the like may be acquired from the travel history.
加えて、ここでいう車両状況取得手段とは、車両を自動走行するために必要な車両の状況を取得する手段である。例えば、車速センサで検知した車速、内燃機関の出力制御や変速機のギヤ段の変速制御などに使用される車両の重量、及び現在の変速機のギヤ段などを取得する手段である。 In addition, the vehicle status acquisition means referred to here is means for acquiring the status of the vehicle necessary for automatically driving the vehicle. For example, the vehicle speed detected by the vehicle speed sensor, the weight of the vehicle used for the output control of the internal combustion engine, the shift control of the gear stage of the transmission, the gear stage of the current transmission, and the like are acquired.
更に、ここでいう目標車速は、車両の自動走行を制御する前に、運転手によって予め設定される車速の目標値である。また、ここでいう下限目標車速は、車両の自動走行を制御する前に、運転手によって予め設定される減少値に基づくものであり、この下限目標車速までは、車両の自動走行の車速を減少することができる許容値である。例えば、目標車速が80km/hに設定されている場合に、減少値が−10km/hと設定されると、その下限目標車速は、70km/hとなる。 Furthermore, the target vehicle speed here is a target value of the vehicle speed set in advance by the driver before controlling the automatic traveling of the vehicle. Further, the lower limit target vehicle speed here is based on a decrease value set in advance by the driver before controlling the automatic driving of the vehicle, and the vehicle speed of the automatic driving of the vehicle is reduced to the lower limit target vehicle speed. It is an acceptable value that can be done. For example, when the target vehicle speed is set to 80 km / h and the decrease value is set to -10 km / h, the lower limit target vehicle speed is 70 km / h.
その上、ここでいう惰性走行とは、内燃機関の燃料噴射が停止された走行のことをいい、変速機のギヤ段がニュートラルポジションに設定されたニュートラル惰性走行、変速機が所定のギヤ段に設定され、エンジンブレーキが掛かる状態のアクセルオフ惰性走行、エンジンと変速機の間のクラッチを切った状態のクラッチオフ惰性走行を含むものである。また、ハイブリッド車両においては、電動発電機を回生駆動する回生惰性走行も含む。 In addition, inertia traveling here refers to traveling with the fuel injection of the internal combustion engine stopped, neutral inertia traveling where the gear stage of the transmission is set to the neutral position, and the transmission to a predetermined gear stage. This includes the accelerator-off inertia traveling with the engine brake applied and the clutch-off inertia traveling with the clutch between the engine and the transmission disengaged. The hybrid vehicle also includes regenerative traveling that regeneratively drives the motor generator.
上記の構成によれば、車両の自動走行中に、道路状況と車両状況に基づいて、前方道路の走行を惰性走行とすると予測した場合の予測車速が、下限目標車速を下回らないと判断したときに、前方道路が登坂路、降坂路、又は平坦路に関係なく、惰性走行を開始する。これにより、車両の自動走行中に惰性走行による走行距離を長くすることができ、燃料消費量を低減することができる。さらに、車速が下限目標車速を下回らないと判断したときに惰性走行を開始するため、車速が極端に遅くなることがなく、運行時間が大幅に増加することなく、到着時刻が遅れることを回避することができる。 According to the above configuration, when it is determined that the predicted vehicle speed when it is predicted that the driving on the front road is coasting based on the road condition and the vehicle condition is not lower than the lower limit target vehicle speed during the automatic driving of the vehicle. In addition, coasting starts regardless of whether the road ahead is an uphill road, a downhill road, or a flat road. As a result, it is possible to lengthen the travel distance by coasting during automatic traveling of the vehicle, and to reduce fuel consumption. In addition, coasting starts when it is determined that the vehicle speed does not fall below the lower limit target vehicle speed, so that the vehicle speed is not extremely slow, the operation time is not significantly increased, and the arrival time is delayed. be able to.
また、上記の車両の自動走行装置において、前記惰性走行予測手段における前記予測車速が前記下限目標車速を下回る場合、又は前記惰性走行制御手段の実施中に車速が前記下限目標車速を下回った場合に、前記目標車速維持走行制御手段を実施して、車速を前記目標車速に近づけるように構成されることが望ましい。 Further, in the automatic traveling device for a vehicle described above, when the predicted vehicle speed in the inertia traveling prediction means is lower than the lower limit target vehicle speed, or when the vehicle speed falls below the lower limit target vehicle speed during the execution of the inertia traveling control means. It is desirable that the target vehicle speed maintaining travel control means is implemented so that the vehicle speed approaches the target vehicle speed.
例えば、惰性走行予測手段における予測車速が下限目標車速を下回る場合に、目標車速維持走行に切り換えることで、運行時間が大幅に増加することを回避することができる。また、惰性走行予測手段での予測に反して、惰性走行中による車速が下限目標車速を下回った場合に、目標車速維持走行に切り換えることで、運行時間が大幅に増加することを回避することができる。 For example, when the predicted vehicle speed in the inertia traveling prediction means is lower than the lower limit target vehicle speed, it is possible to avoid a significant increase in operation time by switching to the target vehicle speed maintenance traveling. Also, contrary to the prediction by the inertial traveling prediction means, when the vehicle speed during inertial traveling falls below the lower limit target vehicle speed, switching to the target vehicle speed maintaining traveling can avoid a significant increase in operation time. it can.
加えて、上記の車両の自動走行装置において、前記惰性走行予測手段における前記予測車速が前記目標車速よりも速い速度に予め設定された上限目標車速と前記下限目標車速の間に収まるように、予測中の惰性走行を、車両の走行に制動力を付与する有制動惰性走行と、車両の走行に制動力を付与しない無制動惰性走行のどちらか一方から選択する惰性走行選択手段を備え、前記惰性走行制御手段を実施した場合の惰性走行を、前記惰性走行選択手段で選択された前記有制動惰性走行と前記無制動惰性走行のどちらか一方とするように構成されることが望ましい。 In addition, in the automatic traveling device for a vehicle described above, the prediction is performed so that the predicted vehicle speed in the inertial traveling prediction means falls between the upper limit target vehicle speed and the lower limit target vehicle speed that are set in advance to be higher than the target vehicle speed. The inertial traveling selection means for selecting the inertial traveling in the vehicle from either a braking inertial traveling that applies a braking force to the traveling of the vehicle or a non-braking inertial traveling that does not apply a braking force to the traveling of the vehicle, It is desirable that the inertia traveling when the traveling control means is implemented is configured to be one of the braking inertia traveling and the non-braking inertia traveling selected by the inertia traveling selecting means.
この構成によれば、予測車速が上限目標車速と下限目標車速の間に収まるように、有制動惰性走行と無制動惰性走行を切り換えることで、内燃機関の燃料噴射が停止された惰性走行を維持できる走行距離を長くすることができる。 According to this configuration, the inertial traveling in which the fuel injection of the internal combustion engine is stopped is maintained by switching between the braking inertial traveling and the non-braking inertial traveling so that the predicted vehicle speed falls between the upper limit target vehicle speed and the lower limit target vehicle speed. The possible travel distance can be increased.
例えば、降坂路を無制動惰性走行とすると予測した場合の予測車速が、上限目標車速を超えるような場合は、予測中の惰性走行に有制動惰性走行を選択し、再予測を行う。有制動惰性走行では車両に制動力が付与されるため、無制動惰性走行よりも車速が減速する。よって、前方道路の走行を有制動惰性走行とすると予測した場合の予測車速が上限目標車速を超えなくなり、その場合は、有制動惰性走行を行うことで、惰性走行をより長い距離で行うことができる。 For example, if the predicted vehicle speed when the downhill road is predicted to be unbraking inertial traveling exceeds the upper limit target vehicle speed, the braking inertial traveling is selected as the inertial traveling being predicted, and re-prediction is performed. Since the braking force is applied to the vehicle in the braking inertia traveling, the vehicle speed is reduced compared to the non-braking inertia traveling. Therefore, the predicted vehicle speed when it is predicted that the traveling on the road ahead is the braking inertial traveling will not exceed the upper limit target vehicle speed, and in that case, the inertial traveling can be performed at a longer distance by performing the braking inertial traveling. it can.
また、降坂路を有制動惰性走行とすると予測した場合の予測車速が、下限目標車速を下回るような場合は、予測中の惰性走行に無制動惰性走行を選択して再度予測する。無制動惰性走行では車両に制動力が付与されないため、有制動惰性走行よりも車速は減速しない。よって、前方道路の走行を無制動惰性走行とすると予測した場合の予測車速が、下限目標車速を下回らなくなり、その場合は、無制動惰性走行を行うことで、惰性走行をより長い距離で行うことができる。 If the predicted vehicle speed when it is predicted that the downhill road is braked coasting is less than the lower limit target vehicle speed, non-braking coasting is selected for the coasting that is being predicted and is predicted again. Since the braking force is not applied to the vehicle in the non-braking inertia traveling, the vehicle speed is not reduced as compared with the braking inertia traveling. Therefore, the predicted vehicle speed when it is predicted that traveling on the front road will be unbraking coasting will not fall below the lower limit target vehicle speed. In that case, coasting coasting will be performed at a longer distance by performing unbraking coasting. Can do.
なお、ここでいう有制動惰性走行とは、車両の走行に制動力を付与する惰性走行のことであり、例えば、エンジンブレーキの掛かるアクセルオフ惰性走行などのことをいう。また、無制動惰性走行とは、車両の走行に制動力を付与しない惰性走行のことであり、例えば、エンジンブレーキの掛からない状態のニュートラル惰性走行や、エンジンがクラッチにより駆動軸から切り離された状態のクラッチオフ惰性走行などのことをいう。また、内燃機関と電動発電機の両方を備えるハイブリッド車両の場合は、アクセルオフ惰性走行の代わりに、電動発電機を回生駆動して、発電することで、車両の走行に抵抗を付与する回生惰性走行を行ってもよい。 Note that the braking inertia traveling here refers to inertia traveling that applies a braking force to the traveling of the vehicle, and refers to, for example, accelerator-off inertia traveling with an engine brake applied. Non-braking coasting refers to coasting that does not apply braking force to the vehicle, such as neutral coasting when the engine brake is not applied, or when the engine is separated from the drive shaft by the clutch. This means that the clutch is free running. Further, in the case of a hybrid vehicle including both an internal combustion engine and a motor generator, regenerative inertia that gives resistance to vehicle travel by generating power by driving the motor generator regeneratively instead of accelerator-off inertia traveling. You may run.
更に、上記の車両の自動走行装置において、前記惰性走行予測手段を、前記道路状況と前記車両状況に基づいて登坂路の後に降坂路がある前方道路の走行を、惰性走行とすると予測した場合に、車両が降坂路に到達するまでに前記予測車速が前記下限目標車速を下回るか否かを判断する手段とし、前記惰性走行予測手段を実施して、車両が降坂路に到達するまでに前記予測車速が前記下限目標車速を下回らないと判断したときに、登坂路から前記惰性走行制御手段を実施するように構成されることが望ましい。 Furthermore, in the above-described automatic traveling device for a vehicle, when the coasting prediction unit predicts that traveling on a road ahead with a downhill road after an uphill road is coasting based on the road condition and the vehicle condition. , And means for determining whether or not the predicted vehicle speed is below the lower limit target vehicle speed until the vehicle reaches the downhill road, and the inertial traveling prediction means is implemented, and the prediction is performed until the vehicle reaches the downhill road. When it is determined that the vehicle speed does not fall below the lower limit target vehicle speed, it is preferable that the inertial traveling control means is implemented from an uphill road.
この構成によれば、登坂路の頂上の手前を走行中に、前方道路に登坂路の後に重力加速が可能な降り勾配を有する降坂路がある前方道路の走行を惰性走行とすると予測した場合の予測車速が、降坂路に到達するまでに下限目標車速を下回らないと判断したときには、頂上の手前の登坂路から惰性走行を行う。これにより、登坂路の頂上を経由して降坂路まで惰性走行して、惰性走行による走行距離を長くすることができるので、燃料消費量を低減することができる。 According to this configuration, when traveling ahead of the top of the uphill road, it is predicted that traveling on the front road with a downhill road having a descending slope capable of gravity acceleration after the uphill road is assumed to be coasting on the front road. When it is determined that the predicted vehicle speed does not fall below the lower limit target vehicle speed before reaching the downhill road, coasting is performed from the uphill road just before the top. As a result, coasting can be carried out to the descending slope through the top of the uphill road, and the travel distance by the coasting can be increased, so that the fuel consumption can be reduced.
また、そのような前方道路の走行を惰性走行としても、車速は下限目標車速を下回らないため、惰性走行により運行時間が大幅に増加することなく、到着時刻が遅れることを回避しながら、燃料消費量を削減することができる。 In addition, even if coasting on such a road is coasting, the vehicle speed does not fall below the lower limit target vehicle speed, so the coasting time does not significantly increase the operation time and avoids delaying the arrival time. The amount can be reduced.
そして、上記の課題を解決するための本発明の車両は、上記に記載の車両の自動走行装置を備えて構成される。この構成によれば、内燃機関の燃料噴射が停止された惰性走行による走行機会を増やして燃料消費量を低減することができると共に、その惰性走行中の車速を目標車速に基づく上限目標車速と下限目標車速との間に収めるため、惰性走行の機会が増えても運行時間が大幅に増加することを回避することができる。 And the vehicle of this invention for solving said subject is comprised including the automatic travel apparatus of the vehicle as described above. According to this configuration, it is possible to reduce the fuel consumption by increasing the traveling opportunity by inertial traveling in which the fuel injection of the internal combustion engine is stopped, and to set the vehicle speed during the inertial traveling to the upper limit target vehicle speed and the lower limit based on the target vehicle speed. Since it falls within the target vehicle speed, it is possible to avoid a significant increase in operation time even if the chance of coasting increases.
そして、上記の課題を解決するための本発明の車両の自動走行方法は、内燃機関を搭載した車両の走行を、予め設定された目標車速に車速を維持する目標車速維持走行とする車両の自動走行方法において、前方道路の道路状況と、車速を含む車両状況に基づいて、前方道路の走行を前記内燃機関の燃料噴射が停止された惰性走行とする予測をした場合の予測車速が、前記目標車速よりも遅い速度に予め設定された下限目標車速を下回らないと判断したときに、前方道路の走行を惰性走行にすることを特徴とする方法である。 Then, the vehicle automatic traveling method of the present invention for solving the above-described problems is a vehicle automatic operation in which the traveling of the vehicle equipped with the internal combustion engine is set to the target vehicle speed maintaining traveling that maintains the vehicle speed at a preset target vehicle speed. In the traveling method, the predicted vehicle speed when the traveling on the front road is predicted to be inertial traveling in which the fuel injection of the internal combustion engine is stopped is based on the road condition on the front road and the vehicle condition including the vehicle speed. In this method, when it is determined that the vehicle speed is lower than the lower limit target vehicle speed set in advance at a speed slower than the vehicle speed, traveling on the front road is made inertial.
また、上記の車両の自動走行方法において、予測中の車速が前記下限目標車速を下回る、又は惰性走行中の車速が前記下限目標車速を下回ったときに、車両の走行を惰性走行から目標車速維持走行に切り換えることが望ましい。 Further, in the above vehicle automatic traveling method, when the predicted vehicle speed falls below the lower limit target vehicle speed, or when the vehicle speed during inertial travel falls below the lower limit target vehicle speed, the vehicle travels from inertial travel to maintain the target vehicle speed. It is desirable to switch to running.
加えて、上記の車両の自動走行方法において、前記予測車速が前記目標車速よりも速い速度に予め設定された上限目標車速と前記下限目標車速の間に収まるように、予測中の惰性走行を、車両の走行に制動力を付与する有制動惰性走行と、車両の走行に制動力を付与しない無制動惰性走行のどちらか一方から選択し、前方道路の走行を、選択された前記有制動惰性走行と前記無制動惰性走行のどちらか一方とすることが望ましい。 In addition, in the above-described automatic vehicle traveling method, the inertial traveling under prediction is performed such that the predicted vehicle speed falls between the upper limit target vehicle speed and the lower limit target vehicle speed that are set in advance to be higher than the target vehicle speed. The selected braking inertial traveling is selected from either a braking inertial traveling that applies a braking force to the traveling of the vehicle or an unbraking inertial traveling that does not apply a braking force to the traveling of the vehicle. And either one of the non-braking coasting and the above-mentioned.
更に、上記の車両の自動走行方法において、前記道路状況と前記車両状況に基づいて、登坂路の後に降坂路がある前方道路の走行を、惰性走行とすると予測した場合に、車両が降坂路に到達するまでに前記予測車速が前記下限目標車速を下回らないと判断したときには、登坂路から惰性走行を開始することが望ましい。 Further, in the above vehicle automatic traveling method, when it is predicted that traveling on a front road having a downhill road after an uphill road is an inertial road based on the road condition and the vehicle condition, the vehicle enters the downhill road. When it is determined that the predicted vehicle speed does not fall below the lower limit target vehicle speed before reaching the vehicle, it is desirable to start coasting from an uphill road.
本発明の車両の自動走行装置、車両、及び車両の自動走行方法によれば、車両の自動走行において、前方道路を惰性走行する場合を予測し、惰性走行による増減する車速が予め定めた上限目標車速と下限目標車速の間に収まると判断したときに、前方道路が登坂路、降坂路、又は平坦路に関係なく、惰性走行を開始して、内燃機関の燃料噴射を停止した惰性走行による走行距離を長くすることができる。 According to the vehicle automatic traveling device, the vehicle, and the vehicle automatic traveling method of the present invention, in the automatic traveling of the vehicle, the case where the vehicle travels on the road ahead is predicted, and the vehicle speed to be increased or decreased by the inertia traveling is a predetermined upper limit target. Driving by inertial driving that starts inertial driving and stops fuel injection of the internal combustion engine regardless of whether the road ahead is uphill, downhill or flat when it is determined that the vehicle speed falls within the lower limit target vehicle speed The distance can be increased.
これにより、内燃機関の燃料噴射が停止された惰性走行による走行機会を増やして燃料消費量を低減することができると共に、その惰性走行中の車速を目標車速に基づく上限目標車速と下限目標車速との間に収めるため、惰性走行の機会が増えても運行時間が大幅に増加することなく、到着時刻が遅れることを回避することができる。 As a result, it is possible to reduce the fuel consumption by increasing the driving opportunity by the inertial running in which the fuel injection of the internal combustion engine is stopped, and to change the vehicle speed during the inertial running between the upper limit target vehicle speed and the lower limit target vehicle speed based on the target vehicle speed. Therefore, even if the chance of coasting increases, it is possible to avoid delaying the arrival time without significantly increasing the operation time.
以下、本発明に係る実施の形態の車両の自動走行装置と車両の自動走行方法について説明する。 Hereinafter, an automatic traveling device for a vehicle and an automatic traveling method for a vehicle according to embodiments of the present invention will be described.
なお、図1では、エンジン3を直列六気筒のディーゼルエンジンとして説明するが、本発明は、ガソリンエンジンでも適用することができ、その気筒の数や配列は特に限定されない。また、車両1を、ディーゼルエンジンを搭載したトラックなどの大型車両を例として説明するが、本発明はトラックなどの大型車両に限定されない。
In FIG. 1, the
加えて、以下では、符号を付与しない惰性走行と記載した場合は、無制動惰性走行と有制動惰性走行を含むものとする。そして、車両に制動力を付与しない無制動惰性走行として、変速機5のギヤ段をニュートラルに変速したニュートラル惰性走行をCNEU、一方、車両に制動力を付与する制動力付与惰性走行として、エンジンブレーキにより車両に制動力を付与するアクセルオフ惰性走行をCOFFとして区別する。
In addition, in the following, when described as coasting without a reference sign, it includes unbraking coasting and braking coasting. Further, as a non-braking inertia traveling without applying a braking force to the vehicle, a neutral inertia traveling with the gear stage of the
更に、以下では、前方道路に符号FR1〜FR8を付与することとする。例えば、図3における車両1の現在位置をA地点とすると、前方道路FR1は、そのA地点からC地点までの道路のことである。また、図5における車両1の現在位置をK地点とすると、前方道路FR6は、K地点からM地点までの道路のことである。
Further, in the following, symbols FR1 to FR8 are assigned to the road ahead. For example, assuming that the current position of the
図1に示すように、この実施の形態の自動走行装置2が搭載される車両1においては、エンジン3の動力は、クラッチ4を経由して変速機(トランスミッション)5に伝達され、さらに、変速機5より推進軸(プロペラシャフト)6を介して作動装置(デファレンシャルギヤ)7に伝達され、作動装置7より駆動軸(ドライブシャフト)8を介して車輪9に伝達される。これにより、エンジン3の動力が車輪9に伝達され、車両1が走行する。
As shown in FIG. 1, in the
この実施の形態の自動走行装置2は、エンジン3の出力、クラッチ4の断接、及び変速機5の変速を制御して、車両1を自動に走行させる装置であり、複数の制御装置によりそれらを制御している。制御装置としては、エンジン3の出力を制御するエンジン用ECU(エンジン用制御装置)10と、クラッチ4の断接及び変速機5の変速を制御する動力伝達用ECU(動力伝達用制御装置)11と、車両1の自動走行を制御する自動走行制御装置12を備えている。これらのエンジン用ECU10と動力伝達用ECU11と自動走行制御装置12は、電気回路によってそれぞれの担当している電気的な制御を行うマイクロコントローラである。そして、これらのエンジン用ECU10と動力伝達用ECU11と自動走行制御装置12は、車載ネットワークにより相互に接続され、必要なデータや制御信号を相互に通信している。
The
また、この自動走行装置2は、図示しないダッシュボードに目標車速設定装置13と増減値設定装置14を備え、それら目標車速設定装置13と増減値設定装置14は、自動走行制御装置12に接続される。
The
この目標車速設定装置13は、車両1の自動走行が開始される前に、運転手に操作されて、車両1の自動走行時の目標車速V’が設定される装置である。運転手により目標車速設定装置13に目標車速V’が設定されると、その目標車速V’は自動走行制御装置12に送信され、自動走行制御装置12に記憶される。
This target vehicle
また、増減値設定装置14は、車両1の自動走行が開始される前で、且つ目標車速V’が設定された後に、運転手に操作されて、車両1の自動走行時の速度減少値−va及び速度増加値+vbの両方が設定される装置である。運転手により増減値設定装置14に速度減少値−va及び速度増加値+vbの両方が設定されると、その速度減少値−va及び速度増加値+vbは自動走行制御装置12に送信され、自動走行制御装置12に記憶される。そして、目標車速V’に速度減少値−va及び速度増加値+vbのそれぞれを加算して下限目標車速Va’と上限目標車速Vb’を算出して、記憶する。
Further, the increase / decrease
この目標車速V’と速度減少値−va及び速度増加値+vbは、運転手が別々に任意の値にそれぞれ設定することができる。例えば、目標車速V’を80km/hとし、速度減少値−vaを−5km/hとし、及び速度増加値+vbを+10km/hとした場合は、下限目標車速Va’は75km/hとなり、上限目標車速Vb’は90km/hとなる。なお、この速度減少値−va及び速度増加値+vbは、ゼロに設定してもよい。 The target vehicle speed V ', the speed decrease value -va and the speed increase value + vb can be set to arbitrary values separately by the driver. For example, when the target vehicle speed V ′ is 80 km / h, the speed decrease value −va is −5 km / h, and the speed increase value + vb is +10 km / h, the lower limit target vehicle speed Va ′ is 75 km / h, and the upper limit The target vehicle speed Vb ′ is 90 km / h. The speed decrease value -va and the speed increase value + vb may be set to zero.
この下限目標車速Va’及び上限目標車速Vb’は車両1の自動走行時に運転手が許容することができる車速Vの範囲となる。
The lower limit target vehicle speed Va ′ and the upper limit target vehicle speed Vb ′ are within a range of the vehicle speed V that can be allowed by the driver when the
そして、この自動走行装置2は、道路状況取得装置20と車両状況取得装置30を備え、自動走行制御装置12に、それらの装置を用いて、前方道路の道路状況を取得する道路状況取得手段M1と、車両1の車両状況を取得する車両状況取得手段M2と、前方道路の道路状況と車両状況に基づいて前方道路を惰性走行する場合を予測する惰性走行予測手段M3とを備えると共に、惰性走行予測手段M3に従って惰性走行の制御を行う惰性走行制御手段M4と目標車速維持走行の制御を行う目標車速維持走行制御手段M5を備えて構成される。
The
道路状況取得装置20は、前方道路を決定し、その前方道路の道路状況を取得するための装置であり、この実施の形態では、例として、衛星測位システム(GPS)との通信機である現在位置取得装置21と、走行中の天候を取得する天候取得装置22と、前走車や並走車などの周囲の走行車両との距離や車速差を検知する周囲センサ23を備える。
The road
その道路状況取得装置20を使用して前方道路の道路状況を取得する道路状況取得手段M1は、前方道路を決定し、前方道路で車両1を自動走行させるために必要となる情報を取得する手段である。詳しくは、現在位置取得装置21の取得した現在位置から、予め記憶させておいた地図データなどから前方道路を決定すると共に、取得される前方道路の道路勾配と前方道路に設けられたカーブと信号の有無を取得する。また、天候取得装置22から取得した現在の天候状況から類推された前方道路の路面状況(凍結路面や冠水路面など)を取得する。加えて、周囲センサ23の検知した情報から周囲の走行車両との距離や車速差などを取得する手段である。
The road condition acquisition means M1 for acquiring the road condition of the front road using the road
なお、この前方道路は、その線形(勾配やカーブ)の状況によって区間の長さを決めるようにするとよい。例えば、図3に示す前方道路FR1は、少なくともA地点から登坂路の終点(頂上)までを含むとよく、A地点から登坂路の終点を経由してC地点まで含むことが好ましい。また、図5に示す前方道路FR5のように、ある程度降坂路が続く場合は、その降坂路の終点まで含むことが望ましい。 It should be noted that the length of the section of this road ahead may be determined according to the linearity (gradient or curve). For example, the front road FR1 shown in FIG. 3 may include at least the point A to the end point (top) of the uphill road, and preferably includes the point A to the point C via the end point of the uphill road. Further, when the downhill road continues to some extent as in the forward road FR5 shown in FIG. 5, it is desirable to include the end point of the downhill road.
車両状況取得装置30は、車両1の車両状況を取得するための装置であり、この実施の形態では、例として、アクセルペダル31、ブレーキペダル32、シフトレバー33、ターンシグナルスイッチ34、及び車両1の車速Vを検知する車速センサ35を含む。また、エンジン用ECU10と動力伝達用ECU11も車両状況取得装置30の一種とする。
The vehicle
その車両状況取得装置30を使用して車両1の車両状況を取得する車両状況取得手段M2は、車両1を自動走行させるために必要な情報を取得する手段である。詳しくは、車速センサ35で検知された車速V、アクセルペダル31、ブレーキペダル32、シフトレバー33、及びターンシグナルスイッチ34などの操作や、エンジン用ECU10及び動力伝達用ECU11で使用されるエンジン3の出力情報や、車両1の重量W、及び変速機5のギヤ段を取得する手段である。
The vehicle status acquisition means M2 for acquiring the vehicle status of the
なお、道路状況取得手段M1と車両状況取得手段M2は、上記の構成に限定されずに、それぞれ周知の技術を用いることもでき、取得する情報に合わせて道路状況取得装置20や車両状況取得装置30に設けられる装置を変更したり、増やしたりできる。
Note that the road condition acquisition unit M1 and the vehicle condition acquisition unit M2 are not limited to the above-described configurations, and can use well-known techniques, respectively, and the road
惰性走行予測手段M3は、道路状況と車両状況に基づいて、前方道路の走行を惰性走行とすると予測した場合の予測車速が下限目標車速Va’を下回るか否かを判断し、予測車速が下限目標車速Va’を下回らない場合に惰性走行制御手段M4を実施し、予測車速が下限目標車速Va’を下回る場合は目標車速維持走行制御手段M5を実施する手段である。 The inertia traveling prediction means M3 determines whether or not the predicted vehicle speed when it is predicted that the traveling on the front road is inertial traveling is lower than the lower limit target vehicle speed Va ′ based on the road condition and the vehicle condition. The inertial travel control means M4 is executed when the target vehicle speed Va ′ is not lower than the target vehicle speed Va ′, and the target vehicle speed maintenance travel control means M5 is executed when the predicted vehicle speed is lower than the lower limit target vehicle speed Va ′.
詳しくは、前方道路の走行を惰性走行とすると予測した場合の予測車速が、上限目標車速Vb’と下限目標車速Va’との間に収まるか否かを判断し、予測車速が下限目標車速Va’と上限目標車速Vb’の間に収まる場合は、惰性走行制御手段M4を実施し、予測車速が下限目標車速Va’と上限目標車速Vb’の間に収まらない場合は、目標車速維持走行制御手段M5を実施する手段である。 Specifically, it is determined whether or not the predicted vehicle speed when it is predicted that traveling on the front road is coasting is between the upper limit target vehicle speed Vb ′ and the lower limit target vehicle speed Va ′, and the predicted vehicle speed is the lower limit target vehicle speed Va. If it falls within the range between 'and the upper limit target vehicle speed Vb', the inertial running control means M4 is implemented. If the predicted vehicle speed does not fall between the lower limit target vehicle speed Va 'and the upper limit target vehicle speed Vb', the target vehicle speed maintaining running control is performed. Means for implementing the means M5.
また、この惰性走行予測手段M3は、惰性走行予測手段M3における予測車速が下限目標車速Va’と上限目標車速Vb’の間に収まるように、予測中の惰性走行を、車両1の走行に制動力を付与するアクセルオフ惰性走行COFF(有制動惰性走行)と、車両1の走行に制動力を付与しないニュートラル惰性走行CNEU(無制動惰性走行)のどちらか一方から選択する惰性走行選択手段M6を備えて構成される。
The inertial traveling prediction means M3 controls the inertial traveling being predicted to travel of the
この惰性走行選択手段M6は、予測中の惰性走行をニュートラル惰性走行CNEUとした場合の予測車速が下限目標車速Va’と上限目標車速Vb’の間に収まらない場合は、予測中の惰性走行としてアクセルオフ惰性走行COFFを選択し、又は、予測中の惰性走行をアクセルオフ惰性走行COFFとした場合の予測車速が下限目標車速Va’と上限目標車速Vb’の間に収まらない場合は、予測中の惰性走行としてニュートラル惰性走行CNEUを選択する手段である。 This inertial travel selection means M6, if the predicted vehicle speed when the inertial travel being predicted is neutral inertial travel CNEU does not fall between the lower limit target vehicle speed Va ′ and the upper limit target vehicle speed Vb ′, When the accelerator-off inertia traveling C OFF is selected as the vehicle speed or the predicted inertia traveling is set to the accelerator-off inertia traveling C OFF , the predicted vehicle speed does not fall between the lower limit target vehicle speed Va ′ and the upper limit target vehicle speed Vb ′. This is means for selecting the neutral inertia traveling C NEU as the inertia inertia traveling being predicted.
惰性走行予測手段M3の実施中に、惰性走行選択手段M6が実施されると、再度、前方道路の走行を惰性走行選択手段M6で選択されたアクセルオフ惰性走行COFFとニュートラル惰性走行CNEUのどちらか一方とする場合を予測する。 If the inertia traveling selection means M6 is performed during the inertial traveling prediction means M3, the accelerator off inertia traveling C OFF and the neutral inertia traveling C NEU selected by the inertia traveling selecting means M6 are performed again on the road ahead. Predict the case of either one.
この惰性走行予測手段M3の一例について、図2に示すフローチャートを参照しながら説明する。この図2に示すフローチャートは、目標車速維持走行が行われている場合の例であり、本発明の惰性走行予測手段M3はこれに限定されない。 An example of the inertia running prediction means M3 will be described with reference to the flowchart shown in FIG. The flowchart shown in FIG. 2 is an example in the case where the target vehicle speed maintaining traveling is performed, and the inertia traveling prediction means M3 of the present invention is not limited to this.
まず、道路状況取得手段M1が、前方道路を決定するステップS10を行う。次に、前方道路の道路状況を取得するステップS20を行う。次に、車両状況取得手段M2が、車両状況を取得するステップS30を行う。 First, the road condition acquisition means M1 performs step S10 for determining a road ahead. Next, step S20 which acquires the road condition of a front road is performed. Next, the vehicle status acquisition means M2 performs step S30 for acquiring the vehicle status.
次に、惰性走行予測手段M3が、取得された道路状況と車両状況に基づいて、前方道路の走行をニュートラル惰性走行CNEUとする場合を予測するステップS40を行う。次に、予測車速が下限目標車速Va’と上限目標車速Vb’の間に収まるか否かを判断するステップS50を行う。このステップS50で、予測車速が下限目標車速Va’と上限目標車速Vb’の間に収まると判断すると、次に、惰性走行制御手段M4を実施させて、ニュートラル惰性走行CNEUを開始するステップS60を行って、完了する。 Next, the inertia traveling prediction means M3 performs step S40 for predicting the case where the traveling on the front road is set to the neutral inertia traveling C NEU based on the acquired road condition and vehicle condition. Next, step S50 is performed to determine whether or not the predicted vehicle speed falls between the lower limit target vehicle speed Va ′ and the upper limit target vehicle speed Vb ′. If it is determined in this step S50 that the predicted vehicle speed falls between the lower limit target vehicle speed Va ′ and the upper limit target vehicle speed Vb ′, then the inertial running control means M4 is executed, and the neutral inertial running C NEU is started. To complete.
ステップS50で、予測車速が下限目標車速Va’と上限目標車速Vb’の間に収まらないと判断すると、次に、惰性走行選択手段M6を実施して、アクセルオフ惰性走行COFFを選択するステップS70を行う。次に、前方道路の走行をアクセルオフ惰性走行COFFとする場合を予測するステップS80を行う。次に、予測車速が下限目標車速Va’と上限目標車速Vb’の間に収まるか否かを判断するステップS90を行う。このステップS90で、予測車速が下限目標車速Va’と上限目標車速Vb’の間に収まると判断すると、次に、惰性走行制御手段M4を実施させて、アクセルオフ惰性走行COFFを開始するステップS100を行って完了する。 If it is determined in step S50 that the predicted vehicle speed does not fall between the lower limit target vehicle speed Va ′ and the upper limit target vehicle speed Vb ′, then the inertia traveling selection means M6 is executed to select the accelerator-off inertia traveling C OFF. S70 is performed. Next, step S80 for predicting the case where the traveling on the road ahead is the accelerator-off inertia traveling C OFF is performed. Next, step S90 for determining whether or not the predicted vehicle speed falls between the lower limit target vehicle speed Va ′ and the upper limit target vehicle speed Vb ′ is performed. In this step S90, the prediction vehicle speed is determined to fall between the lower limit target vehicle speed Va 'as the upper limit target vehicle speed Vb', then, by implementing the coasting control means M4, starts the accelerator-off coasting C OFF step Complete S100.
ステップS90で、予測車速が下限目標車速Va’と上限目標車速Vb’の間に収まらないと判断すると、次に、目標車速維持走行制御手段M5を実施して、目標車速維持走行を開始するステップS110を行って、完了する。 If it is determined in step S90 that the predicted vehicle speed does not fall between the lower limit target vehicle speed Va ′ and the upper limit target vehicle speed Vb ′, then the target vehicle speed maintenance running control means M5 is executed to start the target vehicle speed maintenance running. Perform S110 to complete.
なお、上記の惰性走行予測手段M3が、例えば、アクセルオフ惰性走行COFFを行っている最中に実施される場合は、ステップS40及びステップS60と、ステップS80及びステップS100を入れ替え、ステップS70をニュートラル惰性走行CNEUを選択するステップとしてもよい。 In addition, when said inertial running prediction means M3 is implemented during the accelerator off inertial running C OFF , for example, Step S40 and Step S60 are replaced with Step S80 and Step S100, and Step S70 is replaced. The neutral inertia running C NEU may be selected.
惰性走行制御手段M4は、惰性走行予測手段M3で、予測車速が下限目標車速Va’を下回らない、詳しくは、予測車速が下限目標車速Va’と上限目標車速Vb’の間に収まると判断された場合に、前方道路の走行をエンジン3の燃料噴射を停止した惰性走行とする制御を行う手段である。この前方道路の走行を惰性走行とする制御は、エンジン用ECU10にエンジン3の燃料噴射を停止するように指示を送る制御である。
The inertial traveling control means M4 is the inertial traveling predicting means M3, and it is determined that the predicted vehicle speed does not fall below the lower limit target vehicle speed Va ′. Specifically, the predicted vehicle speed is determined to be within the lower limit target vehicle speed Va ′ and the upper limit target vehicle speed Vb ′. In this case, it is means for performing control so that traveling on the road ahead is coasting with the fuel injection of the
また、惰性走行予測手段M3で、惰性走行選択手段M6が実施された場合は、エンジン用ECU10にエンジン3の燃料噴射を停止するように指示を送る制御に加えて、惰性走行選択手段M6で選択されたアクセルオフ惰性走行COFFとニュートラル惰性走行CNEUのどちらか一方に合わせて、変速機5をニュートラル及び所定のギヤ段のどちらかに変速するように指示を送る制御が追加される。
Further, when the inertia traveling selection means M6 is implemented by the inertia traveling prediction means M3, in addition to the control for sending an instruction to the
加えて、この惰性走行制御手段M4は、アクセルオフ惰性走行COFF中の車速Vを目標車速V’よりも速い速度に設定した上限目標車速Vb’を超えない最高車速VMAXに維持する惰性走行最高車速維持手段M7を備えて構成される。 In addition, the coasting control means M4 is coasting to maintain the maximum vehicle speed V MAX not exceeding 'upper limit target vehicle speed Vb is set to a speed faster than' the vehicle speed V in the accelerator-off coasting C OFF target vehicle speed V A maximum vehicle speed maintaining means M7 is provided.
この惰性走行最高車速維持手段M7は、詳しくは、図1に示す変速機5のギヤ段を最高車速VMAXに最適なポジションにシフトすると共に、制動装置40により車両1に制動力を付与して、惰性走行中の車速Vが上限目標車速Vb’を上回らないようにして、最高車速VMAXを維持する手段である。
Specifically, the inertia traveling maximum vehicle speed maintaining means M7 shifts the gear stage of the
この惰性走行最高車速維持手段M7は、前方道路の道路状況と車両状況に基づいて変速機5のギヤ段を、車速Vを最高車速VMAXに維持する最適なギヤ段に設定するように、動力伝達用ECU11に指示する制御を行う。また、この惰性走行最高車速維持手段M7は、前方道路の道路状況と車両状況に基づいて制動装置40を稼働する制御を行う。
This inertial traveling maximum vehicle speed maintaining means M7 is configured to set the gear stage of the
この制動装置40としては、フットブレーキ41、リターダ42、及びエンジン用ECU10や動力伝達用ECU11により制御される排気ブレーキなどの補助ブレーキ43があり、その制動力の大きさは順に小さくなる。よって、この惰性走行最高車速維持手段M7は、前方道路の道路状況や車両状況に応じて、フットブレーキ41とリターダ42と補助ブレーキ43の排気ブレーキのいずれか一つ、又は複数を使用するようにして、アクセルオフ惰性走行COFF中の車速Vを最高車速VMAXに維持するように各制動装置40を制御する。
As the
目標車速維持走行制御手段M5は、惰性走行予測手段M3で、予測車速が下限目標車速Va’を下回る、詳しくは、予測車速が下限目標車速Va’と上限目標車速Vb’の間に収まらないと判断された場合に、前方道路の走行を目標車速維持走行とする制御を行って、車速Vを目標車速V’に近づけるようにする手段である。 The target vehicle speed maintenance travel control means M5 is inertial travel prediction means M3, and the predicted vehicle speed is less than the lower limit target vehicle speed Va ′. Specifically, the predicted vehicle speed must be within the lower limit target vehicle speed Va ′ and the upper limit target vehicle speed Vb ′. When the determination is made, the vehicle speed V is made closer to the target vehicle speed V ′ by controlling the traveling on the road ahead to be the target vehicle speed maintaining traveling.
また、惰性走行制御手段M4の実施中の惰性走行中の車速Vが下限目標車速Va’を下回った、詳しくは、車速が下限目標車速Va’と上限目標車速Vb’の間に収まらなかった場合に、前方道路の走行を目標車速維持走行とする制御を行って、車速Vを目標車速V’に近づけるようにする手段である。 In addition, the vehicle speed V during inertial traveling during the inertial traveling control means M4 is lower than the lower limit target vehicle speed Va ′. Specifically, the vehicle speed does not fall between the lower limit target vehicle speed Va ′ and the upper limit target vehicle speed Vb ′. In addition, the vehicle speed V is made closer to the target vehicle speed V ′ by performing a control for making the traveling on the road ahead the target vehicle speed maintaining traveling.
この前方道路の走行を目標車速維持走行とする制御は、予測車速が下限目標車速Va’を下回ると判断された場合と惰性走行中の車速Vが下限目標車速Va’を下回った場合は、エンジン用ECU10にエンジン3の燃料噴射を開始するように指示を送ると共に、変速機5のギヤ段を所定のギヤ段にするように指示を送る制御である。これにより、エンジン3の出力を車輪9に伝達し、車速Vを増加させて、目標車速V’に近づける。
The control for setting the target vehicle speed to maintain the traveling on the road ahead is performed when the predicted vehicle speed is determined to be lower than the lower limit target vehicle speed Va ′ and when the vehicle speed V during inertial traveling is lower than the lower limit target vehicle speed Va ′. In this control, an instruction is sent to the
一方、この前方道路の走行を目標車速維持走行とする制御は、予測車速が上限目標車速Vb’を上回ると判断された場合と惰性走行中の車速Vが上限目標車速Vb’を上回った場合は、制動装置40を使用する制御である。この場合は、惰性走行を維持しながら、各制動装置40を制御して、車両1に制動力を付与し、車速Vを減少させて、目標車速V’に近づける。
On the other hand, in the control in which the traveling on the road ahead is the target vehicle speed maintaining traveling, when the predicted vehicle speed is determined to exceed the upper limit target vehicle speed Vb ′, and when the vehicle speed V during inertial traveling exceeds the upper limit target vehicle speed Vb ′. The control uses the
そして、本発明に係る実施の形態の車両1の自動走行方法は、前方道路の道路状況と、車速を含む車両状況に基づいて、前方道路の走行を惰性走行とすると予測した場合の予測車速が下限目標車速Va’を下回らないと判断したときに、前方道路の走行を惰性走行とすることを特徴とする方法である。
And the automatic traveling method of the
この車両1の自動走行方法について、図3〜図6を参照しながら説明する。
The automatic traveling method of the
図3に示すように、車両1の現在位置をA地点とし、そして、すでにZ地点の前で、目標車速維持走行制御手段M5を実施して、車両1の走行を目標車速維持走行としているものとする。A地点からC地点までの前方道路FR1は登坂路の後に降坂路がある道路である。A地点で惰性走行予測手段M3を実施すると、前方道路FR1の道路状況と車両1の車両状況に基づいて前方道路FR1の登坂路と降坂路の両方をニュートラル惰性走行CNEUとすると予測した場合の予測車速v1が、下限目標車速Va’と上限目標車速Vb’の間に収まるか否かを判断する。
As shown in FIG. 3, the current position of the
実際には、前方道路FR1の降坂路では重力加速度による加速が見込まれるため、前方道路FR1の降坂路に到達するまでに、つまりB地点に到達するまでにニュートラル惰性走行CNEUにより減少する予測車速v1が下限目標車速Va’を下回る否かを判断する。そして、予測車速v1が下限目標車速Va’を下回らないと判断した場合は、惰性走行制御手段M4を実施して、前方道路FR1の走行をニュートラル惰性走行CNEUとする。 Actually, since acceleration due to gravitational acceleration is expected on the downhill road of the front road FR1, the predicted vehicle speed that is reduced by the neutral coasting C NEU before reaching the downhill road of the front road FR1, that is, until reaching the point B. It is determined whether or not v1 is lower than the lower limit target vehicle speed Va ′. Then, when it is determined that the predicted vehicle speed v1 does not fall below the lower limit target vehicle speed Va ′, the inertia traveling control means M4 is performed to set the traveling on the front road FR1 as the neutral inertia traveling C NEU .
また、C地点からD地点までの前方道路FR2は降坂路である。C地点で惰性走行予測手段M3を実施すると、前方道路FR2をニュートラル惰性走行CNEUとすると予測した場合の予測車速v2が、上限目標車速Vb’を上回ると判断する。そして、目標車速維持走行制御手段M5を実施して、前方道路FR2の走行を目標車速維持走行とする。 Further, the forward road FR2 from the point C to the point D is a downhill road. When the inertia traveling prediction means M3 is performed at the point C, it is determined that the predicted vehicle speed v2 when the forward road FR2 is predicted to be the neutral inertia traveling C NEU exceeds the upper limit target vehicle speed Vb ′. Then, the target vehicle speed maintaining traveling control means M5 is implemented to set the traveling on the front road FR2 as the target vehicle speed maintaining traveling.
このとき、予測車速v2が上限目標車速Vb’を上回ると判断された場合のため、ニュートラル惰性走行CNEUを終了し、エンジンブレーキの掛かるアクセルオフ惰性走行COFFに切り換える。そして、アクセルオフ惰性走行COFFを維持しながら、制動装置40を使用する制御を行う。この制動装置40を使用する制御は、エンジン用ECU10に図示しない排気通路に設けたシャッターバルブを閉じる制御信号を送ると共に、動力伝達用ECU11にギヤ段をニュートラルから所定のギヤ段に変速する制御信号を送る制御や、フットブレーキ41とリターダ42から車両1に負荷を与えるようにする制御のいずれか又は複数である。これにより、制動装置40による制動が開始され、車速Vは減少して、目標車速V’に近づく。
At this time, since it is determined that the predicted vehicle speed v2 exceeds the upper limit target vehicle speed Vb ′, the neutral inertia traveling C NEU is terminated and switched to the accelerator-off inertia traveling C OFF where the engine brake is applied. Then, while maintaining the accelerator-off coasting C OFF, performs control to use the
よって、図3において、区間L1は、燃料を消費して、車両1に駆動力を付与する区間で、区間L2は燃料を消費せずに、重力ポテンシャルエネルギーと運動エネルギーを交互に変換する区間で、区間L3は燃料を消費せずに、重力ポテンシャルエネルギーを運動エネルギーに変換すると共に、車両1に制動力を付与する区間となる。
Therefore, in FIG. 3, a section L1 is a section that consumes fuel and applies driving force to the
図4に示すように、E地点からI地点までの前方道路FR3は、登坂路の後に降坂路がある道路である。E地点で惰性走行予測手段M3を実施して、前方道路FR3の走行をニュートラル惰性走行CNEUとすると予測した場合の予測車速v3が、下限目標車速Va’と上限目標車速Vb’の間に収まると判断する。次に、惰性走行制御手段M4を実施して、前方道路FR3の走行をニュートラル惰性走行CNEUとする。 As shown in FIG. 4, the front road FR3 from the point E to the point I is a road having a downhill road after an uphill road. The predicted vehicle speed v3 when the inertia traveling prediction means M3 is performed at the point E and the traveling on the front road FR3 is predicted to be the neutral inertia traveling C NEU falls between the lower limit target vehicle speed Va ′ and the upper limit target vehicle speed Vb ′. Judge. Next, the inertia traveling control means M4 is implemented, and the traveling on the front road FR3 is set as the neutral inertia traveling CNEU .
ニュートラル惰性走行CNEU中のF地点で、惰性走行予測手段M3で行われた予測に反して、車両1の前方を走行している前走車の車速が遅く、車両1が前走車に接近し過ぎた場合に、車両1の車速Vを一時的に減少する制御などが行われ、G地点で、車速Vは下限目標車速Va’を下回る。
Neutral coasting C At point F in NEU , contrary to the prediction made by coasting traveling prediction means M3, the speed of the preceding vehicle traveling in front of the
このとき、目標車速維持走行制御手段M5を実施して、ニュートラル惰性走行CNEUを終了して、目標車速維持走行を開始する。車速Vが下限目標車速Va’を下回ったため、エンジン3に燃料噴射を行ってエンジン3の始動を開始する。これにより、エンジン3の動力が車輪9に伝達されて、車速Vは目標車速V’に近づく。
At this time, the target vehicle speed maintaining traveling control means M5 is implemented, the neutral inertia traveling CNEU is terminated, and the target vehicle speed maintaining traveling is started. Since the vehicle speed V is lower than the lower limit target vehicle speed Va ′, fuel injection is performed on the
また、H地点からI地点までの前方道路FR4は降坂路である。H地点で惰性走行予測手段M3を実施して、前方道路FR4の走行をニュートラル惰性走行CNEUとすると予測した場合の予測車速v4が、下限目標車速Va’と上限目標車速Vb’の間に収まると判断する。次に、惰性走行制御手段M4を実施して、前方道路FR4の走行をニュートラル惰性走行CNEUとする。 The forward road FR4 from the H point to the I point is a downhill road. The predicted vehicle speed v4 when the inertia traveling prediction means M3 is performed at the point H and the traveling on the front road FR4 is predicted to be the neutral inertia traveling C NEU falls between the lower limit target vehicle speed Va ′ and the upper limit target vehicle speed Vb ′. Judge. Next, the inertia traveling control means M4 is implemented, and the traveling on the front road FR4 is set as the neutral inertia traveling CNEU .
加えて、I地点からJ地点までの前方道路FR5は、降坂路の道路である。I地点で惰性走行予測手段M3を実施して、前方道路FR5の走行をニュートラル惰性走行CNEUとすると予測した場合の予測車速v5aが、上限目標車速Vb’を上回ると判断する。このとき、惰性走行選択手段M6を実施して、アクセルオフ惰性走行COFFを選択し、再度予測を行う。再予測では、前方道路FR5の走行をアクセルオフ惰性走行COFFとすると予測した場合の予測車速v5bが、上限目標車速Vb’を上回らないと判断する。次に、I地点から惰性走行制御手段M4を実施して、前方道路FR5の走行をアクセルオフ惰性走行COFFとする。 In addition, the forward road FR5 from point I to point J is a downhill road. The inertia traveling prediction means M3 is performed at the point I, and it is determined that the predicted vehicle speed v5a when it is predicted that the traveling on the front road FR5 is the neutral inertia traveling C NEU exceeds the upper limit target vehicle speed Vb ′. At this time, the inertia traveling selection means M6 is implemented to select the accelerator-off inertia traveling C OFF , and the prediction is performed again. The re-prediction, the prediction speed v5b when it is predicted that the travel of the road ahead FR5 the accelerator pedal coasting C OFF is judged not exceed the upper limit target vehicle speed Vb '. Then conducted coasting control means M4 from I point, the accelerator-off coasting C OFF the driving of the road ahead FR5.
よって、図4において、区間L4は、燃料を消費して、車両1に駆動力を付与する区間で、区間L5は燃料を消費せずに、運動エネルギーを重力ポテンシャルエネルギーに変換する区間で、区間L6は、燃料を消費して、車両1に駆動力を付与する区間で、区間L7は燃料を消費せずに、重力ポテンシャルエネルギーを運動エネルギーに変換する区間で、区間L8は燃料を消費せずに、重力ポテンシャルエネルギーを運動エネルギーに変換すると共に、車両1に制動力を付与する区間となる。
Therefore, in FIG. 4, a section L4 is a section that consumes fuel and applies driving force to the
図5に示すように、車両1の現在位置をK地点とし、そして、すでにZ地点の前で、アクセルオフ惰性走行COFFが行われて、且つ惰性走行最高車速維持手段M7により車速Vが最高車速VMAXに維持されているものとする。K地点からM地点までの前方道路FR6はその勾配が徐々に緩やかになる降坂路である。K地点で、惰性走行予測手段M3を実施して、前方道路FR6の走行をアクセルオフ惰性走行COFFとすると予測した場合の予測車速v6aが、下限目標車速Va’を下回ると判断する。このとき、惰性走行選択手段M6を実施して、惰性走行としてニュートラル惰性走行CNEUを選択し、再度、予測を行う。再予測では、前方道路FR6の走行をニュートラル惰性走行CNEUとすると予測した場合の予測車速v6bが、下限目標車速Va’を下回らないと判断する。そして、K地点から惰性走行制御手段M4を実施して、前方道路FR6の走行をニュートラル惰性走行CNEUとする。
As shown in FIG. 5, the current position of the
また、M地点からN地点を経由した前方道路FR7は、略平坦路の道路である。N地点で惰性走行予測手段M3を実施して、前方道路FR7の走行をニュートラル惰性走行CNEUとすると予測した場合の予測車速v7aが、下限目標車速Va’を下回ると判断する。次に、惰性走行選択手段M6を実施して、前方道路FR7の走行をアクセルオフ惰性走行COFFとすると予測した場合の予測車速v7bが、下限目標車速Va’を下回ると判断する。次に、目標車速維持走行制御手段M5を実施して、前方道路FR7の走行を目標車速維持走行とする。予測車速v7a及びv7bが下限目標車速Va’を下回ると判断した場合であるのため、エンジン3を駆動して、車速Vを目標車速V’に近づける。
A forward road FR7 passing from the M point to the N point is a substantially flat road. The inertia traveling prediction means M3 is performed at the N point, and it is determined that the predicted vehicle speed v7a when the traveling on the front road FR7 is predicted to be the neutral inertia traveling C NEU is lower than the lower limit target vehicle speed Va ′. Next, the inertia traveling selection means M6 is implemented, and it is determined that the predicted vehicle speed v7b when it is predicted that traveling on the front road FR7 is accelerator-off inertia traveling C OFF is lower than the lower limit target vehicle speed Va ′. Next, the target vehicle speed maintaining traveling control means M5 is implemented to set the traveling on the front road FR7 as the target vehicle speed maintaining traveling. Since it is a case where it is judged that the predicted vehicle speeds v7a and v7b are lower than the lower limit target vehicle speed Va ′, the
よって、図5において、区間L9は燃料を消費せずに、重力ポテンシャルエネルギーを運動エネルギーに変換すると共に、車両1に制動力を付与する区間で、区間L10は燃料を消費せずに、重力ポテンシャルエネルギーを運動エネルギーに変換する区間で、区間L11は燃料を消費して、車両1に駆動力を付与する区間となる。
Therefore, in FIG. 5, the section L9 is a section in which the gravity potential energy is converted into kinetic energy without consuming fuel, and the braking force is applied to the
図6に示すように、車両1の現在位置をO地点とし、そして、すでにZ地点の前で、アクセルオフ惰性走行COFFが行われて、且つ惰性走行最高車速維持手段M7により車速Vが最高車速VMAXに維持されているものとする。O地点からR地点を経由する前方道路FR8はその勾配が徐々に緩やかになる降坂路の後に平坦路がある道路である。O地点で、惰性走行予測手段M3を実施して、前方道路FR8の走行をアクセルオフ惰性走行COFFとすると予測した場合の予測車速v8aが、下限目標車速Va’を下回ると判断する。このとき、惰性走行選択手段M6を実施して、惰性走行としてニュートラル惰性走行CNEUを選択し、再度予測を行う。再予測では、前方道路FR8の走行をニュートラル惰性走行CNEUとすると予測した場合の予測車速v8bが、下限目標車速Va’を下回らないと判断する。そして、O地点から惰性走行制御手段M4を実施して、前方道路FR8の走行をニュートラル惰性走行CNEUとする。
As shown in FIG. 6, the current position of the
よって、図6において、区間L12は燃料を消費せずに、重力ポテンシャルエネルギーを運動エネルギーに変換すると共に、車両1に制動力を付与する区間で、区間L13は燃料を消費せずに、重力ポテンシャルエネルギーを運動エネルギーに変換する区間となる。
Therefore, in FIG. 6, the section L12 is a section in which the gravity potential energy is converted into kinetic energy without consuming fuel, and the braking force is applied to the
上記の実施の形態の自動走行装置2、それを備える車両1、及びその自動走行方法によれば、車両1の自動走行中に、道路状況と車両状況に基づいて、前方道路の走行を惰性走行とすると予測した場合の予測車速が、下限目標車速Va’を下回らないと判断したときに、前方道路が登坂路、降坂路、又は平坦路に関係なく、惰性走行を開始する。これにより、車両1の自動走行中に惰性走行による走行距離を長くすることができ、燃料消費量を低減することができる。さらに、車速Vが下限目標車速Va’を下回らないと判断したときに惰性走行を開始するため、車速Vが極端に遅くなることがなく、運行時間が大幅に増加することなく、到着時刻が遅れることを回避することができる。
According to the
また、惰性走行予測手段M3が予測中の惰性走行をニュートラル惰性走行CNEUとして予測する場合に、予測車速が下限目標車速Va’と上限目標車速Vb’の間に収まらないような場合は、予測中の惰性走行をアクセルオフ惰性走行COFFに切り換えて再度予測する。そして、再予測で、予測車速が下限目標車速Va’と上限目標車速Vb’の間に収まる場合は、前方道路の走行をアクセルオフ惰性走行COFFとする。これにより、惰性走行をより長い距離で行うことができ、燃料消費量を低減することができる。 Further, when the inertia traveling prediction means M3 predicts the inertia inertia traveling being predicted as the neutral inertia traveling C NEU , the prediction is made when the predicted vehicle speed does not fall between the lower limit target vehicle speed Va ′ and the upper limit target vehicle speed Vb ′. The inertia traveling in the middle is switched to the accelerator-off inertia traveling C OFF to predict again. If the predicted vehicle speed falls within the lower limit target vehicle speed Va ′ and the upper limit target vehicle speed Vb ′ in the re-prediction, the traveling on the front road is set as the accelerator-off inertia traveling C OFF . Thereby, coasting can be performed over a longer distance, and fuel consumption can be reduced.
特に、本発明は図3に示すように、登坂路の頂上の手前を走行中に、前方道路FR1に登坂路の後に重力加速が可能な降り勾配を有する降坂路がある前方道路の走行をニュートラル惰性走行CNEUとすると予測した場合に、その降坂路に到達するまでに予測車速v1が下限目標車速Va’を下回らないと判断したときには、頂上の手前の登坂路からニュートラル惰性走行CNEUを行う。これにより、坂の頂上に到達するまでは、登坂路の走行をニュートラル惰性走行CNEUとするので、車速Vは下限目標車速Va’を下回らない範囲で減速され、頂上からの降坂路の走行をニュートラル惰性走行CNEUとするので増速される。よって、ニュートラル惰性走行CNEUによる走行距離を長くすることができるので、燃料消費量を低減することができる。また、前方道路FR1の走行をニュートラル惰性走行CNEUとしても、車速Vが下限目標車速Va’を下回らないため、運行時間が大幅に増加することを回避することができる。 In particular, as shown in FIG. 3, the present invention neutralizes traveling on a front road where there is a downhill road having a descending slope capable of gravity acceleration after the uphill road while traveling in front of the top of the uphill road. If it is predicted that coasting C NEU will occur, if it is determined that the predicted vehicle speed v1 does not fall below the lower limit target vehicle speed Va ′ before reaching the downhill road, neutral coasting C NEU is performed from the uphill road just before the top. . As a result, the traveling on the uphill road is set to neutral coasting C NEU until the top of the hill is reached, so the vehicle speed V is decelerated within a range that does not fall below the lower limit target vehicle speed Va ′, and the traveling on the downhill road from the top is performed. Because it is neutral coasting C NEU , the speed will be increased. Therefore, since the travel distance by the neutral coasting C NEU can be increased, the fuel consumption can be reduced. Further, even if the traveling on the front road FR1 is the neutral coasting traveling C NEU , the vehicle speed V does not fall below the lower limit target vehicle speed Va ′, so that it is possible to avoid a significant increase in operation time.
なお、道路状況取得手段M1で取得される前方道路の道路状況については、上記の記載に限定されない。例えば、道路勾配の代わりに標高データを用いてもよく、また、上記のセンサや装置の他にも車両1を自動走行させるために必要な前方道路の状況を取得できるセンサや装置を設けてもよい。
Note that the road condition of the road ahead acquired by the road condition acquisition unit M1 is not limited to the above description. For example, altitude data may be used instead of the road gradient, and in addition to the sensors and devices described above, a sensor or device that can acquire the situation of the road ahead required for automatically driving the
また、道路状況取得装置20の衛星測位システム(GPS)との通信機である現在位置取得装置21の代わりに、ドライブレコーダーなどの走行した道路状況を記憶する装置を設け、その記憶させた道路状況を用いてもよい。
Further, in place of the current
加えて、上記の実施の形態では、車両の走行に制動力を付与しない無制動惰性走行として、ニュートラル惰性走行CNEUを用いたが、本発明はこれに限定されずに、例えば、クラッチ4を切断した状態のクラッチオフ惰性走行を用いてもよい。この場合は、惰性走行制御手段M4で、変速機5をニュートラルにシフトする代わりに、クラッチ4を断状態にする制御を行う。
In addition, in the above-described embodiment, the neutral inertia traveling C NEU is used as the non-braking inertia traveling that does not apply the braking force to the traveling of the vehicle. However, the present invention is not limited to this, and for example, the
更に、上記の実施の形態では、車両の走行に制動力を付与する有制動惰性走行として、アクセルオフ惰性走行COFFを用いたが、本発明はこれに限定されずに、例えば、車両1が電動発電機を備えるハイブリッド車両の場合は、電動発電機を回生駆動して、車両に制動力を付与する回生惰性走行を用いてもよい。 Furthermore, in the above-described embodiment, the accelerator-off inertia traveling C OFF is used as the braking inertia coasting that applies the braking force to the traveling of the vehicle. However, the present invention is not limited to this. In the case of a hybrid vehicle equipped with a motor generator, regenerative traveling that regeneratively drives the motor generator to apply a braking force to the vehicle may be used.
その上、上記の自動走行方法は、道路状況の中でも主に前方道路の勾配の変化について説明したが、本発明は、カーブなども考慮して、前方道路の走行を惰性走行とする場合を予測するとよい。例えば、図5の前方道路FR6に車速Vを減少しないと曲がり切れないカーブがあれば、ニュートラル惰性走行CNEUからアクセルオフ惰性走行COFFに切り換えて、カーブを曲がり切れる速度まで減少するように構成してもよい。 In addition, the automatic driving method described above mainly describes the change in the gradient of the front road among road conditions. However, the present invention predicts the case where the driving on the front road is inertial driving in consideration of a curve or the like. Good. For example, if there is a curve on the front road FR6 in FIG. 5 that cannot be bent unless the vehicle speed V is decreased, the vehicle is switched from the neutral inertia traveling C NEU to the accelerator-off inertia traveling C OFF to reduce the curve to a speed at which it can be bent. May be.
そして、上記の自動走行方法は、街中では、道路状況として、信号の有無を取得すると共に、信号の切り替わるタイミングを取得するようにするとよい。例えば、信号の切り替わるタイミングを取得することで、信号による停止を避けるように車両1を自動走行させることで、より燃料消費量を低減することができる。
In the above-described automatic traveling method, it is preferable to acquire the presence / absence of a signal and the timing at which the signal is switched as a road condition in a city. For example, the fuel consumption can be further reduced by acquiring the timing at which the signal is switched and causing the
本発明の車両の自動走行装置は、内燃機関の燃料噴射が停止された惰性走行による走行機会を増やして燃料消費量を低減することができると共に、その惰性走行中の車速を目標車速に基づく上限目標車速と下限目標車速との間に収めるため、惰性走行の機会が増えても運行時間が大幅に増加することなく、到着時刻が遅れることを回避することができるので、ディーゼルエンジンなどの内燃機関を搭載した車両に利用することができる。 The vehicle automatic traveling device according to the present invention can reduce the fuel consumption by increasing the traveling opportunity by inertia traveling where the fuel injection of the internal combustion engine is stopped, and the vehicle speed during the inertia traveling is an upper limit based on the target vehicle speed. Because it falls between the target vehicle speed and the lower limit target vehicle speed, it is possible to avoid delays in arrival time without greatly increasing the operation time even if the chance of coasting increases, so internal combustion engines such as diesel engines It can be used for vehicles equipped with.
1 車両
2 自動走行装置
3 エンジン(内燃機関)
4 クラッチ
5 変速機
10 エンジン用ECU(内燃機関用制御装置)
11 動力伝達用ECU(動力伝達用制御装置)
12 自動走行制御装置
13 目標車速設定装置
14 増減値設定装置
20 道路状況取得装置
30 車両状況取得装置
40 制動装置
M1 道路状況取得手段
M2 車両状況取得手段
M3 惰性走行予測手段
M4 惰性走行制御手段
M5 目標車速維持走行制御手段
M6 惰性走行選択手段
M7 惰性走行最高車速維持手段
1
4
11 Power Transmission ECU (Power Transmission Control Device)
DESCRIPTION OF
Claims (9)
前方道路の道路状況を取得する道路状況取得手段と、車速を含む車両状況を取得する車両状況取得手段と、前記道路状況と前記車両状況に基づいて、前方道路の走行を惰性走行とすると予測した場合の予測車速が、前記目標車速よりも遅い速度に予め設定された下限目標車速を下回るか否かを判断する惰性走行予測手段を備え、
前記惰性走行予測手段を実施して、前記予測車速が前記下限目標車速を下回らないと判断した場合に、前記惰性走行制御手段を実施して、前方道路の走行を惰性走行にするように構成されることを特徴とする車両の自動走行装置。 A target vehicle speed maintaining traveling control means for controlling the traveling of the vehicle equipped with the internal combustion engine to a target vehicle speed maintaining traveling for maintaining the vehicle speed at a preset target vehicle speed; and the fuel traveling of the internal combustion engine by the fuel injection of the internal combustion engine. In an automatic traveling device for a vehicle comprising inertial traveling control means for controlling inertial traveling stopped,
Based on the road situation and the vehicle situation, the road situation obtaining means for obtaining the road situation of the road ahead, the vehicle situation obtaining means for obtaining the vehicle situation including the vehicle speed, and predicting that the running of the front road is coasting A coasting traveling prediction means for determining whether or not the predicted vehicle speed in this case is lower than a lower limit target vehicle speed set in advance at a speed slower than the target vehicle speed,
When the inertia traveling prediction means is implemented and it is determined that the predicted vehicle speed does not fall below the lower limit target vehicle speed, the inertia traveling control means is implemented and the traveling on the road ahead is made inertial. An automatic traveling device for a vehicle.
前記惰性走行制御手段を実施した場合の惰性走行を、前記惰性走行選択手段で選択された前記有制動惰性走行と前記無制動惰性走行のどちらか一方とするように構成されることを特徴とする請求項1又は2に記載の車両の自動走御装置。 The inertial running under prediction is applied to the vehicle running so that the predicted vehicle speed in the inertial running prediction means falls between the upper limit target vehicle speed and the lower limit target vehicle speed set in advance to be higher than the target vehicle speed. A coasting coasting selection means for selecting from either a braking coasting coasting that imparts a braking force or a non-braking coasting that does not impart braking force to the traveling of the vehicle,
The inertial travel when the inertial travel control means is implemented is configured to be either the braking inertial travel selected with the inertial travel selection means or the non-braking inertial travel. The automatic running device for a vehicle according to claim 1 or 2.
前記惰性走行予測手段を実施して、車両が降坂路に到達するまでに前記予測車速が前記下限目標車速を下回らないと判断したときに、登坂路から前記惰性走行制御手段を実施するように構成されることを特徴とする請求項1〜3のいずれか1項に記載の車両の自動走御装置。 When the coasting prediction means predicts that traveling on a road ahead with a downhill road following an uphill road based on the road condition and the vehicle situation as an inertial road, the vehicle travels until the vehicle reaches the downhill road. As a means for determining whether the predicted vehicle speed is less than the lower limit target vehicle speed,
The inertial traveling prediction means is implemented, and when it is determined that the predicted vehicle speed does not fall below the lower limit target vehicle speed until the vehicle reaches the downhill road, the inertial traveling control means is implemented from the uphill road. The vehicle automatic running device according to any one of claims 1 to 3, wherein the vehicle automatic running device is provided.
前方道路の道路状況と、車速を含む車両状況に基づいて、前方道路の走行を前記内燃機関の燃料噴射が停止された惰性走行とする予測をした場合の予測車速が、前記目標車速よりも遅い速度に予め設定された下限目標車速を下回らないと判断したときに、前方道路の走行を惰性走行にすることを特徴とする車両の自動走行方法。 In the automatic traveling method of a vehicle, the traveling of the vehicle equipped with the internal combustion engine is set to a target vehicle speed maintaining traveling that maintains the vehicle speed at a preset target vehicle speed.
Based on the road conditions on the front road and the vehicle conditions including the vehicle speed, the predicted vehicle speed when the driving on the front road is predicted to be coasting with the fuel injection of the internal combustion engine stopped is slower than the target vehicle speed. A method for automatically driving a vehicle, characterized in that, when it is determined that the speed does not fall below a lower limit target vehicle speed set in advance, traveling on the front road is coasting.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013183757A JP6331295B2 (en) | 2013-09-05 | 2013-09-05 | Automatic traveling device for vehicle, vehicle, and automatic traveling method for vehicle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013183757A JP6331295B2 (en) | 2013-09-05 | 2013-09-05 | Automatic traveling device for vehicle, vehicle, and automatic traveling method for vehicle |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015051646A true JP2015051646A (en) | 2015-03-19 |
JP6331295B2 JP6331295B2 (en) | 2018-05-30 |
Family
ID=52701034
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013183757A Expired - Fee Related JP6331295B2 (en) | 2013-09-05 | 2013-09-05 | Automatic traveling device for vehicle, vehicle, and automatic traveling method for vehicle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6331295B2 (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016152751A1 (en) * | 2015-03-26 | 2016-09-29 | いすゞ自動車株式会社 | Cruise control device and cruise control method |
JP2016182887A (en) * | 2015-03-26 | 2016-10-20 | いすゞ自動車株式会社 | Travel control device, and method of travel control |
CN106809208A (en) * | 2015-11-30 | 2017-06-09 | 现代自动车株式会社 | Equipment and the method using its control gear shift for controlling the gear shift of vehicle |
JP2017150344A (en) * | 2016-02-23 | 2017-08-31 | トヨタ自動車株式会社 | Control device for vehicle |
CN107406076A (en) * | 2015-03-27 | 2017-11-28 | 五十铃自动车株式会社 | Travel controlling system and travel control method |
KR20180069601A (en) * | 2016-12-15 | 2018-06-25 | 현대자동차주식회사 | Method for controlling coasting drive of environmentally friendly vehicle |
KR20190001704A (en) * | 2017-06-28 | 2019-01-07 | 현대자동차주식회사 | Control method for inertia driving of eco-friendly vehicle |
JP2019026162A (en) * | 2017-08-02 | 2019-02-21 | いすゞ自動車株式会社 | Travel control device, vehicle, and travel control method |
JP2019034633A (en) * | 2017-08-14 | 2019-03-07 | いすゞ自動車株式会社 | Travel control device, vehicle, and travel control method |
WO2019074086A1 (en) * | 2017-10-12 | 2019-04-18 | いすゞ自動車株式会社 | Travel control device, vehicle, and travel control method |
KR20190068789A (en) * | 2017-12-11 | 2019-06-19 | 현대자동차주식회사 | Vehicle and transmission shift control of the same |
CN110234551A (en) * | 2017-02-03 | 2019-09-13 | 五十铃自动车株式会社 | Travel controlling system and travel control method |
JP2019163791A (en) * | 2018-03-19 | 2019-09-26 | いすゞ自動車株式会社 | Vehicle control device and vehicle control method |
CN110612238A (en) * | 2017-05-09 | 2019-12-24 | 株式会社电装 | Travel control device |
CN113119969A (en) * | 2019-12-30 | 2021-07-16 | 康明斯公司 | Predictive road speed regulator |
CN114435358A (en) * | 2022-03-23 | 2022-05-06 | 中国重汽集团济南动力有限公司 | Cruise-based predictive neutral coasting control system and method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006226178A (en) * | 2005-02-17 | 2006-08-31 | Hino Motors Ltd | Auto cruise control device |
JP2012101636A (en) * | 2010-11-09 | 2012-05-31 | Toyota Motor Corp | Traveling control device for vehicle |
JP2012219986A (en) * | 2011-04-13 | 2012-11-12 | Mitsubishi Fuso Truck & Bus Corp | Travel control device for vehicle |
-
2013
- 2013-09-05 JP JP2013183757A patent/JP6331295B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006226178A (en) * | 2005-02-17 | 2006-08-31 | Hino Motors Ltd | Auto cruise control device |
JP2012101636A (en) * | 2010-11-09 | 2012-05-31 | Toyota Motor Corp | Traveling control device for vehicle |
JP2012219986A (en) * | 2011-04-13 | 2012-11-12 | Mitsubishi Fuso Truck & Bus Corp | Travel control device for vehicle |
Cited By (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016182887A (en) * | 2015-03-26 | 2016-10-20 | いすゞ自動車株式会社 | Travel control device, and method of travel control |
CN107407403B (en) * | 2015-03-26 | 2019-05-14 | 五十铃自动车株式会社 | Travel controlling system and travel control method |
WO2016152751A1 (en) * | 2015-03-26 | 2016-09-29 | いすゞ自動車株式会社 | Cruise control device and cruise control method |
CN107407403A (en) * | 2015-03-26 | 2017-11-28 | 五十铃自动车株式会社 | Travel controlling system and travel control method |
US10428937B2 (en) | 2015-03-26 | 2019-10-01 | Isuzu Motors Limited | Cruise control device and cruise control method |
US10369996B2 (en) | 2015-03-27 | 2019-08-06 | Isuzu Motors Limited | Travel control device and travel control method |
CN107406076A (en) * | 2015-03-27 | 2017-11-28 | 五十铃自动车株式会社 | Travel controlling system and travel control method |
EP3275755A4 (en) * | 2015-03-27 | 2018-04-04 | Isuzu Motors Limited | Travel control device and travel control method |
US10155519B2 (en) | 2015-11-30 | 2018-12-18 | Hyundai Motor Company | Device for controlling shift of vehicle and method for controlling shift using the same |
CN106809208B (en) * | 2015-11-30 | 2020-08-14 | 现代自动车株式会社 | Apparatus for controlling gear shift of vehicle and method for controlling gear shift using the same |
KR101826550B1 (en) * | 2015-11-30 | 2018-02-07 | 현대자동차 주식회사 | Device for controlling shift of vehicle and method for controlling shift using the same |
CN106809208A (en) * | 2015-11-30 | 2017-06-09 | 现代自动车株式会社 | Equipment and the method using its control gear shift for controlling the gear shift of vehicle |
JP2017150344A (en) * | 2016-02-23 | 2017-08-31 | トヨタ自動車株式会社 | Control device for vehicle |
KR20180069601A (en) * | 2016-12-15 | 2018-06-25 | 현대자동차주식회사 | Method for controlling coasting drive of environmentally friendly vehicle |
KR102371236B1 (en) * | 2016-12-15 | 2022-03-04 | 현대자동차 주식회사 | Method for controlling coasting drive of environmentally friendly vehicle |
CN110234551A (en) * | 2017-02-03 | 2019-09-13 | 五十铃自动车株式会社 | Travel controlling system and travel control method |
CN110612238A (en) * | 2017-05-09 | 2019-12-24 | 株式会社电装 | Travel control device |
KR20190001704A (en) * | 2017-06-28 | 2019-01-07 | 현대자동차주식회사 | Control method for inertia driving of eco-friendly vehicle |
KR102274125B1 (en) | 2017-06-28 | 2021-07-06 | 현대자동차주식회사 | Control method for inertia driving of eco-friendly vehicle |
JP2019026162A (en) * | 2017-08-02 | 2019-02-21 | いすゞ自動車株式会社 | Travel control device, vehicle, and travel control method |
JP2019034633A (en) * | 2017-08-14 | 2019-03-07 | いすゞ自動車株式会社 | Travel control device, vehicle, and travel control method |
JP7056033B2 (en) | 2017-08-14 | 2022-04-19 | いすゞ自動車株式会社 | Driving control device, vehicle and driving control method |
JP7081110B2 (en) | 2017-10-12 | 2022-06-07 | いすゞ自動車株式会社 | Driving control device, vehicle, and driving control method |
WO2019074086A1 (en) * | 2017-10-12 | 2019-04-18 | いすゞ自動車株式会社 | Travel control device, vehicle, and travel control method |
JP2019073074A (en) * | 2017-10-12 | 2019-05-16 | いすゞ自動車株式会社 | Running control device, vehicle, and running control method |
CN111212774A (en) * | 2017-10-12 | 2020-05-29 | 五十铃自动车株式会社 | Travel control device, vehicle, and travel control method |
US11220276B2 (en) | 2017-10-12 | 2022-01-11 | Isuzu Motors Limited | Travel control device, vehicle, and travel control method |
KR102491728B1 (en) | 2017-12-11 | 2023-01-30 | 현대자동차주식회사 | Vehicle and transmission shift control of the same |
KR20190068789A (en) * | 2017-12-11 | 2019-06-19 | 현대자동차주식회사 | Vehicle and transmission shift control of the same |
US11214255B2 (en) | 2018-03-19 | 2022-01-04 | Isuzu Motors Limited | Vehicle control device and vehicle control method |
JP2019163791A (en) * | 2018-03-19 | 2019-09-26 | いすゞ自動車株式会社 | Vehicle control device and vehicle control method |
WO2019181785A1 (en) * | 2018-03-19 | 2019-09-26 | いすゞ自動車株式会社 | Vehicle control device and vehicle control method |
JP7135356B2 (en) | 2018-03-19 | 2022-09-13 | いすゞ自動車株式会社 | Vehicle control device and vehicle control method |
CN111868419A (en) * | 2018-03-19 | 2020-10-30 | 五十铃自动车株式会社 | Vehicle control device and vehicle control method |
DE112019001435B4 (en) | 2018-03-19 | 2023-03-30 | Isuzu Motors Limited | VEHICLE CONTROL DEVICE AND VEHICLE CONTROL METHOD |
CN113119969A (en) * | 2019-12-30 | 2021-07-16 | 康明斯公司 | Predictive road speed regulator |
CN113119969B (en) * | 2019-12-30 | 2023-10-27 | 康明斯公司 | Predictive road speed regulator |
CN114435358A (en) * | 2022-03-23 | 2022-05-06 | 中国重汽集团济南动力有限公司 | Cruise-based predictive neutral coasting control system and method |
CN114435358B (en) * | 2022-03-23 | 2023-10-10 | 中国重汽集团济南动力有限公司 | Predictive neutral gear coasting control system and method based on cruising |
Also Published As
Publication number | Publication date |
---|---|
JP6331295B2 (en) | 2018-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6331295B2 (en) | Automatic traveling device for vehicle, vehicle, and automatic traveling method for vehicle | |
US11279359B2 (en) | Method and apparatus for assisting in the maintenance of a vehicle speed within a speed range, and a vehicle comprising such an apparatus | |
KR101607697B1 (en) | Method and system for a vehicle | |
US9056612B2 (en) | Driving force control device for hybrid vehicle and driving force control method for hybrid vehicle | |
WO2013014741A1 (en) | Vehicle control device | |
GB2567008A (en) | Method of controlling a prime mover of a vehicle, apparatus for controlling a prime mover of a vehicle, and a vehicle comprising such an apparatus | |
US11220276B2 (en) | Travel control device, vehicle, and travel control method | |
US11865947B2 (en) | Regenerative braking control system for a hybrid or electric vehicle | |
WO2016152751A1 (en) | Cruise control device and cruise control method | |
WO2016152723A1 (en) | Cruise control device and cruise control method | |
JP7005904B2 (en) | Driving control device, vehicle and driving control method | |
JP6337664B2 (en) | Automatic traveling control device for vehicle and automatic traveling control method for vehicle | |
JP2014103771A (en) | Regeneration control device for electric vehicle | |
JP2018122818A (en) | Running control device and running control method | |
US12037002B2 (en) | Travel control device, vehicle, and travel control method | |
JP6958082B2 (en) | Driving control device, vehicle and driving control method | |
JP2018127095A (en) | Travel control device, vehicle, and travel control method | |
JP6932939B2 (en) | Driving control device, vehicle and driving control method | |
JP7056033B2 (en) | Driving control device, vehicle and driving control method | |
JP6593044B2 (en) | Hybrid vehicle and control method thereof | |
JP6593045B2 (en) | Hybrid vehicle and control method thereof | |
EP3441274A1 (en) | Traveling control device, vehicle, and traveling control method | |
WO2018143352A1 (en) | Travel control device and travel control method | |
JP2016175500A (en) | Hybrid vehicle and control method therefor | |
JP2016175497A (en) | Hybrid vehicle and control method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160803 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170426 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170502 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170703 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180109 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180309 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180403 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180416 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6331295 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |