[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2014222721A - Resin multilayer substrate - Google Patents

Resin multilayer substrate Download PDF

Info

Publication number
JP2014222721A
JP2014222721A JP2013101905A JP2013101905A JP2014222721A JP 2014222721 A JP2014222721 A JP 2014222721A JP 2013101905 A JP2013101905 A JP 2013101905A JP 2013101905 A JP2013101905 A JP 2013101905A JP 2014222721 A JP2014222721 A JP 2014222721A
Authority
JP
Japan
Prior art keywords
conductor
resin
via conductor
multilayer substrate
resin multilayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013101905A
Other languages
Japanese (ja)
Other versions
JP6205834B2 (en
Inventor
喜人 大坪
Yoshito Otsubo
喜人 大坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2013101905A priority Critical patent/JP6205834B2/en
Publication of JP2014222721A publication Critical patent/JP2014222721A/en
Application granted granted Critical
Publication of JP6205834B2 publication Critical patent/JP6205834B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a resin multilayer substrate which can improve reliability of joint at a joining part between a conductor pattern and a via conductor.SOLUTION: A resin multilayer substrate 101 formed by lamination of a plurality of resin layers 2, which each have a principal surface 2a and are composed of a thermoplastic resin comprises: a via conductor 6a which pierces one layer among the resin layers 2 in a thickness direction; a conductor pattern 7a which is formed on the principal surface 2a of the resin layers 2 in which the via conductor 6a is formed and which is connected to the via conductor 6a; and a hard member 8 which has hardness relatively larger than that of the resin layer 2 and is built into the resin multilayer substrate 101. The via conductor 6a is arranged near an outer edge 8d of the hard member 8 when viewed in a lamination direction of the plurality of resin layers 2. The conductor pattern 7a has an enlarged part 9 having an area enlarged on the side departing from the hard member 8 when viewed in the lamination direction.

Description

本発明は、樹脂多層基板に関するものである。   The present invention relates to a resin multilayer substrate.

樹脂多層基板に関し、従来、熱可塑性樹脂と金属配線パターンとで多層基板が形成され、多層基板の内部にビア導体が直列に形成されている構成が開示されている(たとえば、特開2005−136347号公報(特許文献1)参照)。また、配線パターンを形成する金属箔に粗化処理して凹凸部を形成し、有底ビアホールに導電性粒子を充填し一括積層して多層配線板を製造する技術が開示されている(たとえば、特開2005−129727号公報(特許文献2)参照)。また、絶縁性フィルムを厚み方向に貫通する孔部に、熱可塑性樹脂からなるバインダと導電物質とを混合した導電性ペーストを充填して、導体パターンの各層の間を層間接続し、導電性ペーストは絶縁性フィルムよりもガラス転移点が高く融着時の温度における弾性率が低い構成が開示されている(たとえば、特開2004−273575号公報(特許文献3)参照)。   Regarding a resin multilayer substrate, there has been disclosed a configuration in which a multilayer substrate is conventionally formed of a thermoplastic resin and a metal wiring pattern, and via conductors are formed in series inside the multilayer substrate (for example, Japanese Patent Laid-Open No. 2005-136347). No. (Patent Document 1)). In addition, a technique for manufacturing a multilayer wiring board by forming a concavo-convex portion by roughening a metal foil that forms a wiring pattern, filling a bottomed via hole with conductive particles, and laminating them together is disclosed (for example, JP, 2005-129727, A (patent documents 2) reference). In addition, a conductive paste in which a hole made through the insulating film in the thickness direction is mixed with a binder made of a thermoplastic resin and a conductive material is filled, and the layers of the conductor pattern are connected to each other between layers. Discloses a structure having a glass transition point higher than that of an insulating film and a low elastic modulus at the temperature at the time of fusion (for example, see JP-A-2004-273575 (Patent Document 3)).

特開2005−136347号公報JP 2005-136347 A 特開2005−129727号公報JP 2005-129727 A 特開2004−273575号公報JP 2004-273575 A

一般的に、樹脂多層基板は、樹脂シートを積層することによって作製される。樹脂多層基板の内部には、樹脂シートの表面に張られた導体箔を利用して形成された導体パターンと、各樹脂層を厚み方向に貫通するように電気的接続の役割を担うビア導体とが配置されている。樹脂多層基板の内部には、通常、導体パターンとビア導体との間で電気的接続を実現するために両者が接続されている箇所が存在する。   Generally, a resin multilayer substrate is produced by laminating resin sheets. Inside the resin multilayer substrate, a conductor pattern formed by using a conductor foil stretched on the surface of the resin sheet, and a via conductor that plays a role of electrical connection so as to penetrate each resin layer in the thickness direction Is arranged. Inside the resin multilayer substrate, there is usually a portion where both are connected in order to realize electrical connection between the conductor pattern and the via conductor.

たとえば熱可塑性ポリイミドや液晶ポリマーなどの可撓性を有する熱可塑性樹脂多層基板においては、基板の一部を任意の角度に曲げた状態が維持される場合や、たとえば任意の位置関係にある2以上の部材に接続するために基板を曲げる動作が行なわれる場合がある。樹脂多層基板を曲げる場合、上記のような接続箇所に曲げ応力がかかる、またはかかっている状態となると、導体パターンとビア導体との接続箇所の接続性能が劣化するおそれがある。   For example, in a flexible thermoplastic resin multilayer substrate such as thermoplastic polyimide or liquid crystal polymer, a state where a part of the substrate is bent at an arbitrary angle is maintained, or, for example, two or more in an arbitrary positional relationship In some cases, an operation of bending the substrate is performed in order to connect to the member. When the resin multilayer substrate is bent, if the bending stress is applied to or applied to the connection portion as described above, the connection performance of the connection portion between the conductor pattern and the via conductor may be deteriorated.

そこで、本発明は、導体パターンとビア導体との間の接合部分の接合の信頼性を向上できる樹脂多層基板を提供することを目的とする。   Then, an object of this invention is to provide the resin multilayer substrate which can improve the reliability of joining of the junction part between a conductor pattern and a via conductor.

上記目的を達成するため、本発明に基づく樹脂多層基板は、主表面を有し熱可塑性樹脂からなる樹脂層が複数積層されて形成された樹脂多層基板であって、ビア導体と、導体パターンと、硬質部材とを備えている。ビア導体は、樹脂層のうちの一層を厚み方向に貫通している。導体パターンは、ビア導体の形成された樹脂層の主表面上に形成されており、ビア導体に接続されている。硬質部材は、樹脂層よりも相対的に硬度の大きい部材であって、樹脂多層基板に内蔵されている。ビア導体は、複数の樹脂層の積層方向に見て、硬質部材の外縁の近傍に配置されている。導体パターンは、積層方向に見て、硬質部材から離れる側に面積が拡大した拡大部を有している。   To achieve the above object, a resin multilayer substrate according to the present invention is a resin multilayer substrate formed by laminating a plurality of resin layers each having a main surface and made of a thermoplastic resin, and includes a via conductor, a conductor pattern, And a hard member. The via conductor penetrates one of the resin layers in the thickness direction. The conductor pattern is formed on the main surface of the resin layer on which the via conductor is formed, and is connected to the via conductor. The hard member is a member having a relatively higher hardness than the resin layer, and is built in the resin multilayer substrate. The via conductor is disposed in the vicinity of the outer edge of the hard member when viewed in the stacking direction of the plurality of resin layers. The conductor pattern has an enlarged portion whose area is enlarged on the side away from the hard member when viewed in the stacking direction.

本発明によれば、導体パターンとビア導体との間の接合部分の接合の信頼性を向上することができる。   ADVANTAGE OF THE INVENTION According to this invention, the reliability of joining of the junction part between a conductor pattern and a via conductor can be improved.

本発明に基づく実施の形態1における樹脂多層基板の断面図である。It is sectional drawing of the resin multilayer substrate in Embodiment 1 based on this invention. 図1中に示すII−II線に沿う樹脂多層基板の断面図である。It is sectional drawing of the resin multilayer substrate which follows the II-II line | wire shown in FIG. 実施の形態1の樹脂多層基板の第1の変形例の断面図である。FIG. 6 is a cross-sectional view of a first modification of the resin multilayer substrate according to the first embodiment. 実施の形態1の樹脂多層基板の第2の変形例の断面図である。6 is a cross-sectional view of a second modification of the resin multilayer substrate according to Embodiment 1. FIG. 実施の形態1の樹脂多層基板の第3の変形例の断面図である。It is sectional drawing of the 3rd modification of the resin multilayer substrate of Embodiment 1. 実施の形態1の樹脂多層基板の第4の変形例の断面図である。It is sectional drawing of the 4th modification of the resin multilayer substrate of Embodiment 1. 実施の形態1の樹脂多層基板の第5の変形例の断面図である。It is sectional drawing of the 5th modification of the resin multilayer substrate of Embodiment 1. 実施の形態1の樹脂多層基板の第6の変形例の断面図である。It is sectional drawing of the 6th modification of the resin multilayer substrate of Embodiment 1. 実施の形態1の樹脂多層基板の第7の変形例の断面図である。It is sectional drawing of the 7th modification of the resin multilayer substrate of Embodiment 1. 実施の形態1の樹脂多層基板の第8の変形例の断面図である。It is sectional drawing of the 8th modification of the resin multilayer substrate of Embodiment 1. 実施の形態1の樹脂多層基板の第9の変形例の断面図である。It is sectional drawing of the 9th modification of the resin multilayer substrate of Embodiment 1. 実施の形態1の樹脂多層基板の第10の変形例の断面図である。It is sectional drawing of the 10th modification of the resin multilayer substrate of Embodiment 1. 実施の形態1の樹脂多層基板の第11の変形例の断面図である。It is sectional drawing of the 11th modification of the resin multilayer substrate of Embodiment 1. 実施の形態1の樹脂多層基板の第12の変形例の断面図である。It is sectional drawing of the 12th modification of the resin multilayer substrate of Embodiment 1. ビア導体と硬質部材との相対的な位置関係を示す第1の図である。It is a 1st figure which shows the relative positional relationship of a via conductor and a hard member. ビア導体と硬質部材との相対的な位置関係を示す第2の図である。It is a 2nd figure which shows the relative positional relationship of a via conductor and a hard member. 本発明に基づく実施の形態1における樹脂多層基板の製造方法の第1の工程の説明図である。It is explanatory drawing of the 1st process of the manufacturing method of the resin multilayer substrate in Embodiment 1 based on this invention. 本発明に基づく実施の形態1における樹脂多層基板の製造方法の第2の工程の説明図である。It is explanatory drawing of the 2nd process of the manufacturing method of the resin multilayer substrate in Embodiment 1 based on this invention. 本発明に基づく実施の形態1における樹脂多層基板の製造方法の第3の工程の説明図である。It is explanatory drawing of the 3rd process of the manufacturing method of the resin multilayer substrate in Embodiment 1 based on this invention. 本発明に基づく実施の形態1における樹脂多層基板の製造方法の第4の工程の説明図である。It is explanatory drawing of the 4th process of the manufacturing method of the resin multilayer substrate in Embodiment 1 based on this invention. 本発明に基づく実施の形態1における樹脂多層基板の製造方法の第5の工程の説明図である。It is explanatory drawing of the 5th process of the manufacturing method of the resin multilayer substrate in Embodiment 1 based on this invention. 本発明に基づく実施の形態1における樹脂多層基板の製造方法の第6の工程の説明図である。It is explanatory drawing of the 6th process of the manufacturing method of the resin multilayer substrate in Embodiment 1 based on this invention. 本発明に基づく実施の形態2における樹脂多層基板の断面図である。It is sectional drawing of the resin multilayer substrate in Embodiment 2 based on this invention. 図23中に示すXXIV−XXIV線に沿う樹脂多層基板の断面図である。It is sectional drawing of the resin multilayer substrate which follows the XXIV-XXIV line | wire shown in FIG. 実施の形態2の樹脂多層基板の変形例の断面図である。6 is a cross-sectional view of a modification of the resin multilayer substrate according to Embodiment 2. FIG. 本発明に基づく実施の形態3における樹脂多層基板の断面図である。It is sectional drawing of the resin multilayer substrate in Embodiment 3 based on this invention. 本発明に基づく実施の形態4における樹脂多層基板の断面図である。It is sectional drawing of the resin multilayer substrate in Embodiment 4 based on this invention.

(実施の形態1)
(構成)
図1および図2を参照して、本発明に基づく実施の形態1における樹脂多層基板101について説明する。本実施の形態における樹脂多層基板101は、複数の樹脂層2が積層されて一体化された積層体1を備えている。樹脂多層基板101は、樹脂層2が複数積層されて形成されている。複数の樹脂層2は、各樹脂層2の厚み方向に順に積層されており、各樹脂層2の厚み方向と樹脂多層基板101の厚み方向とはいずれも図1に示す断面図中の上下方向である。樹脂層2は、熱可塑性ポリイミドや液晶ポリマーなどの熱可塑性の樹脂材料により形成されている。樹脂多層基板101は、一方の主表面である第1主表面3と、第1主表面3に対し反対側の他方の主表面である第2主表面4を有している。各々の樹脂層2は、主表面2aを有している。
(Embodiment 1)
(Constitution)
With reference to FIG. 1 and FIG. 2, the resin multilayer substrate 101 in Embodiment 1 based on this invention is demonstrated. The resin multilayer substrate 101 in the present embodiment includes a laminate 1 in which a plurality of resin layers 2 are laminated and integrated. The resin multilayer substrate 101 is formed by laminating a plurality of resin layers 2. The plurality of resin layers 2 are sequentially laminated in the thickness direction of each resin layer 2, and the thickness direction of each resin layer 2 and the thickness direction of the resin multilayer substrate 101 are both in the vertical direction in the cross-sectional view shown in FIG. 1. It is. The resin layer 2 is formed of a thermoplastic resin material such as thermoplastic polyimide or liquid crystal polymer. The resin multilayer substrate 101 has a first main surface 3 that is one main surface and a second main surface 4 that is the other main surface opposite to the first main surface 3. Each resin layer 2 has a main surface 2a.

樹脂多層基板101は、複数の導体パターン7と複数のビア導体6とを、その内部に備えている。導体パターン7は、複数の樹脂層2の間の界面に配置されている。ビア導体6は、樹脂層2のうちの少なくとも一層を厚み方向に貫通して、樹脂層2の厚み方向に延在して導体パターン7に接続されている。   The resin multilayer substrate 101 includes a plurality of conductor patterns 7 and a plurality of via conductors 6 therein. The conductor pattern 7 is disposed at the interface between the plurality of resin layers 2. The via conductor 6 penetrates at least one of the resin layers 2 in the thickness direction, extends in the thickness direction of the resin layer 2, and is connected to the conductor pattern 7.

導体パターン7は、樹脂層2の厚み方向と直交する面方向に延在しており、樹脂層2の主表面に配置されている。樹脂層2を厚み方向に貫通して形成されているビア導体6が、樹脂層2間の異なる界面に形成されている導体パターン7を電気的に接続しており、これにより樹脂多層基板101の内部に導電性の配線パターンが形成されている。図1に示すように、直列に接続された2つのビア導体6と、当該2つのビア導体6が貫通している樹脂層2の両方の主表面2aに接するように配置された導体パターン7とは、樹脂多層基板101に内蔵されている硬質部材8を構成している。硬質部材8は、樹脂層2の形成材料よりも相対的に大きい硬度を有している。   The conductor pattern 7 extends in the plane direction orthogonal to the thickness direction of the resin layer 2 and is disposed on the main surface of the resin layer 2. Via conductors 6 penetrating the resin layer 2 in the thickness direction electrically connect the conductor patterns 7 formed at different interfaces between the resin layers 2. A conductive wiring pattern is formed inside. As shown in FIG. 1, two via conductors 6 connected in series, and a conductor pattern 7 arranged so as to be in contact with both main surfaces 2a of the resin layer 2 through which the two via conductors 6 pass, Constitutes the hard member 8 incorporated in the resin multilayer substrate 101. The hard member 8 has a relatively greater hardness than the material for forming the resin layer 2.

複数のビア導体6のうちの一部は、ビア導体6aを構成している。ビア導体6aは、複数の樹脂層2の積層方向(図1中の上下方向)に見て、硬質部材8の外縁8dの近傍に配置されている。複数の導体パターン7のうちの一部は、ビア導体6aの形成された樹脂層2の主表面2a上に形成された、導体パターン7aを構成している。導体パターン7aは、樹脂層2の面方向に延びて配置されている。導体パターン7aは、ビア導体6aに接続されている。導体パターン7aは、ビア導体6aが貫通している樹脂層2の両側の主表面2aに配置されている。   A part of the plurality of via conductors 6 constitutes a via conductor 6a. The via conductor 6a is disposed in the vicinity of the outer edge 8d of the hard member 8 when viewed in the stacking direction of the plurality of resin layers 2 (vertical direction in FIG. 1). A part of the plurality of conductor patterns 7 constitutes a conductor pattern 7a formed on the main surface 2a of the resin layer 2 on which the via conductor 6a is formed. The conductor pattern 7 a is arranged extending in the surface direction of the resin layer 2. The conductor pattern 7a is connected to the via conductor 6a. The conductor pattern 7a is disposed on the main surface 2a on both sides of the resin layer 2 through which the via conductor 6a passes.

導体パターン7aは、樹脂層2の積層方向に見て、硬質部材8から離れる側に面積が拡大した拡大部9を有している。本実施の形態では、ビア導体6aの形成された樹脂層2の両側の主表面2aに導体パターン7aが配置されていることにより、拡大部9もまた、ビア導体6aの形成された樹脂層2の両側の主表面2aに形成されている。   The conductor pattern 7 a has an enlarged portion 9 whose area is enlarged on the side away from the hard member 8 when viewed in the laminating direction of the resin layer 2. In the present embodiment, since the conductor pattern 7a is arranged on the main surface 2a on both sides of the resin layer 2 on which the via conductor 6a is formed, the enlarged portion 9 also has the resin layer 2 on which the via conductor 6a is formed. Are formed on the main surface 2a on both sides.

ビア導体6aは、円錐台形状の外形を有している。図2に示す断面において、ビア導体6aの断面を示す円の周囲を取り囲むように、円環状の導体パターン7aが設けられている。拡大部9は、円環状の導体パターン7aのうち、硬質部材8から離れる側の一部が外径を拡大することにより、導体パターン7aの面積が拡大するように設けられている。拡大部9は、角度180°の扇形の中心の一部を円弧に沿って切り欠いた形状に形成されている。   The via conductor 6a has a truncated cone shape. In the cross section shown in FIG. 2, an annular conductor pattern 7a is provided so as to surround the circumference of the circle showing the cross section of the via conductor 6a. The enlarged portion 9 is provided such that a part of the annular conductor pattern 7a on the side away from the hard member 8 enlarges the outer diameter so that the area of the conductor pattern 7a is enlarged. The enlarged portion 9 is formed in a shape in which a part of the center of a sector shape having an angle of 180 ° is cut out along an arc.

拡大部9は、図2に示す形状に限られず、種々の形状を有していてもよい。たとえば、図3に示すように多角形と円の一部形状とを組み合わせた形状であってもよく、図4に示すように円の一部形状であってもよく、図5に示す四角形などの任意の多角形の一部形状であってもよい。図6に示すように、図2に示す略扇形形状が複数のギャップ部9gによってビア導体6aまわりの周方向に分断された形状の拡大部9としてもよい。図7に示すように、ビア導体6aの周囲を取り囲む円環形状の導体の外周側にギャップ部9gを介在させて幅広円弧形状の導体が設けられ、当該円環形状と幅広円弧形状とがビア導体6aを中心とする径方向に延びる複数のブリッジ部9bによって接続された形状の拡大部9としてもよい。   The enlarged portion 9 is not limited to the shape shown in FIG. 2 and may have various shapes. For example, the shape may be a combination of a polygon and a partial shape of a circle as shown in FIG. 3, or may be a partial shape of a circle as shown in FIG. It may be a partial shape of any polygon. As shown in FIG. 6, the substantially sector shape shown in FIG. 2 may be an enlarged portion 9 having a shape divided in the circumferential direction around the via conductor 6a by a plurality of gap portions 9g. As shown in FIG. 7, a wide arc-shaped conductor is provided on the outer peripheral side of an annular conductor surrounding the via conductor 6a with a gap portion 9g interposed, and the annular shape and the wide arc shape are connected to the via. It is good also as the enlarged part 9 of the shape connected by the some bridge | bridging part 9b extended in the radial direction centering on the conductor 6a.

図8に示すように、ビア導体6aの周囲を取り囲む円環形状の導体の外周側に複数の円弧形状の導体が各々ギャップ部9gを介在させて設けられ、当該円環形状と円弧形状とがビア導体6aを中心とする径方向に延びる複数のブリッジ部9bによって接続された形状の拡大部9としてもよい。図9に示すように、ビア導体6aの周囲を取り囲む円環形状の導体の外周側に、ビア導体6aを中心とする径方向に延びる矩形状の導体が複数設けられ、当該矩形状の導体間にギャップ部9gが設けられた形状の拡大部9としてもよい。   As shown in FIG. 8, a plurality of arc-shaped conductors are provided on the outer peripheral side of the annular conductor surrounding the via conductor 6a with gaps 9g interposed therebetween. It is good also as the enlarged part 9 of the shape connected by the some bridge | bridging part 9b extended in the radial direction centering on the via conductor 6a. As shown in FIG. 9, a plurality of rectangular conductors extending in the radial direction around the via conductor 6a are provided on the outer peripheral side of the annular conductor that surrounds the via conductor 6a, and between the rectangular conductors. It is good also as the enlarged part 9 of the shape in which the gap part 9g was provided.

図10〜12に示すように、拡大部9は、ビア導体6aを中心とする径方向に分断され、ビア導体6aの周囲を取り囲む円環形状の導体に対し電気的に非接続とされた、ダミーパターンとされていてもよい。図11に示すように、図7に示す形状からブリッジ部9bを除いた幅広円弧形状の導体により拡大部9を形成してもよい。図10に示すように、図11に示す幅広円弧形状の導体をさらにビア導体6aを中心とする径方向に分断した形状の導体により拡大部9を形成してもよい。図12に示すように、図8に示す形状からブリッジ部9bを除いた複数の円弧形状の導体により拡大部9を形成してもよい。   As shown in FIGS. 10 to 12, the enlarged portion 9 is divided in the radial direction around the via conductor 6a and is electrically disconnected from the annular conductor surrounding the via conductor 6a. It may be a dummy pattern. As shown in FIG. 11, the enlarged portion 9 may be formed by a wide arc-shaped conductor obtained by removing the bridge portion 9b from the shape shown in FIG. As shown in FIG. 10, the enlarged portion 9 may be formed by a conductor having a shape obtained by further dividing the wide arc-shaped conductor shown in FIG. 11 in the radial direction with the via conductor 6a as the center. As shown in FIG. 12, the enlarged portion 9 may be formed by a plurality of arc-shaped conductors obtained by removing the bridge portion 9b from the shape shown in FIG.

図13,14に示すように、導体パターン7aに接続導体10が接続されていてもよい。図13に示すように、図7に示す形状の導体パターン7aに対し、ビア導体6aの周囲を取り囲む円環形状の導体に接続導体10を接続し、ビア導体6aは当該円環形状の導体および接続導体10を介在させて図示しない外部の部材と電気的に接続されている構成としてもよい。図14に示すように、図7に示す形状の導体パターン7aに対し、幅広円弧形状の導体に接続導体10を接続し、ビア導体6aは、上記円環形状の導体、ブリッジ部9b、幅広円弧形状の導体および接続導体10を介在させて図示しない外部の部材と電気的に接続されている構成としてもよい。   As shown in FIGS. 13 and 14, the connection conductor 10 may be connected to the conductor pattern 7a. As shown in FIG. 13, with respect to the conductor pattern 7a having the shape shown in FIG. 7, the connection conductor 10 is connected to an annular conductor surrounding the via conductor 6a, and the via conductor 6a is connected to the annular conductor and It is good also as a structure electrically connected with the external member which is not shown in figure via the connection conductor 10. FIG. As shown in FIG. 14, the connection conductor 10 is connected to a conductor having a wide arc shape with respect to the conductor pattern 7a having the shape shown in FIG. 7, and the via conductor 6a includes the ring-shaped conductor, the bridge portion 9b, the wide arc. It is good also as a structure electrically connected with the external member which is not shown in figure through the shape conductor and the connection conductor 10.

なお、拡大部9は全ての層が同じ形状である必要はなく、それぞれ形の異なるものを組み合わせて用いてもよい。たとえば図6〜図14に示す拡大部9を適宜組み合わせて用いることができる。   Note that the enlarged portion 9 does not have to have the same shape in all layers, and those having different shapes may be used in combination. For example, the enlarged portions 9 shown in FIGS. 6 to 14 can be used in appropriate combination.

次に、図15および図16を参照して、ビア導体6aと硬質部材8との相対的な位置関係について説明する。図15,16中には、図1に示す配線パターンからなる硬質部材8を模式的に矩形で図示している。図15,16中に示す二点鎖線は、硬質部材8の外縁8dを通って樹脂層2の積層方向に延びる直線を示している。   Next, the relative positional relationship between the via conductor 6a and the hard member 8 will be described with reference to FIGS. In FIGS. 15 and 16, the hard member 8 having the wiring pattern shown in FIG. 1 is schematically shown as a rectangle. The alternate long and two short dashes line shown in FIGS. 15 and 16 indicates a straight line that extends in the laminating direction of the resin layer 2 through the outer edge 8 d of the hard member 8.

本実施の形態のビア導体6aは、図15に示すように、樹脂層2の積層方向に見て硬質部材8の外縁8dと重なる位置に配置されていてもよい。またはビア導体6aは、図16に示すように、樹脂層2の積層方向に見て硬質部材8と重ならない位置であって硬質部材8の外縁8dから予め定められた範囲の距離だけ離れる位置に配置されていてもよい。図6に示す長さLは、樹脂層2の面方向(または樹脂多層基板101の面方向)における、硬質部材8の外縁8dからビア導体6aの中心線までの距離を示す。ビア導体6aは、長さLが300μm以下となる位置に配置されていてもよい。つまり、本実施の形態のビア導体6aが配置されるべき「硬質部材8の外縁8dの近傍」とは、樹脂層2の積層方向に見てビア導体6aが硬質部材8の外縁8dと重なるか、または、樹脂層2の積層方向に見て硬質部材8と重ならない位置にあるビア導体6aの中心が硬質部材8の外縁8dから離れる距離が300μm以下である範囲として定義される。   As shown in FIG. 15, the via conductor 6 a of the present embodiment may be arranged at a position overlapping the outer edge 8 d of the hard member 8 when viewed in the laminating direction of the resin layer 2. Alternatively, as shown in FIG. 16, the via conductor 6 a does not overlap with the hard member 8 when viewed in the laminating direction of the resin layer 2, and is separated from the outer edge 8 d of the hard member 8 by a predetermined distance. It may be arranged. The length L shown in FIG. 6 indicates the distance from the outer edge 8d of the hard member 8 to the center line of the via conductor 6a in the surface direction of the resin layer 2 (or the surface direction of the resin multilayer substrate 101). The via conductor 6a may be arranged at a position where the length L is 300 μm or less. In other words, “the vicinity of the outer edge 8d of the hard member 8” where the via conductor 6a of the present embodiment is to be disposed is whether the via conductor 6a overlaps the outer edge 8d of the hard member 8 when viewed in the laminating direction of the resin layer 2 Alternatively, it is defined as a range in which the distance at which the center of the via conductor 6a at a position not overlapping the hard member 8 when viewed in the laminating direction of the resin layer 2 is separated from the outer edge 8d of the hard member 8 is 300 μm or less.

(作用・効果)
本実施の形態では、ビア導体6aは、複数の樹脂層2の積層方向に見て、樹脂多層基板101に内蔵された硬質部材8の外縁8dの近傍に配置されており、ビア導体6aに接続された導体パターン7aは、樹脂層2の積層方向に見て、硬質部材8から離れる側に面積が拡大した拡大部9を有している。
(Action / Effect)
In the present embodiment, the via conductor 6a is disposed in the vicinity of the outer edge 8d of the hard member 8 built in the resin multilayer substrate 101 when viewed in the stacking direction of the plurality of resin layers 2, and is connected to the via conductor 6a. The conductive pattern 7 a has an enlarged portion 9 whose area is enlarged on the side away from the hard member 8 when viewed in the laminating direction of the resin layer 2.

樹脂多層基板101の熱圧着時に樹脂多層基板101がその厚み方向に上下から押圧される場合、複数の熱可塑性樹脂材料からなる樹脂層2が軟化し流動して、ビア導体6aが傾いたり移動したりする場合がある。そのため、ビア導体6aと導体パターン7aとの接合部分の接合性が悪化したり、他の導体とショートしてしまう懸念がある。特に硬質部材8は熱圧着時も変形しない、または変形しにくいことから、硬質部材8の外縁8dの近傍に配置されているビア導体6aは、意図しない傾きや移動が起こりやすくなる。   When the resin multilayer substrate 101 is pressed from above and below in the thickness direction during thermocompression bonding of the resin multilayer substrate 101, the resin layer 2 made of a plurality of thermoplastic resin materials softens and flows, and the via conductor 6a tilts or moves. Sometimes. For this reason, there is a concern that the jointability of the joint portion between the via conductor 6a and the conductor pattern 7a is deteriorated or short-circuited with another conductor. In particular, since the hard member 8 is not deformed or hardly deformed even during thermocompression bonding, the via conductor 6a disposed in the vicinity of the outer edge 8d of the hard member 8 is likely to be inclined and moved unintentionally.

また、樹脂多層基板101としての製品化後に、樹脂多層基板101が曲げて使用される、もしくは意図しない曲がりが発生する場合など、樹脂多層基板101に曲げ応力がかかる場合がある。特に硬質部材8は曲げ時も変形しない、または変形しにくいことから、硬質部材8の外縁8dの近傍に配置されているビア導体6aは、意図しない傾きや移動が発生しやすくなる。そのため、硬質部材8の外縁8dの近傍に配置されているビア導体6aと導体パターン7aとの接合部分の接合性が最も懸念されることになる。   In addition, after the product is manufactured as the resin multilayer substrate 101, the resin multilayer substrate 101 may be bent and used, or an unintended bend may occur, and bending stress may be applied to the resin multilayer substrate 101. In particular, since the hard member 8 is not deformed or hardly deformed even when bent, the via conductor 6a disposed in the vicinity of the outer edge 8d of the hard member 8 is likely to generate an unintended inclination or movement. Therefore, there is the greatest concern about the jointability of the joint portion between the via conductor 6a and the conductor pattern 7a disposed in the vicinity of the outer edge 8d of the hard member 8.

特に、当該ビア導体6aに対して硬質部材8から離れる側に向かって傾きや移動が発生したり、応力が発生したりすることが起こりやすくなるため、ビア導体6aに対して硬質部材8から離れる側に本実施の形態の拡大部9を備える構成とすれば、ビア導体6aが変形しにくい構造にできるので、ビア導体6aと導体パターン7aとの間の接合の剥離を防止することができる。したがって、ビア導体6aと導体パターン7aとの接合の信頼性を向上することができる。   In particular, the via conductor 6a is likely to be inclined or moved toward the side away from the hard member 8, and stress is likely to be generated, so that the via conductor 6a is separated from the hard member 8. If the enlarged portion 9 according to the present embodiment is provided on the side, the via conductor 6a can be made difficult to be deformed, so that it is possible to prevent the peeling of the joint between the via conductor 6a and the conductor pattern 7a. Therefore, it is possible to improve the reliability of bonding between the via conductor 6a and the conductor pattern 7a.

ビア導体6aと導体パターン7aとの接合性が向上することにより、硬質部材8の外縁8d近傍へビア導体6aを配置しても、ビア導体6aと導体パターン7aとの間の接合が剥離する不具合を抑制できる。そのため、硬質部材8の外縁8d近傍へビア導体6aを配置することが許容され、硬質部材8の配置に関わらずビア導体6aを自在に配置することができるようになる。したがって、ビア導体6aの配置の自由度を向上することができる。   Due to the improved bondability between the via conductor 6a and the conductor pattern 7a, even when the via conductor 6a is disposed in the vicinity of the outer edge 8d of the hard member 8, the bond between the via conductor 6a and the conductor pattern 7a is peeled off. Can be suppressed. Therefore, it is allowed to arrange the via conductor 6a near the outer edge 8d of the hard member 8, and the via conductor 6a can be freely arranged regardless of the arrangement of the hard member 8. Therefore, the freedom degree of arrangement | positioning of the via conductor 6a can be improved.

図8または図12に示すように、拡大部9をビア導体6aの周りに同心円状に広がる構造とすることにより、ビア導体6aと導体パターン7aとの接合性を向上できるとともに、樹脂多層基板101の柔軟性を向上でき、樹脂多層基板101に曲げ応力が加えられるときの曲がりやすさを確保できる。図6または図10に示すように、ビア導体6aまわりの周方向に拡大部9を分断し、ビア導体6aと導体パターン7aとの接合部から放射状に広がる導体により拡大部9を形成することにより、放射状に広がる導体の一部が変形した場合にも他の導体に変形が伝わることを抑制できるので、さらに曲げに強くすることが可能となる。   As shown in FIG. 8 or FIG. 12, the enlarged portion 9 has a structure that extends concentrically around the via conductor 6a, thereby improving the bondability between the via conductor 6a and the conductor pattern 7a, and the resin multilayer substrate 101. Flexibility can be improved, and it is possible to ensure the ease of bending when a bending stress is applied to the resin multilayer substrate 101. As shown in FIG. 6 or FIG. 10, the enlarged portion 9 is divided in the circumferential direction around the via conductor 6a, and the enlarged portion 9 is formed by a conductor that radiates from the joint portion between the via conductor 6a and the conductor pattern 7a. Further, even when a part of the radially extending conductor is deformed, it is possible to suppress the deformation from being transmitted to other conductors, and thus it is possible to further strengthen the bending.

図10〜12に示すように、ビア導体6aを中心とする径方向に拡大部9を分断し、拡大部9が他の導体と電気的に非接続な部分を有している構成とすれば、当該部分をダミーパターンとして設けることができる。ダミーパターンとして拡大部9を設けることにより、不要な容量の発生を回避できるので、樹脂多層基板101の特性上のずれや不具合の発生を抑制することができる。   As shown in FIGS. 10 to 12, if the enlarged portion 9 is divided in the radial direction centered on the via conductor 6 a and the enlarged portion 9 has a portion that is not electrically connected to other conductors. The portion can be provided as a dummy pattern. By providing the enlarged portion 9 as a dummy pattern, it is possible to avoid the generation of unnecessary capacitance, and therefore it is possible to suppress the deviation in characteristics and the occurrence of defects of the resin multilayer substrate 101.

図1に示すように、ビア導体6aの形成された樹脂層2の両側の主表面2aに拡大部9を形成することにより、ビア導体6aがより変形しにくい構造となり、ビア導体6aと導体パターン7aとの間の接合の剥離をより確実に防止することができる。したがって、ビア導体6aと導体パターン7aとの接合の信頼性を一層向上することができる。   As shown in FIG. 1, by forming the enlarged portions 9 on the main surface 2a on both sides of the resin layer 2 on which the via conductor 6a is formed, the via conductor 6a becomes more difficult to deform, and the via conductor 6a and the conductor pattern Separation of the joint with 7a can be more reliably prevented. Therefore, the reliability of joining between the via conductor 6a and the conductor pattern 7a can be further improved.

(製造方法)
図17〜図22を参照して、本実施の形態における樹脂多層基板101の製造方法について説明する。
(Production method)
With reference to FIGS. 17-22, the manufacturing method of the resin multilayer substrate 101 in this Embodiment is demonstrated.

まず、図17に示すような導体箔付き樹脂シート12を用意する。導体箔付き樹脂シート12は、樹脂層21の片面に導体箔17が付着した構造のシートである。樹脂層21は、熱可塑性樹脂製である。熱可塑性樹脂は、たとえばLCP(液晶ポリマー)、PEEK(ポリエーテルエーテルケトン)、PEI(ポリエーテルイミド)、PPS(ポニフェニレンスルファイド)、熱可塑性PI(ポリイミド)などであってもよい。導体箔17の材料は、Cu、Ag、Al、SUS、Ni、Auであってもよく、これらの金属のうちから選択された2以上の異なる金属の合金であってもよい。   First, a resin sheet 12 with a conductive foil as shown in FIG. 17 is prepared. The resin sheet with conductor foil 12 is a sheet having a structure in which the conductor foil 17 is attached to one surface of the resin layer 21. The resin layer 21 is made of a thermoplastic resin. The thermoplastic resin may be, for example, LCP (liquid crystal polymer), PEEK (polyether ether ketone), PEI (polyether imide), PPS (poniphenylene sulfide), thermoplastic PI (polyimide), and the like. The material of the conductor foil 17 may be Cu, Ag, Al, SUS, Ni, Au, or may be an alloy of two or more different metals selected from these metals.

樹脂層21の厚みは、10μm以上100μm以下程度の厚みであればよく、たとえば樹脂層21の厚みを25μmとしてもよく、または50μmとしてもよい。導体箔17の厚みは、5μm以上35μm以下程度の回路形成が可能な厚みであればよく、たとえば導体箔17は厚さ12μmまたは厚さ18μmの箔であってもよい。たとえば、導体箔17の厚みと樹脂層21の厚みとの比を、1:2〜1:5の範囲としてもよい。導体箔17は、たとえば表面粗さRzが3μmとなるように、表面が形成されている。   The thickness of the resin layer 21 may be a thickness of about 10 μm or more and 100 μm or less. For example, the thickness of the resin layer 21 may be 25 μm or 50 μm. The thickness of the conductor foil 17 may be any thickness that allows circuit formation of about 5 μm to 35 μm. For example, the conductor foil 17 may be a foil having a thickness of 12 μm or a thickness of 18 μm. For example, the ratio between the thickness of the conductor foil 17 and the thickness of the resin layer 21 may be in the range of 1: 2 to 1: 5. The surface of the conductive foil 17 is formed so that the surface roughness Rz is 3 μm, for example.

複数枚の短冊状の導体箔付き樹脂シート12を用意してから以下の導体パターンの形成作業などを進めてもよいが、他の方法として、大判の1枚の導体箔付き樹脂シート12の中に、のちに複数の樹脂シートとして個別に切り出されるべき短冊状の領域が設定されたものを用意して、大判サイズのまま以下の導体パターンなどの形成作業を進め、その後に短冊状に切り出してもよい。ここでは、既に短冊状の導体箔付き樹脂シート12に切り出されているものとして説明を続ける。   After preparing a plurality of strip-shaped resin sheets 12 with conductor foil, the following conductor pattern forming operation may proceed. However, as another method, Next, prepare a plurality of resin sheets with strip-shaped areas that should be cut out individually, proceed with the formation work of the following conductor patterns etc. in large size, and then cut into strips Also good. Here, the description will be continued assuming that the strip-shaped resin sheet 12 with conductive foil has already been cut out.

次に、図18に示すように、導体箔付き樹脂シート12の導体箔17が付着する面とは反対側の樹脂層21側の表面に炭酸ガスレーザ光を照射することによって、樹脂層21を貫通するようにビア孔11を形成する。ビア孔11は、樹脂層21を貫通しているが導体箔17は貫通していない。その後、必要に応じて、過マンガン酸などの薬液処理によりビア孔11のスミアを除去する。ビア孔11を形成するために炭酸ガスレーザ光と異なる種類のレーザ光を用いてもよい。ただし、樹脂層21は貫通するが導体箔17は貫通しないレーザ光を用いることが好ましい。また、ビア孔11を形成するために、たとえばパンチ加工などの、レーザ光照射以外の方法を採用してもよい。   Next, as shown in FIG. 18, the resin layer 21 is penetrated by irradiating the surface on the side of the resin layer 21 opposite to the surface to which the conductor foil 17 of the resin sheet 12 with the conductor foil adheres with a carbon dioxide laser beam. The via hole 11 is formed as described above. The via hole 11 penetrates the resin layer 21 but does not penetrate the conductor foil 17. Thereafter, the smear in the via hole 11 is removed by chemical treatment such as permanganic acid as necessary. In order to form the via hole 11, a laser beam of a different type from the carbon dioxide laser beam may be used. However, it is preferable to use laser light that penetrates the resin layer 21 but does not penetrate the conductor foil 17. Further, in order to form the via hole 11, a method other than laser beam irradiation, such as punching, may be employed.

次に、図19に示すように、導体箔付き樹脂シート12の導体箔17の表面に、スクリーン印刷などの方法で、レジストパターン13を印刷する。レジストパターン13は、導体箔付き樹脂シート12の厚み方向に見てビア孔11と重なる位置に印刷される。ビア孔11と重なるレジストパターン13が、ビア導体6aに接続される導体パターン7aに対応する。   Next, as shown in FIG. 19, a resist pattern 13 is printed on the surface of the conductor foil 17 of the resin sheet 12 with a conductor foil by a method such as screen printing. The resist pattern 13 is printed at a position overlapping the via hole 11 when viewed in the thickness direction of the resin sheet 12 with conductor foil. The resist pattern 13 overlapping the via hole 11 corresponds to the conductor pattern 7a connected to the via conductor 6a.

次に、レジストパターン13をマスクとしてエッチングを行ない、図20に示すように、導体箔17のうちレジストパターン13で被覆されていない部分を除去する。導体箔17のうちエッチングの後に残った部分が、拡大部9を含んでいる導体パターン7aとなる。その後、洗浄液などを用いて、レジストパターン13を除去する。   Next, etching is performed using the resist pattern 13 as a mask, and the portion of the conductor foil 17 that is not covered with the resist pattern 13 is removed as shown in FIG. A portion of the conductor foil 17 remaining after the etching becomes a conductor pattern 7 a including the enlarged portion 9. Thereafter, the resist pattern 13 is removed using a cleaning liquid or the like.

このようにして、樹脂層21を厚み方向に貫通するビア孔11が形成されており、かつ樹脂層21の一方の表面に所望の導体パターン7が形成されて、図21に示す孔空き樹脂シートが得られる。なお、ビア孔11の形成と導体パターン7aの形成との順序は、上述した順序に限定されず、導体パターン7を形成した後にビア孔11を形成する順序としてもよい。   In this way, the via hole 11 penetrating the resin layer 21 in the thickness direction is formed, and the desired conductor pattern 7 is formed on one surface of the resin layer 21, so that the perforated resin sheet shown in FIG. Is obtained. The order of forming the via hole 11 and the conductor pattern 7a is not limited to the order described above, and may be the order in which the via hole 11 is formed after the conductor pattern 7 is formed.

次に、樹脂層21に形成されたビア孔11に、スクリーン印刷などにより導電性ペーストを充填する。スクリーン印刷は、ビア孔11の両側の開口のうち、導体パターン7aが配置されていない側の面、すなわち図21における下側の面から行なわれる。実際には、スクリーン印刷を行なう際には、孔空き樹脂シートの姿勢を適宜変えてもよい。充填する導電性ペーストは、のちに積層した樹脂層21を熱圧着する際の温度において導体パターン7aの材料である金属との間で合金層を形成するような、金属粉を適量含むものであることが好ましい。この導電性ペーストは、Ag,Cu,Niのうち少なくとも1種類と、Sn,Bi,Znのうち少なくとも1種類とを含むことが好ましい。   Next, the via hole 11 formed in the resin layer 21 is filled with a conductive paste by screen printing or the like. Screen printing is performed from the surface on the side where the conductor pattern 7a is not arranged, that is, the lower surface in FIG. Actually, when performing screen printing, the orientation of the perforated resin sheet may be appropriately changed. The conductive paste to be filled may contain an appropriate amount of metal powder that forms an alloy layer with the metal that is the material of the conductor pattern 7a at the temperature when the laminated resin layer 21 is thermocompression bonded later. preferable. This conductive paste preferably contains at least one of Ag, Cu, and Ni and at least one of Sn, Bi, and Zn.

こうして導電性ペーストを充填したことにより、孔空き樹脂シートの貫通孔にビア導体6aが挿入され、樹脂層21を厚み方向に貫通するビア導体6aが形成された図22に示す構成が得られる。   By filling the conductive paste in this way, the configuration shown in FIG. 22 is obtained in which the via conductor 6a is inserted into the through hole of the perforated resin sheet and the via conductor 6a penetrating the resin layer 21 in the thickness direction is formed.

ここまで、ある1枚の樹脂層21における処理を例にとって説明したが、他の樹脂層21においても、同様に処理を行なって所望の領域に導体パターン7を適宜形成し、必要に応じてビア導体6を形成する。   Up to this point, the processing in one resin layer 21 has been described as an example. However, in the other resin layers 21 as well, the same processing is performed to appropriately form a conductor pattern 7 in a desired region, and vias are provided as necessary. A conductor 6 is formed.

次に、図22に示す孔空き樹脂シートと他の樹脂シートとを含む複数の樹脂層21を積層して、積層体を形成する。続いて、複数の樹脂層21の積層体に圧力および熱を加える。こうして、積層体に含まれていた複数の樹脂層21が互いに熱圧着し、さらにビア導体6aの導電性ペーストが金属化され、その結果として、図1に示す樹脂多層基板101が形成される。積層体の上下面に離型材を重ね、そのさらに上下からプレス板で挟み込むことによって加熱および加圧してもよい。離型材を用いることによって、熱圧着後に得られる樹脂多層基板101をプレス板の間から取り出す作業を、円滑に行なうことができる。   Next, a plurality of resin layers 21 including the perforated resin sheet and other resin sheets shown in FIG. 22 are laminated to form a laminate. Subsequently, pressure and heat are applied to the laminate of the plurality of resin layers 21. In this way, the plurality of resin layers 21 included in the multilayer body are thermocompression bonded to each other, and the conductive paste of the via conductor 6a is metallized. As a result, the resin multilayer substrate 101 shown in FIG. 1 is formed. You may heat and pressurize by putting a release material on the upper and lower surfaces of a laminated body, and also inserting | pinching with the press board from the upper and lower sides. By using the release material, the work of taking out the resin multilayer substrate 101 obtained after thermocompression bonding from between the press plates can be performed smoothly.

このようにして製造方法を実施することにより、ビア導体6aが硬質部材8の外縁8dの近傍に配置されており、導体パターン7aが硬質部材8の外縁8dから離れる側に拡大部9を有しており、これによりビア導体6aと導体パターン7aとの接合部分の信頼性が向上している樹脂多層基板101を、容易に得ることができる。ビア導体6aを受けるためのランドとして機能する導体パターン7aを形成する際に、拡大部9を同時に形成することができるので、拡大部9を形成するための追加の工程は必要ない。したがって、製造コストの増加なく、拡大部9を形成することができる。   By carrying out the manufacturing method in this way, the via conductor 6a is arranged in the vicinity of the outer edge 8d of the hard member 8, and the conductor pattern 7a has the enlarged portion 9 on the side away from the outer edge 8d of the hard member 8. Accordingly, it is possible to easily obtain the resin multilayer substrate 101 in which the reliability of the joint portion between the via conductor 6a and the conductor pattern 7a is improved. Since the enlarged portion 9 can be formed simultaneously with the formation of the conductor pattern 7a that functions as a land for receiving the via conductor 6a, an additional process for forming the enlarged portion 9 is not necessary. Therefore, the enlarged portion 9 can be formed without an increase in manufacturing cost.

(実施の形態2)
図23、図24および図25を参照して、本発明に基づく実施の形態2における樹脂多層基板101について説明する。実施の形態2の樹脂多層基板101は、実施の形態1とほぼ同一の構成を備えており、ビア導体6aに加えて小径ビア導体6bをさらに備えている点において、実施の形態1とは異なっている。
(Embodiment 2)
With reference to FIG. 23, FIG. 24 and FIG. 25, resin multilayer substrate 101 according to the second embodiment of the present invention will be described. The resin multilayer substrate 101 of the second embodiment has substantially the same configuration as that of the first embodiment, and differs from the first embodiment in that it further includes a small-diameter via conductor 6b in addition to the via conductor 6a. ing.

小径ビア導体6bは、ビア導体6aよりも小さい外形寸法を有している。ビア導体6aが円錐台状の形状を有する場合、小径ビア導体6bは、底面および上面の径がビア導体6aよりも相対的に小さい円錐台状の形状を有していてもよい。小径ビア導体6bは、ビア導体6aの形成された樹脂層2を厚み方向に貫通しており、拡大部9に接続されている。   The small-diameter via conductor 6b has a smaller outer dimension than the via conductor 6a. When the via conductor 6a has a truncated cone shape, the small diameter via conductor 6b may have a truncated cone shape in which the diameters of the bottom surface and the upper surface are relatively smaller than the via conductor 6a. The small diameter via conductor 6 b penetrates the resin layer 2 in which the via conductor 6 a is formed in the thickness direction, and is connected to the enlarged portion 9.

図24に示すように、ビア導体6aに対して硬質部材8から離れる側に、単数の小径ビア導体6bが設けられていてもよい。または、図25に示すように、ビア導体6aに対して硬質部材8から離れる側に設けられた小径ビア導体6bに加えて、ビア導体6aを中心とする同心円上にも小径ビア導体6bが設けられており、複数の小径ビア導体6bを備えている構成としてもよい。   As shown in FIG. 24, a single small-diameter via conductor 6b may be provided on the side away from the hard member 8 with respect to the via conductor 6a. Alternatively, as shown in FIG. 25, in addition to the small-diameter via conductor 6b provided on the side away from the hard member 8 with respect to the via conductor 6a, the small-diameter via conductor 6b is also provided on a concentric circle centering on the via conductor 6a. It is good also as a structure provided with the some small diameter via conductor 6b.

本実施の形態では、小径ビア導体6bが設けられていることにより、ビア導体6aをより変形しにくい構造にできるので、ビア導体6aと導体パターン7aとの接合強度をより向上することができる。したがって、樹脂多層基板101に曲げ応力がかかるときのビア導体6aと導体パターン7aとの間の接合の剥離をより確実に防止できるので、ビア導体6aと導体パターン7aとの接合の信頼性をさらに向上することができる。   In the present embodiment, since the via conductor 6a is provided with the small-diameter via conductor 6b, it is possible to make the via conductor 6a more difficult to deform, so that the bonding strength between the via conductor 6a and the conductor pattern 7a can be further improved. Therefore, since peeling of the joint between the via conductor 6a and the conductor pattern 7a when bending stress is applied to the resin multilayer substrate 101 can be prevented more reliably, the reliability of the joining between the via conductor 6a and the conductor pattern 7a is further increased. Can be improved.

ビア導体6aの周囲に導体材料性の小径ビア導体6bが設けられており、ビア導体6aの周囲の金属密度が増加することにより、ビア導体6aから小径ビア導体6bへの熱伝達を促進できる。小径ビア導体6bを経由した放熱により、配線パターンの放熱性を向上することができる。   A small-diameter via conductor 6b made of a conductive material is provided around the via conductor 6a. By increasing the metal density around the via conductor 6a, heat transfer from the via conductor 6a to the small-diameter via conductor 6b can be promoted. The heat dissipation of the wiring pattern can be improved by the heat dissipation via the small diameter via conductor 6b.

(実施の形態3)
図26を参照して、本発明に基づく実施の形態3における樹脂多層基板101について説明する。実施の形態1および2の樹脂多層基板101は、ビア導体6aの形成された樹脂層2の両側の主表面2aに形成されている拡大部9の、硬質部材8から離れる側の縁部が、樹脂層2の積層方向に見て互いに重なっている。つまり、実施の形態1および2の樹脂多層基板101は、ビア導体6aの形成された樹脂層2の一方の主表面2aに配置された拡大部9の硬質部材8から離れる側の縁部が、当該樹脂層2の他方の主表面2aに配置された拡大部9の硬質部材8から離れる側の縁部と一致する部分を有している。これに対し、実施の形態3では、ビア導体6aの形成された樹脂層2の両側の主表面2aに形成されている拡大部9の、硬質部材8から離れる側の縁部が、樹脂層2の積層方向に見て重ならず、互いにずれた位置にある。
(Embodiment 3)
With reference to FIG. 26, resin multilayer substrate 101 according to the third embodiment of the present invention will be described. In the resin multilayer substrate 101 of the first and second embodiments, the edge of the enlarged portion 9 formed on the main surface 2a on both sides of the resin layer 2 on which the via conductor 6a is formed, on the side away from the hard member 8, The resin layers 2 overlap each other when viewed in the stacking direction. That is, in the resin multilayer substrate 101 of the first and second embodiments, the edge portion on the side away from the hard member 8 of the enlarged portion 9 arranged on one main surface 2a of the resin layer 2 on which the via conductor 6a is formed, The enlarged portion 9 disposed on the other main surface 2 a of the resin layer 2 has a portion that coincides with the edge portion on the side away from the hard member 8. On the other hand, in the third embodiment, the edge portion on the side away from the hard member 8 of the enlarged portion 9 formed on the main surface 2a on both sides of the resin layer 2 on which the via conductor 6a is formed is the resin layer 2. They are not overlapped when viewed in the stacking direction, but are shifted from each other.

このような構成としても、樹脂多層基板101が拡大部9を有している導体パターン7aを備えていることにより、ビア導体6aが変形しにくい構造となり、ビア導体6aと導体パターン7aとの間の接合の剥離を防止することができる。したがって、実施の形態2と同様に、ビア導体6aと導体パターン7aとの接合の信頼性を向上することができる。   Even in such a configuration, since the resin multilayer substrate 101 includes the conductor pattern 7a having the enlarged portion 9, the via conductor 6a is not easily deformed, and the via conductor 6a and the conductor pattern 7a are not deformed. Can be prevented from peeling off. Therefore, as in the second embodiment, the reliability of bonding between the via conductor 6a and the conductor pattern 7a can be improved.

(実施の形態4)
図27を参照して、本発明に基づく実施の形態4における樹脂多層基板101について説明する。これまでの実施の形態1〜3では、樹脂多層基板101の内部に設けられた配線パターンが、周辺の樹脂層2の形成材料よりも硬度の大きい硬質部材として機能する例について説明した。実施の形態4では、図27に示すように、樹脂多層基板101に部品31が内蔵されており、当該部品が硬質部材8としての機能を有している。
(Embodiment 4)
With reference to FIG. 27, the resin multilayer substrate 101 in Embodiment 4 based on this invention is demonstrated. In the first to third embodiments so far, the example in which the wiring pattern provided inside the resin multilayer substrate 101 functions as a hard member having a hardness higher than that of the material for forming the peripheral resin layer 2 has been described. In the fourth embodiment, as shown in FIG. 27, a component 31 is built in the resin multilayer substrate 101, and the component has a function as the hard member 8.

図27に示す部品31は、2層の樹脂層2を厚み方向に貫通して配置されている。部品31には、ビア導体6および導体パターン7からなる配線パターンが複数接続されている。部品31の両側の外縁8dの近傍に、ビア導体6aが配置されており、実施の形態2と同様の導体パターン7aがビア導体6aに接続されているとともに、ビア導体6aに対し部品31から離れる側に小径ビア導体6bが設けられている。樹脂多層基板101の内部には、その他の導体パターン7、およびその他のビア導体6および導体パターン7からなる配線パターンが、さらに設けられている。   A component 31 shown in FIG. 27 is disposed through the two resin layers 2 in the thickness direction. A plurality of wiring patterns including via conductors 6 and conductor patterns 7 are connected to the component 31. Via conductors 6a are arranged in the vicinity of the outer edges 8d on both sides of the component 31, and a conductor pattern 7a similar to that of the second embodiment is connected to the via conductor 6a and is away from the component 31 with respect to the via conductor 6a. A small diameter via conductor 6b is provided on the side. Inside the resin multilayer substrate 101, another conductor pattern 7 and a wiring pattern composed of the other via conductor 6 and conductor pattern 7 are further provided.

部品31は、積層セラミックコンデンサやチップインダクタなどの受動部品、集積回路または半導体素子などの電子部品であってもよく、またはアンテナ用途に供されるフェライトコアなどの硬質基板であってもよい。   The component 31 may be a passive component such as a multilayer ceramic capacitor or a chip inductor, an electronic component such as an integrated circuit or a semiconductor element, or a hard substrate such as a ferrite core used for antenna use.

このような構成としても、樹脂多層基板101が拡大部9を有している導体パターン7aを備えていることにより、ビア導体6aが変形しにくい構造となり、ビア導体6aと導体パターン7aとの間の接合の剥離を防止することができる。したがって、実施の形態1と同様に、ビア導体6aと導体パターン7aとの接合の信頼性を向上することができる。   Even in such a configuration, since the resin multilayer substrate 101 includes the conductor pattern 7a having the enlarged portion 9, the via conductor 6a is not easily deformed, and the via conductor 6a and the conductor pattern 7a are not deformed. Can be prevented from peeling off. Therefore, as in the first embodiment, the reliability of bonding between the via conductor 6a and the conductor pattern 7a can be improved.

なお、今回開示した上記実施の形態はすべての点で例示であって制限的なものではない。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更を含むものである。   In addition, the said embodiment disclosed this time is an illustration in all the points, Comprising: It is not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and includes all modifications within the scope and meaning equivalent to the terms of the claims.

1 積層体、2,21 樹脂層、2a 主表面、3 第1主表面、4 第2主表面、6,6a ビア導体、6b 小径ビア導体、7,7a 導体パターン、8 硬質部材、8d 外縁、9 拡大部、9b ブリッジ部、9g ギャップ部、10 接続導体、11 ビア孔、12 導体箔付き樹脂シート、13 レジストパターン、17 導体箔、31 部品、101 樹脂多層基板。   DESCRIPTION OF SYMBOLS 1 Laminated body, 2,21 Resin layer, 2a Main surface, 1st main surface, 4 2nd main surface, 6,6a Via conductor, 6b Small diameter via conductor, 7, 7a Conductor pattern, 8 Hard member, 8d Outer edge, DESCRIPTION OF SYMBOLS 9 Enlarged part, 9b Bridge part, 9g Gap part, 10 Connection conductor, 11 Via hole, 12 Resin sheet with conductor foil, 13 Resist pattern, 17 Conductor foil, 31 Parts, 101 Resin multilayer board.

Claims (6)

主表面を有し、熱可塑性樹脂からなる樹脂層が複数積層されて形成された樹脂多層基板であって、
前記樹脂層のうちの一層を厚み方向に貫通するビア導体と、
前記ビア導体の形成された前記樹脂層の前記主表面上に形成され、前記ビア導体に接続された導体パターンと、
前記樹脂多層基板に内蔵されており、前記樹脂層よりも相対的に硬度の大きい硬質部材とを備え、
前記ビア導体は、複数の前記樹脂層の積層方向に見て、前記硬質部材の外縁の近傍に配置されており、
前記導体パターンは、前記積層方向に見て、前記硬質部材から離れる側に面積が拡大した拡大部を有する、樹脂多層基板。
A resin multilayer substrate having a main surface and formed by laminating a plurality of resin layers made of thermoplastic resin,
A via conductor that penetrates one of the resin layers in the thickness direction; and
A conductor pattern formed on the main surface of the resin layer in which the via conductor is formed and connected to the via conductor;
Embedded in the resin multilayer substrate, comprising a hard member having a relatively greater hardness than the resin layer,
The via conductor is disposed in the vicinity of the outer edge of the hard member when viewed in the stacking direction of the plurality of resin layers,
The said conductor pattern is a resin multilayer substrate which has an enlarged part which the area expanded on the side away from the said hard member seeing in the said lamination direction.
前記ビア導体まわりの周方向に前記拡大部が分断されている、請求項1に記載の樹脂多層基板。   The resin multilayer substrate according to claim 1, wherein the enlarged portion is divided in a circumferential direction around the via conductor. 前記ビア導体を中心とする径方向に前記拡大部が分断されている、請求項1または請求項2に記載の樹脂多層基板。   The resin multilayer substrate according to claim 1, wherein the enlarged portion is divided in a radial direction centering on the via conductor. 径方向に分断された前記拡大部は、他の導体と電気的に非接続であるダミーパターンを含む、請求項3に記載の樹脂多層基板。   The resin multilayer substrate according to claim 3, wherein the enlarged portion divided in the radial direction includes a dummy pattern that is electrically disconnected from other conductors. 前記ビア導体の形成された前記樹脂層の両側の前記主表面に前記拡大部が形成されている、請求項1から請求項4のいずれか1項に記載の樹脂多層基板。   The resin multilayer substrate according to claim 1, wherein the enlarged portion is formed on the main surface on both sides of the resin layer on which the via conductor is formed. 前記ビア導体よりも小さい外形寸法を有する小径ビア導体をさらに備え、
前記小径ビア導体は、前記ビア導体の形成された前記樹脂層を厚み方向に貫通し、前記拡大部に接続されている、請求項1から請求項5のいずれか1項に記載の樹脂多層基板。
Further comprising a small diameter via conductor having a smaller outer dimension than the via conductor;
6. The resin multilayer substrate according to claim 1, wherein the small-diameter via conductor penetrates the resin layer in which the via conductor is formed in a thickness direction and is connected to the enlarged portion. .
JP2013101905A 2013-05-14 2013-05-14 Resin multilayer board Active JP6205834B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013101905A JP6205834B2 (en) 2013-05-14 2013-05-14 Resin multilayer board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013101905A JP6205834B2 (en) 2013-05-14 2013-05-14 Resin multilayer board

Publications (2)

Publication Number Publication Date
JP2014222721A true JP2014222721A (en) 2014-11-27
JP6205834B2 JP6205834B2 (en) 2017-10-04

Family

ID=52122114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013101905A Active JP6205834B2 (en) 2013-05-14 2013-05-14 Resin multilayer board

Country Status (1)

Country Link
JP (1) JP6205834B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114303446A (en) * 2019-08-30 2022-04-08 荷兰应用自然科学研究组织Tno Electronic device with multilayer laminate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004273575A (en) * 2003-03-05 2004-09-30 Sony Corp Multilayer printed wiring board and its manufacturing method
JP2006216714A (en) * 2005-02-02 2006-08-17 Ibiden Co Ltd Multilayered printed wiring board
JP2008091385A (en) * 2006-09-29 2008-04-17 Toppan Printing Co Ltd Multilayer circuit wiring board and semiconductor device
WO2012046829A1 (en) * 2010-10-08 2012-04-12 株式会社村田製作所 Substrate with built-in component, and method for producing said substrate
WO2012137548A1 (en) * 2011-04-04 2012-10-11 株式会社村田製作所 Multilayer substrate with integrated chip component and method for manufacturing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004273575A (en) * 2003-03-05 2004-09-30 Sony Corp Multilayer printed wiring board and its manufacturing method
JP2006216714A (en) * 2005-02-02 2006-08-17 Ibiden Co Ltd Multilayered printed wiring board
JP2008091385A (en) * 2006-09-29 2008-04-17 Toppan Printing Co Ltd Multilayer circuit wiring board and semiconductor device
WO2012046829A1 (en) * 2010-10-08 2012-04-12 株式会社村田製作所 Substrate with built-in component, and method for producing said substrate
WO2012137548A1 (en) * 2011-04-04 2012-10-11 株式会社村田製作所 Multilayer substrate with integrated chip component and method for manufacturing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114303446A (en) * 2019-08-30 2022-04-08 荷兰应用自然科学研究组织Tno Electronic device with multilayer laminate

Also Published As

Publication number Publication date
JP6205834B2 (en) 2017-10-04

Similar Documents

Publication Publication Date Title
JP6149920B2 (en) Rigid flexible substrate and manufacturing method thereof
JP6139653B2 (en) Component built-in resin multilayer board
US9012785B2 (en) Flexible multilayer substrate
JP6053190B2 (en) Printed wiring board
JP2016051765A (en) Inductor component
JP2010103388A (en) Laminated flexible wiring board and method of manufacturing the same, and antenna of electronic tag for rfid using the same
TWI414217B (en) Embedded multilayer printed circuit board and method for manufacturing same
JPWO2015005029A1 (en) Resin multilayer substrate and method for producing resin multilayer substrate
US10362672B2 (en) Resin multilayer substrate and method of manufacturing the same
JP6508227B2 (en) Flexible inductor
JP6205834B2 (en) Resin multilayer board
JP2019021863A (en) Multilayer substrate
JP5641072B2 (en) Circuit board
JP6123915B2 (en) Resin multilayer board
JP3945316B2 (en) Multilayer wiring board and manufacturing method thereof
JP2014232853A (en) Multilayer wiring board and substrate for probe card
JP5516830B2 (en) Component built-in resin substrate
JP5014673B2 (en) Multilayer wiring board and manufacturing method thereof
JP2017073516A (en) Manufacturing method of one-side circuit board and manufacturing method of multilayer circuit board using the same
JP4537084B2 (en) Wiring board manufacturing method
JP2014222686A (en) Resin multilayer substrate
JP2013165149A (en) Multilayer ceramic substrate and manufacturing method of the same
JP5633256B2 (en) Manufacturing method of component-embedded substrate
JP6089614B2 (en) Resin multilayer board
JP2019041019A (en) Printed wiring board and manufacturing method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170821

R150 Certificate of patent or registration of utility model

Ref document number: 6205834

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150