[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2014211974A - Secondary battery - Google Patents

Secondary battery Download PDF

Info

Publication number
JP2014211974A
JP2014211974A JP2013086631A JP2013086631A JP2014211974A JP 2014211974 A JP2014211974 A JP 2014211974A JP 2013086631 A JP2013086631 A JP 2013086631A JP 2013086631 A JP2013086631 A JP 2013086631A JP 2014211974 A JP2014211974 A JP 2014211974A
Authority
JP
Japan
Prior art keywords
separator
secondary battery
negative electrode
positive electrode
bonded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013086631A
Other languages
Japanese (ja)
Other versions
JP6163847B2 (en
Inventor
晃一 谷山
Koichi Taniyama
晃一 谷山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2013086631A priority Critical patent/JP6163847B2/en
Priority to KR1020140044819A priority patent/KR101589811B1/en
Priority to CN201410153885.9A priority patent/CN104112835B/en
Publication of JP2014211974A publication Critical patent/JP2014211974A/en
Application granted granted Critical
Publication of JP6163847B2 publication Critical patent/JP6163847B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0463Cells or batteries with horizontal or inclined electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/20Pressure-sensitive devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a secondary battery having a structure that prevents contraction of a separator when heat is generated abnormally, and is difficult to collect gas between the separators.SOLUTION: A secondary battery includes a core formed by laminating a positive electrode and a negative electrode with a separator, having a first side and a second side located on the opposite side, interposed therebetween. The separator has a bonding region bonded intermittently so that an adhesive part and a non-adhesive part are formed alternately for at least one of separators adjacent in the lamination direction. The bonding region includes a first bonding region where the first sides are bonded intermittently, and a second bonding region where the second sides are bonded intermittently.

Description

本発明は、セパレータを間に挟んで正極と負極とが交互に積層された構造を有した二次電池に関する。   The present invention relates to a secondary battery having a structure in which positive electrodes and negative electrodes are alternately stacked with a separator interposed therebetween.

電池として、非水電解質二次電池、例えばリチウムイオン二次電池がある。この二次電池は、セパレータを間に挟んで正極と負極とを多層に積層されたコア(内部構造)を有している。セパレータは、電極どうしが接触することを防ぐと共にリチウムイオンや電解液を移動させる機能を有している。これらの機能を満足するために、セパレータは、多孔質シートのような高分子樹脂が使用されており、温度条件によって軟化、融解する。このようなセパレータを有する二次電池は、セパレータのこの性質を利用することで、温度上昇を伴うような異常な充電及び放電を抑制している。   As the battery, there is a non-aqueous electrolyte secondary battery, for example, a lithium ion secondary battery. This secondary battery has a core (internal structure) in which a positive electrode and a negative electrode are laminated in multiple layers with a separator interposed therebetween. The separator has a function of preventing the electrodes from contacting each other and moving lithium ions and an electrolytic solution. In order to satisfy these functions, the separator is made of a polymer resin such as a porous sheet, and softens and melts depending on temperature conditions. A secondary battery having such a separator uses this property of the separator to suppress abnormal charging and discharging accompanied by a temperature rise.

二次電池に対する過充電や電極どうしの短絡などによって、二次電池の温度が上昇した場合、このセパレータは、適度に軟化及び融解して正極と負極の間をリチウムイオンが移動するのを停止し、それ以降の充放電を不可能にする機能も有している。セパレータのこの機能を「シャットダウン」と呼んでいる。   When the temperature of the secondary battery rises due to overcharge of the secondary battery or a short circuit between the electrodes, this separator moderately softens and melts and stops moving lithium ions between the positive and negative electrodes. Also, it has the function of making subsequent charge / discharge impossible. This function of the separator is called “shutdown”.

また、このシャットダウン機能にも限界があり、シャットダウン機能を発揮する温度を超えて二次電池の温度がさらに上昇すると、セパレータが必要以上に軟化及び融解して縮んでしまうことがある。特に、異常発熱が生じると、内部に熱がこもり中心部分から先に温度が上昇する。セパレータは板状電極よりも外周寸法が多少大きく作られているが、二次電池の中央部分で温度が上がると中央部分から収縮が進む。その結果、電極は、その一部が露出し、互いに接触および短絡することになる。二次電池がこの状況になることを「メルトダウン」と呼んでいる。   Moreover, there is a limit to this shutdown function, and when the temperature of the secondary battery further rises beyond the temperature at which the shutdown function is exhibited, the separator may be softened and melted more than necessary and may shrink. In particular, when abnormal heat generation occurs, heat accumulates inside and the temperature rises first from the central portion. The separator is made to have a slightly larger outer dimension than the plate-like electrode, but when the temperature rises in the central part of the secondary battery, the shrinkage proceeds from the central part. As a result, the electrodes are partially exposed and contact and short circuit with each other. The situation where the secondary battery is in this state is called “meltdown”.

シャットダウン機能を活かしつつ、メルトダウンを防ぐために、融点の異なる複数の素材を積層した多層構造のセパレータを製造することが検討されている。例えば、最も簡便な手法として、ポリイミドなどの高融点素材を用いた不織布とポリプロピレンなどの低融点素材を用いた微多孔膜を二枚重ねにして使用するセパレータが特許文献1に開示されている。   In order to prevent meltdown while making use of the shutdown function, it has been studied to manufacture a separator having a multilayer structure in which a plurality of materials having different melting points are laminated. For example, as the simplest technique, Patent Document 1 discloses a separator that uses a non-woven fabric using a high melting point material such as polyimide and a microporous film using a low melting point material such as polypropylene as two layers.

この特許文献1には、セパレータを蛇腹折りに形成し、折り返したそれぞれの側から電極シートが挿入された二次電池が示されている。この二次電池は、電極シートの表面に電極活物質層を有しており、製造過程の様々な応力によって電極活物質層が剥離し脱落すると、セパレータを傷つけ短絡などの原因になるため、セパレータが折り返される折曲部に電極活物質層を塗工しない範囲を作っている。   This Patent Document 1 shows a secondary battery in which a separator is formed in a bellows fold and an electrode sheet is inserted from each folded side. This secondary battery has an electrode active material layer on the surface of the electrode sheet. If the electrode active material layer is peeled off due to various stresses during the manufacturing process, the separator may be damaged and cause a short circuit. The area where the electrode active material layer is not applied is formed in the bent portion where is folded.

特許文献2に記載された積層式電池は、複数枚の正極と負極とがセパレータを介して交互に積層された積層電池体を備える。このときセパレータは、積層方向に隣り合う一対ごとに、周縁部の少なくとも一部で互いに接合され袋状に形成されている。袋状に形成されたセパレータには、正極が挿入されている。正極が入れられた袋状セパレータと負極が積層されて、積層電極体が構成されている。互いに接合された一対のセパレータの接合部は、積層方向における中央部領域に位置するセパレータの方が、積層方向に両端部に位置するセパレータよりも接合の割合を小さくしている。   The stacked battery described in Patent Document 2 includes a stacked battery body in which a plurality of positive electrodes and negative electrodes are alternately stacked via separators. At this time, the separators are joined to each other at least at a part of the peripheral edge for each pair adjacent in the stacking direction, and are formed in a bag shape. A positive electrode is inserted into the bag-shaped separator. A bag-shaped separator in which a positive electrode is placed and a negative electrode are laminated to form a laminated electrode body. As for the joint portions of the pair of separators joined together, the separator located in the central region in the stacking direction has a smaller joining ratio than the separators positioned at both ends in the stacking direction.

特開2012−114075号公報JP 2012-1114075 A 特開2012− 69378号公報JP 2012-69378 A

しかしながら、特許文献1のように、セパレータの収縮を抑制するために、材質の異なるもので多層構造にしたセパレータは、セパレータの製造コストが掛る。そして、積層構造のセパレータを熱溶着することは、容易ではない。   However, as in Patent Document 1, a separator having a multilayer structure made of different materials in order to suppress the shrinkage of the separator requires a manufacturing cost of the separator. And it is not easy to heat-weld the separator of a laminated structure.

また、二次電池が異常発熱するような状況では、水素ガスが発生することがある。発生したガスが二次電池の内部に溜まり過ぎると、内圧によって二次電池のケースを変形させたり破損させたりする。そのため、設定された圧力よりも内圧が高くなった場合に開放される安全弁が、ケースに設けられている。しかし、このようなガスは、セパレータを通過できないため、特許文献1のように蛇腹折りにされたり連続的に溶着されたりした部分の内側に溜まると、ガスは、セパレータの外へ排出され難くなり、二次電池のケースを変形させてしまう要因になる。   Further, hydrogen gas may be generated in a situation where the secondary battery generates abnormal heat. If the generated gas accumulates too much inside the secondary battery, the case of the secondary battery may be deformed or damaged by the internal pressure. Therefore, a safety valve that is opened when the internal pressure becomes higher than the set pressure is provided in the case. However, since such a gas cannot pass through the separator, if it accumulates inside a portion that is accordion-folded or continuously welded as in Patent Document 1, it is difficult for the gas to be discharged out of the separator. This causes deformation of the secondary battery case.

特許文献2の積層式電池の場合、積層方向に隣り合う一対のセパレータごとに袋状に接合されており、その接合部は、接着部の割合を積層方向に下層部と上層部とで変えている。特許文献2では、電池内の電解液の拡散性(液回り)、つまり電極板の中央部まで電解液が均質に浸透することを考慮したものであって、セパレータが収縮することやセパレータの間にガスが溜まることを考慮しているわけではない。   In the case of the stacked battery of Patent Document 2, each pair of separators adjacent to each other in the stacking direction is bonded in a bag shape, and the bonding portion is obtained by changing the ratio of the bonded portion between the lower layer portion and the upper layer portion in the stacking direction. Yes. Patent Document 2 considers the diffusibility (around the liquid) of the electrolyte in the battery, that is, the electrolyte permeates homogeneously to the center of the electrode plate. However, it does not take into account that gas accumulates.

そこで、本発明は、異常発熱した場合にセパレータが収縮することを防止すると共に、セパレータ間にガスを溜め難い構造を有した二次電池を提供する。   Accordingly, the present invention provides a secondary battery that has a structure that prevents the separator from contracting when abnormal heat is generated, and prevents gas from being accumulated between the separators.

本発明に係る一実施形態の二次電池は、第1の辺とこの対辺に位置する第2の辺とを有するセパレータを間に挟んで正極及び負極が交互に積層して形成されたコアを備える。セパレータは、積層方向に隣り合う少なくとも一方のセパレータに対して接着部と非接着部とが交互に形成されるようにコアの各層において断続的に接合された接合領域を有する。この接合領域は、第1の辺どうしが断続的に接合された第1の接合領域と、第2の辺どうしが断続的に接合された第2の接合領域とを含む。   A secondary battery according to an embodiment of the present invention includes a core formed by alternately laminating a positive electrode and a negative electrode with a separator having a first side and a second side located on the opposite side in between. Prepare. The separator has a joint region that is intermittently joined in each layer of the core so that the adhesive portion and the non-adhesive portion are alternately formed with respect to at least one separator adjacent in the stacking direction. This junction region includes a first junction region in which the first sides are intermittently joined and a second junction region in which the second sides are intermittently joined.

このとき、セパレータは、積層方向に一方側で隣り合う一方側セパレータに対して第1の接合領域で接合され、積層方向に反対側で隣合う反対側セパレータに対して第2の接合領域で接合される。   At this time, the separator is bonded at the first bonding region to the one-side separator adjacent on one side in the stacking direction, and bonded at the second bonding region to the opposite-side separator adjacent on the opposite side in the stacking direction. Is done.

また、二次電池が、コアを格納する容器と、この容器の外周壁に設けられて設定された内圧を超える場合に開放される安全弁と、をさらに備える場合、安全弁に対峙する範囲に設けられる接着部を、それ以外の接着部よりも正極及び負極の外周に沿う方向に小さくし、安全弁に対峙する範囲に設けられる非接着部を、それ以外の非接着部よりも正極及び負極の外周に沿う方向に大きくする。また、接着部が、正極及び負極の外周から離れる方向に幅を有している二次電池の場合、正極及び負極の外周に沿う方向におけるセパレータの内周側の接合長さをセパレータの外周側の溶着長さよりも小さくする。また、接着部のセパレータの外周側の溶着長さは、非接着部のセパレータの外周側の非接着長さよりも大きくする。   In addition, when the secondary battery further includes a container that stores the core and a safety valve that is provided on the outer peripheral wall of the container and that is opened when the internal pressure exceeds the set value, the secondary battery is provided in a range that faces the safety valve. The adhesive part is made smaller in the direction along the outer periphery of the positive electrode and the negative electrode than the other adhesive parts, and the non-adhesive part provided in the range facing the safety valve is arranged on the outer periphery of the positive electrode and the negative electrode more than the other non-adhesive parts. Increase along the direction. In the case of a secondary battery having a width in a direction away from the outer periphery of the positive electrode and the negative electrode, the bonding length on the inner peripheral side of the separator in the direction along the outer periphery of the positive electrode and the negative electrode is set to the outer peripheral side of the separator. The welding length is made smaller. In addition, the welding length on the outer peripheral side of the separator in the bonded portion is made larger than the non-bonded length on the outer peripheral side of the separator in the non-bonded portion.

正極及び負極は、第1の辺または第2の辺に交差してセパレータの外周よりも外側に延びた正極集電端子及び負極集電端子を有している。このとき、正極集電端子及び負極集電端子は、積層方向に貫通する複数の孔が設けられた結合部を少なくとも接合領域を横切る範囲にそれぞれ有し、セパレータは、積層方向に隣り合うセパレータに対して、正極集電端子及び負極集電端子の結合部を通して接合される。   The positive electrode and the negative electrode have a positive electrode current collector terminal and a negative electrode current collector terminal that intersect the first side or the second side and extend outward from the outer periphery of the separator. At this time, each of the positive electrode current collector terminal and the negative electrode current collector terminal has a coupling portion provided with a plurality of holes penetrating in the laminating direction at least in a range crossing the joining region, and the separator is a separator adjacent to the laminating direction. On the other hand, it joins through the coupling | bond part of a positive electrode current collection terminal and a negative electrode current collection terminal.

本発明に係る一実施形態の二次電池によれば、正極及び負極の間に挿入されているセパレータが、第1の辺とこの対辺に位置する第2の辺とを有し、積層方向に隣り合う少なくとも一方のセパレータに対して接着部と非接着部とが交互に形成されるようにコアの各層において断続的に接合された接合領域を有し、その接合領域に第1の辺どうしが接合された第1の接合領域と第2の辺どうしが接合された第2の接合領域とを含むので、セパレータが収縮することを抑制すると共に電極の表面に発生したガスを非接着部からコアの外へ排出しやすい。   According to the secondary battery of one embodiment of the present invention, the separator inserted between the positive electrode and the negative electrode has a first side and a second side located on the opposite side, and is arranged in the stacking direction. It has a joint region that is intermittently joined in each layer of the core so that an adhesive portion and a non-adhesive portion are alternately formed with respect to at least one separator adjacent to each other, and the first sides are in the joint region. Since the bonded first bonded region and the second bonded region where the second sides are bonded are included, the separator is prevented from contracting and gas generated on the surface of the electrode is discharged from the non-bonded portion to the core. Easy to discharge outside.

本発明の第1の実施形態の二次電池の分解斜視図。The disassembled perspective view of the secondary battery of the 1st Embodiment of this invention. 図1のコアを積層方向に切った断面図。Sectional drawing which cut the core of FIG. 1 in the lamination direction. 図2中のF3−F3線に沿う断面でセパレータの接合領域を示す図。The figure which shows the joining area | region of a separator in the cross section which follows the F3-F3 line | wire in FIG. 本発明の第2の実施形態の二次電池のコアを積層方向に切った断面図。Sectional drawing which cut the core of the secondary battery of the 2nd Embodiment of this invention in the lamination direction. 図4中のF5−F5線に沿う断面でセパレータの接合領域を示す図。The figure which shows the joining area | region of a separator in the cross section which follows the F5-F5 line | wire in FIG. 本発明の第3の実施形態の二次電池のコアを積層方向に見た場合のセパレータの接合領域を示す図。The figure which shows the junction area | region of the separator at the time of seeing the core of the secondary battery of the 3rd Embodiment of this invention in the lamination direction. 本発明の第4の実施形態の二次電池のコアを積層方向に見た場合のセパレータの接合領域を示す図。The figure which shows the junction area | region of the separator at the time of seeing the core of the secondary battery of the 4th Embodiment of this invention in the lamination direction. 本発明の第5の実施形態の二次電池のコアを積層方向に見た場合のセパレータの接合領域を示す図。The figure which shows the junction area | region of the separator at the time of seeing the core of the secondary battery of the 5th Embodiment of this invention in the lamination direction. 本発明の第6の実施形態の二次電池のコアを積層方向に切った断面図。Sectional drawing which cut the core of the secondary battery of the 6th Embodiment of this invention in the lamination direction. 図9中のF10−F10線に沿う断面でセパレータの接合領域を示す図。The figure which shows the joining area | region of a separator in the cross section which follows the F10-F10 line | wire in FIG. 図10の結合部を拡大した図。The figure which expanded the coupling | bond part of FIG.

本発明に係る第1の実施形態の二次電池1について、図1から図3を参照して説明する。図1に示す二次電池1は、両端が開口された角形の容器2と、それぞれ開口部を密封する電極蓋3と、容器2の中に格納されるコア(積層体)10とを有している。容器は、金属製の缶でもよいし、ラミネートフィルムで形成された袋状のものでもよい。図1に示すように容器2は、外周壁に安全弁21を有している。この安全弁21は、予め設定された内圧を超えると開放され、容器2が破損することを防止する。   A secondary battery 1 according to a first embodiment of the present invention will be described with reference to FIGS. A secondary battery 1 shown in FIG. 1 includes a rectangular container 2 having both ends opened, an electrode lid 3 that seals the opening, and a core (stacked body) 10 that is stored in the container 2. ing. The container may be a metal can or a bag formed of a laminate film. As shown in FIG. 1, the container 2 has a safety valve 21 on the outer peripheral wall. The safety valve 21 is opened when a preset internal pressure is exceeded, and the container 2 is prevented from being damaged.

コア10は、セパレータ11を間に挟んで正極12及び負極13を交互に積層して構成されている。図1では、正極12、負極13、およびセパレータ11を展開した状態で示す。図1に示したコア10は、正極12及び負極13をそれぞれ5枚ずつ積層する構成であるが、電極の積層枚数は、これに限定されない。図2及び図3に示すように、正極12は、負極13よりも外形寸法が一回り小さく形成されている。セパレータ11は、負極13の外形寸法よりも大きく形成されている。このセパレータ11は、第1の辺111及びこれの対辺に位置する第2の辺112を有している。   The core 10 is configured by alternately laminating positive electrodes 12 and negative electrodes 13 with a separator 11 interposed therebetween. In FIG. 1, the positive electrode 12, the negative electrode 13, and the separator 11 are shown in a developed state. The core 10 shown in FIG. 1 has a configuration in which five positive electrodes 12 and five negative electrodes 13 are stacked, but the number of stacked electrodes is not limited to this. As shown in FIGS. 2 and 3, the positive electrode 12 is formed so that the outer dimensions are slightly smaller than the negative electrode 13. The separator 11 is formed larger than the outer dimensions of the negative electrode 13. The separator 11 has a first side 111 and a second side 112 located opposite to the first side 111.

図2に示すように正極12は、例えば四角形の箔状のアルミニウムで作られた正極集電端子121の両側の面に、正極活物質となる正極材122が形成されている。負極13は、図2に示すように、四角形の箔状の銅で作られた負極集電端子131の両側の面に、負極活物質となる負極材132が形成されている。また、正極12は、正極材122が形成された範囲よりも外側に正極集電端子121の一部が延びた正極リード部123を有している。負極13は、負極材132が形成された範囲よりも外側に負極集電端子131の一部が延びた負極リード部133を有している。正極リード部123及び負極リード部133は、セパレータ11の外周よりも外側に延びている。   As shown in FIG. 2, the positive electrode 12 is formed with a positive electrode material 122 serving as a positive electrode active material on both sides of a positive electrode current collecting terminal 121 made of, for example, square foil-shaped aluminum. As shown in FIG. 2, the negative electrode 13 is formed with a negative electrode material 132 serving as a negative electrode active material on both sides of a negative electrode current collecting terminal 131 made of copper having a rectangular foil shape. Further, the positive electrode 12 has a positive electrode lead portion 123 in which a part of the positive electrode current collecting terminal 121 extends outside the range where the positive electrode material 122 is formed. The negative electrode 13 has a negative electrode lead part 133 in which a part of the negative electrode current collecting terminal 131 extends outside the range where the negative electrode material 132 is formed. The positive electrode lead portion 123 and the negative electrode lead portion 133 extend outward from the outer periphery of the separator 11.

本実施形態の場合、図1から図3に示すように、正極12の正極リード部123は、セパレータ11の第1の辺111を横切って延びる正極集電端子121の一部であって、各図において下方へ延びている。また負極13の負極リード部133は、第1の辺111の対辺に位置するセパレータ11の第2の辺112を横切って延びる負極集電端子131の一部であって、各図中において、上方へ延びている。つまり、正極12の正極リード部123と負極13の負極リード部133とは、互いに反対の方向に延びている。   In the case of the present embodiment, as shown in FIGS. 1 to 3, the positive electrode lead portion 123 of the positive electrode 12 is a part of the positive electrode current collector terminal 121 extending across the first side 111 of the separator 11, and It extends downward in the figure. The negative electrode lead portion 133 of the negative electrode 13 is a part of the negative electrode current collecting terminal 131 extending across the second side 112 of the separator 11 located on the opposite side of the first side 111. It extends to. That is, the positive electrode lead portion 123 of the positive electrode 12 and the negative electrode lead portion 133 of the negative electrode 13 extend in opposite directions.

セパレータ11は、積層方向に隣り合う少なくとも一方のセパレータ11に対して接着部Mと非接着部Sとが交互に形成されるように、コア10の各層において断続的に接合された接合領域Kを有している。この接合領域Kは、第1の辺111どうしが断続的に接合された第1の接合領域K1と、第2の辺112どうしが断続的に接合された第2の接合領域K2とを含む。本実施形態の場合、図2に示すように、少なくとも、正極リード部123が延びた側と反対側となる辺すなわち第2の辺112に沿って、接着部Mと非接着部Sとが交互に並ぶように断続的に接合された第2の接合領域K2が形成され、負極リード部133が延びた側と反対側となる辺すなわち第1の辺111に沿って、接着部Mと非接着部Sとが交互に並ぶように断続的に接合された第1の接合領域K1が形成されている。   The separator 11 has a bonding region K that is intermittently bonded in each layer of the core 10 so that the bonding portions M and the non-bonding portions S are alternately formed with respect to at least one separator 11 adjacent in the stacking direction. Have. The junction region K includes a first junction region K1 in which the first sides 111 are intermittently joined and a second junction region K2 in which the second sides 112 are intermittently joined. In the case of the present embodiment, as shown in FIG. 2, the adhesive portions M and the non-adhesive portions S alternate at least along the side opposite to the side where the positive electrode lead portion 123 extends, that is, the second side 112. The second bonding region K2 that is intermittently bonded so as to be aligned is formed, and the bonding portion M is not bonded along the side opposite to the side where the negative electrode lead portion 133 extends, that is, the first side 111. A first junction region K1 that is intermittently joined so as to be alternately arranged with the portions S is formed.

なお、接着部Mは、セパレータ11を融かして接合させる十分な熱が供給されるとともに局部的な熱収縮を伴わないように、接合される。したがって、従来のヒータによる熱溶着以外にも、レーザビームや超音波によって溶着されてもよい。または、接着剤などによって接合されていてもよい。この明細書では、熱で溶かして接合させることを「溶着」と称している。材料そのものを融かして接合させる「融着」であってもよい。   Note that the bonding portion M is bonded so that sufficient heat for melting and bonding the separator 11 is supplied and local heat shrinkage is not caused. Therefore, it may be welded by a laser beam or ultrasonic waves other than the thermal welding by the conventional heater. Alternatively, they may be joined by an adhesive or the like. In this specification, melting and joining with heat is referred to as “welding”. It may be “fusion” in which the material itself is melted and joined.

1つのセパレータ11について着目した場合、セパレータ11は、積層方向に一方側で隣り合う一方側セパレータに対して第1の接合領域K1で接合され、積層方向に反対側で隣り合う反対側セパレータに対して第2の接合領域K2で接合される。別の言い方をすると、セパレータ11は、正極12及び負極13の外周の四辺のうちの一辺に沿って、積層方向に一方側で隣り合うセパレータ11と断続的に接合された場合、接合された一辺の対辺で積層方向に反対側で隣り合うセパレータ11と断続的に接合される。本実施形態の場合、図2で示すように、負極リード部133が横切る側と反対側、すなわち第1の辺111が断続的に接合されたセパレータ11は、その接合された第1の辺111の対辺である第2の辺112が積層方向に反対側で隣り合うセパレータ11と断続的に接合される。第1の辺111で図2中の一番左に図示されたセパレータ11に接合されたセパレータ11、すなわち図2中の左から2番目に図示されたセパレータ11は、図2において一番左のセパレータ11に対して積層方向に反対側に位置するセパレータ11すなわち図2において左から3番目のセパレータ11と接合されている。このように、一つのセパレータ11は、一方側で接合されたセパレータ11と積層方向に反対側の異なるセパレータ11に対して対辺となる位置で接合される。   When attention is paid to one separator 11, the separator 11 is bonded to the one side separator adjacent on one side in the stacking direction at the first bonding region K1, and to the opposite separator adjacent on the opposite side in the stacking direction. Are joined in the second joining region K2. In other words, when the separator 11 is intermittently joined to the separator 11 adjacent on one side in the stacking direction along one of the four sides of the outer periphery of the positive electrode 12 and the negative electrode 13, the joined one side Are intermittently joined to the adjacent separator 11 on the opposite side in the stacking direction. In the case of the present embodiment, as shown in FIG. 2, the separator 11 in which the first side 111 is intermittently bonded to the side opposite to the side where the negative electrode lead portion 133 crosses, that is, the bonded first side 111. The second side 112, which is the opposite side, is intermittently joined to the adjacent separator 11 on the opposite side in the stacking direction. The separator 11 joined to the leftmost separator 11 shown in FIG. 2 at the first side 111, that is, the second separator 11 shown from the left in FIG. It is joined to the separator 11 located on the opposite side to the separator 11 in the stacking direction, that is, the third separator 11 from the left in FIG. In this way, one separator 11 is joined at a position opposite to the separator 11 joined on one side and a different separator 11 on the opposite side in the stacking direction.

さらに本実施形態では、図3に示すように、第1の辺111および第2の辺112に対して直交する第3の辺113およびこれの対辺である第4の辺114にも断続的に接合された接合領域Kが形成されている。また、各辺において、接着部Mは、正極12及び負極13の外周から離れる方向、すなわち各辺を横切る方向に幅を有している。   Further, in the present embodiment, as shown in FIG. 3, the third side 113 orthogonal to the first side 111 and the second side 112 and the fourth side 114 which is the opposite side are also intermittently provided. A joined region K is formed. In each side, the bonding portion M has a width in a direction away from the outer periphery of the positive electrode 12 and the negative electrode 13, that is, in a direction crossing each side.

以上のように構成された二次電池は、積層方向にセパレータ11を接合する部分が、正極12及び負極13の外周の辺に沿って接着部Mと非接着部Sとが交互に並ぶように断続的に接合された接合領域Kを有している。そして、その接合領域Kは、積層方向に隣り合うセパレータ11の第1の辺111どうしを接合する第1の接合領域K1と、積層方向に隣り合うセパレータ11の第2の辺112どうしを接合する第2の接合領域K2とを少なくとも含んでいる。したがって、異常過熱によって二次電池1の温度が上がり過ぎた場合に、セパレータ11がその熱によって正極12及び負極13の平面に沿って収縮することを抑制することができる。   In the secondary battery configured as described above, the portion where the separator 11 is joined in the stacking direction is such that the bonding portions M and the non-bonding portions S are alternately arranged along the outer peripheral sides of the positive electrode 12 and the negative electrode 13. It has the joining area | region K joined intermittently. And the joining area | region K joins the 1st joining area | region K1 which joins the 1st edge | side 111 of the separator 11 adjacent in a lamination direction, and the 2nd edge | side 112 of the separator 11 adjacent in a lamination direction. And at least the second junction region K2. Therefore, when the temperature of the secondary battery 1 is excessively increased due to abnormal overheating, the separator 11 can be prevented from contracting along the planes of the positive electrode 12 and the negative electrode 13 due to the heat.

また、第1の実施形態の二次電池1において、正極集電端子121が第1の辺111に交差してセパレータ11の外周よりも外側に延びており、負極集電端子131が第2の辺112に交差してセパレータ11の外周よりも外側に延びている。そして、第1の辺111に第1の接合領域K1が設けられ、第2の辺112に第2の接合領域が設けられている。つまり、それぞれの集電端子の一部である電極リードが延びた方向にセパレータ11が収縮することを効果的に抑制することができ、電極どうしが接触することを防止することができる。   Further, in the secondary battery 1 of the first embodiment, the positive electrode current collector terminal 121 intersects the first side 111 and extends outward from the outer periphery of the separator 11, and the negative electrode current collector terminal 131 is the second current collector terminal 131. It intersects the side 112 and extends outside the outer periphery of the separator 11. A first bonding region K1 is provided on the first side 111, and a second bonding region is provided on the second side 112. That is, it is possible to effectively prevent the separator 11 from contracting in the direction in which the electrode lead that is a part of each current collecting terminal extends, and to prevent the electrodes from contacting each other.

接着部Mが断続的に設けられているので、セパレータ11が収縮して、接着部Mを起点に裂けることがあっても、当該接着部Mが部分的に避けるだけにとどまり、広範囲にわたって裂けることを抑制できる。   Since the adhesive portion M is provided intermittently, even if the separator 11 contracts and tears from the adhesive portion M as a starting point, the adhesive portion M is only partially avoided and is torn over a wide range. Can be suppressed.

また二次電池1の正極12及び負極13からガスが発生しても、この二次電池1のセパレータ11は、隣り合うセパレータ11と断続的に接合されているので、発生したガスが非接着部Sを通ってコア10の外へ排出され易い。ガスが発生した位置から最も近い外周部へ排出されることで、二次電池1の変形を抑制することができる。   Even if gas is generated from the positive electrode 12 and the negative electrode 13 of the secondary battery 1, the separator 11 of the secondary battery 1 is intermittently joined to the adjacent separator 11. It is easy to be discharged out of the core 10 through S. By discharging to the nearest outer peripheral portion from the position where the gas is generated, deformation of the secondary battery 1 can be suppressed.

以下に、本発明の第2から第6の実施形態の二次電池1について、それぞれ図面を参照して説明する。第1の実施形態の二次電池1と同じ機能を有する構成は、同一の符号を用いると共に各図中においても同一の符号を付し、詳細な説明は、第1の実施形態の対応する記載及び必要に応じて図面を参照する。   Hereinafter, secondary batteries 1 according to second to sixth embodiments of the present invention will be described with reference to the drawings. Configurations having the same functions as those of the secondary battery 1 of the first embodiment use the same reference numerals, and in each drawing, are given the same reference numerals, and the detailed description corresponds to the description of the first embodiment. And, if necessary, refer to the drawings.

本発明に係る第2の実施形態の二次電池1について、図4及び図5を参照して説明する。この二次電池1は、正極12及び負極13の外周の四辺のうち少なくとも一辺に沿って接着部Mと非接着部Sとが交互に形成されるように積層方向に隣り合うセパレータ11に対して断続的に接合される。第2の実施形態において、1つのセパレータ11について着目した場合、正極12及び負極13の外周の四辺のうちの一辺で断続的に接合されたセパレータ11は、接合された一辺の対辺でさらに積層方向に隣り合うセパレータと断続的に接合される。   A secondary battery 1 according to a second embodiment of the present invention will be described with reference to FIGS. The secondary battery 1 is provided with respect to separators 11 adjacent to each other in the stacking direction so that adhesive portions M and non-adhesive portions S are alternately formed along at least one of the four sides of the outer periphery of the positive electrode 12 and the negative electrode 13. Intermittently joined. In the second embodiment, when attention is paid to one separator 11, the separator 11 that is intermittently bonded on one of the four sides of the outer periphery of the positive electrode 12 and the negative electrode 13 is further laminated in the stacking direction on the opposite side of the bonded one side. Are intermittently joined to separators adjacent to each other.

この第2の実施形態の場合、図4に示すように第1の辺111で接合されたセパレータ11は、その対辺に位置する第2の辺112でも同じセパレータ11と断続的に接合される。つまり、負極13を介して積層方向に隣り合う、すなわち負極13を挟むセパレータ11どうしが、第1の辺111及び第2の辺112で断続的に接合される。負極13の負極リード部133が第2の辺112を横切る部分は、溶着できない。そこで、負極リード部133が配置されるすぐ隣に配置される接着部Mの接合面積を大きくすることで、必要な接合強度を確保する。   In the case of the second embodiment, as shown in FIG. 4, the separator 11 joined at the first side 111 is intermittently joined to the same separator 11 also at the second side 112 located on the opposite side. In other words, the separators 11 adjacent to each other in the stacking direction via the negative electrode 13, that is, the separators 11 sandwiching the negative electrode 13 are intermittently joined at the first side 111 and the second side 112. A portion where the negative electrode lead portion 133 of the negative electrode 13 crosses the second side 112 cannot be welded. Therefore, the required bonding strength is ensured by increasing the bonding area of the bonding portion M disposed immediately adjacent to the negative electrode lead portion 133.

また、第1の実施形態と同様に、第3の辺113及び第4の辺114も負極13を囲うように断続的に接着部Mを設けた接合領域Kを設ける。なお、正極12と負極13との相対位置を維持するために、第3の辺113及びその対辺である第4の辺114は、正極12を介して積層方向に隣り合う、すなわち、正極12を挟むセパレータ11どうしを断続的に接合してもよい。   Similarly to the first embodiment, the third side 113 and the fourth side 114 are also provided with a bonding region K in which an adhesive portion M is provided intermittently so as to surround the negative electrode 13. In order to maintain the relative position between the positive electrode 12 and the negative electrode 13, the third side 113 and the fourth side 114, which is the opposite side, are adjacent to each other in the stacking direction via the positive electrode 12, that is, the positive electrode 12 is The sandwiching separators 11 may be joined intermittently.

以上のように構成された第2の実施形態の二次電池1は、セパレータ11が第1の辺111側及び第2の辺112側のそれぞれで負極13を挟むように接合されるので、異常過熱によって二次電池1の温度が上がってセパレータ11が収縮することを負極13によって抑制することができる。また、セパレータ11で囲われた正極12及び負極13の周りにガスが発生しても、セパレータ11が断続的に接合されているので、非接着部Sを通ってコアの外へ排出される。   Since the secondary battery 1 of the second embodiment configured as described above is joined so that the separator 11 sandwiches the negative electrode 13 on each of the first side 111 side and the second side 112 side, The negative electrode 13 can suppress the temperature of the secondary battery 1 from increasing due to overheating and causing the separator 11 to contract. Even if gas is generated around the positive electrode 12 and the negative electrode 13 surrounded by the separator 11, since the separator 11 is intermittently joined, it is discharged out of the core through the non-bonded portion S.

本発明に係る第3の実施形態の二次電池1について、図6を参照して説明する。図6に示す二次電池1のコア10において、容器2の外周壁に設けられた安全弁21に対峙する範囲に位置するセパレータ11の接着部MAを、正極12及び負極13の外周に沿う方向に、この範囲以外の接着部Mよりも小さくする。また、安全弁21に対峙する範囲に設けられる非接着部SAを、正極12及び負極13の外周に沿う方向に、この範囲以外の非接着部Sよりも大きくする。つまり、安全弁21に対峙する範囲の接着部MAを配置する間隔を広げている。   A secondary battery 1 according to a third embodiment of the present invention will be described with reference to FIG. In the core 10 of the secondary battery 1 shown in FIG. 6, the adhesive portion MA of the separator 11 located in a range facing the safety valve 21 provided on the outer peripheral wall of the container 2 is set in a direction along the outer periphery of the positive electrode 12 and the negative electrode 13. , And smaller than the adhesion part M outside this range. Further, the non-adhesive portion SA provided in the range facing the safety valve 21 is made larger than the non-adhesive portion S outside this range in the direction along the outer circumference of the positive electrode 12 and the negative electrode 13. That is, the space | interval which arrange | positions the adhesion part MA of the range which opposes the safety valve 21 is expanded.

セパレータ11の外周辺に沿う方向に、通常の接着部Mの長さをML1、安全弁21に対峙する範囲の接着部MAの長さをML2、通常の非接着部Sの長さをSL1、安全弁21に対峙する範囲の非接着部SAの長さをSL2とそれぞれ定義すると、ML1>ML2であり、SL1<SL2である。さらに、安全弁21に対峙する範囲の接着部MAの長さML2よりも非接着部SAの長さSL2の方が大きくなる、つまり、ML2<SL2にすることも好ましい。   In the direction along the outer periphery of the separator 11, the length of the normal bonded portion M is ML1, the length of the bonded portion MA in the range facing the safety valve 21 is ML2, the length of the normal non-bonded portion S is SL1, and the safety valve When the lengths of the non-adhesive portions SA in the range opposite to 21 are defined as SL2, ML1> ML2 and SL1 <SL2. Furthermore, it is also preferable that the length SL2 of the non-bonded portion SA is larger than the length ML2 of the bonded portion MA in the range facing the safety valve 21, that is, ML2 <SL2.

以上のように、安全弁21に対峙する範囲の接着部MAの長さML2を短くし非接着部SAの長さSL2を大きくすることで、開口率を大きくしている。個々の接着部Mの接合強度を確保するために、接着部Mの大きさを変えずに配置する間隔だけを広げる、つまり、非接着部SAを大きくするだけでもよい。   As described above, the aperture ratio is increased by shortening the length ML2 of the bonded portion MA in the range facing the safety valve 21 and increasing the length SL2 of the non-bonded portion SA. In order to secure the bonding strength of the individual bonded portions M, only the interval between the bonded portions M may be increased without changing the size of the bonded portions M, that is, the non-bonded portion SA may be increased.

安全弁21に対峙する範囲の非接着部SAを広げることで、コアの内部に発生したガスを安全弁21側へ排出しやすくする。発生したガスを積極的に安全弁21側へ放出することによって、セパレータ11が損傷することを防止する。   By expanding the non-adhesive portion SA in a range facing the safety valve 21, the gas generated inside the core can be easily discharged to the safety valve 21 side. By positively releasing the generated gas to the safety valve 21 side, the separator 11 is prevented from being damaged.

本発明に係る第4の実施形態の二次電池1について、図7を参照して説明する。図7に示す二次電池1のコア10において、セパレータ11の第3の辺113及びこの対辺である第4の辺114に設けられる接着部Mは、正極12及び負極13の外周から離れる方向に幅を有している。そして、接着部Mの内周側の溶着長さML3は、外周側の溶着長さML4よりも、正極12及び負極13の外周に沿う方向に小さく形成している。つまり、外周側よりも内周側の長さが短い台形に、接着部Mが形成されている。言い換えると、非接着部Sの内周側の長さSL3の方が外周側の長さSL4よりも大きい。   A secondary battery 1 according to a fourth embodiment of the present invention will be described with reference to FIG. In the core 10 of the secondary battery 1 shown in FIG. 7, the bonding portion M provided on the third side 113 of the separator 11 and the fourth side 114 that is the opposite side is separated from the outer periphery of the positive electrode 12 and the negative electrode 13. It has a width. And the welding length ML3 of the inner peripheral side of the adhesion part M is formed smaller in the direction along the outer periphery of the positive electrode 12 and the negative electrode 13 than the welding length ML4 of the outer peripheral side. That is, the adhesion part M is formed in a trapezoid whose inner peripheral side is shorter than the outer peripheral side. In other words, the length SL3 on the inner peripheral side of the non-bonded portion S is larger than the length SL4 on the outer peripheral side.

このように接着部M及び非接着部Sを形成することによって、コア10の内部に発生したガスは、さらに非接着部Sを通って外へ放出しやすく、かつ、コア10と容器2との間に製造時に混入した金属片などの微物がコア10の内部へ侵入することを抑制することができる。したがって、接着部Mの外周側の溶着長さML4は、非接着部Sの外周側の長さSL4よりも、大きくするとさらによい。   By forming the adhesion part M and the non-adhesion part S in this way, the gas generated inside the core 10 can be easily released to the outside through the non-adhesion part S, and between the core 10 and the container 2. It is possible to prevent fine objects such as metal pieces mixed during manufacture from entering the core 10. Therefore, it is more preferable that the welding length ML4 on the outer peripheral side of the bonded portion M is larger than the length SL4 on the outer peripheral side of the non-bonded portion S.

本発明に係る第5の実施形態の二次電池1について、図8を参照して説明する。図8に示す二次電池1のコア10において、接着部Mの形状が第4の実施形態と異なっている。第5の実施形態の接着部Mの内周側の溶着長さML3は、ほぼゼロであり、したがって、接着部Mの形状は、図8に示すように内周側に頂点を有する三角形である。このように接着部Mが形成されていることによって、コア10の内部で発生したガスは、コア10の外に向かって移動するときに接着部Mに邪魔されることなく、排出され易くなる。   A secondary battery 1 according to a fifth embodiment of the present invention will be described with reference to FIG. In the core 10 of the secondary battery 1 shown in FIG. 8, the shape of the adhesive part M is different from that of the fourth embodiment. The weld length ML3 on the inner peripheral side of the adhesive part M of the fifth embodiment is substantially zero, and therefore the shape of the adhesive part M is a triangle having a vertex on the inner peripheral side as shown in FIG. . By forming the bonding portion M in this way, the gas generated inside the core 10 is easily discharged without being obstructed by the bonding portion M when moving toward the outside of the core 10.

本発明に係る第6の実施形態の二次電池1について、図9及び図10を参照して説明する。図9及び図10に示す二次電池1のコア10において、セパレータ11は、第1の辺111側及び第2の辺112側の両方で、電極の積層方向に隣り合うセパレータ11に対して第1の辺111及び第2の辺112に沿う方向へ断続的に接合されている。このとき、正極集電端子121及び負極集電端子131が横切っている範囲のセパレータ11どうしの接合強度を高めるために、正極集電端子121及び負極集電端子131は、少なくともセパレータ11の外周縁に形成される接合領域Kを横切る範囲、この場合は、第1の接合領域K1及び第2の接合領域K2を横切る範囲に、積層方向に貫通する複数の孔で構成された結合部124,134が設けられている。結合部124,134は、図11に示したように、いわゆるパンチングプレートのように円い孔が多数開けられていてもよいし、接着部Mの接合面積と同程度の開口部が配置されているだけでもよい。   A secondary battery 1 according to a sixth embodiment of the present invention will be described with reference to FIGS. 9 and 10. In the core 10 of the secondary battery 1 shown in FIG. 9 and FIG. 10, the separator 11 is the second of the separators 11 adjacent to each other in the electrode stacking direction on both the first side 111 side and the second side 112 side. The first side 111 and the second side 112 are joined intermittently in the direction. At this time, in order to increase the bonding strength between the separators 11 in a range where the positive electrode current collector terminal 121 and the negative electrode current collector terminal 131 are crossed, the positive electrode current collector terminal 121 and the negative electrode current collector terminal 131 are at least the outer periphery of the separator 11. In the range crossing the bonding region K formed in this, in this case, the range crossing the first bonding region K1 and the second bonding region K2, the coupling portions 124, 134 constituted by a plurality of holes penetrating in the stacking direction. Is provided. As shown in FIG. 11, the coupling portions 124 and 134 may have a large number of round holes such as a so-called punching plate, or an opening having the same area as the bonding area of the bonding portion M is arranged. Just be there.

正極集電端子121及び負極集電端子131が結合部124,134を有していることによって、正極集電端子121及び負極集電端子131を積層方向に挟んでセパレータ11を溶着することができる。結合部124,134を通してセパレータ11が溶着されることによって、セパレータ11が正極集電端子121及び負極集電端子131に固定される。このときセパレータ11は、第1の辺111において正極集電端子121に固定され、第2の辺112において負極集電端子131に固定される。つまり、セパレータ11は、一対の対辺どうしが固定されるので、セパレータ11が熱で収縮することを抑制することができる。   Since the positive electrode current collector terminal 121 and the negative electrode current collector terminal 131 have the coupling portions 124 and 134, the separator 11 can be welded with the positive electrode current collector terminal 121 and the negative electrode current collector terminal 131 sandwiched in the stacking direction. . The separator 11 is welded through the coupling portions 124 and 134, whereby the separator 11 is fixed to the positive electrode current collector terminal 121 and the negative electrode current collector terminal 131. At this time, the separator 11 is fixed to the positive electrode current collector terminal 121 at the first side 111 and is fixed to the negative electrode current collector terminal 131 at the second side 112. That is, since a pair of opposite sides is fixed to the separator 11, it can suppress that the separator 11 shrink | contracts with a heat | fever.

さらに、この実施形態の二次電池1によれば、正極集電端子121と反対側に位置するセパレータ11の第2の辺112どうし、負極集電端子131と反対側に位置するセパレータ11の第1の辺111どうしをそれぞれ接合するのと同時に、正極集電端子121及び負極集電端子131の結合部124,134を積層方向に重ねて溶着することができる。つまり、セパレータ11を間に挟んで正極12及び負極13を積層した後で、まとめて溶着できるので、コア10の生産性、二次電池1の生産性が向上する。   Furthermore, according to the secondary battery 1 of this embodiment, the second sides 112 of the separator 11 located on the side opposite to the positive electrode current collecting terminal 121, and the second side 112 of the separator 11 located on the side opposite to the negative electrode current collecting terminal 131 are used. At the same time as joining one side 111 to each other, the coupling portions 124 and 134 of the positive current collecting terminal 121 and the negative current collecting terminal 131 can be stacked and welded in the stacking direction. That is, since the positive electrode 12 and the negative electrode 13 can be stacked together after the separator 11 is sandwiched therebetween, the productivity of the core 10 and the productivity of the secondary battery 1 are improved.

なお、上述の第1から第6の実施形態は、自由に組み合わせて実施することができる。例えば、第3の実施形態のように安全弁21に対峙する範囲の接着部Mと非接着部Sの大きさを変えることや、第4及び第5の実施形態のように接着部Mの形状を変えることなどは、他の実施形態にも適用可能である。   The first to sixth embodiments described above can be implemented in any combination. For example, the size of the bonded portion M and the non-bonded portion S in the range facing the safety valve 21 as in the third embodiment is changed, or the shape of the bonded portion M is changed as in the fourth and fifth embodiments. Such changes can be applied to other embodiments.

1…二次電池、2…容器、21…安全弁、10…コア、11…セパレータ、111…第1の辺、112…第2の辺、12…正極、121…正極集電端子、123…正極リード部、13…負極、131…負極集電端子、133…負極リード部、124,134…結合部、K…接合領域、K1…第1の接合領域、K2…第2の接合領域。   DESCRIPTION OF SYMBOLS 1 ... Secondary battery, 2 ... Container, 21 ... Safety valve, 10 ... Core, 11 ... Separator, 111 ... 1st edge | side, 112 ... 2nd edge | side, 12 ... Positive electrode, 121 ... Positive electrode current collection terminal, 123 ... Positive electrode Lead part, 13 ... negative electrode, 131 ... negative electrode current collecting terminal, 133 ... negative electrode lead part, 124, 134 ... coupling part, K ... joining region, K1 ... first joining region, K2 ... second joining region.

Claims (7)

第1の辺とこの対辺に位置する第2の辺とを有するセパレータを間に挟んで正極及び負極が交互に積層して形成されたコアを備えた二次電池であって、
前記セパレータは、積層方向に隣り合う少なくとも一方のセパレータに対して接着部と非接着部とが交互に形成されるように前記コアの各層において断続的に接合された接合領域を有し、
前記接合領域は、前記第1の辺どうしが断続的に接合された第1の接合領域と、前記第2の辺どうしが断続的に接合された第2の接合領域と、を含む
ことを特徴とする二次電池。
A secondary battery comprising a core formed by alternately laminating positive and negative electrodes with a separator having a first side and a second side located on the opposite side in between,
The separator has a bonding region that is intermittently bonded in each layer of the core so that an adhesive portion and a non-adhesive portion are alternately formed with respect to at least one separator adjacent in the stacking direction,
The bonding region includes a first bonding region in which the first sides are intermittently bonded and a second bonding region in which the second sides are intermittently bonded. Secondary battery.
前記セパレータは、積層方向に一方側で隣り合う一方側セパレータに対して前記第1の接合領域で接合され、積層方向に反対側で隣り合う反対側セパレータに対して前記第2の接合領域で接合される
ことを特徴とする請求項1に記載された二次電池。
The separator is bonded to the one-side separator adjacent on one side in the stacking direction at the first bonding region, and bonded to the opposite separator adjacent on the opposite side in the stacking direction at the second bonding region. The secondary battery according to claim 1, wherein:
前記コアを格納する容器と、前記容器の外周壁に設けられ設定された内圧を超える場合に開放される安全弁と、を備え、
前記安全弁に対峙する範囲に設けられる接着部は、それ以外の範囲に設けられる前記接着部よりも前記正極及び前記負極の外周に沿う方向に小さく、
前記安全弁に対峙する範囲に設けられる非接着部は、それ以外の範囲に設けられる前記非接着部よりも前記正極及び前記負極の外周に沿う方向に大きい
ことを特徴とする請求項1または請求項2に記載された二次電池。
A container that stores the core, and a safety valve that is opened when an internal pressure set on an outer peripheral wall of the container is exceeded,
The adhesive portion provided in the range facing the safety valve is smaller in the direction along the outer periphery of the positive electrode and the negative electrode than the adhesive portion provided in the other range,
The non-adhesive part provided in the range facing the safety valve is larger in the direction along the outer periphery of the positive electrode and the negative electrode than the non-adhesive part provided in the other range. The secondary battery described in 2.
前記接着部は、前記正極及び前記負極の外周から離れる方向に幅を有しており、前記正極及び前記負極の外周に沿う方向における前記セパレータの内周側の接着長さが前記セパレータの外周側の接着長さよりも小さい
ことを特徴とする請求項1から請求項3のいずれか1項に記載された二次電池。
The adhesive portion has a width in a direction away from the outer periphery of the positive electrode and the negative electrode, and an adhesive length on the inner peripheral side of the separator in a direction along the outer periphery of the positive electrode and the negative electrode is the outer peripheral side of the separator 4. The secondary battery according to claim 1, wherein the secondary battery is smaller than an adhesion length of the secondary battery. 5.
前記接着部の前記セパレータの外周側の接着長さは、前記非接着部の前記セパレータの外周側の非接着長さよりも大きい
ことを特徴とする請求項4に記載された二次電池。
5. The secondary battery according to claim 4, wherein an adhesion length on an outer peripheral side of the separator in the adhesion portion is larger than a non-adhesion length on an outer circumference side of the separator in the non-adhesion portion.
前記正極及び前記負極は、前記第1の辺または前記第2の辺に交差して前記セパレータの外周よりも外側に延びた正極集電端子及び負極集電端子を有する
ことを特徴とする請求項1から請求項5のいずれか1項に記載された二次電池。
The positive electrode and the negative electrode have a positive electrode current collector terminal and a negative electrode current collector terminal that intersect the first side or the second side and extend outward from the outer periphery of the separator. The secondary battery according to any one of claims 1 to 5.
前記正極集電端子及び前記負極集電端子は、積層方向に貫通する複数の孔が設けられた結合部を少なくとも前記接合領域を横切る範囲にそれぞれ有し、
前記セパレータは、積層方向に隣り合うセパレータに対して、前記正極集電端子及び前記負極集電端子の前記結合部を通して接合される
ことを特徴とする請求項6に記載された二次電池。
The positive electrode current collector terminal and the negative electrode current collector terminal each have a coupling portion provided with a plurality of holes penetrating in the stacking direction in a range crossing at least the joining region,
The secondary battery according to claim 6, wherein the separator is bonded to a separator adjacent in the stacking direction through the coupling portion of the positive current collector terminal and the negative current collector terminal.
JP2013086631A 2013-04-17 2013-04-17 Secondary battery Expired - Fee Related JP6163847B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013086631A JP6163847B2 (en) 2013-04-17 2013-04-17 Secondary battery
KR1020140044819A KR101589811B1 (en) 2013-04-17 2014-04-15 Rechargeable battery
CN201410153885.9A CN104112835B (en) 2013-04-17 2014-04-16 Secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013086631A JP6163847B2 (en) 2013-04-17 2013-04-17 Secondary battery

Publications (2)

Publication Number Publication Date
JP2014211974A true JP2014211974A (en) 2014-11-13
JP6163847B2 JP6163847B2 (en) 2017-07-19

Family

ID=51709548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013086631A Expired - Fee Related JP6163847B2 (en) 2013-04-17 2013-04-17 Secondary battery

Country Status (3)

Country Link
JP (1) JP6163847B2 (en)
KR (1) KR101589811B1 (en)
CN (1) CN104112835B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019012825A1 (en) * 2017-07-14 2019-01-17 日本電気株式会社 Bag-shaped separator for electric storage device, thermal bonding method and thermal bonding device therefor, and electric storage device
CN111095647A (en) * 2017-09-12 2020-05-01 罗伯特·博世有限公司 Method for producing an electrode arrangement, electrode arrangement and battery cell comprising at least one electrode arrangement
JP2020144996A (en) * 2019-03-04 2020-09-10 積水化学工業株式会社 Power storage element and manufacturing method of power storage element
DE102019216043A1 (en) * 2019-10-17 2021-04-22 Volkswagen Aktiengesellschaft Process for the production of an energy cell as well as an energy cell
CN114556648A (en) * 2019-10-21 2022-05-27 株式会社Lg新能源 Method of manufacturing electrode assembly and electrode assembly manufactured by the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104577004B (en) * 2014-12-25 2017-01-04 山东精工电子科技有限公司 A kind of polymer Li-ion battery of fixing barrier film and preparation method thereof
WO2022108080A1 (en) 2020-11-18 2022-05-27 주식회사 엘지에너지솔루션 Secondary battery and manufacturing method for same
WO2022250307A1 (en) * 2021-05-24 2022-12-01 주식회사 엘지에너지솔루션 Unit cell and battery cell comprising same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10188938A (en) * 1996-12-20 1998-07-21 Ricoh Co Ltd Battery device
JP2000315489A (en) * 1999-04-30 2000-11-14 Shin Kobe Electric Mach Co Ltd Rectangular nonaquous electrolyte secondary battery
JP2003092100A (en) * 2001-09-19 2003-03-28 Nec Corp Laminated cell
JP2012069378A (en) * 2010-09-24 2012-04-05 Sanyo Electric Co Ltd Stacked cell
JP2012178326A (en) * 2011-01-31 2012-09-13 Sanyo Electric Co Ltd Lamination type battery and manufacturing method for the same
JP2012227117A (en) * 2011-04-07 2012-11-15 Nissan Motor Co Ltd Battery, manufacturing method of the battery, and bagged electrode
JP2013196837A (en) * 2012-03-16 2013-09-30 Tdk Corp Nonaqueous secondary battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006120959A1 (en) * 2005-05-10 2006-11-16 Matsushita Electric Industrial Co., Ltd. Battery
CN101626094B (en) * 2008-07-11 2015-09-30 东莞新能源科技有限公司 Lithium ion battery and battery thereof
JP5456542B2 (en) * 2010-04-01 2014-04-02 日立ビークルエナジー株式会社 Rectangular secondary battery and method for manufacturing prismatic secondary battery
JP5147976B2 (en) 2010-11-01 2013-02-20 帝人株式会社 Connected porous sheet and method for producing the same, separator for non-aqueous secondary battery, non-aqueous secondary battery and method for producing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10188938A (en) * 1996-12-20 1998-07-21 Ricoh Co Ltd Battery device
JP2000315489A (en) * 1999-04-30 2000-11-14 Shin Kobe Electric Mach Co Ltd Rectangular nonaquous electrolyte secondary battery
JP2003092100A (en) * 2001-09-19 2003-03-28 Nec Corp Laminated cell
JP2012069378A (en) * 2010-09-24 2012-04-05 Sanyo Electric Co Ltd Stacked cell
JP2012178326A (en) * 2011-01-31 2012-09-13 Sanyo Electric Co Ltd Lamination type battery and manufacturing method for the same
JP2012227117A (en) * 2011-04-07 2012-11-15 Nissan Motor Co Ltd Battery, manufacturing method of the battery, and bagged electrode
JP2013196837A (en) * 2012-03-16 2013-09-30 Tdk Corp Nonaqueous secondary battery

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019012825A1 (en) * 2017-07-14 2019-01-17 日本電気株式会社 Bag-shaped separator for electric storage device, thermal bonding method and thermal bonding device therefor, and electric storage device
JPWO2019012825A1 (en) * 2017-07-14 2020-06-18 日本電気株式会社 Bag-shaped separator for power storage device, thermal bonding method and thermal bonding apparatus thereof, and power storage device
JP7047842B2 (en) 2017-07-14 2022-04-05 日本電気株式会社 A bag-shaped separator for a power storage device, its heat bonding method and heat bonding device, and a power storage device.
CN111095647A (en) * 2017-09-12 2020-05-01 罗伯特·博世有限公司 Method for producing an electrode arrangement, electrode arrangement and battery cell comprising at least one electrode arrangement
KR20200051751A (en) * 2017-09-12 2020-05-13 로베르트 보쉬 게엠베하 Method for manufacturing electrode assembly, electrode assembly, and battery cell including one or more electrode assemblies
CN111095647B (en) * 2017-09-12 2023-10-31 罗伯特·博世有限公司 Electrode device, method of manufacturing the same, and battery cell including the electrode device
KR102616553B1 (en) * 2017-09-12 2023-12-27 로베르트 보쉬 게엠베하 Method of manufacturing electrode assembly, electrode assembly, and battery cell including one or more electrode assemblies
JP2020144996A (en) * 2019-03-04 2020-09-10 積水化学工業株式会社 Power storage element and manufacturing method of power storage element
JP7201482B2 (en) 2019-03-04 2023-01-10 積水化学工業株式会社 Storage element and method for manufacturing storage element
DE102019216043A1 (en) * 2019-10-17 2021-04-22 Volkswagen Aktiengesellschaft Process for the production of an energy cell as well as an energy cell
CN114556648A (en) * 2019-10-21 2022-05-27 株式会社Lg新能源 Method of manufacturing electrode assembly and electrode assembly manufactured by the same
CN114556648B (en) * 2019-10-21 2024-10-29 株式会社Lg新能源 Method of manufacturing electrode assembly and electrode assembly manufactured by the same

Also Published As

Publication number Publication date
KR101589811B1 (en) 2016-01-28
CN104112835A (en) 2014-10-22
KR20140125305A (en) 2014-10-28
CN104112835B (en) 2016-08-31
JP6163847B2 (en) 2017-07-19

Similar Documents

Publication Publication Date Title
JP6163847B2 (en) Secondary battery
JP5906354B2 (en) Secondary battery, secondary battery component applied to the secondary battery, and secondary battery manufacturing method
JP6154403B2 (en) Battery cell having asymmetric structure and battery pack including the same
JP5114036B2 (en) Manufacturing method of stacked battery
KR101547403B1 (en) Secondary battery comprising unified positive lead and negative lead and the method for preparing thereof
JP6041394B2 (en) Non-aqueous electrolyte secondary battery
JP5550805B2 (en) Electrode assembly having stable electrode lead-electrode tab joint and electrochemical cell having the same
WO2011099224A1 (en) Stacked secondary battery
JP5309434B2 (en) Thin battery
JP2007250319A (en) Stacked battery
JP2003092100A (en) Laminated cell
KR101139016B1 (en) Lithium secondary battery having multi-directional lead-tab structure
JP2013105742A (en) Battery cell, and battery module including the same
JP2012048989A (en) Laminated type battery
JP2013037816A (en) Battery and manufacturing method therefor
WO2013018551A1 (en) Battery
WO2013031937A1 (en) Lithium-ion secondary battery
JP2019194949A (en) Laminate type battery
JP2017063002A (en) Lamination type battery manufacturing method
JP7453740B2 (en) Power storage device
JP2018055904A (en) Electrochemical cell and manufacturing method of the electrochemical cell
JP2008091268A (en) Low-profile battery
JP2018195393A (en) Manufacturing method of film sheathing battery and film sheathing battery
JP2014232591A (en) Battery element for secondary battery, and manufacturing method thereof
TWI424604B (en) A method for producing a laminate type secondary battery and laminate type secondary batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170605

R151 Written notification of patent or utility model registration

Ref document number: 6163847

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees