[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2015050124A - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
JP2015050124A
JP2015050124A JP2013182487A JP2013182487A JP2015050124A JP 2015050124 A JP2015050124 A JP 2015050124A JP 2013182487 A JP2013182487 A JP 2013182487A JP 2013182487 A JP2013182487 A JP 2013182487A JP 2015050124 A JP2015050124 A JP 2015050124A
Authority
JP
Japan
Prior art keywords
light
layer
film
reflection film
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013182487A
Other languages
Japanese (ja)
Inventor
聡二 大和田
Soji Owada
聡二 大和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2013182487A priority Critical patent/JP2015050124A/en
Publication of JP2015050124A publication Critical patent/JP2015050124A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

【課題】入射角依存性がなく高反射率の反射層構造を持ち、これにより高い輝度を達成できる反射方式の発光装置を提供する。【解決手段】本発明の発光装置は、蛍光体層2の光出射側と反対側に設けられる反射層4との間に、蛍光体層2を構成する材料の屈折率よりも屈折率の低い材料から成る全反射膜6を設ける。好ましくは反射層4と全反射膜6との間に、光学多層膜からなる増反射膜5を設ける。全反射膜6、増反射膜5及び反射層4は、蛍光体層2の表面に順次成膜することに形成することができる。蛍光体層2が発する光のうち、全反射膜6に臨界角以上の角度で入射される光は全反射される。これにより反射層4、増反射膜5及び全反射膜6全体としての反射率を向上することができる。【選択図】図1Provided is a reflection type light emitting device which has a reflection layer structure with high incidence without dependence on an incident angle, and thereby can achieve high luminance. The light emitting device of the present invention has a refractive index lower than the refractive index of the material constituting the phosphor layer 2 between the light emitting side of the phosphor layer 2 and the reflective layer 4 provided on the opposite side. A total reflection film 6 made of a material is provided. Preferably, between the reflective layer 4 and the total reflection film 6, an increased reflection film 5 made of an optical multilayer film is provided. The total reflection film 6, the increased reflection film 5, and the reflection layer 4 can be formed by sequentially forming on the surface of the phosphor layer 2. Of the light emitted from the phosphor layer 2, light incident on the total reflection film 6 at an angle greater than the critical angle is totally reflected. Thereby, the reflectance as the reflection layer 4, the reflective reflection film 5, and the total reflection film 6 as a whole can be improved. [Selection] Figure 1

Description

本発明は、LD(レーザーダイオード)やLED(発光ダイオード)などの光源と、光源からの光を吸収し蛍光を発する蛍光体とを組み合わせた発光装置に関する。   The present invention relates to a light emitting device in which a light source such as an LD (laser diode) or an LED (light emitting diode) is combined with a phosphor that absorbs light from the light source and emits fluorescence.

LDやLED等の固体光源と蛍光体を組み合わせた発光装置は、高輝度光源として、一般照明や自動車のヘッドランプなどの応用範囲が広がってきている。   A light emitting device combining a solid light source such as an LD and an LED and a phosphor has a wide range of applications such as general illumination and a headlamp of an automobile as a high luminance light source.

光源を高輝度化する方法として、反射方式の装置が提案されている(特許文献1)。反射方式の発光装置では、光半導体と蛍光体層を空間的に離して配置し、蛍光体層側からの発光を反射方式で利用する。蛍光体層からの発光を反射するために、蛍光体層をアルミニウム等の反射性のよい金属基板に接合する、基板に光反射率が高い銀(Ag)をコーティングするなどの手法が採用されている。このような反射方式の発光装置では、固体光源からの励起光によって励起された蛍光体層からの発光と、蛍光体層で反射する励起光の反射光の両方を利用することができるので、高輝度が達成される。   As a method for increasing the brightness of a light source, a reflection type device has been proposed (Patent Document 1). In a reflection type light emitting device, an optical semiconductor and a phosphor layer are arranged spatially separated, and light emission from the phosphor layer side is used in a reflection method. In order to reflect light emitted from the phosphor layer, techniques such as bonding the phosphor layer to a highly reflective metal substrate such as aluminum and coating the substrate with silver (Ag) having a high light reflectivity are adopted. Yes. Such a reflective light emitting device can use both light emitted from a phosphor layer excited by excitation light from a solid-state light source and reflected light of excitation light reflected by the phosphor layer. Brightness is achieved.

特開2012−64484号公報JP 2012-64484 A

蛍光体層における発光は、全方向に向かう光であり、反射基板(反射層)の反射面にはあらゆる入射角度で入射することになる。従って、反射層として用いられる材料は、角度依存性のないことが望まれる。銀は、すべての入射角で波長500nm〜800nmに亘って98%以上の高い反射率が得られ、優れた材料であるが、可視光領域で数%の光を吸収する。   Light emitted from the phosphor layer is light traveling in all directions, and is incident on the reflection surface of the reflection substrate (reflection layer) at any incident angle. Therefore, it is desirable that the material used for the reflective layer has no angle dependency. Silver is an excellent material with a high reflectivity of 98% or more over a wavelength range of 500 nm to 800 nm at all incident angles, and absorbs several percent of light in the visible light region.

一方、誘電体多層膜は、反射率を高めることが知られており、アルミニウム等の金属膜からなる反射層に誘電体多層膜を形成し反射率を高める手法がある。しかし、このような増反射膜は高い入射角、特に70度以上の入射角における反射率が急激に低下するという性質を持つ。このため、仮に、反射方式の発光装置において、蛍光体層と銀反射膜との間に増反射膜を設けた場合、高い入射角での反射率が低下するため高輝度化を図ることができない。   On the other hand, it is known that the dielectric multilayer film increases the reflectivity, and there is a method of increasing the reflectivity by forming the dielectric multilayer film on the reflective layer made of a metal film such as aluminum. However, such a reflection-enhancing film has a property that the reflectance at a high incident angle, particularly at an incident angle of 70 degrees or more, rapidly decreases. For this reason, in the reflection type light-emitting device, if a reflection-increasing film is provided between the phosphor layer and the silver reflection film, the reflectance at a high incident angle is lowered, so that high brightness cannot be achieved. .

本発明は、角度依存性がなく高反射率の反射層構造を持ち、これにより高い輝度を達成できる反射方式の発光装置を提供することを課題とする。   An object of the present invention is to provide a reflection type light emitting device that has a reflection layer structure with high reflectivity and has no angle dependency, thereby achieving high luminance.

上記課題を解決するため、本発明の発光装置は、蛍光体層の光出射側と反対側に設けられる反射層と蛍光体層との間に、反射層を構成する材料の屈折率よりも屈折率の低い材料から成る全反射膜を設ける。   In order to solve the above problems, the light emitting device of the present invention is refracted more than the refractive index of the material constituting the reflective layer between the reflective layer provided on the opposite side of the light emitting side of the phosphor layer and the phosphor layer. A total reflection film made of a low-rate material is provided.

すなわち本発明の発光装置は、励起光を発する光源と、前記光源からの励起光を受け、励起光を入射し、励起光と異なる波長の光を発する蛍光体層と、当該蛍光体層の励起光入射面と反対側に配置された反射層とを備えた発光装置であって、前記反射層と前記蛍光体層との間に、前記蛍光体層の屈折率より屈折率が低く、臨界角以上の角度で入射される光を全反射する全反射膜とを備えることを特徴とする。   That is, the light-emitting device of the present invention includes a light source that emits excitation light, a phosphor layer that receives excitation light from the light source, enters the excitation light, and emits light having a wavelength different from that of the excitation light, and excitation of the phosphor layer A light emitting device having a reflective layer disposed on the side opposite to the light incident surface, wherein the refractive index is lower than the refractive index of the phosphor layer between the reflective layer and the phosphor layer, and a critical angle And a total reflection film that totally reflects light incident at the above angle.

本発明の発光装置の好適な態様は、全反射膜と反射層との間に、増反射膜をさらに有する。   The suitable aspect of the light-emitting device of this invention further has a reflection enhancement film between the total reflection film and the reflection layer.

反射層と蛍光体層との間に、全反射膜を介在させることにより、反射層で吸収される光の量を減らすことができ、発光体の高輝度化を図ることができる。特に反射層と全反射膜との間に増反射膜を設けた場合には、増反射膜が全反射膜で全反射されない臨界角以下の入射光について反射率を高めるとともに、全反射膜が増反射膜の反射角度依存性を補完するので、さらなる高輝度化を図ることができる。   By interposing a total reflection film between the reflection layer and the phosphor layer, the amount of light absorbed by the reflection layer can be reduced, and the luminance of the light emitter can be increased. In particular, when a reflection-increasing film is provided between the reflection layer and the total reflection film, the reflection coefficient is increased for incident light below the critical angle where the reflection film is not totally reflected by the total reflection film, and the total reflection film is increased. Since the reflection angle dependency of the reflective film is complemented, further increase in luminance can be achieved.

本発明の発光装置の第一実施形態を示す断面図Sectional drawing which shows 1st embodiment of the light-emitting device of this invention. 第一実施形態の発光装置における光の光路を説明する図The figure explaining the optical path of the light in the light-emitting device of 1st embodiment. 第一実施形態における反射率の入射角依存性を示すグラフThe graph which shows the incident angle dependence of the reflectance in 1st embodiment 図3の反射率のシミュレーション方法を説明する図The figure explaining the simulation method of the reflectance of FIG. 第一実施形態の発光装置の製造方法の一例を示す図The figure which shows an example of the manufacturing method of the light-emitting device of 1st embodiment. 本発明の発光装置の第二実施形態を示す断面図Sectional drawing which shows 2nd embodiment of the light-emitting device of this invention. 第二実施形態における反射率の角度依存性を示すグラフThe graph which shows the angle dependence of the reflectance in 2nd embodiment

以下、本発明の発光装置の実施形態を、図面を参照して説明する。
図1は、各実施形態に共通する発光装置の全体構成を示す図である。この発光装置は、所定の波長の光を発する固体光源1と、固体光源1からの光を励起光として、励起光と異なる波長の光を発する蛍光体層2と、基板3と、図示しない支持構造や必要に応じて追加される光学部材とから構成されている。蛍光体層2と基板3との間には、反射層4が設けられており、蛍光体層2の反射層側とは反対の面が発光面(光出射面)となる。また実施形態の発光装置では、固体光源1は、蛍光体層2の発光面に対し斜めから励起光が入射するように、蛍光体層2に対し配置されている。
Hereinafter, embodiments of a light emitting device of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram illustrating an overall configuration of a light-emitting device common to the embodiments. This light-emitting device includes a solid-state light source 1 that emits light of a predetermined wavelength, a phosphor layer 2 that emits light having a wavelength different from that of the excitation light, using the light from the solid-state light source 1 as excitation light, a substrate 3, and a support (not shown) It is comprised from the structure and the optical member added as needed. A reflective layer 4 is provided between the phosphor layer 2 and the substrate 3, and a surface opposite to the reflective layer side of the phosphor layer 2 is a light emitting surface (light emitting surface). In the light emitting device of the embodiment, the solid light source 1 is arranged with respect to the phosphor layer 2 so that excitation light is incident on the light emitting surface of the phosphor layer 2 from an oblique direction.

本実施形態の発光装置は、さらに、蛍光体層2と反射層4との間に、反射層4から順に、増反射膜5及び全反射膜6が設けられている。また図1では省略しているが、反射層4から上の層の側面には、各層側面からの光の漏れを防止するための白樹脂等の壁材を設けてもよい。壁材としては、シリコーン樹脂やエポキシ樹脂等の樹脂に、TiO、BN、Al、ZnO、BaSO、SiO等の散乱材を分散させた所謂白樹脂と呼ばれる材料を用いることができる。 In the light emitting device according to the present embodiment, a reflective reflection film 5 and a total reflection film 6 are further provided in order from the reflective layer 4 between the phosphor layer 2 and the reflective layer 4. Although omitted in FIG. 1, a wall material such as a white resin for preventing light leakage from the side surface of each layer may be provided on the side surface of the layer above the reflective layer 4. As the wall material, a so-called white resin material in which a scattering material such as TiO 2 , BN, Al 2 O 3 , ZnO, BaSO 4 , or SiO 2 is dispersed in a resin such as a silicone resin or an epoxy resin is used. it can.

固体光源1には、紫外光から青色光領域に発光波長を持つ発光ダイオード(LED)やレーザーダイオード(LD)などが使用できる。本発明は、励起項強度が高い光源を使用した発光装置に特に有効であるため、レーザーダイオードを用いることが好ましい。具体的には、InGaN系やGaN系の半導体から構成され、波長450nmの青色光を発光するレーザーダイオードが挙げられる。   As the solid-state light source 1, a light emitting diode (LED) or a laser diode (LD) having an emission wavelength in the ultraviolet light to blue light region can be used. Since the present invention is particularly effective for a light-emitting device using a light source having a high excitation term intensity, it is preferable to use a laser diode. Specifically, a laser diode that is composed of an InGaN-based or GaN-based semiconductor and emits blue light having a wavelength of 450 nm can be given.

蛍光体層2は、固体光源1が発する光を励起光として、励起光よりも長波長の光を発する蛍光体を含む層である。具体的には、赤色用として、CaAlSiN:Eu2+、(Ca,Sr)AlSiN:Eu2+、CaSi:Eu2+、(Ca,Sr)Si:Eu2+、KSiF:Mn4+、KTiF:Mn4+等、黄色用として、YAl12:Ce3+(YAG)、(Si,Ba)SiO:Eu2+、Ca(Si,Al)12(O,N)16:Eu2+等、緑色用として、LuAl12:Ce3+、Y(Ga,Al)12:Ce3+、CaScSi12:Ce3+、CaSc:Eu2+、(Ba,Sr)SiO:Eu2+、BaSi12:Eu2+、(Si,Al)(O,N):Eu2+等の蛍光体を用いることができる。これらは1種類または2種類以上を混合して用いることができる。レーザーの青色光と上記黄色蛍光体を組み合わせた場合には、光源装置1からの発光は白色光となる。 The phosphor layer 2 is a layer including a phosphor that emits light having a longer wavelength than the excitation light using the light emitted from the solid light source 1 as excitation light. Specifically, for red, CaAlSiN 3 : Eu 2+ , (Ca, Sr) AlSiN 3 : Eu 2+ , Ca 2 Si 5 N 8 : Eu 2+ , (Ca, Sr) 2 Si 5 N 8 : Eu 2+ , KSiF 6 : Mn 4+ , KTiF 6 : Mn 4+ etc. For yellow, Y 3 Al 5 O 12 : Ce 3+ (YAG), (Si, Ba) 2 SiO 4 : Eu 2+ , Ca x (Si, Al) 12 (O, N) 16 : Eu 2+ etc. For green, Lu 3 Al 5 O 12 : Ce 3+ , Y 3 (Ga, Al) 5 O 12 : Ce 3+ , Ca 3 Sc 2 Si 3 O 12 : Ce 3+ , CaSc 2 O 4: Eu 2+ , (Ba, Sr) 2 SiO 4: Eu 2+, Ba 3 Si 6 O 12 N 2: Eu 2+, (Si, Al) 6 (O, N) 8: Eu 2+ It can be used in the phosphor. These can be used alone or in combination of two or more. When the laser blue light and the yellow phosphor are combined, the light emitted from the light source device 1 is white light.

蛍光体層2の形態は、蛍光体粉末をガラスや樹脂中に分散させたもの、ガラス母体に発光中心イオンを添加したガラス蛍光体、及び蛍光体セラミックス等を用いることができる。蛍光体粉末をガラスや樹脂中に分散させたものとして具体的には、上述した蛍光体の粉末をP、Si、B、Alなどの成分を含むガラス中に分散したものが挙げられる。ガラス蛍光体としては、Ce3+やEu2+を賦活剤(発光中心イオン)として添加したCa−Si−Al−O−N系やY−Si−Al−O−N 系等の酸窒化物系ガラス蛍光体が挙げられる。蛍光体セラミックスとしては、上述した蛍光体組成から成り、樹脂成分を実質的に含まない焼結体が挙げられる。 As the form of the phosphor layer 2, a phosphor powder dispersed in glass or resin, a glass phosphor in which a luminescent center ion is added to a glass matrix, phosphor ceramics, or the like can be used. Specifically, the phosphor powder is dispersed in glass or resin. Specifically, the phosphor powder described above is contained in a glass containing components such as P 2 O 3 , Si 2 , B 2 O 3 , and Al 2 O 3. Are dispersed. As the glass phosphor, oxynitride glass such as Ca—Si—Al—O—N or Y—Si—Al—O—N added with Ce 3+ or Eu 2+ as an activator (emission center ion). Examples include phosphors. Examples of the phosphor ceramic include a sintered body having the phosphor composition described above and substantially free of a resin component.

これらの中でも蛍光体粉末の焼結体である蛍光体セラミックスが好ましい。蛍光体セラミックスは熱伝導性が高いため、蛍光体の発光が熱によって弱まる現象(温度消光)を低減することができる。蛍光体セラミックスのなかでも、焼結体中に光の散乱の原因となるポアや粒界の不純物を殆ど含まない透光性の高いものが特に好ましい。焼結体のポアは、焼結体を製造する際に用いる融剤の選択や焼結時の圧力や温度を調整することにより低減することができる。なおポアの残存量を評価する指標として蛍光体セラミックスの比重の値を用いることができ、その値が計算される理論値に対して95%以上のものが特に望ましい。透光性の高い蛍光体セラミックスを用いることにより、励起光や蛍光を拡散により失うことなく蛍光層からの光の取り出し効率を高めることができる。   Among these, phosphor ceramics which are sintered bodies of phosphor powder are preferable. Since phosphor ceramics have high thermal conductivity, it is possible to reduce a phenomenon (temperature quenching) in which light emission of the phosphor is weakened by heat. Among the phosphor ceramics, those having high translucency, which hardly contain pores or grain boundary impurities that cause light scattering in the sintered body, are particularly preferable. The pores of the sintered body can be reduced by selecting the flux used when manufacturing the sintered body and adjusting the pressure and temperature during sintering. In addition, the value of specific gravity of the phosphor ceramic can be used as an index for evaluating the remaining amount of pores, and it is particularly desirable that the value is 95% or more with respect to the theoretical value for calculating the value. By using phosphor ceramics with high translucency, the light extraction efficiency from the fluorescent layer can be increased without losing excitation light or fluorescence by diffusion.

なお図1では、厚みが均一な平板状の蛍光体層2を示しているが、蛍光体層2は平板状のものではなく、例えば、球状や光出射面及び/又は光出射面と反対側の面が凸状または凹状のものなど種々の形状を取りえる。また平板状のものについて、特に限定されるものではないが、厚みは、50μm以上300μm以下であることが好ましい。このような範囲とすることにより、十分な輝度が得られ且つ側面からの光の損失を抑えることができる。好ましくは厚み100μm以上150μm以下である。他の形状のものについても、平板状のものの厚みから類推される範囲の厚みとすることが好ましい。   In FIG. 1, a flat phosphor layer 2 having a uniform thickness is shown, but the phosphor layer 2 is not a flat plate, for example, a spherical shape, a light emitting surface and / or a side opposite to the light emitting surface. It can take various shapes such as a convex or concave surface. Moreover, although it does not specifically limit about a flat thing, It is preferable that thickness is 50 micrometers or more and 300 micrometers or less. By setting it as such a range, sufficient brightness | luminance can be obtained and the loss of the light from a side surface can be suppressed. The thickness is preferably 100 μm or more and 150 μm or less. For other shapes, it is preferable that the thickness is in a range inferred from the thickness of the flat plate.

蛍光体層2の光出射面すなわち固体光源1からの励起光が入射する面は、必要に応じて、励起光の反射を防止するための処理を施したり、公知の反射防止膜(不図示)を設けたりすることができる。   The light emitting surface of the phosphor layer 2, that is, the surface on which the excitation light from the solid light source 1 is incident is subjected to a treatment for preventing reflection of the excitation light or a known antireflection film (not shown). Can be provided.

基板3は、蛍光体層2の支持基板として機能するとともに、蛍光体が発する熱を外部に逃がす放熱基板としても機能する。このため基板3は、高い伝熱特性、加工性を併せ持つ材料から形成することが好ましい。具体的には、酸化物セラミックス、非酸化物セラミックス(窒化物セラミックス)などのセラミックスや、Al、Cu、Ti、Si、Ag、Au、Ni、Mo、W、Fe、Pdなどの金属またはそれを含む合金などを使用することができる。高い伝熱特性という点で特に金属が好ましい。   The substrate 3 functions as a support substrate for the phosphor layer 2 and also functions as a heat dissipation substrate that releases heat generated by the phosphor to the outside. For this reason, it is preferable to form the substrate 3 from a material having both high heat transfer characteristics and workability. Specifically, ceramics such as oxide ceramics and non-oxide ceramics (nitride ceramics), metals such as Al, Cu, Ti, Si, Ag, Au, Ni, Mo, W, Fe, Pd or the like Including alloys can be used. A metal is particularly preferable in terms of high heat transfer characteristics.

基板3の表面は、メッキ、スパッタ成膜、蒸着成膜など、必要に応じて表面処理を施してもよい。特に蛍光体層側表面には、反射層等との接着性を高めるための表面処理を施してもよい。また外側となる表面には、放熱性を高めるためにフィン形状を有していてもよい。   The surface of the substrate 3 may be subjected to surface treatment as necessary, such as plating, sputtering film formation, and vapor deposition film formation. In particular, the surface of the phosphor layer side surface may be subjected to surface treatment for enhancing the adhesion with the reflective layer or the like. Further, the outer surface may have a fin shape in order to improve heat dissipation.

基板3は接合層7により、蛍光体層2等と接合される。接合層7は、耐熱性及び熱伝導性の良好な材料からなることが好ましい。具体的には、シリコーン樹脂等の有機系接着剤、ガラス等の無機系接着剤、AuSn、はんだ等の低融点金属ないし金属ろうなどを用いることができる。後述する反射層4を蛍光体層2に成膜して形成し、この反射層4を基板3に接合する場合には、接合層7は透光性である必要はないが、基板3の表面が反射層4を兼ねる場合或いは基板3の表面に反射層4を成膜する場合には、接合層7は透明シリコーン樹脂、ガラス等の透光性の材料を用いることが好ましい。   The substrate 3 is bonded to the phosphor layer 2 and the like by the bonding layer 7. The bonding layer 7 is preferably made of a material having good heat resistance and thermal conductivity. Specifically, an organic adhesive such as silicone resin, an inorganic adhesive such as glass, a low melting point metal such as AuSn or solder, or a metal braze can be used. When a reflective layer 4 described later is formed on the phosphor layer 2 and this reflective layer 4 is bonded to the substrate 3, the bonding layer 7 does not need to be translucent, but the surface of the substrate 3. Is also used as the reflective layer 4, or when the reflective layer 4 is formed on the surface of the substrate 3, the bonding layer 7 is preferably made of a translucent material such as transparent silicone resin or glass.

反射層4は、蛍光体層2が発生する光や蛍光体層2を透過した光を、蛍光体層2の光出射面側に反射するものであり、蛍光体層2の光出射面と反対側に、或いは基板3の表面に成膜することにより形成される。基板3自体が高い反射性を有する材料からなる場合は、基板3の表面が反射層4を兼ねることができる。成膜によって形成する反射層4の材料としては、Al、Ag、Au等の金属が用いられる。特に波長依存性がなく、反射率が高いAgが好ましい。反射層4は、電子ビーム蒸着(EB)法、スパッタ法などによって形成することができる。反射層4の厚みは、好ましくは50nm以上、より好ましくは100nm以上である。厚みの上限については、厚みを厚くしても得られる効果は変わらず、成膜の時間が長時間化するだけであるので、1000nm以下程度でよい。   The reflection layer 4 reflects the light generated by the phosphor layer 2 or the light transmitted through the phosphor layer 2 to the light emitting surface side of the phosphor layer 2 and is opposite to the light emitting surface of the phosphor layer 2. It is formed by forming a film on the side or on the surface of the substrate 3. When the substrate 3 itself is made of a highly reflective material, the surface of the substrate 3 can also serve as the reflective layer 4. As a material of the reflective layer 4 formed by film formation, a metal such as Al, Ag, or Au is used. In particular, Ag having no wavelength dependency and high reflectance is preferable. The reflective layer 4 can be formed by an electron beam evaporation (EB) method, a sputtering method, or the like. The thickness of the reflective layer 4 is preferably 50 nm or more, more preferably 100 nm or more. About the upper limit of the thickness, even if the thickness is increased, the effect obtained is not changed, and only the film formation time is increased.

反射層4は、必要に応じて、金属の膜を保護するための保護膜(不図示)を設けることができる。保護膜としては、Ti等の金属膜やTiO等の金属酸化物の膜が用いられ、これらの膜はEB法やスパッタ法などの公知の成膜技術により形成することができる。保護膜の厚みは、反射層4の厚みと同程度かそれより薄くてもよい。 The reflective layer 4 can be provided with a protective film (not shown) for protecting the metal film as necessary. As the protective film, a metal film such as Ti or a metal oxide film such as TiO 2 is used, and these films can be formed by a known film formation technique such as an EB method or a sputtering method. The thickness of the protective film may be the same as or thinner than the thickness of the reflective layer 4.

増反射膜5は、低屈折率材料と高屈折率材料とを交互に積層した光学多層膜であり、各層の厚みが入射光の波長λの1/4に調整され、十分な層数とすることにより入射光を殆ど透過せず反射光にすることができる。従って、層の厚みは固体光源1からの光及び蛍光の波長を考慮して調整され、具体的には約10nm〜100nmである。全体の厚みは約0.01μm〜3μmが好ましい。低屈折率材料としては、例えば、NaAl14(チオライト)(n=1.33)、AlF(n=1.36)、CaF(n=1.38)、SiO(n=1.45)、Al(n=1.64)等が用いられる。高屈折率材料としては、CeO(n=2.13)、Ta(n=2.20)、Ti(n=2.31)、TiO(n=2.35)、Nb(n=2.37)等が用いられる。これら材料をスパッタリング、真空蒸着等の方法で順次成膜することによりに増反射膜5を形成することができる。 The increased reflection film 5 is an optical multilayer film in which low-refractive index materials and high-refractive index materials are alternately stacked, and the thickness of each layer is adjusted to ¼ of the wavelength λ of incident light so that the number of layers is sufficient. As a result, incident light is hardly transmitted and reflected light can be obtained. Therefore, the thickness of the layer is adjusted in consideration of the light from the solid light source 1 and the wavelength of fluorescence, and is specifically about 10 nm to 100 nm. The total thickness is preferably about 0.01 μm to 3 μm. As a low refractive index material, for example, Na 5 Al 3 F 14 (thiolite) (n = 1.33), AlF 3 (n = 1.36), CaF 2 (n = 1.38), SiO 2 (n = 1.45), Al 2 O 3 (n = 1.64), etc. are used. As a high refractive index material, CeO 2 (n = 2.13), Ta 2 O 5 (n = 2.20), Ti 3 O 5 (n = 2.31), TiO 2 (n = 2.35). Nb 2 O 5 (n = 2.37) or the like is used. The reflective film 5 can be formed by sequentially depositing these materials by a method such as sputtering or vacuum deposition.

全反射膜6は、蛍光体層2に直接接する層であり、蛍光体層2の屈折率よりも小さい屈折率を持つ物質から構成される。全反射膜6を構成する材料の、蛍光体層との屈折率差は、好ましくは0.1以上、より好ましくは0.2以上である。典型的な蛍光体であるYAGの屈折率は1.85であるので、屈折率が1.65以下であることが好ましい。このような低屈折率材料として、具体的には、NaAl14(チオライト)(n=1.33)、AlF(n=1.36)、MgF(n=1.38)、CaF(n=1.43)、SiO(n=1.45)、Al(n=1.64)などを用いることができる。これらのうち成膜性の観点からはSiOが好適である。また全反射性を含む性能の観点からはMgFが好適である。 The total reflection film 6 is a layer that is in direct contact with the phosphor layer 2 and is made of a material having a refractive index smaller than the refractive index of the phosphor layer 2. The refractive index difference between the material constituting the total reflection film 6 and the phosphor layer is preferably 0.1 or more, more preferably 0.2 or more. Since the refractive index of YAG as a typical phosphor is 1.85, the refractive index is preferably 1.65 or less. As such a low refractive index material, specifically, Na 5 Al 3 F 14 (thiolite) (n = 1.33), AlF 3 (n = 1.36), MgF 2 (n = 1.38) , CaF 2 (n = 1.43), SiO 2 (n = 1.45), Al 2 O 3 (n = 1.64), or the like can be used. Of these, SiO 2 is preferable from the viewpoint of film formability. From the viewpoint of performance including total reflectivity, MgF 2 is preferable.

全反射膜6の厚みは、限定されるものではないが、好ましくは300nm以上、より好ましくは500nm以上である。また好ましくは2μm以下、より好ましくは1μm以下である。全反射膜6は、増反射膜5と同様にスパッタリング、真空蒸着等の方法で成膜することができる。   The thickness of the total reflection film 6 is not limited, but is preferably 300 nm or more, more preferably 500 nm or more. Moreover, it is preferably 2 μm or less, more preferably 1 μm or less. The total reflection film 6 can be formed by a method such as sputtering or vacuum deposition in the same manner as the increased reflection film 5.

図2に示すように、蛍光体層2が発する光には方向性がなく全方向に向かうため、全反射膜6には入射する光の入射角は0度から90度まで分布する。ここで全反射膜6は蛍光体層2よりも屈折率が低いので、蛍光体層2から全反射膜6に入射する光のうち臨界角θ以上の入射角の光は全反射される。蛍光体層2の屈折率をn1、全反射膜6の屈折率をn2とすると、スネルの法則より臨界角θ
sin(θ)=n2/n1
で表される。例えば、蛍光体層2がYAG(n=1.85)、全反射膜6がSiO(n=1.45)の場合、臨界角θは51.6度となる。つまり51.6度以上の入射角の光は全反射される。
As shown in FIG. 2, the light emitted from the phosphor layer 2 has no directivity and travels in all directions, so that the incident angle of light incident on the total reflection film 6 is distributed from 0 degrees to 90 degrees. Here, since the refractive index of the total reflection film 6 is lower than that of the phosphor layer 2, light having an incident angle equal to or greater than the critical angle θ T among the light incident on the total reflection film 6 from the phosphor layer 2 is totally reflected. When the refractive index of the phosphor layer 2 is n1 and the refractive index of the total reflection film 6 is n2, the critical angle θ T is sin (θ T ) = n2 / n1 according to Snell's law.
It is represented by For example, when the phosphor layer 2 is YAG (n = 1.85) and the total reflection film 6 is SiO 2 (n = 1.45), the critical angle θ T is 51.6 degrees. That is, light having an incident angle of 51.6 degrees or more is totally reflected.

臨界角以下の入射角の光は全反射膜6に入射する。ここで全反射膜6が光透過性の良好な材料から構成されている場合には、全反射膜6を透過する。全反射膜6を透過した光は、増反射膜5に入射される。増反射膜5に入射した光は、光学多層膜を通過する際に多重反射して透過方向に進む光は殆どゼロとなり、それらは反射光となって全反射膜6を介して蛍光体層2に戻る。増反射膜5の反射率は波長依存性が高いため所定の波長以外の光は、増反射膜5を透過して反射層4に到達するが、反射層4によって反射される。   Light having an incident angle smaller than the critical angle is incident on the total reflection film 6. Here, when the total reflection film 6 is made of a material having a good light transmittance, the total reflection film 6 is transmitted. The light transmitted through the total reflection film 6 is incident on the enhanced reflection film 5. The light incident on the increased reflection film 5 undergoes multiple reflections and travels in the transmission direction when passing through the optical multilayer film, and becomes almost zero, and the reflected light becomes reflected light through the total reflection film 6. Return to. Since the reflectance of the increased reflection film 5 is highly wavelength-dependent, light other than a predetermined wavelength passes through the increased reflection film 5 and reaches the reflection layer 4, but is reflected by the reflection layer 4.

このように全反射膜6は、蛍光体層2が発する光のうち入射角の大きい光を全反射して、増反射膜5と反射層4に向かうのを防止し、増反射膜5の増反射機能を十分に発揮させることができる。また増反射膜5を透過した光、すなわち増反射膜5の反射特性が低い波長の光は反射層4により反射される。これによって全反射膜6、増反射膜5及び反射層4全体として、高い反射率を達成することができる。   As described above, the total reflection film 6 totally reflects light having a large incident angle out of the light emitted from the phosphor layer 2 to prevent the light from going to the reflection reflection film 5 and the reflection layer 4. The reflection function can be sufficiently exerted. The light transmitted through the increased reflection film 5, that is, light having a wavelength with low reflection characteristics of the increased reflection film 5 is reflected by the reflection layer 4. As a result, high reflectivity can be achieved for the total reflection film 6, the increased reflection film 5, and the reflection layer 4 as a whole.

図3に、これらの光学膜による反射特性をシミュレーションした結果を示す。シミュレーションは、図4に示す媒質41をYAG(1.85)、全反射膜42をSiO(1.45)、増反射膜43をSiO/Taの多層膜(6層)、反射層44を銀に設定し、媒質41内に測定器が存在するものと仮定し、YAGの蛍光スペクトルのピーク波長を入射光の基準波長510nmとし、入射角θが0度から90度までの範囲における反射率(P波とS波の平均値)を計算したものである。また各層中の散乱性はないものとし、界面は鏡面(凹凸はない)と仮定した。図3中、破線は銀のみの反射率、点線は銀の上に増反射膜を設けた場合の反射率、実線は銀の上に増反射膜/全反射膜を設けた場合の反射率である。 FIG. 3 shows the result of simulating the reflection characteristics of these optical films. In the simulation, the medium 41 shown in FIG. 4 is YAG (1.85), the total reflection film 42 is SiO 2 (1.45), the enhanced reflection film 43 is a multilayer film (six layers) of SiO 2 / Ta 2 O 5 , Assuming that the reflective layer 44 is set to silver, a measuring instrument is present in the medium 41, the peak wavelength of the fluorescence spectrum of YAG is set to the reference wavelength 510 nm of the incident light, and the incident angle θ ranges from 0 to 90 degrees. The reflectance in the range (average value of P wave and S wave) is calculated. Further, it was assumed that there was no scattering in each layer, and the interface was assumed to be a mirror surface (no irregularities). In FIG. 3, the broken line is the reflectance of only silver, the dotted line is the reflectance when the increased reflection film is provided on the silver, and the solid line is the reflectance when the increased reflection film / total reflection film is provided on the silver. is there.

図3に示すように、入射角0度から70度の範囲では、銀のみの反射率よりも銀の上に増反射膜を設けた場合の反射率が向上するが、70度を超えると極端に反射率が低下する。これは増反射膜を構成する多層膜の厚み(理想的にはλ/4)が入射角によって変化することに起因する。これに対し、増反射膜の上にさらに全反射膜を設けた場合には、入射角が臨界角以上の光は全反射されるため、増反射膜における反射率の影響を受けず、入射角70度以上においても高い反射率を維持することができる。   As shown in FIG. 3, when the incident angle is in the range of 0 to 70 degrees, the reflectivity when the reflection-increasing film is provided on the silver is higher than the reflectivity of silver alone. The reflectance decreases. This is due to the fact that the thickness (ideally λ / 4) of the multilayer film constituting the enhanced reflection film varies depending on the incident angle. On the other hand, when a total reflection film is further provided on the increased reflection film, light having an incident angle greater than the critical angle is totally reflected, so that the incident angle is not affected by the reflectance of the increased reflection film. A high reflectance can be maintained even at 70 degrees or more.

次に本実施形態の発光装置の製造方法の一例を説明する。図5に示すように、製造工程は、大きく分けて、蛍光体層の製造工程501と、蛍光体層への成膜工程502と、基板への接合工程503とを含む。   Next, an example of a method for manufacturing the light emitting device of this embodiment will be described. As shown in FIG. 5, the manufacturing process is roughly divided into a phosphor layer manufacturing process 501, a phosphor layer forming process 502, and a substrate bonding process 503.

Ce:YAGを用いた製造方法の一実施例を説明する。
<蛍光体層の製造>
原料粉末である硝酸イットリウム(6水和物)、硝酸アルミニウム(9水和物)、硝酸セリウム(6水和物)を化学量論比で秤量した後、水を加え撹拌し溶解した。この水溶液に、炭酸水素アンモニウム水溶液を滴下して沈殿物を形成し、pHが8.5になった時点で3時間放置した。生成した沈殿物を遠心分離(3000rpm、5分×3回)にかけて分離し、沈殿物を100℃で12時間乾燥した。乾燥物を乳鉢及び乳棒を用いて砕いた後、900℃で2時間仮焼成を行った。焼成物を乳鉢及び乳棒で砕いたのち、30MPaで所定形状の金型を用いて一軸金型成形を行い、成形した。さらに150MPaで冷間静水圧成形(CIP)を行って成形体とし、1700℃の窒素雰囲気中で焼成を行い、焼結体とし、焼結体を研磨し鏡面加工した。
An embodiment of a manufacturing method using Ce: YAG will be described.
<Manufacture of phosphor layer>
The raw material powders of yttrium nitrate (hexahydrate), aluminum nitrate (9 hydrate), and cerium nitrate (hexahydrate) were weighed in a stoichiometric ratio, and then water was added and stirred to dissolve. To this aqueous solution, an aqueous ammonium hydrogen carbonate solution was added dropwise to form a precipitate, which was left for 3 hours when the pH reached 8.5. The produced precipitate was separated by centrifugation (3000 rpm, 5 minutes × 3 times), and the precipitate was dried at 100 ° C. for 12 hours. The dried product was crushed using a mortar and pestle and then calcined at 900 ° C. for 2 hours. The fired product was crushed with a mortar and pestle, and then uniaxial mold molding was performed using a mold having a predetermined shape at 30 MPa. Further, cold isostatic pressing (CIP) was performed at 150 MPa to obtain a molded body, which was fired in a nitrogen atmosphere at 1700 ° C. to obtain a sintered body, and the sintered body was polished and mirror-finished.

<蛍光体層への成膜>
鏡面加工された蛍光体層に、全反射膜、増反射膜をEB法により成膜した。全反射膜は、SiOで、膜の厚みを1000nmとした。増反射膜はSiOとTaとの多層膜で、層数は6、層の厚みは260nmとした。なお膜の厚みや層の厚みは、成膜時間を制御することにより容易且つ高精度に制御することができる。全反射膜及び増反射膜を積層した蛍光体層の上に、さらにAg合金の反射膜(150nm)、Tiの保護膜(50nm)を順次スパッタ法により成膜した。
<Film formation on phosphor layer>
A total reflection film and an increased reflection film were formed on the mirror-finished phosphor layer by the EB method. The total reflection film was SiO 2 and the film thickness was 1000 nm. The increased reflection film is a multilayer film of SiO 2 and Ta 2 O 5 , the number of layers is 6, and the thickness of the layers is 260 nm. Note that the thickness of the film and the thickness of the layer can be easily and accurately controlled by controlling the film formation time. On the phosphor layer on which the total reflection film and the increased reflection film were laminated, an Ag alloy reflection film (150 nm) and a Ti protective film (50 nm) were sequentially formed by sputtering.

<基板への接合>
所定の大きさの金属製(Al)の基板3を用意し、その上に接合層となるシリコーン樹脂をディスペンス工法により塗布した。次いで蛍光体層に形成した保護膜面を樹脂塗布液に載せ、加圧した後、150℃で4時間加熱し、シリコーン樹脂を硬化した。
<Bonding to substrate>
A metal (Al) substrate 3 having a predetermined size was prepared, and a silicone resin serving as a bonding layer was applied thereon by a dispensing method. Next, the protective film surface formed on the phosphor layer was placed on the resin coating solution and pressurized, and then heated at 150 ° C. for 4 hours to cure the silicone resin.

以上説明した製造方法は実施例であって、本実施形態の発光装置の製造方法は上記の方法や条件、数値に限定されるものではない。   The manufacturing method described above is an example, and the manufacturing method of the light emitting device of the present embodiment is not limited to the above method, conditions, and numerical values.

本実施形態の発光装置によれば、蛍光体層からの光を反射する反射層と、蛍光体層との間に、反射層から順に増反射膜及び全反射膜を設けたことにより、各光学膜(全反射膜、増反射膜及び反射層)がそれぞれの反射特性を補い、入射角依存性がない高い反射性を有するため、発光装置としての輝度を向上することができる。   According to the light emitting device of the present embodiment, the optical reflection layer and the total reflection film are provided in order from the reflection layer between the reflection layer that reflects the light from the phosphor layer and the phosphor layer. Since the film (total reflection film, increased reflection film, and reflection layer) supplements the respective reflection characteristics and has high reflectivity that does not depend on the incident angle, the luminance of the light emitting device can be improved.

<第二実施形態>
本実施形態の発光装置は、蛍光体層と反射層との間に蛍光体層を構成する材料の屈折率よりも屈折率が小さい材料からなる全反射膜を備えている点は、第一実施形態と同様である。但し、本実施形態の発光装置では、図6に示すように、第一実施形態で反射層と全反射膜との間に備えられていた増反射膜が省略されている。図6において、図1と同じ要素は同じ符号で示し、説明を省略する。
<Second embodiment>
The light emitting device of this embodiment is provided with a total reflection film made of a material having a refractive index smaller than the refractive index of the material constituting the phosphor layer between the phosphor layer and the reflective layer. It is the same as the form. However, in the light emitting device of this embodiment, as shown in FIG. 6, the increased reflection film provided between the reflection layer and the total reflection film in the first embodiment is omitted. In FIG. 6, the same elements as those of FIG.

本実施形態の発光装置でも、蛍光体層2が発する光のうち全反射膜6に臨界角以上の入射角で入射する光が全反射されることは第一実施形態と同じであるが、全反射膜6に入射した光は直接反射層4に向かい、反射層4との界面で反射されて全反射膜6及び蛍光体層2を透過して蛍光体層2の出射面から出射される。   Even in the light emitting device of the present embodiment, the light incident on the total reflection film 6 at the incident angle greater than the critical angle among the light emitted from the phosphor layer 2 is totally reflected as in the first embodiment. The light incident on the reflection film 6 is directed directly to the reflection layer 4, reflected at the interface with the reflection layer 4, transmitted through the total reflection film 6 and the phosphor layer 2, and emitted from the emission surface of the phosphor layer 2.

図7に、本実施形態の光学膜による反射特性をシミュレーションした結果を示す。シミュレーションの条件は第一実施形態と同様である。図7中、破線は銀のみの反射率、実線は銀の上に全反射膜を設けた場合の反射率である。参考のため、銀の上に増反射膜を設けた場合の反射率を点線で、銀の上に増反射膜/全反射膜を設けた場合の反射率(第一実施形態)を一点鎖線で示す。   FIG. 7 shows the result of simulating the reflection characteristics by the optical film of this embodiment. The simulation conditions are the same as in the first embodiment. In FIG. 7, the broken line indicates the reflectance of only silver, and the solid line indicates the reflectance when a total reflection film is provided on the silver. For reference, the reflectivity when a reflective film is provided on silver is indicated by a dotted line, and the reflectivity when a reflective film / total reflective film is provided on silver (the first embodiment) is indicated by a dashed line. Show.

図示するように、増反射膜を設けた場合に比べると比較的低入射角における反射率は低いが、全反射膜の臨界角以上の入射角の範囲では、全反射膜による反射率の向上効果が確認された。   As shown in the figure, the reflectance at a relatively low incident angle is low compared to the case where an increased reflection film is provided, but in the range of the incident angle greater than the critical angle of the total reflection film, the effect of improving the reflectivity by the total reflection film Was confirmed.

本発明によれば高輝度の発光装置が提供される。この発光装置は、高輝度光源として利用できるほか、車両用灯具や一般的な照明装置にも適用することができる。   According to the present invention, a high-luminance light-emitting device is provided. This light-emitting device can be used as a high-luminance light source, and can also be applied to a vehicular lamp or a general lighting device.

1・・・固体光源、2・・・蛍光体層、3・・・基板、4・・・反射層、5・・・増反射膜、6・・・全反射膜、7・・・接合層。

DESCRIPTION OF SYMBOLS 1 ... Solid light source, 2 ... Phosphor layer, 3 ... Substrate, 4 ... Reflective layer, 5 ... Increasing reflection film, 6 ... Total reflection film, 7 ... Bonding layer .

Claims (6)

励起光を発する光源と、前記光源からの励起光を受け、励起光と異なる波長の光を発する蛍光体層と、当該蛍光体層の励起光入射面と反対側に配置された反射層とを備えた発光装置であって、前記反射層と前記蛍光体層との間に、前記蛍光体層の屈折率より屈折率が低く、臨界角以上の角度で入射される光を全反射する全反射膜を備えることを特徴とする発光装置。   A light source that emits excitation light, a phosphor layer that receives excitation light from the light source and emits light having a wavelength different from that of the excitation light, and a reflection layer disposed on the opposite side of the excitation light incident surface of the phosphor layer A light-emitting device comprising: a total reflection that between the reflection layer and the phosphor layer has a refractive index lower than that of the phosphor layer and totally reflects light incident at an angle greater than a critical angle; A light-emitting device comprising a film. 請求項1に記載の発光装置であって、
前記全反射膜と前記反射層との間に、増反射膜をさらに有することを特徴とする発光装置。
The light-emitting device according to claim 1,
A light-emitting device further comprising an increased reflection film between the total reflection film and the reflection layer.
請求項2に記載の発光装置であって、
前記増反射膜は、低屈折率材料の膜と高屈折率材料の膜を交互に積層してなる光学多層膜であることを特徴とする発光装置。
The light-emitting device according to claim 2,
The light-emitting device, wherein the increased reflection film is an optical multilayer film formed by alternately laminating a film of a low refractive index material and a film of a high refractive index material.
請求項1から請求項3のいずれか1項に記載の発光装置であって、
前記蛍光体層と前記全反射膜との屈折率差が0.2以上であることを特徴とする発光装置。
The light-emitting device according to any one of claims 1 to 3,
A light emitting device, wherein a difference in refractive index between the phosphor layer and the total reflection film is 0.2 or more.
請求項4に記載の発光装置であって、
前記全反射膜は、SiO又はMgFからなることを特徴とする発光装置。
The light-emitting device according to claim 4,
The total reflection film is made of SiO 2 or MgF 2 .
前記光源は青色レーザーを発するものである請求項1から請求項5のいずれか1項に記載の発光装置。

The light-emitting device according to claim 1, wherein the light source emits a blue laser.

JP2013182487A 2013-09-03 2013-09-03 Light emitting device Pending JP2015050124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013182487A JP2015050124A (en) 2013-09-03 2013-09-03 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013182487A JP2015050124A (en) 2013-09-03 2013-09-03 Light emitting device

Publications (1)

Publication Number Publication Date
JP2015050124A true JP2015050124A (en) 2015-03-16

Family

ID=52699958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013182487A Pending JP2015050124A (en) 2013-09-03 2013-09-03 Light emitting device

Country Status (1)

Country Link
JP (1) JP2015050124A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152297A1 (en) * 2015-03-20 2016-09-29 ウシオ電機株式会社 Fluorescent light source device
WO2017068765A1 (en) * 2015-10-20 2017-04-27 パナソニックIpマネジメント株式会社 Wavelength conversion element and light-emitting device
KR101809430B1 (en) 2015-03-31 2017-12-14 우시오덴키 가부시키가이샤 Fluorescent light source device
KR20180016934A (en) 2016-08-08 2018-02-20 우시오덴키 가부시키가이샤 Fluorescent light source apparatus
JP2018116911A (en) * 2017-01-20 2018-07-26 ウシオ電機株式会社 Light emitting element and fluorescent light source device
JP2018142531A (en) * 2017-02-28 2018-09-13 パナソニック株式会社 Optical device
US10094529B2 (en) 2016-04-20 2018-10-09 Panasonic Intellectual Property Management Co., Ltd. Wavelength conversion member including phosphor that converts light from semiconductor light-emitting element into longer-wavelength light
JP2018165785A (en) * 2017-03-28 2018-10-25 セイコーエプソン株式会社 Wavelength conversion element, light source device and projector
WO2018198201A1 (en) * 2017-04-25 2018-11-01 マクセル株式会社 Solid light source device and headlight device
WO2019009165A1 (en) * 2017-07-06 2019-01-10 株式会社タムラ製作所 Wavelength conversion member and method for producing same
JP2019012160A (en) * 2017-06-30 2019-01-24 パナソニックIpマネジメント株式会社 Luminescent body and light emitting device
JP2019525389A (en) * 2016-06-22 2019-09-05 ルミレッズ ホールディング ベーフェー Light conversion package
US10458623B2 (en) 2017-02-28 2019-10-29 Panasonic Corporation Optical device comprising light reflection film
JP6632108B1 (en) * 2018-09-28 2020-01-15 日本碍子株式会社 Phosphor element, its manufacturing method and lighting device
WO2020066077A1 (en) * 2018-09-28 2020-04-02 日本碍子株式会社 Phosphor element, method for producing same, and lighting device
US11130909B2 (en) 2017-08-28 2021-09-28 Panasonic Intellectual Property Management Co., Ltd. Wavelength conversion member, light source, illumination device, and method for manufacturing wavelength conversion member
JP2022022975A (en) * 2020-06-29 2022-02-07 パナソニックIpマネジメント株式会社 Wavelength conversion device, projector and fluorescent ceramic member
US11262046B2 (en) 2019-03-27 2022-03-01 Ngk Insulators, Ltd. Phosphor element, method for producing same, and lighting device
US11267223B2 (en) 2017-12-28 2022-03-08 Ushio Denki Kabushiki Kaisha Fluorescent plate
JP7535780B2 (en) 2020-09-18 2024-08-19 株式会社オキサイド Light emitting devices and light source devices
US12072513B2 (en) 2019-02-05 2024-08-27 Panasonic Intellectual Property Management Co., Ltd. Lighting device and optical member

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012226986A (en) * 2011-04-20 2012-11-15 Stanley Electric Co Ltd Light source device and lighting system
US20130058102A1 (en) * 2011-09-01 2013-03-07 Bridgelux, Inc. Distributed Bragg Reflector for Reflecting Light of Multiple Wavelengths from an LED
JP2015023229A (en) * 2013-07-23 2015-02-02 日亜化学工業株式会社 Light-emitting device and lighting device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012226986A (en) * 2011-04-20 2012-11-15 Stanley Electric Co Ltd Light source device and lighting system
US20130058102A1 (en) * 2011-09-01 2013-03-07 Bridgelux, Inc. Distributed Bragg Reflector for Reflecting Light of Multiple Wavelengths from an LED
JP2015023229A (en) * 2013-07-23 2015-02-02 日亜化学工業株式会社 Light-emitting device and lighting device

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10571107B2 (en) 2015-03-20 2020-02-25 Ushio Denki Kabushiki Kaisha Fluorescence light source apparatus
JP2016177979A (en) * 2015-03-20 2016-10-06 ウシオ電機株式会社 Fluorescent light source device
WO2016152297A1 (en) * 2015-03-20 2016-09-29 ウシオ電機株式会社 Fluorescent light source device
CN107407475A (en) * 2015-03-20 2017-11-28 优志旺电机株式会社 Fluorescent light source device
KR101809429B1 (en) 2015-03-20 2017-12-14 우시오덴키 가부시키가이샤 Fluorescent light source device
KR101809430B1 (en) 2015-03-31 2017-12-14 우시오덴키 가부시키가이샤 Fluorescent light source device
US10865955B1 (en) 2015-10-20 2020-12-15 Panasonic Semiconductor Solutions Co., Ltd. Wavelength conversion element and light emitting device
JPWO2017068765A1 (en) * 2015-10-20 2018-08-09 パナソニックIpマネジメント株式会社 Wavelength conversion element, light emitting device, and method of manufacturing wavelength conversion element
US10777711B2 (en) 2015-10-20 2020-09-15 Panasonic Semiconductor Solutions Co., Ltd. Wavelength conversion element and light emitting device
WO2017068765A1 (en) * 2015-10-20 2017-04-27 パナソニックIpマネジメント株式会社 Wavelength conversion element and light-emitting device
US10094529B2 (en) 2016-04-20 2018-10-09 Panasonic Intellectual Property Management Co., Ltd. Wavelength conversion member including phosphor that converts light from semiconductor light-emitting element into longer-wavelength light
JP2019525389A (en) * 2016-06-22 2019-09-05 ルミレッズ ホールディング ベーフェー Light conversion package
JP7114489B2 (en) 2016-06-22 2022-08-08 ルミレッズ ホールディング ベーフェー light conversion package
US11480316B2 (en) 2016-06-22 2022-10-25 Lumileds Llc Light conversion package
KR102249331B1 (en) 2016-08-08 2021-05-07 우시오덴키 가부시키가이샤 Fluorescent light source apparatus
KR20180016934A (en) 2016-08-08 2018-02-20 우시오덴키 가부시키가이샤 Fluorescent light source apparatus
EP3572725A4 (en) * 2017-01-20 2020-02-19 Ushio Denki Kabushiki Kaisha LIGHT-EMITTING ELEMENT, FLUORESCENT LIGHT SOURCE DEVICE
US10711975B2 (en) 2017-01-20 2020-07-14 Ushio Denki Kabushiki Kaisha Light emitting element, fluorescent light source device
JP2018116911A (en) * 2017-01-20 2018-07-26 ウシオ電機株式会社 Light emitting element and fluorescent light source device
CN110168279B (en) * 2017-01-20 2021-01-08 优志旺电机株式会社 Light emitting element and fluorescent light source device
WO2018135345A1 (en) 2017-01-20 2018-07-26 ウシオ電機株式会社 Light emitting element, fluorescent light source device
CN110168279A (en) * 2017-01-20 2019-08-23 优志旺电机株式会社 Light-emitting component, fluorescent light source device
US10458623B2 (en) 2017-02-28 2019-10-29 Panasonic Corporation Optical device comprising light reflection film
JP2018142531A (en) * 2017-02-28 2018-09-13 パナソニック株式会社 Optical device
JP2018165785A (en) * 2017-03-28 2018-10-25 セイコーエプソン株式会社 Wavelength conversion element, light source device and projector
WO2018198201A1 (en) * 2017-04-25 2018-11-01 マクセル株式会社 Solid light source device and headlight device
JPWO2018198201A1 (en) * 2017-04-25 2019-12-19 マクセル株式会社 Solid-state light source device and headlight device
JP7016037B2 (en) 2017-06-30 2022-02-04 パナソニックIpマネジメント株式会社 Light emitter and light emitting device
JP2019012160A (en) * 2017-06-30 2019-01-24 パナソニックIpマネジメント株式会社 Luminescent body and light emitting device
WO2019009165A1 (en) * 2017-07-06 2019-01-10 株式会社タムラ製作所 Wavelength conversion member and method for producing same
US11130909B2 (en) 2017-08-28 2021-09-28 Panasonic Intellectual Property Management Co., Ltd. Wavelength conversion member, light source, illumination device, and method for manufacturing wavelength conversion member
US11267223B2 (en) 2017-12-28 2022-03-08 Ushio Denki Kabushiki Kaisha Fluorescent plate
WO2020065927A1 (en) * 2018-09-28 2020-04-02 日本碍子株式会社 Phosphor element, method for producing same, and lighting device
DE112019004254B4 (en) 2018-09-28 2022-06-15 Ngk Insulators, Ltd. FLUORESCENT ELEMENT, PROCESS FOR ITS MANUFACTURE AND LIGHTING DEVICE
WO2020066077A1 (en) * 2018-09-28 2020-04-02 日本碍子株式会社 Phosphor element, method for producing same, and lighting device
JP6632108B1 (en) * 2018-09-28 2020-01-15 日本碍子株式会社 Phosphor element, its manufacturing method and lighting device
US11635189B2 (en) 2018-09-28 2023-04-25 Ngk Insulators, Ltd. Phosphor element and lighting device
US12072513B2 (en) 2019-02-05 2024-08-27 Panasonic Intellectual Property Management Co., Ltd. Lighting device and optical member
US11262046B2 (en) 2019-03-27 2022-03-01 Ngk Insulators, Ltd. Phosphor element, method for producing same, and lighting device
JP2022022975A (en) * 2020-06-29 2022-02-07 パナソニックIpマネジメント株式会社 Wavelength conversion device, projector and fluorescent ceramic member
JP7535780B2 (en) 2020-09-18 2024-08-19 株式会社オキサイド Light emitting devices and light source devices

Similar Documents

Publication Publication Date Title
JP2015050124A (en) Light emitting device
JP5530165B2 (en) Light source device and lighting device
US8872208B2 (en) Light source device and lighting device
JP5759776B2 (en) Light source device and lighting device
JP6253392B2 (en) Light emitting device and light source for projector using the same
TWI538259B (en) Light-emitting diode assembly
TWI696685B (en) Optical wavelength conversion device and optical composite device
JP5530187B2 (en) Light source device and lighting device
JP5611690B2 (en) Light source device, color adjustment method, lighting device
CN106030835A (en) Wavelength conversion member and light emitting device using the same
JP2012104267A (en) Light source device and lighting system
KR102733802B1 (en) Reflection Color Correction for Phosphor Lighting Systems
JP2012129135A (en) Light source device, illumination device, and phosphor layer manufacturing method
TWI716900B (en) Light wavelength conversion member, light wavelength conversion device and light emitting device
CN104048264A (en) Light source device and lighting device
JP2012243618A (en) Light source device and lighting device
US11262046B2 (en) Phosphor element, method for producing same, and lighting device
JP2012079989A (en) Light source device and lighting fixture
JP5781367B2 (en) Light source device and lighting device
US20220278506A1 (en) Phosphor element, phosphor device, and illumination apparatus
WO2019021846A1 (en) Wavelength conversion member and light emitting device
US11635189B2 (en) Phosphor element and lighting device
JP7633520B2 (en) Light-emitting device
JP7535780B2 (en) Light emitting devices and light source devices
JP2012089419A (en) Light source device and lighting system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170530

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171205