JP2014210287A - Fused flux to be used for submerged arc welding - Google Patents
Fused flux to be used for submerged arc welding Download PDFInfo
- Publication number
- JP2014210287A JP2014210287A JP2014054544A JP2014054544A JP2014210287A JP 2014210287 A JP2014210287 A JP 2014210287A JP 2014054544 A JP2014054544 A JP 2014054544A JP 2014054544 A JP2014054544 A JP 2014054544A JP 2014210287 A JP2014210287 A JP 2014210287A
- Authority
- JP
- Japan
- Prior art keywords
- mass
- slag
- flux
- weld metal
- caf
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000004907 flux Effects 0.000 title claims abstract description 70
- 238000003466 welding Methods 0.000 title claims description 60
- 239000002893 slag Substances 0.000 claims abstract description 48
- 239000012535 impurity Substances 0.000 claims abstract description 3
- 229910004261 CaF 2 Inorganic materials 0.000 claims description 23
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 17
- 239000000155 melt Substances 0.000 claims description 17
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 16
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 15
- 229910052751 metal Inorganic materials 0.000 abstract description 53
- 239000002184 metal Substances 0.000 abstract description 53
- 239000011324 bead Substances 0.000 abstract description 30
- 238000005984 hydrogenation reaction Methods 0.000 abstract 1
- 238000006213 oxygenation reaction Methods 0.000 abstract 1
- 229910052760 oxygen Inorganic materials 0.000 description 26
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 24
- 239000001301 oxygen Substances 0.000 description 24
- 239000001257 hydrogen Substances 0.000 description 16
- 229910052739 hydrogen Inorganic materials 0.000 description 16
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 15
- 238000000034 method Methods 0.000 description 14
- 229910000831 Steel Inorganic materials 0.000 description 10
- 239000010959 steel Substances 0.000 description 10
- 238000001816 cooling Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 229910052596 spinel Inorganic materials 0.000 description 5
- 239000011029 spinel Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- VASIZKWUTCETSD-UHFFFAOYSA-N manganese(II) oxide Inorganic materials [Mn]=O VASIZKWUTCETSD-UHFFFAOYSA-N 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 150000001339 alkali metal compounds Chemical group 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 229910052566 spinel group Inorganic materials 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000012086 standard solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000004017 vitrification Methods 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/36—Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
Landscapes
- Nonmetallic Welding Materials (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
Abstract
Description
本発明は、サブマージアーク溶接に好適な溶融型フラックスに関するもので、特にラインパイプ、原油タンク、LPGタンク等に用いられる高張力鋼をサブマージアーク溶接する際に好適に用いられ、溶接後の水素起因の割れを生じることなく、ビード形状とスラグ剥離性が優れていることから、溶接作業性が良好で、しかも溶接金属の酸素量が低く、溶接金属の低温靭性が向上する溶融型フラックスに関するものである。 The present invention relates to a melt-type flux suitable for submerged arc welding, and is particularly suitable for submerged arc welding of high-strength steel used for line pipes, crude oil tanks, LPG tanks, etc. It has a bead shape and excellent slag releasability without causing cracks, and it is related to a melt-type flux that has good welding workability, low oxygen content in the weld metal, and improved low-temperature toughness of the weld metal. is there.
ラインパイプや各種タンク等に用いられるUOE鋼管、鋼材の自動溶接技術として、MIG溶接、CO2溶接、サブマージアーク溶接が従来から知られている。その中でもサブマージアーク溶接は、高能率で施工でき、かつ高性能な溶接金属を得ることができる溶接技術として広く採用されている。
サブマージアーク溶接で用いるフラックスは、溶融型フラックスと焼成型フラックスがある。溶融型フラックスは、種々の鉱物質を原材料として1200℃以上の高温度で溶融し、冷却して固化した後、さらに粉末状に粉砕したものであり、吸湿し難く、かつ取扱いや保管が容易であるという利点を持つ。一方で、焼成型フラックスは、原材料に結合剤(たとえば水ガラス等)を少量加えて造粒した後、約600℃で焼成したものであり、溶接金属の組成を容易に調節できるという利点を有するが、反面、吸湿し易いという欠点を持つ。
MIG welding, CO 2 welding, and submerged arc welding are conventionally known as automatic welding techniques for UOE steel pipes and steel materials used for line pipes and various tanks. Among them, submerged arc welding is widely adopted as a welding technique that can be applied with high efficiency and can obtain a high-performance weld metal.
Flux used in submerged arc welding includes molten flux and fired flux. The melt-type flux is made by melting various minerals at a high temperature of 1200 ° C or higher, cooling and solidifying it, and then crushing it into a powder. It is difficult to absorb moisture and is easy to handle and store. Has the advantage of being. On the other hand, the calcining type flux is obtained by adding a small amount of a binder (for example, water glass) to the raw material, granulating it, and calcining at about 600 ° C., and has the advantage that the composition of the weld metal can be easily adjusted. However, on the other hand, it has the disadvantage of being easy to absorb moisture.
溶融型フラックスと焼成型フラックスは、いずれも溶接部を大気から遮断して溶接金属の酸化、窒化を防止するとともに、溶融メタルとの冶金反応によって短時間で清浄な溶接金属を形成する等、サブマージアーク溶接にて重要な機能を果たす。
とりわけ溶融型フラックスは、多電極の高速溶接に適しており、かつ溶接金属中の酸素量を低減でき、良好なビード外観が得られるので、ラインパイプ用のUOE鋼管のように高速溶接性とともに厳しい機械的性質が要求される場合に、使用されることが多い。
Both the melt-type flux and the firing-type flux are submerged such that the weld is shielded from the atmosphere to prevent oxidation and nitridation of the weld metal, and a clean weld metal is formed in a short time by a metallurgical reaction with the molten metal. It plays an important function in arc welding.
In particular, the melt-type flux is suitable for high-speed welding of multi-electrodes, and can reduce the amount of oxygen in the weld metal and provide a good bead appearance. Therefore, it is severe with high-speed weldability like UOE steel pipes for line pipes. Often used when mechanical properties are required.
溶融型フラックスの組成を調節して、溶接金属中の酸素量を低減すれば、溶接金属の靭性を高めることができ、溶融型フラックスの組成を調節する一つの手段として、塩基度を上げる方法が知られている。しかし、単に溶融型フラックスの塩基度を上げるだけでは、溶接金属の酸素量をある程度低減できるものの、良好なビード形状が得られないし、しかも溶接スラグの剥離性が劣化する等の問題が残る。 By adjusting the composition of the melt-type flux and reducing the amount of oxygen in the weld metal, the toughness of the weld metal can be increased. As one means of adjusting the composition of the melt-type flux, there is a method of increasing the basicity. Are known. However, by simply increasing the basicity of the molten flux, the oxygen content of the weld metal can be reduced to some extent, but a good bead shape cannot be obtained, and problems such as deterioration of the peelability of the weld slag remain.
この問題を解決するために、高塩基度の溶融型フラックスが種々提案されている。たとえば特許文献1に、CaOをMgOやBaOに置換し、さらにアルカリ金属化合物を添加した溶融型フラックス、特許文献2に、Na2B4O7を添加した溶融型フラックスが開示されている。これら特許文献1、2に開示された溶融型フラックスは、いずれも成分を規定することによって、溶接金属の靭性向上を達成するとともに、溶接作業性を改善するものである。 In order to solve this problem, various melt fluxes with high basicity have been proposed. For example, Patent Document 1 discloses a melt type flux in which CaO is replaced with MgO or BaO and an alkali metal compound is further added, and Patent Document 2 discloses a melt type flux in which Na 2 B 4 O 7 is added. The melt type fluxes disclosed in these Patent Documents 1 and 2 both achieve toughness improvement of the weld metal and improve welding workability by defining the components.
一方で、溶接作業性を改善する観点から、溶接によって形成されるスラグの高温粘度に着目し、スラグの特性を制御する技術が検討されている。たとえば特許文献3、4に、スラグを1200℃以上で凝固させることによって、傾斜溶接におけるスラグ巻き込みやアンダーカット等を抑制し、溶接速度を向上する技術が開示されている。さらに、特許文献5に、高塩基度の溶融型フラックスを使用した場合のスラグの粘度を制御することによって、溶接金属の酸素量低減と溶接施工の作業性改善とを図る技術が開示されている。 On the other hand, from the viewpoint of improving welding workability, attention is paid to the high-temperature viscosity of slag formed by welding, and techniques for controlling the characteristics of slag are being studied. For example, Patent Documents 3 and 4 disclose techniques for improving the welding speed by suppressing slag entrainment and undercut in inclined welding by solidifying slag at 1200 ° C. or higher. Furthermore, Patent Document 5 discloses a technique for reducing the oxygen content of the weld metal and improving the workability of the welding work by controlling the viscosity of the slag when using a high basicity melt-type flux. .
また、ラインパイプの高強度化のニーズが高まっていることから、厚肉高強度のUOE鋼管の需要が増加しているが、高張力鋼の溶接によって形成される溶接金属は、溶接後に水素起因の割れ感受性が高まるので、溶接金属の低水素化を図る必要がある。そのため、高張力鋼のサブマージアーク溶接では、溶接金属の低水素化のみならず、上記したように低酸素化を達成できる溶融型フラックスを使用する必要がある。 In addition, the need for high-strength UOE steel pipes is increasing due to increasing needs for high-strength line pipes, but the weld metal formed by welding high-strength steel is caused by hydrogen after welding. Therefore, it is necessary to reduce the weld metal hydrogen. Therefore, in the submerged arc welding of high-tensile steel, it is necessary to use a molten flux that can achieve not only lowering of the weld metal but also lowering of oxygen as described above.
ところが溶接金属の低酸素化を達成するために高塩基度の溶融型フラックスを使用すると、溶接金属の水素量が増加する傾向が強くなる。これは、溶融型フラックスの塩基度の上昇によって、スラグ中のCa4F2Si2O7(以下、Cuspidineという)が増加することが原因である。つまりCuspidineは、CaO、CaF2、SiO2からなる化合物であり、高温で溶解するときに、結晶構造内に水素を取込み易い物質であるから、スラグ中のCuspidineの増加に伴って、溶接金属の水素量が増加すると考えられる。 However, when a high-basic molten flux is used to achieve low oxygen content in the weld metal, the tendency for the hydrogen content of the weld metal to increase increases. This is because Ca 4 F 2 Si 2 O 7 (hereinafter referred to as Cuspidine) in the slag increases due to an increase in the basicity of the molten flux. In other words, Cuspidine is a compound composed of CaO, CaF 2 , SiO 2 and is a substance that easily incorporates hydrogen into the crystal structure when dissolved at high temperatures. It is thought that the amount of hydrogen increases.
耐サワー環境で使用されるラインパイプは、溶接部の硬化性を下げる(すなわち靭性を高める)ために溶接金属中の合金元素量を低く抑える必要があり、かつ酸素量も低減する必要がある。また、ビードの形状、スラグの剥離性、溶接施工の作業性は、溶接金属中の酸素量を低減しながら、改善する必要がある。
一方で、高強度ラインパイプは、溶接金属の低温割れ(すなわち水素起因の割れ)感受性を抑えるために、溶接金属中の水素量を低減する必要がある。
In a line pipe used in a sour-resistant environment, it is necessary to keep the amount of alloying elements in the weld metal low in order to reduce the hardenability of the welded portion (that is, increase the toughness), and also to reduce the oxygen amount. In addition, the bead shape, slag peelability, and welding workability need to be improved while reducing the amount of oxygen in the weld metal.
On the other hand, the high-strength line pipe needs to reduce the amount of hydrogen in the weld metal in order to suppress the sensitivity of the weld metal to low-temperature cracking (that is, cracking due to hydrogen).
ところが、溶接金属中の酸素量の低減と水素量の低減とを併せて可能にし、しかも高速溶接(溶接速度200cm/分以上)におけるビードの形状やスラグの剥離性など溶接施工の作業性に優れた溶融型フラックスは、未だ開発されていない。
そこで本発明は、ラインパイプ等の高い靭性が要求される溶接金属を形成するためのサブマージアーク溶接にて、溶接金属の低酸素化と低水素化とを達成でき、しかも溶接作業性(すなわちビードの形状、スラグの剥離性等)も良好な溶融型フラックスを提供することを目的とする。
However, it is possible to reduce both the amount of oxygen in the weld metal and the amount of hydrogen, and it has excellent welding workability such as bead shape and slag peelability in high-speed welding (welding speed of 200 cm / min or more). No molten flux has yet been developed.
Therefore, the present invention can achieve low oxygen and low hydrogen of weld metal in submerged arc welding for forming a weld metal that requires high toughness such as a line pipe, and also can achieve welding workability (that is, beading). The shape of the slag, the slag releasability, etc.) are also provided.
発明者らは、上記の課題を解決するために鋭意検討を行なった結果、溶接金属の低酸素化のためには、溶融型フラックスの塩基度を所定の値に規定する必要があり、溶接金属の低水素化のためには、Cuspidineの晶出を抑える溶融型フラックスを使用する必要があることを見出した。
つまり溶接金属の低水素化を図るためには、Cuspidineが初晶でスラグ中に大量に晶出するのを防ぐとともに、初晶スピネルの晶出も低減する必要がある。その理由は、スピネルが初晶でスラグ中に多量に晶出すると、初晶スピネルの周囲にCuspidineが引き続き晶出するからである。したがって、スピネルの晶出量に影響を及ぼすAl2O3とMgOの量を制限した溶融型フラックスを使用する必要がある。
As a result of intensive studies to solve the above-mentioned problems, the inventors need to define the basicity of the molten flux to a predetermined value in order to reduce the oxygen content of the weld metal. It has been found that it is necessary to use a melt type flux that suppresses crystallization of Cuspidine in order to reduce the hydrogen content of.
In other words, in order to reduce the hydrogen content of the weld metal, it is necessary to prevent Cuspidine from being crystallized in the slag as primary crystals and to reduce the crystallization of primary spinels. The reason is that if the spinel is primary and crystallizes in a large amount in the slag, Cuspidine continues to crystallize around the primary spinel. Therefore, it is necessary to use a melt type flux in which the amount of Al 2 O 3 and MgO that affect the amount of spinel crystallization is limited.
これに加えて、溶接作業性を改善するためには、溶接施工によって溶融した高温のスラグが冷却される過程で、溶融状態のスラグの粘度を2段階に分けて制御する必要があることを新たに見出した。
本発明は、このような知見に基づいてなされたものである。
なお本発明では、溶接金属の酸素量、溶接施工の作業性、ビードの形状のバランスをとる上で、塩基度として下記の(1)式で算出されるBI値を用いる。
In addition to this, in order to improve welding workability, it is necessary to control the viscosity of the molten slag in two stages in the process of cooling the hot slag melted by welding. I found it.
The present invention has been made based on such knowledge.
In the present invention, the BI value calculated by the following equation (1) is used as the basicity in order to balance the oxygen content of the weld metal, the workability of the welding work, and the bead shape.
すなわち本発明は、サブマージアーク溶接で用いる溶融型フラックスであって、SiO2:15〜30質量%、MnO:2〜10質量%、TiO2:1〜6質量%、CaO:10〜25質量%、CaF2:15〜40質量%、Al2O3:5〜30質量%、MgO:2〜10質量%、FeO:0.3〜3.0質量%、B2O3:0.6質量%以下を含有し、残部が不可避的不純物からなるとともに、そのSiO2、MnO、TiO2、CaO、CaF2、Al2O3、MgOの含有量(質量%)をそれぞれ[%SiO2]、[%MnO]、[%TiO2]、[%CaO]、[%CaF2]、[%Al2O3]、[%MgO]として、下記の(1)式で算出されるBI値が1.3以上を満足し、かつ[%CaF2]/[%CaO]が1以上を満足する溶融型フラックスである。
BI=〔0.5[%MnO]+[%CaO]+[%MgO]+[%CaF2]〕÷
〔[%SiO2]+0.5([%TiO2]+[%Al2O3])〕 ・・・(1)
本発明の溶融型フラックスは、それを用いたサブマージアーク溶接によって、1500℃にて0.2poise以上、1100℃にて5〜30poiseの粘度を有するスラグを形成するものであることが好ましい。
That is, the present invention is a melt-type flux used in submerged arc welding, and includes SiO 2 : 15 to 30% by mass, MnO: 2 to 10% by mass, TiO 2 : 1 to 6% by mass, and CaO: 10 to 25% by mass. CaF 2 : 15 to 40% by mass, Al 2 O 3 : 5 to 30% by mass, MgO: 2 to 10% by mass, FeO: 0.3 to 3.0% by mass, B 2 O 3 : 0.6% by mass or less, The balance consists of inevitable impurities, and the contents (mass%) of SiO 2 , MnO, TiO 2 , CaO, CaF 2 , Al 2 O 3 , and MgO are set to [% SiO 2 ], [% MnO], [% % TiO 2 ], [% CaO], [% CaF 2 ], [% Al 2 O 3 ], [% MgO], the BI value calculated by the following formula (1) satisfies 1.3 or more, and [% CaF 2 ] / [% CaO] is a melt type flux satisfying 1 or more.
BI = [0.5 [% MnO] + [% CaO] + [% MgO] + [% CaF 2 ]] ÷
[[% SiO 2 ] +0.5 ([% TiO 2 ] + [% Al 2 O 3 ])] (1)
The molten flux of the present invention preferably forms a slag having a viscosity of not less than 0.2 poise at 1500 ° C. and 5 to 30 poise at 1100 ° C. by submerged arc welding using the flux.
本発明によれば、厳しい環境で使用されるラインパイプや各種タンクのサブマージアーク溶接において、靭性が高くかつ水素起因の割れが生じない溶接金属が得られる。しかも優れた形状のビードが形成され、溶接施工の作業性も良好であるから、産業上格段の効果を奏する。 ADVANTAGE OF THE INVENTION According to this invention, the weld metal which has high toughness and does not produce a hydrogen-induced crack in submerged arc welding of a line pipe and various tanks used in a harsh environment is obtained. In addition, since a bead having an excellent shape is formed and the workability of the welding work is also good, it has a remarkable industrial effect.
まず、本発明の溶融型フラックスの成分について説明する。
(a)SiO2
SiO2は、スラグをガラス化させるとともに、ビードの外観および溶接金属の靭性に多大な影響を及ぼす重要な成分である。溶融型フラックスのSiO2の含有量が15質量%未満では、十分な幅のビードが形成されず、ビードの形状が劣る。一方、30質量%を超えると、良好な形状のビードが形成されるが、溶接金属の酸素量が増加して靭性の劣化を招く。したがって、溶融型フラックスのSiO2の含有量は15〜30質量%の範囲内とした。
First, the components of the melt type flux of the present invention will be described.
(a) SiO 2
SiO 2 is an important component that vitrifies slag and greatly affects the appearance of the bead and the toughness of the weld metal. When the content of SiO 2 in the molten flux is less than 15% by mass, a bead with a sufficient width is not formed, and the bead shape is inferior. On the other hand, if it exceeds 30% by mass, a bead having a good shape is formed, but the oxygen content of the weld metal is increased and the toughness is deteriorated. Therefore, the content of SiO 2 in the molten flux is set in the range of 15 to 30% by mass.
(b)MnO
MnOは、スラグの流動性を向上させ、ビードの形状を滑らかにする成分である。溶融型フラックスのMnOの含有量が2質量%未満では、その効果が得られない。一方、10質量%を超えると、溶接金属の酸素量が増加して靭性の劣化を招く。したがって、溶融型フラックスのMnOの含有量は2〜10質量%の範囲内とした。
(b) MnO
MnO is a component that improves the fluidity of the slag and smoothes the bead shape. If the MnO content of the molten flux is less than 2% by mass, the effect cannot be obtained. On the other hand, if it exceeds 10% by mass, the oxygen content of the weld metal is increased, leading to deterioration of toughness. Therefore, the content of MnO in the molten flux is set in the range of 2 to 10% by mass.
(c)TiO2
TiO2は、スラグの剥離性に影響を及ぼす成分である。溶融型フラックスのTiO2の含有量が1質量%未満では、スラグの剥離性が改善されず、ビードに焼付きやすくなる。一方、6質量%を超えると、良好な形状のビードが得られない。したがって、溶融型フラックスのTiO2の含有量は1〜6質量%の範囲内とした。
(c) TiO 2
TiO 2 is a component that affects the slag peelability. When the content of TiO 2 in the melt type flux is less than 1% by mass, the slag peelability is not improved and the beads are easily seized. On the other hand, when it exceeds 6 mass%, a bead having a good shape cannot be obtained. Therefore, the content of TiO 2 in the melt type flux is set in the range of 1 to 6% by mass.
(d)CaO
CaOは、溶融型フラックスの塩基度(BI値)を高めて、溶接金属の酸素量を低減することによって、溶接金属の靭性を向上させる成分である。溶融型フラックスのCaOの含有量が10質量%未満では、塩基度が低くなり、溶接金属の靭性が劣化すると同時に、ビードの形状が劣る。一方、25質量%を超えると、ビードの表面にあばた等の欠陥が生じやすくなる。したがって、溶融型フラックスのCaOの含有量は10〜25質量%の範囲内とした。
(d) CaO
CaO is a component that improves the toughness of the weld metal by increasing the basicity (BI value) of the molten flux and reducing the oxygen content of the weld metal. If the CaO content of the molten flux is less than 10% by mass, the basicity becomes low, the weld metal toughness deteriorates, and the bead shape is inferior. On the other hand, if it exceeds 25% by mass, defects such as flapping are likely to occur on the surface of the bead. Therefore, the content of CaO in the molten flux is set in the range of 10 to 25% by mass.
(e)CaF2
CaF2は、溶接金属の酸素量を低減して靭性の向上させる成分である。溶融型フラックスのCaF2の含有量が15質量%未満では、その効果が得られない。一方、40質量%を超えると、スラグが剥離しにくくなる。したがって、溶融型フラックスのCaF2の含有量は15〜40質量%の範囲内とした。
(e) CaF 2
CaF 2 is a component that reduces the oxygen content of the weld metal and improves toughness. If the CaF 2 content of the molten flux is less than 15% by mass, the effect cannot be obtained. On the other hand, when it exceeds 40 mass%, it becomes difficult for slag to peel. Therefore, the content of CaF 2 in the melt-type flux is set in the range of 15 to 40% by mass.
(f)Al2O3
Al2O3は、スラグのガラス化を促進して、溶接金属の水素量を低減させる成分である。溶融型フラックスのAl2O3含有量が5質量%未満では、その効果が得られない。一方、30質量%を超えると、溶融型フラックスの融点が高くなりすぎて、良好な形状のビードが得られない。したがって、溶融型フラックスのAl2O3の含有量は5〜30質量%の範囲内とした。
(f) Al 2 O 3
Al 2 O 3 is a component that promotes the vitrification of slag and reduces the amount of hydrogen in the weld metal. If the Al 2 O 3 content of the molten flux is less than 5% by mass, the effect cannot be obtained. On the other hand, when it exceeds 30% by mass, the melting point of the melt-type flux becomes too high, and a bead having a good shape cannot be obtained. Therefore, the content of Al 2 O 3 in the melt type flux is set in the range of 5 to 30% by mass.
(g)MgO
MgOは、溶融型フラックスの塩基度(BI値)を高めるために必要な成分である。溶融型フラックスのMgOの含有量が2質量%未満では、塩基度が低くなり、溶接金属の靭性が劣化する。一方、10質量%を超えると、溶融型フラックスの融点が高くなりすぎて、良好な形状のビードが得られない。したがって、溶融型フラックスのMgOの含有量は2〜10質量%の範囲内とした。
(g) MgO
MgO is a component necessary for increasing the basicity (BI value) of the molten flux. When the content of MgO in the molten flux is less than 2% by mass, the basicity becomes low and the toughness of the weld metal deteriorates. On the other hand, if it exceeds 10% by mass, the melting point of the melt-type flux becomes too high, and a bead having a good shape cannot be obtained. Therefore, the content of MgO in the molten flux is set in the range of 2 to 10% by mass.
(h)FeO
FeOは、溶融型フラックスのスラグ剥離性確保のために必要な成分である。その含有量が0.3質量%未満では、スラグの溶接ビードへの焼付きが発生する。一方、FeOは溶鋼に酸素を供給しやすい成分であり、その添加量が3質量%を超えると、溶接金属の酸素量が増加する。したがって、溶融型フラックスのFeOの含有量は0.3〜3.0質量%の範囲内とした。
(h) FeO
FeO is a component necessary for ensuring the slag removability of the molten flux. When the content is less than 0.3% by mass, seizure of the slag to the weld bead occurs. On the other hand, FeO is a component that easily supplies oxygen to the molten steel. If the amount of FeO exceeds 3% by mass, the amount of oxygen in the weld metal increases. Therefore, the content of FeO in the molten flux is set in the range of 0.3 to 3.0 mass%.
(i)B2O3
Bは、溶接時に溶接金属内に入り、均一な微細フェライトからなる溶接金属を形成する作用を有する元素であり、溶融型フラックスにB2O3として添加する。溶融型フラックスのB2O3の含有量が0.6質量%を超えると、スラグが剥離しにくくなり、かつ溶接金属に割れが発生しやすくなる。したがって、溶融型フラックスのB2O3の含有量は0.6質量%以下とした。好ましくは0.3〜0.6質量%である。
(i) B 2 O 3
B is an element having an action of entering the weld metal during welding and forming a weld metal made of uniform fine ferrite, and is added to the molten flux as B 2 O 3 . When the content of B 2 O 3 in the molten flux exceeds 0.6% by mass, the slag becomes difficult to peel off and cracks are likely to occur in the weld metal. Therefore, the content of B 2 O 3 in the molten flux is set to 0.6% by mass or less. Preferably it is 0.3-0.6 mass%.
次に、上記した成分の相互作用について説明する。なお、溶融型フラックスのSiO2、MnO、TiO2、CaO、CaF2、Al2O3、MgOの含有量(質量%)を、それぞれ[%SiO2]、[%MnO]、[%TiO2]、[%CaO]、[%CaF2]、[%Al2O3]、[%MgO]と記す。
(j)[%CaF2]/[%CaO]≧1
溶融型フラックスの[%CaF2]/[%CaO]値が減少すると初晶スピネルが晶出しやすくなり、[%CaF2]/[%CaO]値が1未満では、初晶スピネルの周囲にCuspidineが晶出する。その結果、溶接金属の水素量の増大を招く。したがって、[%CaF2]/[%CaO]≧1とする。
Next, the interaction of the above components will be described. It should be noted that the contents (mass%) of SiO 2 , MnO, TiO 2 , CaO, CaF 2 , Al 2 O 3 , and MgO in the melt type flux are [% SiO 2 ], [% MnO], [% TiO 2, respectively. ], [% CaO], [% CaF 2 ], [% Al 2 O 3 ], [% MgO].
(j) [% CaF 2 ] / [% CaO] ≧ 1
When the [% CaF 2 ] / [% CaO] value of the melt type flux decreases, the primary spinel becomes easier to crystallize. When the [% CaF 2 ] / [% CaO] value is less than 1, Cuspidine is formed around the primary spinel. Crystallizes out. As a result, the amount of hydrogen in the weld metal is increased. Therefore, [% CaF 2 ] / [% CaO] ≧ 1.
(k)塩基度(BI値)
本発明では、溶接金属の酸素量、溶接施工の作業性、ビードの形状のバランスを精度良く評価するために、塩基度として下記の(1)式で算出されるBI値を用いる。BI値が1.3未満では、溶接金属の酸素量が高くなり、溶接金属の機械的性質、とりわけ低温靭性が劣化する。したがって、BI≧1.3とする。一方、BI値が2.5を超えると、ビードの形状が悪くなり、かつスラグの剥離性も極端に悪くなる。そのため、BI値は1.3〜2.5の範囲内が好ましい。
BI=〔0.5[%MnO]+[%CaO]+[%MgO]+[%CaF2]〕÷
〔[%SiO2]+0.5([%TiO2]+[%Al2O3])〕 ・・・(1)
本発明の溶融型フラックスの成分は、上記の(a)〜(i)で説明した通りであるが、LiO2、Na2O、K2O、BaO、ZrO2の1種または2種以上を合計2質量%以下の範囲で含有しても良い。これらの成分のうち、LiO2、Na2O、K2Oはアーク安定化の効果を有する成分、BaO、ZrO2はスラグ粘度を増加する作用を有する成分であり、上記の(j)(k)で説明した成分の相互作用には影響しない。
(k) Basicity (BI value)
In the present invention, in order to accurately evaluate the balance between the oxygen content of the weld metal, the workability of the welding work, and the bead shape, the BI value calculated by the following equation (1) is used as the basicity. If the BI value is less than 1.3, the amount of oxygen in the weld metal becomes high, and the mechanical properties of the weld metal, particularly the low temperature toughness, deteriorate. Therefore, BI ≧ 1.3. On the other hand, when the BI value exceeds 2.5, the bead shape is deteriorated and the slag removability is extremely deteriorated. Therefore, the BI value is preferably in the range of 1.3 to 2.5.
BI = [0.5 [% MnO] + [% CaO] + [% MgO] + [% CaF 2 ]] ÷
[[% SiO 2 ] +0.5 ([% TiO 2 ] + [% Al 2 O 3 ])] (1)
Component of melt flux of the present invention is as described in the above (a) ~ (i), LiO 2, Na 2 O, K 2 O, BaO, 1 kind of ZrO 2 or two or more You may contain in the range of 2 mass% or less in total. Among these components, LiO 2 , Na 2 O, K 2 O are components having an effect of stabilizing the arc, BaO, ZrO 2 are components having an action of increasing the slag viscosity, and the above (j) (k It does not affect the interaction of the components described in).
また溶融型フラックスの粒度は、特に限定しないが、搬送に伴う凝集や飛散を防止する、あるいは溶接施工の際に溶融しやすくかつ溶融メタルとの冶金反応を促進する観点から、36〜200meshの粒子が60%以上である粒度分布が望ましい。
次に、上記した本発明の溶融型フラックスを用いてサブマージアーク溶接を行なうことによって形成されるスラグの粘度について説明する。
In addition, the particle size of the melt-type flux is not particularly limited, but it is 36 to 200 mesh particles from the viewpoint of preventing agglomeration and scattering accompanying conveyance, or being easily melted during welding and promoting the metallurgical reaction with the molten metal. A particle size distribution in which is 60% or more is desirable.
Next, the viscosity of the slag formed by performing the submerged arc welding using the above-described molten flux of the present invention will be described.
上記の溶融型フラックスを用いたサブマージアーク溶接によって形成されるスラグは、溶融した高温の状態から冷却される過程で、その粘度が1500℃にて0.2poise以上、1100℃にて5〜30poiseとなる。
スラグの粘度が1500℃にて0.2poise未満では、スラグが剥離しにくくなり、しかも入熱が大きい場合に、シワ等の溶接欠陥が発生しやすくなる。したがって、スラグの粘度は1500℃にて0.2poise以上が好ましい。一方、1500℃にて0.8poiseを超えると、スラグが極めて流動しにくくなり、その結果、ビード形状が劣化する。そのため、スラグの粘度は1500℃にて0.2〜0.8poiseの範囲内が一層好ましい。
The slag formed by submerged arc welding using the above-mentioned melt type flux has a viscosity of 0.2 poise or more at 1500 ° C. and 5 to 30 poise at 1100 ° C. in the process of cooling from a molten high temperature state. .
If the viscosity of the slag is less than 0.2 poise at 1500 ° C., the slag becomes difficult to peel off, and if the heat input is large, welding defects such as wrinkles are likely to occur. Accordingly, the viscosity of the slag is preferably 0.2 poise or more at 1500 ° C. On the other hand, if it exceeds 0.8 poise at 1500 ° C., the slag becomes extremely difficult to flow, and as a result, the bead shape deteriorates. Therefore, the viscosity of the slag is more preferably in the range of 0.2 to 0.8 poise at 1500 ° C.
スラグの粘度が1100℃にて5poise以上であれは、その後の冷却過程でスラグの凝固(すなわち粘度上昇)が緩やかに進行し、アバタの発生を防止できる。つまり、1100℃にて5poise未満では、アバタの発生を防止できない。一方、1100℃にて30poiseを超えると、ビードの蛇行が発生しやすくなる。したがって、スラグの粘度は1100℃にて5〜30poiseの範囲内が好ましい。 If the viscosity of the slag is 5 poise or more at 1100 ° C., the solidification of the slag (that is, the increase in viscosity) proceeds slowly in the subsequent cooling process, and the occurrence of avatar can be prevented. In other words, the occurrence of avatar cannot be prevented if it is less than 5 poise at 1100 ° C. On the other hand, if it exceeds 30 poise at 1100 ° C., bead meandering tends to occur. Therefore, the viscosity of the slag is preferably in the range of 5 to 30 poise at 1100 ° C.
なお、スラグの粘度を上記した範囲に調整するために溶融型フラックスに添加する成分としては、粘度を上げる場合にはSiO2等、粘度を下げる場合にはCaF2等が好適である。
本発明の溶融型フラックスを用いてサブマージアーク溶接を行なうことによって、スラグの粘度を上記の範囲に制御することができる。
In addition, as a component added to the melt type flux in order to adjust the viscosity of the slag to the above range, SiO 2 or the like is preferable for increasing the viscosity, and CaF 2 or the like is preferable for decreasing the viscosity.
By performing submerged arc welding using the molten flux of the present invention, the viscosity of the slag can be controlled within the above range.
表1に示す成分の溶融型フラックスを用いて、サブマージアーク溶接を行ない、スラグの剥離性、ビードの表面形状と直進性、溶接金属中の酸素量を評価した。その手順を以下に説明する。 Submerged arc welding was performed using a melt type flux having the components shown in Table 1, and slag peelability, bead surface shape and straightness, and oxygen content in the weld metal were evaluated. The procedure will be described below.
厚さ15mmのAPI−5L−PSL2−X65M鋼板に、角度90°、深さ6mmのV溝加工を施し、0.05C−2Mn系ワイヤと0.18C−1.55Mn−0.5Mo系ワイヤを組み合わせた4電極サブマージアーク溶接法により、溶接速度235cm/分、溶接入熱3.4kJ/mmで片面一層溶接を行なった。ワイヤ径は、いずれも4.0mmとし、溶接電流/電圧は、第1極(すなわち溶接進行方向の先頭)から順に、1230A/34V、870A/36V、750A/42V、680A/42Vとした。 4-electrode with 15mm thick API-5L-PSL2-X65M steel plate with 90 ° angle and 6mm depth V-grooving combined with 0.05C-2Mn wire and 0.18C-1.55Mn-0.5Mo wire Single-sided single-layer welding was performed by a submerged arc welding method at a welding speed of 235 cm / min and a welding heat input of 3.4 kJ / mm. The wire diameters were all 4.0 mm, and the welding current / voltage were 1230 A / 34 V, 870 A / 36 V, 750 A / 42 V, and 680 A / 42 V in order from the first pole (that is, the head in the welding progress direction).
このようにしてサブマージアーク溶接を行なった後、スラグの剥離性を評価するために、溶接金属表面のスラグの除去処理を行ない、その際に容易に除去できたものを良好(○)、機械的な衝撃を繰り返し与えないと除去できなかったものを不良(×)とした。また、ビード表面を目視で観察して表面形状を評価し、ビード表面がざらついて光沢の少ないもの、あるいはビードの中央に凹部が認められるものを不良(×)、光沢があり、凹部が認められないものを良好(○)とした。さらに、ビードの直進性を評価するために、止端部のうねりの小さいものを良好(○)、うねりの大きいものを不良(×)とした。溶接金属中の酸素量は、融解−赤外線吸収法によって測定した。それらの結果は表2に示す通りである。 After performing submerged arc welding in this way, in order to evaluate the slag releasability, the slag on the surface of the weld metal was removed, and what was easily removed at that time was good (○), mechanical Those that could not be removed without repeated repeated impacts were defined as defective (x). Also, the surface of the bead is visually observed to evaluate the surface shape. If the bead surface is rough and less glossy, or if a concave portion is observed in the center of the bead, it is defective (x), glossy, and concave portion is recognized. Nothing was judged as good (◯). Furthermore, in order to evaluate the straightness of the bead, the one with a small toe portion waviness was evaluated as good (◯), and the one with a large waviness was evaluated as poor (x). The amount of oxygen in the weld metal was measured by the melting-infrared absorption method. The results are as shown in Table 2.
表2中のスラグの粘度は、振動片式粘度測定装置を用い、JIS規格Z8803に準拠した振動式粘度測定法で測定した値である。具体的には、大気中で振動数16.9Hz、振動幅1.5mmに調整した後、粘度計校正用標準液(JIS8809)にて校正を実施した。そして、白金ルツボ内でスラグを1600℃付近で溶融させ、その後、冷却を開始して冷却過程における粘度を測定し、1500℃および1100℃の粘度を評価した。 The viscosity of slag in Table 2 is a value measured by a vibration type viscosity measurement method based on JIS standard Z8803 using a vibration piece type viscosity measurement device. Specifically, after adjusting the frequency to 16.9 Hz and the vibration width of 1.5 mm in the atmosphere, calibration was performed with a viscometer calibration standard solution (JIS8809). Then, the slag was melted in the platinum crucible at around 1600 ° C., and then the cooling was started to measure the viscosity in the cooling process, and the viscosities at 1500 ° C. and 1100 ° C. were evaluated.
次に、厚さ15mmのAPI−5L−PSL2−X65M鋼板に、角度90°、深さ6mmのV溝加工を施し、0.05C−2Mn系ワイヤを用いて30℃−72%RHの雰囲気中で1電極サブマージアーク溶接法により、溶接速度50cm/分、溶接電流500A、溶接電圧32Vで片面一層溶接を行なった。
このようにしてサブマージアーク溶接を行なった後、JIS規格Z3118に準拠してガスクロマトグラフ法で、溶接金属の拡散性水素量を測定した。その結果を表2に示す。
Next, an API-5L-PSL2-X65M steel plate with a thickness of 15 mm was subjected to V-groove processing at an angle of 90 ° and a depth of 6 mm, and in an atmosphere of 30 ° C.-72% RH using 0.05C-2Mn wire. One-sided single-layer welding was performed at a welding speed of 50 cm / min, a welding current of 500 A, and a welding voltage of 32 V by the one-electrode submerged arc welding method.
After performing submerged arc welding in this way, the amount of diffusible hydrogen in the weld metal was measured by gas chromatography in accordance with JIS standard Z3118. The results are shown in Table 2.
表2から明らかなように、発明例の溶融型フラックスは、サブマージアーク溶接による溶接金属の低酸素化、低水素化が達成され、しかもビード形状およびスラグ剥離性など溶接作業性が良好であることが確認された。 As is apparent from Table 2, the melt type flux of the invention example achieves low oxygen and low hydrogen of the weld metal by submerged arc welding, and has good welding workability such as bead shape and slag peelability. Was confirmed.
Claims (2)
BI=〔0.5[%MnO]+[%CaO]+[%MgO]+[%CaF2]〕÷
〔[%SiO2]+0.5([%TiO2]+[%Al2O3])〕 ・・・(1) A melt flux for use in submerged arc welding, SiO 2: 15 to 30 wt%, MnO: 2 to 10 wt%, TiO 2: 1~6 wt%, CaO: 10 to 25 wt%, CaF 2: 15 40 mass%, Al 2 O 3: 5~30 wt%, MgO: 2 to 10 wt%, FeO: 0.3 to 3.0 wt%, B 2 O 3: containing 0.6 wt% or less, the balance being unavoidable impurities And the contents (mass%) of the SiO 2 , the MnO, the TiO 2 , the CaO, the CaF 2 , the Al 2 O 3 , and the MgO are [% SiO 2 ], [% MnO], [% TiO 2 ], [% CaO], [% CaF 2 ], [% Al 2 O 3 ], [% MgO], the BI value calculated by the following formula (1) satisfies 1.3 or more, And [% CaF 2 ] / [% CaO] satisfies 1 or more.
BI = [0.5 [% MnO] + [% CaO] + [% MgO] + [% CaF 2 ]] ÷
[[% SiO 2 ] +0.5 ([% TiO 2 ] + [% Al 2 O 3 ])] (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014054544A JP5869023B2 (en) | 2013-04-04 | 2014-03-18 | Fused flux for submerged arc welding |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013078185 | 2013-04-04 | ||
JP2013078185 | 2013-04-04 | ||
JP2014054544A JP5869023B2 (en) | 2013-04-04 | 2014-03-18 | Fused flux for submerged arc welding |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014210287A true JP2014210287A (en) | 2014-11-13 |
JP5869023B2 JP5869023B2 (en) | 2016-02-24 |
Family
ID=51930472
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014054544A Active JP5869023B2 (en) | 2013-04-04 | 2014-03-18 | Fused flux for submerged arc welding |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5869023B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017070955A (en) * | 2015-10-05 | 2017-04-13 | 新日鐵住金株式会社 | Fused flux for submerged arc welding |
CN111705219A (en) * | 2020-06-30 | 2020-09-25 | 重庆钢铁研究所有限公司 | Slag system for electroslag remelting high-titanium high-silicon stainless steel and preparation method thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61180694A (en) * | 1985-02-05 | 1986-08-13 | Kobe Steel Ltd | Fused flux for submerged arc welding |
JPS6233091A (en) * | 1985-08-05 | 1987-02-13 | Nippon Steel Corp | Submerged arc welding method by which high-toughness weld metal is obtained |
JPH0631481A (en) * | 1992-07-21 | 1994-02-08 | Kawasaki Steel Corp | Flux for welding |
JP2005125345A (en) * | 2003-10-22 | 2005-05-19 | Kobe Steel Ltd | Fusible flux for submerged arc welding |
JP2006305604A (en) * | 2005-04-28 | 2006-11-09 | Kobe Steel Ltd | Fused flux for submerged arc welding |
JP2007268541A (en) * | 2006-03-30 | 2007-10-18 | Kobe Steel Ltd | Fused flux for submerged arc welding |
JP2009136898A (en) * | 2007-12-06 | 2009-06-25 | Sumitomo Metal Ind Ltd | Fusible flux for submerged-arc welding |
-
2014
- 2014-03-18 JP JP2014054544A patent/JP5869023B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61180694A (en) * | 1985-02-05 | 1986-08-13 | Kobe Steel Ltd | Fused flux for submerged arc welding |
JPS6233091A (en) * | 1985-08-05 | 1987-02-13 | Nippon Steel Corp | Submerged arc welding method by which high-toughness weld metal is obtained |
JPH0631481A (en) * | 1992-07-21 | 1994-02-08 | Kawasaki Steel Corp | Flux for welding |
JP2005125345A (en) * | 2003-10-22 | 2005-05-19 | Kobe Steel Ltd | Fusible flux for submerged arc welding |
JP2006305604A (en) * | 2005-04-28 | 2006-11-09 | Kobe Steel Ltd | Fused flux for submerged arc welding |
JP2007268541A (en) * | 2006-03-30 | 2007-10-18 | Kobe Steel Ltd | Fused flux for submerged arc welding |
JP2009136898A (en) * | 2007-12-06 | 2009-06-25 | Sumitomo Metal Ind Ltd | Fusible flux for submerged-arc welding |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017070955A (en) * | 2015-10-05 | 2017-04-13 | 新日鐵住金株式会社 | Fused flux for submerged arc welding |
CN111705219A (en) * | 2020-06-30 | 2020-09-25 | 重庆钢铁研究所有限公司 | Slag system for electroslag remelting high-titanium high-silicon stainless steel and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP5869023B2 (en) | 2016-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5922078B2 (en) | Fused flux for submerged arc welding | |
JP5370929B2 (en) | Mold flux for continuous casting of steel | |
CN108723636B (en) | Welding wire powder with low crack sensitivity, flux-cored wire, preparation and application | |
JP2009061474A (en) | Flux-cored wire for gas-shielded arc welding | |
NO137423B (en) | FLUSE FOR USE FOR POWDER-COVERED ARC WELDING | |
CN108480875B (en) | Welding wire powder, flux-cored wire, preparation and application | |
KR20090012045A (en) | Weld metal and titania-based flux cored wire | |
JP5912969B2 (en) | Fused flux used for submerged arc welding and welding method using the same | |
JP5869023B2 (en) | Fused flux for submerged arc welding | |
JP2013066913A (en) | Mold flux for continuous casting of steel and continuous casting method | |
JP2006289404A (en) | Flux cored wire for gas shielded arc welding | |
KR20190140427A (en) | Multi-electrode gas-shielded arc one-side welding method | |
WO2022130759A1 (en) | Submerged arc welding wire, and method for manufacturing weld joint using same | |
JP5473371B2 (en) | Coated arc welding rod for duplex stainless steel welding to refine solidified crystal grains | |
JP7156585B1 (en) | submerged arc welded fittings | |
JP2001205483A (en) | Flux-containing wire for gas shield arc welding | |
WO2022230615A1 (en) | Submerged arc welded joint | |
JP6071797B2 (en) | Flux for single-sided submerged arc welding | |
JP6071798B2 (en) | Flux for single-sided submerged arc welding | |
WO2006126519A1 (en) | Fused flux for submerged arc welding | |
JP7078436B2 (en) | Flux for submerged arc welding and its manufacturing method | |
JP3550770B2 (en) | Flux for sub-mark welding | |
KR102726128B1 (en) | Submerged arc welding flux having good slag detachability by one side welding | |
JP7448433B2 (en) | Flux for submerged arc welding, submerged arc welding method, and method for producing flux for submerged arc welding | |
JP6152316B2 (en) | Flux for single-sided submerged arc welding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20141001 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150916 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20151006 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151130 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160105 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160106 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5869023 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |