JP2014235566A - Solar battery controller and solar battery control method - Google Patents
Solar battery controller and solar battery control method Download PDFInfo
- Publication number
- JP2014235566A JP2014235566A JP2013116575A JP2013116575A JP2014235566A JP 2014235566 A JP2014235566 A JP 2014235566A JP 2013116575 A JP2013116575 A JP 2013116575A JP 2013116575 A JP2013116575 A JP 2013116575A JP 2014235566 A JP2014235566 A JP 2014235566A
- Authority
- JP
- Japan
- Prior art keywords
- change
- value
- voltage
- solar radiation
- solar cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Control Of Electrical Variables (AREA)
Abstract
Description
この発明は、太陽光発電システムにおいて、太陽電池から最大電力を取り出すために、太陽電池が最大電力点で動作するように最適動作電圧を探索して追従制御する太陽電池制御装置、および太陽電池制御方法に関するものである。 The present invention relates to a solar cell control device and a solar cell control for searching and tracking an optimum operating voltage so that the solar cell operates at the maximum power point in order to extract maximum power from the solar cell in a solar power generation system. It is about the method.
太陽光発電システムに用いられる太陽電池は、その出力電力(P)−出力電圧(V)特性は一般に山形の特性となるので、太陽電池が山形の頂上、すなわち、最大電力点で動作するように制御すれば、太陽電池の発電電力を常に最大限に有効利用することができる。そのため、太陽電池の動作点の電圧や電流を変化させ、これに伴う電力変化を検出して太陽電池が最大電力点で常に動作するように最適動作電圧を探索して追従制御する最大電力点追従制御(以下、MPPT制御という)が提案されている。 Since the output power (P) -output voltage (V) characteristic of the solar cell used in the photovoltaic power generation system is generally a mountain-shaped characteristic, the solar cell is operated at the top of the mountain-shaped, that is, at the maximum power point. If controlled, the power generated by the solar cell can always be effectively utilized to the maximum. Therefore, change the voltage and current at the operating point of the solar cell, detect the power change that accompanies it, search for the optimal operating voltage so that the solar cell always operates at the maximum power point, and follow-up control for tracking control Control (hereinafter referred to as MPPT control) has been proposed.
このようなMPPT制御を行うための手法として、例えば、太陽電池の出力電圧の変化量ΔVに対する太陽電池の出力電力の変化量ΔPの増減(正負)によって太陽電池の出力電圧を変化させる方向を決定する、いわゆる山登り制御がある。 As a technique for performing such MPPT control, for example, the direction in which the output voltage of the solar cell is changed is determined by increasing or decreasing (positive / negative) the change amount ΔP of the output power of the solar cell with respect to the change amount ΔV of the output voltage of the solar cell. There is so-called hill climbing control.
ところで、太陽電池の最大電力点は、日射量、温度などの要因により変動する。したがって、上記の山登り制御は、日射量などの要因が殆ど変化しない場合には最大電力点の探索に有効な手法であるが、山登り制御に基づく最大電力点の探索中に日射量などの変化が生じると、最大電力点も変動するので、太陽電池の出力電圧を変化させる方向が誤ったものとなり、誤動作して最大電力点から大きく離れていくという不具合を生じる。 By the way, the maximum power point of a solar cell varies depending on factors such as the amount of solar radiation and temperature. Therefore, the hill climbing control described above is an effective technique for searching for the maximum power point when factors such as the amount of solar radiation hardly change, but changes in the amount of solar radiation etc. occur during the search for the maximum power point based on hill climbing control. When this occurs, the maximum power point also fluctuates, so that the direction in which the output voltage of the solar cell is changed is incorrect, and a malfunction occurs that causes a large distance from the maximum power point.
そこで、従来技術では、出力電圧を変化させて発電電力の変化量を求め、その後、出力電圧を一定に保った状態で日射量の変化で生じる発電電力の変化量を求める。そして、出力電圧を変化させたときに得られる発電電力の変化量と、出力電圧を一定に保った状態で得られる日射量の変化による発電電力の変化量とに基づいて、出力電圧を変化させる方向を決めてMPPT制御を行うようにしたものが提案されている(例えば、下記の特許文献1参照)。
Therefore, in the prior art, the amount of change in the generated power is obtained by changing the output voltage, and then the amount of change in the generated power caused by the change in the amount of solar radiation while the output voltage is kept constant is obtained. Then, the output voltage is changed based on the amount of change in the generated power obtained when the output voltage is changed and the amount of change in the generated power due to the change in the amount of solar radiation obtained with the output voltage kept constant. A device that performs MPPT control by determining a direction has been proposed (for example, see
上記の特許文献1記載の従来技術に基づくMPPT制御は、日射量の変化を考慮しているので、山登り制御のように日射量の変化に起因した誤動作の発生を抑えることができる。しかし、出力電圧の変化による出力電力の変化量を測定後、必ず日射量の変化による発電電力の変化量を測定する期間を確保する必要がある。このため、MPPT制御を行うのに余分な時間がかかり追従応答性能が低下する。
Since the MPPT control based on the prior art described in
この発明は、上記のような問題点を解決されるためになされたもので、日射量の変化を考慮したMPPT制御を行う場合の追従応答性能を、従来よりも向上させた太陽電池制御装置、および太陽電池制御方法を提供することを目的とする。 The present invention was made to solve the above problems, and a solar cell control device that improves the follow-up response performance in the case of performing MPPT control in consideration of changes in the amount of solar radiation than before, And it aims at providing a solar cell control method.
この発明に係る太陽電池制御装置は、太陽電池からの直流電力を変換して負荷に供給する電力変換装置と、上記太陽電池の出力電圧を検出する電圧検出装置と、上記太陽電池の出力電流を検出する電流検出装置と、上記電力変換装置を介して上記太陽電池の出力電圧を制御する電圧制御手段と、上記電圧検出装置および電流検出装置の検出値に基づいて発電電力を演算するとともに上記発電電力が最大となるように上記電圧制御手段に対して出力電圧の目標値を設定する電圧設定手段と、上記電圧検出装置および電流検出装置の各検出値に基づいて日射量変化を検出する日射量変化検出手段とを備え、かつ、上記電圧設定手段は、上記日射量変化検出手段による日射量変化の検出結果に応じて、2測定点の発電電力の変化を用いた出力電圧の目標値の設定と、3測定点の発電電力の変化を用いた出力電圧の目標値の設定とを切り替えることを特徴としている。 A solar cell control device according to the present invention includes a power conversion device that converts DC power from a solar cell and supplies it to a load, a voltage detection device that detects an output voltage of the solar cell, and an output current of the solar cell. A current detection device to detect, voltage control means for controlling the output voltage of the solar cell via the power converter, and calculation of generated power based on detection values of the voltage detection device and the current detection device and the power generation Voltage setting means for setting a target value of the output voltage for the voltage control means so as to maximize the power, and a solar radiation amount for detecting a change in the solar radiation amount based on each detected value of the voltage detection device and the current detection device Change detection means, and the voltage setting means is configured to output an output voltage using a change in generated power at two measurement points according to a detection result of the change in solar radiation amount by the solar radiation amount change detection means. And setting the target value, it is characterized in that switching between setting the target value of the output voltage with a change in the generated power of 3 measurement points.
また、この発明に係る太陽電池制御方法は、太陽電池からの直流電力を電力変換装置で電力変換して負荷に供給する場合において、上記太陽電池が最大電力点で動作するように最適動作電圧を探索して追従制御する太陽電池制御方法であって、上記太陽電池の出力電圧と出力電流をそれぞれ検出するとともに、それらの検出値に基づいて上記太陽電池の発電電力を演算するステップと、上記太陽電池の出力電圧と出力電流の各検出値に基づいて日射量変化を検出するステップと、上記日射量変化の検出結果に応じて、2測定点の発電電力の変化を用いた出力電圧の目標値の設定と、3測定点の発電電力の変化を用いた出力電圧の目標値の設定とを切り替えるステップと、上記切り替え設定された出力電圧の目標値となるように上記電力変換装置を介して上記太陽電池の出力電圧を制御するステップと、を含むことを特徴としている。 Further, the solar cell control method according to the present invention provides an optimum operating voltage so that the solar cell operates at the maximum power point when DC power from the solar cell is converted into power by a power converter and supplied to a load. A solar cell control method for searching and tracking control, wherein each of the output voltage and output current of the solar cell is detected, and the generated power of the solar cell is calculated based on the detected values, A step of detecting a change in solar radiation based on each detected value of the output voltage and output current of the battery, and a target value of the output voltage using a change in generated power at two measurement points according to the detection result of the solar radiation quantity change And setting the target value of the output voltage using the change in the generated power at the three measurement points, and the power conversion device so as to be the target value of the output voltage that has been switched and set. Through is characterized by comprising a step of controlling the output voltage of the solar cell.
この発明によれば、太陽電池の出力電圧および出力電流の検出値に基づいて日射量変化を検出し、その検出結果に応じて、日射量変化が小さい場合には2測定点の発電電力の変化を用いて出力電圧の目標値を設定し、日射量変化が大きい場合には3測定点の発電電力の変化を用いて出力電圧の目標値を設定する。つまり、日射量変化の大小に応じて2測定点の発電電力の変化を用いた出力電圧の目標値の設定と、3測定点の発電電力の変化を用いた出力電圧の目標値の設定とを切り替えるので、日射量変化に起因した誤動作の発生を防止しつつ、従来のように、3測定点の発電電力の変化を用いた出力電圧の目標値の設定のみを行う場合に比べて、日射量の変化を考慮したMPPT制御を行う場合の追従応答性能を、従来よりも向上させることが可能となる。 According to the present invention, a change in solar radiation amount is detected based on the detected values of the output voltage and output current of the solar cell, and the change in generated power at two measurement points is detected according to the detection result when the solar radiation amount change is small. Is used to set the target value of the output voltage, and when the change in the amount of solar radiation is large, the target value of the output voltage is set using the change in the generated power at the three measurement points. That is, the setting of the target value of the output voltage using the change in the generated power at the two measurement points according to the change in the amount of solar radiation, and the setting of the target value of the output voltage using the change in the generated power at the three measurement points. Since switching is performed, the amount of solar radiation is lower than when only setting the target value of the output voltage using the change in generated power at three measurement points as in the past, while preventing the occurrence of malfunction due to changes in the amount of solar radiation. This makes it possible to improve the follow-up response performance when performing MPPT control in consideration of the change of the above-mentioned.
実施の形態1.
図1はこの発明の実施の形態1に係る太陽電池制御装置の構成を示すブロック図、図2は図1の太陽電池制御装置が備える日射量変化検出手段の構成を示すブロック図である。
FIG. 1 is a block diagram showing a configuration of a solar cell control device according to
この実施の形態1における太陽電池制御装置は、太陽光電力を発生させる太陽電池1からの直流電力を変換して負荷7に供給する電力変換装置6を備えるとともに、太陽電池1の出力電圧を検出する電圧検出装置2、太陽電池1の出力電流を検出する電流検出装置3、電力変換装置6を介して太陽電池1の出力電圧を制御する電圧制御手段5、この電圧制御手段5に対して太陽電池1の出力電圧の目標値V*を設定する電圧設定手段4、および電圧検出装置2と電流検出装置3の各検出値に基づいて日射量変化を検出する日射量変化検出手段8を有する。
The solar cell control device according to the first embodiment includes a
上記の電力変換装置6は、スイッチングデバイスを用いたDC/DCコンバータやDC/ACインバータなどが適用され、ゲートパルスのオン/オフデューティ比を変えることで太陽電池1の出力電圧や電力変換装置6の出力電圧、出力周波数などを変えることができる。
A DC / DC converter using a switching device, a DC / AC inverter, or the like is applied to the
電圧制御手段5は、例えば、電圧設定手段4からの出力電圧の目標値V*と電圧検出装置2が検出した出力電圧との差が零となるように制御するPI制御手段と、このPI制御手段からの出力に応じてゲート駆動用のパルスを生成するパルス生成手段(いずれも図示省略)などからなる。これにより、電力変換装置6のスイッチングデバイスのオン/オフのデューティを制御して、太陽電池1の出力電圧を制御する。
The voltage control means 5 includes, for example, PI control means for controlling the difference between the output voltage target value V * from the voltage setting means 4 and the output voltage detected by the
電圧設定手段4は、電圧検出装置2および電流検出装置3の各検出値に基づいて太陽電池の出力電力を算出し、太陽電池1の出力電力が最大となる出力電圧の下で動作するように出力電圧の目標値V*を設定して電圧制御手段5に出力する。
The voltage setting means 4 calculates the output power of the solar cell based on the detected values of the
この場合の電圧設定手段4による出力電圧の目標値V*の設定には、後に詳述するように、2測定点の発電電力の変化を用いた設定と、3測定点の発電電力の変化を用いた設定とがある。電圧設定手段4は、日射量変化検出手段8による日射量変化の検出結果に応じて、上記の2測定点の発電電力の変化を用いた出力電圧の目標値V*の設定と、3測定点の発電電力の変化を用いた出力電圧の目標値V*の設定とを切り替えるようにしている。
In this case, the setting of the output voltage target value V * by the voltage setting means 4 includes setting using the change in the generated power at the two measurement points and the change in the generated power at the three measurement points, as will be described in detail later. There are settings used. The
ここで、2測定点の発電電力の変化を用いた出力電圧の目標値V*の設定と、3測定点の発電電力の変化を用いた出力電圧の目標値V*の設定の仕方について、次に説明する。 Here, how to set the target value V * of the output voltage using the change in the generated power at the two measurement points and how to set the target value V * of the output voltage using the change in the generated power at the three measurement points will be described below. Explained.
先ず、電圧設定手段4において、2測定点による発電電力を用いた出力電圧の目標値V*を設定する方式として、異なる2動作点の電圧に対する発電電力の変化量の増減(正負)によって出力電圧の目標値V*を設定する、いわゆる山登り方式がある。以下、この山登り方式をアルゴリズム0という。
First, as a method for setting the target value V * of the output voltage using the generated power at the two measurement points in the voltage setting means 4, the output voltage is changed by increasing / decreasing (positive / negative) the amount of change in the generated power with respect to the voltages at two different operating points. There is a so-called hill-climbing method in which a target value V * is set. Hereinafter, this hill-climbing method is referred to as
また、電圧設定手段4において、3測定点による発電電力を用いた出力電圧の目標値V*を設定する方式として、ここでは2つの方式が挙げられる。 Further, here, there are two methods for setting the target value V * of the output voltage using the power generated at the three measurement points in the voltage setting means 4.
第1は、異なる2動作点の電圧に対する発電電力の変化量と、一方の動作点に出力電圧を一定期間保持した後の日射量の変化による発電電力の変化量とを用いて出力電圧の目標値V*を設定する方式である。以下、この方式をアルゴリズム1という。
First, the output voltage target is determined by using the amount of change in generated power with respect to voltages at two different operating points and the amount of change in generated power due to changes in the amount of solar radiation after holding the output voltage for one period at one operating point. In this method, the value V * is set. Hereinafter, this method is referred to as
第2は、第1の動作電圧VAと第2の動作電圧VBの発電電力を求め、それから一定期間後に第1の動作電圧VAの発電電力を再度求め、第1の動作電圧VAでの発電電力の平均値と第2の動作電圧VBの発電電力との間の変化量を用いて出力電圧の目標値V*を設定する方式である。以下、この方式をアルゴリズム2という。
Second, determine the generated power of the first operating voltage V A and the second operating voltage V B, then again determine the generated power of the first operating voltage V A after a period of time, the first operating voltage V A it is a method of setting the target value V * of the output voltage with a variation between the mean value of the generated power and the generated power of the second operating voltage V B at. Hereinafter, this method is referred to as
なお、このアルゴリズム2は、第1の動作電圧VAでの発電電力の平均値を用いることから、一種のローパスフィルタの役目を果たし、日射量変化が短周期で変動する場合でもその変動の影響を軽減して出力電圧の目標値V*を安定して設定できるという、アルゴリズム1に比べて有利な面がある。
Since this
日射量変化検出手段8は、電圧検出装置2および電流検出装置3の各検出値に基づいて日射量変化値を算出することにより日射量変化を検出してその大小を判定し、その判定結果を電圧設定手段4に出力する。そして、電圧設定手段4は、この判定結果に応じて、上記のアルゴリズム0に基づく出力電圧の目標値V*の設定と、上記のアルゴリズム1またはアルゴリズム2に基づく出力電圧の目標値V*の設定とを切り替える。
The solar radiation amount change detection means 8 detects the solar radiation amount change by calculating the solar radiation amount change value based on the detection values of the
図2は、上記の日射量変化検出手段8の構成を示すブロック図である。
日射量変化検出手段8は、日射量変化値を算出する日射量変化値算出手段81と、この日射量変化値算出手段81で算出された日射量変化値を予め設定された判定値(固定値)PTH0、PTH1と比較して日射量変化の大小を判定する日射量変化判定手段82とからなる。
FIG. 2 is a block diagram showing the configuration of the above-described solar radiation amount
The solar radiation amount change detection means 8 includes a solar radiation amount change value calculation means 81 for calculating the solar radiation amount change value, and a predetermined determination value (fixed value) for the solar radiation amount change value calculated by the solar radiation amount change value calculation means 81. ) The solar radiation amount change judging means 82 for judging the magnitude of the solar radiation amount change as compared with
日射量変化値算出手段81は、例えば電圧検出装置2で検出された電圧値および電流検出装置3で検出された電流値に基づいて発電電力値を求め、発電電力値の電圧微分値を電流値で正規化した値を日射量変化値dRとして求める。すなわち、日射量変化値算出手段81は、次の式(1)のようにして日射量変化値dRを求める。
The solar radiation amount change value calculation means 81 obtains the generated power value based on, for example, the voltage value detected by the
このように、電圧検出装置2および電流検出装置3により検出した太陽電池1の出力電圧、出力電流、および算出した発電電力から日射量変化値dRを算出するので、日射量変化を実時間で検出でき、日射量変化状況に見合った出力電圧の目標値V*の設定方法が選択できる。
Thus, since the solar radiation amount change value dR is calculated from the output voltage and output current of the
日射量変化判定手段82は、日射量変化値算出手段81で算出された日射量変化値dRを予め設定された2つの判定値(固定値)PTH0、PTH1と比較して日射量変化の大小を判定し、その判定結果を電圧設定手段4に出力する
The solar radiation amount
なお、日射量の変化に伴って太陽電池1の出力電流は大きく変化するので、日射量変化値算出手段81は、上記の式(1)を用いる代わりに、例えば電圧検出装置2で検出された電圧値と電流検出装置3で検出された電流値とに基づいて、電流値の電圧微分値を日射量変化値dRとして求めるようにすることもできる。すなわち、日射量変化値算出手段81は、次の式(2)のようにして日射量変化値dRを求めるものであってもよい。
In addition, since the output current of the
このように、式(2)に基づいて日射量変化値dRを算出する方法であっても、式(1)よりも簡便な方法で日射量変化を実時間で検出することができる。 Thus, even if it is the method of calculating the solar radiation amount change value dR based on Formula (2), the solar radiation amount change can be detected in real time by a simpler method than Formula (1).
次に、電圧設定手段4において、上記のアルゴリズム0およびアルゴリズム1に基づいて出力電圧の目標値V*を決定する場合の処理動作について、図3に示すフローチャート、図4に示す電圧−電力特性図、および図5に示すタイムチャートを参照して説明する。なお、ここでは説明の便宜上、時刻t0〜t2までは日射量の変化が大きく、時刻t2以降は日射量変化が少なく安定した状況の下でMPPT制御を行う場合を例示するが、この発明は必ずしもこのような場合に限られるものではない。
Next, regarding the processing operation when the voltage setting means 4 determines the target value V * of the output voltage based on the
太陽電池1が最大電力点で動作するように最適動作電圧を探索して追従制御するため、まず電圧設定手段4において、ある動作電圧V0が設定される(ステップS1)。そして、この動作電圧V0の下で、電圧検出装置2と電流検出装置3とにより太陽電池1の出力電圧V0と出力電流I0を検出し、検出した出力電圧V0と出力電流I0の積から太陽電池1の発電電力P0を求める(ステップS2)。
In order to search and track the optimum operating voltage so that the
次に、現在の出力電圧V0をVstep(例えば1V程度)だけ変化させた動作電圧V1を設定する(ステップS3)。そして、この動作電圧V1の下での出力電圧V1および出力電流I1を検出し、検出した出力電圧V1と出力電流I1の積から発電電力P1を求める(ステップS4)。 Next, the operating voltage V 1 obtained by changing the current output voltage V 0 by V step (for example, about 1 V) is set (step S3). Then, the output voltage V 1 and the output current I 1 under the operating voltage V 1 are detected, and the generated power P 1 is obtained from the product of the detected output voltage V 1 and the output current I 1 (step S4).
一方、日射量変化値算出手段81は、前記ステップS2またはステップS4で検出した出力電圧、出力電流および算出した発電電力から、前述の式(1)あるいは式(2)に基づいて日射量変化値dRを求める(ステップS5)。次いで、日射量変化判定手段82は、日射量変化値算出手段81で算出した日射量変化値dRと予め設定された2つの判定値PTH0、PTH1とを比較して、次の式(3)の関係が成り立つか否かを判定する(ステップS6)。
On the other hand, the solar radiation amount change value calculation means 81 calculates the solar radiation amount change value from the output voltage, output current, and calculated generated power detected in step S2 or step S4 based on the above-described formula (1) or formula (2). dR is obtained (step S5). Next, the solar radiation amount
式(3)が成り立つ場合、日射量変化判定手段82は、日射量変化が小さいと判定するので、これに応じて、電圧設定手段4は、アルゴリズム0に基づいて、2測定点による発電電力を用いた出力電圧の目標値V*の設定を行う。
When the expression (3) is satisfied, the solar radiation amount
すなわち、ステップS2およびステップS4で検出した出力電圧および算出した発電電力から、出力電圧の変化量Vstep(=V1−V0)に対する出力電力の電力変化量dP(=P1−P0)の増減を示すdPdV値を、次の式(4)のようにして求める(ステップS7)。 That is, the power change amount dP (= P 1 −P 0 ) of the output power with respect to the change amount V step (= V 1 −V 0 ) of the output voltage from the output voltage detected in step S2 and step S4 and the calculated generated power. The dPdV value indicating the increase / decrease is calculated as in the following equation (4) (step S7).
次に、上記式(4)で得られたdPdV値について、dPdV<0であるかを判断し(ステップS8)、そうであれば、次回の出力電圧の変化方向および変化幅をVstep=−dVとし(ステップS9)、また、dPdV≧0である場合には、次回の出力電圧の変化方向および変化幅をVstep=+dVとし(ステップS10)、V1の値をV0へ代入し、P1の値をP0へ代入する(ステップS11)。したがって、V1の値に変更されたV0が出力電圧の新たな目標値V*として設定されたことになる。そして、ステップS3に戻り、ステップS3以降の処理を繰り返す。 Next, it is determined whether or not dPdV <0 with respect to the dPdV value obtained by the above equation (4) (step S8). If so, the next change direction and change width of the output voltage are expressed as V step = −. and dV (step S9), and also, if it is dPdV ≧ 0 substitutes the change direction and variation width of the next output voltage to the V step = + and dV (step S10), and the value of V 1 V 0, the value of P 1 is substituted into P 0 (step S11). Therefore, V 0 changed to the value of V 1 is set as a new target value V * of the output voltage. And it returns to step S3 and repeats the process after step S3.
一方、ステップS6において、式(3)が成り立たない場合には、日射量変化判定手段82は、日射量変化が大きいと判定するので、これに応じて、電圧設定手段4は、アルゴリズム1に基づいて、3測定点による発電電力を用いた出力電圧の目標値V*の設定を行う。
On the other hand, if the expression (3) does not hold in step S6, the solar radiation amount
すなわち、日射量変化による電力変化を推測するため、ステップS4で設定した電圧V1を変化させずに一定期間(例えば0.1秒〜1秒程度)が経過した後の日射量変化による出力電圧V1および出力電流I2を検出し、検出した出力電圧V1と出力電流I2の積から発電電力P2を求める(ステップS12)。そして、この場合の日射量変化に伴う電力変化量dP(=P2−P1)を算出する(ステップS13)。 That is, in order to estimate the power change due to insolation changes, the output voltage due to insolation changes after a certain period of time (e.g., 0.1 seconds to 1 second) has elapsed without changing the voltages V 1 set in step S4 V 1 and the output current I 2 are detected, and the generated power P 2 is obtained from the product of the detected output voltage V 1 and the output current I 2 (step S12). Then, the power change amount dP (= P 2 −P 1 ) accompanying the change in the amount of solar radiation in this case is calculated (step S13).
次に、ステップS2で算出した発電電力P0をdPで補正した発電電力P0’(=P0+dP)を求める(ステップS14)。これは、最初の出力電圧V0の下で、日射量変化を考慮した発電電力を決定することに相当する。続いて、ステップS4で検出した出力電圧V1および算出した発電電力P1、およびステップS14で算出した補正した発電電力P0’を用いて、dPdV値を前述の式(4)を用いて、dPdV=(P1−P0’)/(V1−V0)として求める(ステップS15)。 Next, the generated power P 0 ′ (= P 0 + dP) obtained by correcting the generated power P 0 calculated in step S2 by dP is obtained (step S14). This corresponds to determining the generated power in consideration of changes in the amount of solar radiation under the first output voltage V 0 . Subsequently, using the output voltage V 1 detected in step S4, the calculated generated power P 1 , and the corrected generated power P 0 ′ calculated in step S14, the dPdV value is calculated using the above equation (4), It is obtained as dPdV = (P 1 −P 0 ′) / (V 1 −V 0 ) (step S15).
この時点で太陽電池1の発電電力はP0からP2に移行しているので、次に出力電圧の目標値V*を変化させる方向を決定する上で、ステップ12で求めた発電電力P2の値をP1へ代入した後(ステップS16)、ステップS8へ進みステップS8以降の処理を続ける。したがって、この場合も、ステップS11において、V1の値に変更されたV0が出力電圧の新たな目標値V*として設定されたことになる。
Since the generated power of the
図5において、日射量が大きく変化している時刻t0〜時刻t2まではアルゴリズム1に基づいてMPPT制御を行うので、出力電圧の目標値V*を順次段階的に設定する場合の各段階での設定周期がアルゴリズム0の場合よりも長くなるが、日射量の変化が小さくなって安定した時刻t2以降は、アルゴリズム0に基づいてMPPT制御を行うので、出力電圧の目標値V*の各段階での設定周期が短縮される。
In FIG. 5, MPPT control is performed based on
このように、日射量の変化が大きい状態から小さく安定した状態に遷移する場合に、アルゴリズム1からアルゴリズム0に切り替えてMPPT制御を行うので、アルゴリズム0のみで出力電圧の目標値V*の設定を行う場合の日射量変化に起因した誤動作を防止しつつ、アルゴリズム1のみで出力電圧の目標値V*の設定を行う場合に比べて、MPPT制御を行う場合の追従応答性能を向上させることが可能となる。
In this way, when the change in the amount of solar radiation changes from a large state to a small and stable state, the MPPT control is performed by switching from the
次に、電圧設定手段4において、上記のアルゴリズム0およびアルゴリズム2に基づいて出力電圧の目標値V*を決定する場合の処理動作について、図6に示すフローチャート、図7に示す電圧−電力特性図、および図8に示すタイムチャートを参照して説明する。なお、ここでは説明の便宜上、時刻t0〜t2までは日射量の変化が大きく、時刻t2以降は日射量変化が少なく安定した状況の下でMPPT制御を行う場合を例示するが、この発明は必ずしもこのような場合に限られるものではない。
Next, regarding the processing operation when the voltage setting means 4 determines the target value V * of the output voltage based on the
太陽電池1が最大電力点で動作するように最適動作電圧を探索して追従制御するため、まず電圧設定手段4において、動作電圧V0が第1の設定電圧VAに設定される(ステップS1)。そして、この動作電圧V0(=VA)の下で、電圧検出装置2と電流検出装置3とにより太陽電池1の出力電圧V0と出力電流I0を検出し、検出した出力電圧V0と出力電流I0の積から太陽電池1の発電電力P0を求める(ステップS2)。
In order to search and control the optimum operating voltage so that the
次に、現在の出力電圧V0をVstep(例えば1V程度)だけ変化させた動作電圧V1を第2の動作電圧VBとして設定する(ステップS3)。そして、この動作電圧V1(=VB)下での出力電圧V1および出力電流I1を検出し、検出した出力電圧V1と出力電流I1の積から発電電力P1を求める(ステップS4)。 Next, to set the operation voltages V 1 obtained by changing the current output voltage V 0 V step (e.g., about 1V) by a second operating voltage V B (step S3). Then, the output voltage V 1 and the output current I 1 under the operating voltage V 1 (= V B ) are detected, and the generated power P 1 is obtained from the product of the detected output voltage V 1 and the output current I 1 (step) S4).
日射量変化値算出手段81は、前記ステップS2またはステップS4で検出した出力電圧、出力電流および算出した発電電力から、前述の式(1)あるいは式(2)に基づいて日射量変化値dRを求める(ステップS5)。次いで、日射量変化判定手段82は、日射量変化値算出手段81で算出した日射量変化値dRと予め設定された2つの判定値PTH0、PTH1とを比較して、前述の式(3)の関係が成り立つか否かを判定する(ステップS6)。
The solar radiation amount change value calculation means 81 calculates the solar radiation amount change value dR from the output voltage, output current, and calculated generated power detected in step S2 or step S4 based on the above-described equation (1) or equation (2). Obtained (step S5). Next, the solar radiation amount change determination means 82 compares the solar radiation amount change value dR calculated by the solar radiation amount change value calculation means 81 with the two predetermined
式(3)が成り立つ場合、日射量変化判定手段82は、日射量変化が小さいと判定するので、これに応じて、電圧設定手段4は、アルゴリズム0に基づいて、2測定点による発電電力を用いた出力電圧の目標値V*の設定を行う。
When the expression (3) is satisfied, the solar radiation amount
すなわち、ステップS2およびステップS4で検出した出力電圧および算出した発電電力から、出力電圧の変化量Vstep(=V1−V0)に対する出力電力の電力変化量dP(=P1−P0)の増減を示すdPdV値を、前述の式(4)に基づいて求める(ステップS7)。 That is, the power change amount dP (= P 1 −P 0 ) of the output power with respect to the change amount V step (= V 1 −V 0 ) of the output voltage from the output voltage detected in step S2 and step S4 and the calculated generated power. The dPdV value indicating the increase / decrease is calculated based on the aforementioned equation (4) (step S7).
次に、上記式(4)で得られたdPdV値について、dPdV<0であるかを判断し(ステップS8)、そうであれば、次回の出力電圧の変化方向および変化幅をVstep=−dVとし(ステップS9)、また、dPdV≧0である場合には、次回の出力電圧の変化方向および変化幅をVstep=+dVとし(ステップS10)、V1の値をV0へ代入し、P1の値をP0へ代入する(ステップS11)。 Next, it is determined whether or not dPdV <0 with respect to the dPdV value obtained by the above equation (4) (step S8). If so, the next change direction and change width of the output voltage are expressed as V step = −. and dV (step S9), and also, if it is dPdV ≧ 0 substitutes the change direction and variation width of the next output voltage to the V step = + and dV (step S10), and the value of V 1 V 0, the value of P 1 is substituted into P 0 (step S11).
そして、第1の設定電圧VAおよび第2の設定電圧VBをVstep分だけ変化させる(ステップS20)。したがって、変更後の第1の設定電圧VAが出力電圧の新たな目標値V*として設定されたことになる。そして、ステップS3に戻り、ステップS3以降の処理を繰り返す。 Then, the first set voltage V A and the second set voltage V B are changed by V step (step S20). Therefore, the changed first set voltage V A is set as a new target value V * of the output voltage. And it returns to step S3 and repeats the process after step S3.
一方、ステップS6において、式(3)が成り立たない場合には、日射量変化判定手段82は、日射量変化が大きいと判定するので、これに応じて、電圧設定手段4は、アルゴリズム2に基づいて、3測定点による発電電力を用いた出力電圧の目標値V*の設定を行う。
On the other hand, if the expression (3) does not hold in step S6, the solar radiation amount
すなわち、日射量変化による電力変化を推測するため、次の動作電圧として先のステップS2で設定した第1の設定電圧VA(=V0)に設定し(ステップ31)、この第1の設定電圧VA(=V0)の下で、一定期間(例えば0.1秒〜1秒程度)が経過した後の出力電圧V0と出力電流I2を検出し、検出した出力電圧V0と出力電流I2の積から発電電力P2を求める(ステップS32)。 That is, in order to estimate the power change due to the change in the amount of solar radiation, the first operating voltage is set to the first set voltage V A (= V 0 ) set in the previous step S2 (step 31), and this first setting is made. Under the voltage V A (= V 0 ), the output voltage V 0 and the output current I 2 after a lapse of a certain period (for example, about 0.1 second to 1 second) are detected, and the detected output voltage V 0 Request generated power P 2 from the product of the output current I 2 (step S32).
次に、第2の設定電圧VBの下での発電電力PBとして、先のステップ4で求めた発電電力P1を代入する(ステップS33)。また、第1の設定電圧VAの下での発電電力PAとして、先のステップS2で求めた発電電力P0とステップS32で求めた発電電力P2の平均値(=(P2+P0)/2)を求める(ステップS34)。これは、第1の出力電圧VAの下で、日射量変化を考慮した発電電力PAを決定することに相当する。 Next, the generated power PB under the second set voltage V B, substituting generated power P 1 obtained in the previous step 4 (step S33). Further, as the generated power P A under the first set voltage V A , the average value (= (P 2 + P 0 ) of the generated power P 0 obtained in step S2 and the generated power P 2 obtained in step S32. ) / 2) is obtained (step S34). This is under the first output voltage V A, which corresponds to determining the generated power P A in consideration of solar radiation changes.
続いて、第1の設定電圧VAと第2の設定電圧VB間の日射量変化に伴う電力変化量dP(=PB−PA)を算出する(ステップS35)。次に、上記のdP値について、dP>0であるかを判断し(ステップS36)、そうであれば、次回の出力電圧の変化方向および変化幅をVstep=−dVとし(ステップS37)、また、dP≦0である場合には、次回の出力電圧の変化方向および変化幅をVstep=+dVとする(ステップS38)。 Subsequently, a power change amount dP (= P B −P A ) accompanying a change in the amount of solar radiation between the first set voltage V A and the second set voltage V B is calculated (step S35). Next, it is determined whether or not dP> 0 for the above dP value (step S36). If so, the next output voltage change direction and change width are set to V step = −dV (step S37). When dP ≦ 0, the next change direction and change width of the output voltage are set to V step = + dV (step S38).
そして、第1の設定電圧VAおよび第2の設定電圧VBをVstep分だけ変化させる(ステップS39)。したがって、変更後の第1の設定電圧VAが出力電圧の新たな目標値V*として設定されたことになる。そして、ステップS1に戻り、ステップS1以降の処理を繰り返す。 Then, the first set voltage V A and the second set voltage V B are changed by V step (step S39). Therefore, the changed first set voltage V A is set as a new target value V * of the output voltage. And it returns to step S1 and repeats the process after step S1.
図8において、日射量が大きく変化している時刻t0〜時刻t2まではアルゴリズム2に基づいてMPPT制御を行うので、出力電圧の目標値V*を順次段階的に設定する場合の各段階での設定周期がアルゴリズム0の場合よりも長くなるが、日射量が小さくなって安定した時刻t2以降は、アルゴリズム0に基づいてMPPT制御を行うので、出力電圧の目標値V*の各段階での設定周期が短縮される。
In FIG. 8, MPPT control is performed based on
このように、日射量の変化が大きい状態から小さく安定した状態に遷移する場合に、アルゴリズム2からアルゴリズム0に切り替えてMPPT制御を行うので、アルゴリズム0のみで出力電圧の目標値V*の設定を行う場合の日射量変化に起因した誤動作を防止しつつ、アルゴリズム2のみで出力電圧の目標値V*の設定を行う場合に比べて、MPPT制御を行う場合の追従応答性能を向上させることが可能となる。
In this way, when the change in the amount of solar radiation changes from a large state to a small and stable state, the MPPT control is performed by switching from the
なお、この実施の形態1における日射量変化検出手段8は、図2に示した構成のものに限らず、例えば図9に示すような構成のものであってもよい。
In addition, the solar radiation amount change detection means 8 in this
すなわち、図9に示す構成の日射量変化検出手段8は、図2に示した日射量変化値算出手段81と日射量変化判定手段82とに加えて、電圧検出装置2と電流検出装置3の各検出値、およびこれらの各検出値から算出される出力電力に基づいて判定値を設定する判定値設定手段83を備えている。
That is, the solar radiation amount change detection means 8 having the configuration shown in FIG. 9 includes the
この場合の判定値設定手段83は、例えば図10に示すように、日射量が小さい場合の太陽電池1の出力電圧−出力電力特性において、出力電圧が零ボルト近傍の2測定点間の電圧変化ΔVに伴う発電電力の変化を一方の判定値PTH0として、また、太陽電池1の開放電圧近傍の2測定点間の電圧変化ΔVに伴う発電電力の変化を他方の判定値PTH1として、算出するものである。
In this case, for example, as shown in FIG. 10, the determination value setting means 83 is a voltage change between two measurement points where the output voltage is near zero volts in the output voltage-output power characteristic of the
このように、太陽電池1の特性から判定値PTH0、PTH1を算出して設定するようにすれば、個々の太陽電池1の特性を事前に調べて人手で各判定値を設定する場合に比べ、太陽電池1の特性に適合した判定値を自動的に設定することができるので都合が良い。
As described above, if the determination values
そして、日射量変化判定手段82は、日射量変化値算出手段81で算出される日射量変化値dRと判定値設定手段83により設定された判定値PTH0、PTH1とを比較して前述の式(3)が成り立つか否かを判定する。
Then, the solar radiation amount change determination means 82 compares the solar radiation amount change value dR calculated by the solar radiation amount change value calculation means 81 with the determination values
実施の形態2.
図11はこの発明の実施の形態2に係る太陽電池制御装置の構成を示すブロック図であり、図1に示した実施の形態1と同様もしくは相当する構成部分には同じ符号を付す。
FIG. 11 is a block diagram showing a configuration of a solar cell control apparatus according to
この実施の形態2の特徴は、実施の形態1の日射量変化検出手段8に代えて、太陽電池特性テーブル9を備えていることである。
The feature of the second embodiment is that a solar cell characteristic table 9 is provided in place of the solar radiation amount
この太陽電池特性テーブル9は、電圧検出装置2および電流検出装置3の各検出値の組み合わせに対応した日射量変化値dRの関係が予め設定されている。すなわち、電圧検出装置2と電流検出装置3でそれぞれ検出された出力電圧、出力電流、およびこれらの出力電圧と出力電流から算出される発電電力に基づいて、前述の式(1)あるいは式(2)で得られるdRの値が予め登録されている。そして、電圧検出装置2および電流検出装置3の各検出値が入力されると、太陽電池特性テーブル9からは、これらの各検出値の組み合わせに対応した日射量変化値dRが読み出されて電圧設定手段4に与えられるようになっている。
In the solar cell characteristic table 9, the relationship between the solar radiation amount change values dR corresponding to combinations of the detection values of the
したがって、この実施の形態2における太陽電池制御装置の処理フローは、図3あるいは図6に示したフローチャートと同等のものであるが、図3あるいは図6のステップS2およびステップS4で検出した出力電圧、出力電流およびこれらの検出値から算出される発電電力が決定されると、それらの値の組み合わせに基づいて、太陽電池特性テーブル9を用いて日射量変化値dRが求められる。 Therefore, the processing flow of the solar cell control device in the second embodiment is equivalent to the flowchart shown in FIG. 3 or FIG. 6, but the output voltage detected in step S2 and step S4 in FIG. 3 or FIG. When the generated power calculated from the output current and the detected values is determined, the solar radiation amount change value dR is obtained using the solar cell characteristic table 9 based on the combination of these values.
このように、この実施の形態2によれば、太陽電池特性テーブル9を用いて日射量変化値dRが決定されるので、出力電圧および出力電流より日射量変化値dRを式(1)あるいは式(2)を用いて計算する必要がない。このため、日射量変化値dRの決定を迅速に行うことができる。
その他の構成、および作用効果は実施の形態1の場合と同様であるから、ここでは詳しい説明は省略する。
Thus, according to the second embodiment, since the solar radiation amount change value dR is determined using the solar cell characteristic table 9, the solar radiation amount change value dR is expressed by the equation (1) or the equation based on the output voltage and the output current. There is no need to calculate using (2). For this reason, the solar radiation amount change value dR can be quickly determined.
Since other configurations and operational effects are the same as those in the first embodiment, detailed description thereof is omitted here.
なお、この発明は、上記の実施の形態1、2の構成のみに限定されるものではなく、この発明の趣旨を逸脱しない範囲内で、各構成に変形を加えたり、構成を一部省略したり、さらに、各実施の形態1、2を組み合わせた構成とすることが可能である。 Note that the present invention is not limited to the configurations of the first and second embodiments described above, and modifications may be made to each configuration or a part of the configuration may be omitted without departing from the spirit of the present invention. In addition, it is possible to combine the first and second embodiments.
1 太陽電池、2 電圧検出装置、3 電流検出装置、4 電圧設定手段、
5 電圧制御手段、6 電力変換装置、7 負荷、8 日射量変化検出手段、
9 太陽電池特性テーブル、81 日射量変化値算出手段、
82 日射量変化判定手段、83 判定値設定手段。
1 solar cell, 2 voltage detector, 3 current detector, 4 voltage setting means,
5 voltage control means, 6 power converter, 7 load, 8 solar radiation amount change detection means,
9 solar cell characteristic table, 81 solar radiation amount change value calculating means,
82 solar radiation amount change determination means, 83 determination value setting means.
Claims (9)
上記電圧設定手段は、上記日射量変化検出手段による日射量変化の検出結果に応じて、2測定点の発電電力の変化を用いた出力電圧の目標値の設定と、3測定点の発電電力の変化を用いた出力電圧の目標値の設定とを切り替えることを特徴とする太陽電池制御装置。 A power conversion device that converts DC power from a solar cell and supplies it to a load, a voltage detection device that detects an output voltage of the solar cell, a current detection device that detects an output current of the solar cell, and the power conversion Voltage control means for controlling the output voltage of the solar cell via the device, and the voltage control so as to calculate the generated power based on the detection values of the voltage detection device and the current detection device and maximize the generated power Voltage setting means for setting a target value of the output voltage for the means, and a solar radiation amount change detecting means for detecting a solar radiation amount change based on each detection value of the voltage detection device and the current detection device,
The voltage setting means sets the target value of the output voltage using the change in the generated power at the two measurement points and sets the generated power at the three measurement points according to the detection result of the change in the solar radiation amount by the solar radiation amount change detecting means. A solar cell control device that switches between setting of a target value of an output voltage using change.
上記太陽電池の出力電圧と出力電流をそれぞれ検出するとともに、それらの検出値に基づいて上記太陽電池の発電電力を演算するステップと、
上記太陽電池の出力電圧と出力電流の各検出値に基づいて日射量変化を検出するステップと、
上記日射量変化の検出結果に応じて、2測定点の発電電力の変化を用いた出力電圧の目標値の設定と、3測定点の発電電力の変化を用いた出力電圧の目標値の設定とを切り替えるステップと、
上記切り替え設定された出力電圧の目標値となるように上記電力変換装置を介して上記太陽電池の出力電圧を制御するステップと、
を含むことを特徴とする太陽電池制御方法。 This is a solar cell control method for searching and tracking the optimum operating voltage so that the solar cell operates at the maximum power point when DC power from the solar cell is converted by the power converter and supplied to the load. And
Detecting the output voltage and output current of the solar cell, respectively, and calculating the generated power of the solar cell based on the detected values;
Detecting a change in solar radiation based on each detected value of the output voltage and output current of the solar cell;
In accordance with the detection result of the solar radiation amount change, setting of a target value of output voltage using a change in generated power at two measurement points, and setting of a target value of output voltage using a change in generated power at three measurement points; A step of switching between
Controlling the output voltage of the solar cell via the power converter so as to be the target value of the output voltage set to be switched,
The solar cell control method characterized by including.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013116575A JP6029540B2 (en) | 2013-06-03 | 2013-06-03 | Solar cell control device and solar cell control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013116575A JP6029540B2 (en) | 2013-06-03 | 2013-06-03 | Solar cell control device and solar cell control method |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2014235566A true JP2014235566A (en) | 2014-12-15 |
JP2014235566A5 JP2014235566A5 (en) | 2016-01-07 |
JP6029540B2 JP6029540B2 (en) | 2016-11-24 |
Family
ID=52138225
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013116575A Expired - Fee Related JP6029540B2 (en) | 2013-06-03 | 2013-06-03 | Solar cell control device and solar cell control method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6029540B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104617595A (en) * | 2015-01-21 | 2015-05-13 | 西安工程大学 | Grid-connected power fluctuation-based linear extrapolation MPPT (Maximum Power Point Tracking) method |
CN105634105A (en) * | 2016-01-19 | 2016-06-01 | 深圳友铂科技有限公司 | Local maximum power tracking charging system for 10kV cable terminal |
JP2018093623A (en) * | 2016-12-02 | 2018-06-14 | 東芝三菱電機産業システム株式会社 | Power generation facility of photovoltaic power plant and integrated control device thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07191767A (en) * | 1993-11-16 | 1995-07-28 | Canon Inc | Device and method for controlling power of battery power source |
JPH0991050A (en) * | 1995-09-25 | 1997-04-04 | Omron Corp | Maximum power point follow-up device and solar thermal power generation system using the follow-up device |
US20020163323A1 (en) * | 2001-03-09 | 2002-11-07 | National Inst. Of Advanced Ind. Science And Tech. | Maximum power point tracking method and device |
JP2008226870A (en) * | 2007-03-08 | 2008-09-25 | Mitsubishi Electric Corp | Solar cell generation system |
WO2013061703A1 (en) * | 2011-10-28 | 2013-05-02 | 三菱電機株式会社 | Peak-power point tracking apparatus and method of measuring amount of change in power |
-
2013
- 2013-06-03 JP JP2013116575A patent/JP6029540B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07191767A (en) * | 1993-11-16 | 1995-07-28 | Canon Inc | Device and method for controlling power of battery power source |
JPH0991050A (en) * | 1995-09-25 | 1997-04-04 | Omron Corp | Maximum power point follow-up device and solar thermal power generation system using the follow-up device |
US20020163323A1 (en) * | 2001-03-09 | 2002-11-07 | National Inst. Of Advanced Ind. Science And Tech. | Maximum power point tracking method and device |
JP2008226870A (en) * | 2007-03-08 | 2008-09-25 | Mitsubishi Electric Corp | Solar cell generation system |
WO2013061703A1 (en) * | 2011-10-28 | 2013-05-02 | 三菱電機株式会社 | Peak-power point tracking apparatus and method of measuring amount of change in power |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104617595A (en) * | 2015-01-21 | 2015-05-13 | 西安工程大学 | Grid-connected power fluctuation-based linear extrapolation MPPT (Maximum Power Point Tracking) method |
CN105634105A (en) * | 2016-01-19 | 2016-06-01 | 深圳友铂科技有限公司 | Local maximum power tracking charging system for 10kV cable terminal |
JP2018093623A (en) * | 2016-12-02 | 2018-06-14 | 東芝三菱電機産業システム株式会社 | Power generation facility of photovoltaic power plant and integrated control device thereof |
Also Published As
Publication number | Publication date |
---|---|
JP6029540B2 (en) | 2016-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6352477B2 (en) | Voltage balance control device and voltage balance control method for flying capacitor multi-level converter | |
US20100263711A1 (en) | Maximum power point tracking control apparatus for solar battery | |
US20070290668A1 (en) | Maxium power point tracking method and tracking device thereof for a solar power system | |
JPH0962387A (en) | Method and device for power control of battery power source and battery power source system | |
KR20080092747A (en) | Apparatus and method for tracking maximum power point in solar photovoltaic system | |
US20160254749A1 (en) | Power supply device and abnormality determination method for power supply device | |
CN108776244B (en) | Electronic load | |
JP2016131441A (en) | Isolated operation detector, controller, power conditioner, power supply system, and isolated operation detection method | |
US10574058B2 (en) | Power conversion apparatus, power generation system, controller, and method for performing control | |
WO2017175393A1 (en) | Solar power generation system | |
JP2009207239A (en) | Charging controller for solar cells | |
JP6029540B2 (en) | Solar cell control device and solar cell control method | |
JP3949350B2 (en) | Interconnection device | |
WO2013061703A1 (en) | Peak-power point tracking apparatus and method of measuring amount of change in power | |
JPWO2003065560A1 (en) | Power supply device and method for creating switching signal for on / off control of switching element of converter section constituting power supply device | |
JP2017005849A (en) | Storage battery controller | |
JP2016110524A (en) | Photovoltaic power generation system | |
JP5789046B2 (en) | Solar cell control device | |
JP2018088073A (en) | Photovoltaic power generation controller | |
JP2017112792A (en) | Capacitor deterioration diagnostic method and power conversion device | |
JP4988018B2 (en) | Photovoltaic power generation control device | |
JP6308618B2 (en) | PV power conditioner | |
CN105446413A (en) | Photovoltaic inverter and maximum power point tracking method and device thereof | |
JP2020014358A (en) | Power converter and flicker detection method | |
JP3567807B2 (en) | Maximum power control method for solar cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151110 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20151110 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160908 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160920 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20161018 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6029540 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |