[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2014208334A - Method of manufacturing separation membrane - Google Patents

Method of manufacturing separation membrane Download PDF

Info

Publication number
JP2014208334A
JP2014208334A JP2014058757A JP2014058757A JP2014208334A JP 2014208334 A JP2014208334 A JP 2014208334A JP 2014058757 A JP2014058757 A JP 2014058757A JP 2014058757 A JP2014058757 A JP 2014058757A JP 2014208334 A JP2014208334 A JP 2014208334A
Authority
JP
Japan
Prior art keywords
mask
separation membrane
ventilation
film
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014058757A
Other languages
Japanese (ja)
Other versions
JP6189775B2 (en
Inventor
啓 田中
Hiroshi Tanaka
啓 田中
省吾 武野
Shogo Takeno
省吾 武野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2014058757A priority Critical patent/JP6189775B2/en
Publication of JP2014208334A publication Critical patent/JP2014208334A/en
Application granted granted Critical
Publication of JP6189775B2 publication Critical patent/JP6189775B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/04Tubular membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Inorganic Chemistry (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a separation membrane which can easily respond even when a membrane surface area increases or when viscosity of slurry for deposition for forming a membrane increases.SOLUTION: In a method of manufacturing a separation membrane, a separation membrane is formed by carrying out a drying process of ventilating and drying a part of an end surface of a base material 10 in a covered state with a mask 15 after slurry for deposition for forming the separation membrane is adhered. The process of ventilating and drying in the covered state with the mask 15 may be carried out in a part of the drying process. The mask 15 is continuously or intermittently moved. Other parts can be ventilated intensively by ventilating and drying a part of the end surface of the base material 10 in the covered state with the mask 15.

Description

本発明は、分離膜の製造方法に関し、特に乾燥工程に関する。   The present invention relates to a method for producing a separation membrane, and more particularly to a drying step.

近年、多成分の混合物(混合流体)から特定の成分のみを選択的に回収するために、セラミック製のフィルタが用いられている。セラミック製のフィルタは、有機高分子製のフィルタと比較して、機械的強度、耐久性、耐食性等に優れるため、水処理や排ガス処理、あるいは医薬や食品分野等の広範な分野において、液体やガス中の懸濁物質、細菌、粉塵等の除去に、好ましく適用される。   In recent years, ceramic filters have been used to selectively recover only specific components from a multi-component mixture (mixed fluid). Ceramic filters are superior to organic polymer filters in terms of mechanical strength, durability, corrosion resistance, etc., so they can be used in a wide range of fields such as water treatment, exhaust gas treatment, and pharmaceutical and food fields. It is preferably applied to the removal of suspended substances, bacteria, dust and the like in gas.

このようなフィルタとして、セラミック多孔質上に炭素膜、シリカ膜、ゼオライト膜等の分離膜を形成したものが知られている。分離膜をセラミック多孔質上に形成するために、分離膜となる前駆体溶液を作製し、その前駆体溶液をセラミック多孔質上に付着させ、乾燥させる方法がある。   As such a filter, a filter in which a separation membrane such as a carbon membrane, a silica membrane, or a zeolite membrane is formed on a ceramic porous body is known. In order to form the separation membrane on the ceramic porous body, there is a method in which a precursor solution to be a separation membrane is prepared, the precursor solution is deposited on the ceramic porous body, and dried.

例えば、特許文献1には、モノリス基材の貫通孔内に前駆体溶液を流し込み、熱風による通風乾燥を行うことが記載されている。   For example, Patent Document 1 describes that a precursor solution is poured into a through-hole of a monolith substrate and air-dried with hot air.

特開2010−110704号公報JP 2010-110704 A

しかしながら、従来の通風乾燥では、膜面積が大きくなった場合や、膜を形成するための成膜用スラリー(前駆体溶液)の粘度が高くなった場合、通風装置を大型化(風出口部の大面積化)、風量を増大、通風時間を長時間化しなければ、膜厚分布が発生し、膜クラック・剥離が生じるという問題があった。しかし、これらの対応には、設置スペースやコスト上昇の問題があった。   However, in conventional ventilation drying, when the membrane area becomes large or when the viscosity of the slurry for film formation (precursor solution) for forming the membrane becomes high, the size of the ventilation device is increased (of the air outlet portion). Unless the area is increased), the air volume is increased, and the ventilation time is not prolonged, there is a problem that a film thickness distribution occurs and film cracks and peeling occur. However, these measures have a problem of increased installation space and cost.

本発明の課題は、膜面積が大きくなった場合や、膜を形成するための成膜用スラリーの粘度が高くなった場合でも、容易に対応可能な分離膜の製造方法を提供することにある。   An object of the present invention is to provide a method for producing a separation membrane that can be easily handled even when the membrane area is large or the viscosity of a slurry for film formation for forming a membrane is high. .

本発明者らは、乾燥工程において、基材の端面の一部をマスクで覆った状態で通風して乾燥させることにより、上記課題を解決しうることを見出した。すなわち、本発明によれば、以下の分離膜の製造方法が提供される。   The present inventors have found that the above problem can be solved by ventilating and drying in a state where a part of the end face of the substrate is covered with a mask in the drying step. That is, according to the present invention, the following method for producing a separation membrane is provided.

[1] モノリス型の基材に、分離膜を成膜するための成膜用スラリーを付着させた後に、前記基材の端面の一部をマスクで覆った状態で通風して前記成膜用スラリーを乾燥させる乾燥工程を行って前記分離膜を形成する分離膜の製造方法。 [1] After depositing a film-forming slurry for forming a separation membrane on a monolith-type base material, the film is ventilated in a state where a part of the end surface of the base material is covered with a mask. The manufacturing method of the separation membrane which performs the drying process which dries a slurry and forms the said separation membrane.

[2] 前記基材の前記通風の対象となる部分である通風対象領域の一部をマスクで覆ったカバー領域を設けて前記通風を行い、前記マスクを移動させることにより前記カバー領域を移動させてさらに前記通風を行う前記[1]に記載の分離膜の製造方法。 [2] A cover region in which a part of the ventilation target region that is the portion to be ventilated of the base material is covered with a mask is provided to perform the ventilation, and the cover region is moved by moving the mask. The method for producing a separation membrane according to [1], wherein the ventilation is further performed.

[3] 前記マスクを連続的に移動させる、または間欠的に移動させる前記[2]に記載の分離膜の製造方法。 [3] The method for manufacturing a separation membrane according to [2], wherein the mask is moved continuously or intermittently.

[4] 前記通風対象領域の面積に対する、前記マスクで覆われていない開口領域の開口面積割合が、10〜50%である前記[2]または[3]に記載の分離膜の製造方法。 [4] The method for manufacturing a separation membrane according to [2] or [3], wherein an opening area ratio of the opening region not covered with the mask to the area of the ventilation target region is 10 to 50%.

[5] 前記乾燥工程が、前記マスクで覆わず前記基材の前記通風の対象となる部分である通風対象領域のすべてに前記通風を行うマスクなし工程と、前記通風対象領域の一部をマスクで覆ったカバー領域を設けて前記通風を行うマスクあり工程と、を含む前記[1]に記載の分離膜の製造方法。 [5] The drying process includes a maskless process in which the ventilation is performed on the entire ventilation target area that is not covered with the mask and is the target of the ventilation, and a part of the ventilation target area is masked. A method for producing a separation membrane according to the above [1], including a step with a mask which provides a cover region covered with a gas and performs the ventilation.

[6] 前記乾燥工程において、前記マスクなし工程を行った後に、前記マスクあり工程を行う前記[5]に記載の分離膜の製造方法。 [6] The method for manufacturing a separation membrane according to [5], wherein in the drying step, the step with a mask is performed after the step without the mask is performed.

[7] 前記通風対象領域の面積に対する、前記マスクで覆われていない開口領域の開口面積割合が、15〜50%である前記[5]または[6]に記載の分離膜の製造方法。 [7] The method for manufacturing a separation membrane according to [5] or [6], wherein an opening area ratio of the opening area not covered with the mask to the area of the ventilation target area is 15 to 50%.

[8] モノリス型の基材に、分離膜を成膜するための成膜用スラリーを付着させた後に、風の乱流を発生させる突出空洞部のある風洞装置を用いて前記基材の一方の端面側から送風して前記成膜用スラリーを乾燥させる乾燥工程を行って前記分離膜を形成する分離膜の製造方法。 [8] After attaching a slurry for film formation for forming a separation membrane to a monolith type base material, one of the base materials using a wind tunnel device having a projecting cavity that generates turbulent wind flow The manufacturing method of the separation membrane which forms the said separation membrane by performing the drying process which ventilates from the end surface side of this, and dries the said film-forming slurry.

マスクを用いて通風面積を絞って通風し乾燥させることにより、通風装置を大型化せずに、膜の大面積化、成膜用スラリーの高粘性化に対応でき、クラックを低減した膜が得られる。   By using the mask to reduce the ventilation area and ventilating and drying, it is possible to respond to the increase in the area of the film and the increase in the viscosity of the slurry for film formation without increasing the size of the ventilation apparatus, and a film with reduced cracks can be obtained. It is done.

通風による乾燥工程を説明するための模式図である。It is a schematic diagram for demonstrating the drying process by ventilation. 成膜用スラリーをセル内に付着させたところを示す模式図である。It is a schematic diagram which shows the place which made the film-forming slurry adhere in the cell. 扇形の開口が形成されたマスクを示す模式図である。It is a schematic diagram which shows the mask in which the fan-shaped opening was formed. 半円形のマスクを示す模式図である。It is a schematic diagram which shows a semicircular mask. 半円形のマスクを移動させたところ示す模式図である。It is a schematic diagram which shows the place which moved the semicircle mask. マスクなし工程を示す模式図である。It is a schematic diagram which shows a maskless process. マスクあり工程における、円形のマスクを示す模式図である。It is a schematic diagram which shows a circular mask in a process with a mask. 突出空洞部、整流胴部、縮流ノズル部を有する風洞装置を用いた乾燥工程を示す模式図である。It is a schematic diagram which shows the drying process using the wind tunnel apparatus which has a protrusion cavity part, a rectification | straightening trunk | drum, and a reduced flow nozzle part. 突出空洞部、整流胴部、縮流ノズル部を有する他の実施形態の風洞装置を用いた乾燥工程を示す模式図である。It is a schematic diagram which shows the drying process using the wind tunnel apparatus of other embodiment which has a protrusion cavity part, a rectification | straightening trunk | drum, and a reduced flow nozzle part.

以下、図面を参照しつつ本発明の実施形態について説明する。本発明は、以下の実施形態に限定されるものではなく、発明の範囲を逸脱しない限りにおいて、変更、修正、改良を加え得るものである。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the following embodiments, and changes, modifications, and improvements can be added without departing from the scope of the invention.

(1)概要
図1に示すように、本発明の分離膜の製造方法は、モノリス型の基材10に、分離膜13を成膜するための成膜用スラリー12を付着させた後(図2参照)に、基材10の端面の一部をマスク15で覆った状態で通風して成膜用スラリー12を乾燥させる乾燥工程を行って分離膜13を形成する。マスク15で覆った状態で通風して乾燥させる工程は、乾燥工程の一部で行うだけでもよい。マスク15は、連続的、または間欠的に移動させる。このように、基材10の端面の一部をマスク15で覆った状態で通風して乾燥させることにより、他の部分に集中して通風することができる。このため、通風装置16を大型化せずに、膜面積が大きくなった場合や、膜を形成するための成膜用スラリー12の粘度が高くなった場合でも、容易に対応可能である。
(1) Outline As shown in FIG. 1, the separation membrane manufacturing method of the present invention is performed after depositing a film-forming slurry 12 for forming a separation membrane 13 on a monolithic substrate 10 (FIG. 1). 2), the separation membrane 13 is formed by performing a drying process in which a part of the end face of the base material 10 is covered with a mask 15 to dry the slurry 12 for film formation. The step of ventilating and drying in the state covered with the mask 15 may be performed only as part of the drying step. The mask 15 is moved continuously or intermittently. Thus, by ventilating and drying in a state where a part of the end face of the substrate 10 is covered with the mask 15, it is possible to concentrate and ventilate other parts. For this reason, it is possible to easily cope with the case where the membrane area is increased without increasing the size of the ventilator 16 or when the viscosity of the film-forming slurry 12 for forming the membrane is increased.

(2)分離膜構造体
本明細書では、基材10に分離膜13を形成したものを分離膜構造体1と呼ぶ。
(2) Separation membrane structure In this specification, what formed the separation membrane 13 in the base material 10 is called the separation membrane structure 1. FIG.

(2−1)基材
本発明の分離膜の製造方法に用いる、分離膜13を形成するための基材10の全体的な形状やサイズについては、その分離機能を阻害しない限りにおいて特に制限はない。全体的な形状としては、例えば、円柱状、四角柱状(長手方向7に直交する断面が四角形の筒状)、三角柱状(長手方向7に直交する断面が三角形の筒状)等の形状が挙げられる。中でも、押出成形がし易く、焼成変形が少なく、ハウジングとのシールが容易な円柱状が好ましい。精密濾過や限外濾過に用いる場合には、長手方向7に直交する断面における直径(外径)が30〜60mm、長手方向7における長さが15〜2000mmの円柱状とすることが好ましい。なお、本発明の分離膜の製造方法では、乾燥工程において、径方向の乾燥のムラを少なくすることができるため、直径(外径)が60〜200mmの大型の基材10であっても、クラックの発生しにくい膜を形成することができる。
(2-1) Substrate The overall shape and size of the substrate 10 for forming the separation membrane 13 used in the method for producing a separation membrane of the present invention are not particularly limited as long as the separation function is not hindered. Absent. The overall shape includes, for example, shapes such as a columnar shape, a quadrangular prism shape (a cylindrical shape with a cross section orthogonal to the longitudinal direction 7), and a triangular prism shape (a cylindrical shape with a cross section orthogonal to the longitudinal direction 7). It is done. Among these, a columnar shape that is easy to be extruded, has little firing deformation, and is easy to seal with the housing is preferable. When used for microfiltration or ultrafiltration, the diameter (outer diameter) in the cross section perpendicular to the longitudinal direction 7 is preferably 30 to 60 mm and the length in the longitudinal direction 7 is 15 to 2000 mm. In the separation membrane manufacturing method of the present invention, in the drying step, since unevenness in drying in the radial direction can be reduced, even in the case of the large substrate 10 having a diameter (outer diameter) of 60 to 200 mm, A film in which cracks are difficult to occur can be formed.

本発明の分離膜の製造方法に用いる基材10としては、図1に示すような、モノリス型(モノリス形状)を用いることができる。「モノリス型」とは、図1に示すような長手方向7の第一の端面2aから第二の端面2bまで複数のセルが形成された形状あるいはハニカム状のものを言う。なお、外形は上記のように円柱状に限定されない。   As the substrate 10 used in the method for producing a separation membrane of the present invention, a monolith type (monolith shape) as shown in FIG. 1 can be used. The “monolith type” refers to a shape in which a plurality of cells are formed from the first end surface 2a to the second end surface 2b in the longitudinal direction 7 as shown in FIG. Note that the outer shape is not limited to the cylindrical shape as described above.

図1に示す実施形態の基材10は、長手方向7の一方の第一の端面2aから他方の第二の端面2bまで多孔質の隔壁3によって区画形成された、流体の流路となるセル4を複数個有する。基材10は長手方向7の両端側に貫通し、長手方向7と平行なセル4を、30〜2500個有していることが好ましい。   The base material 10 of the embodiment shown in FIG. 1 is a cell that is a fluid flow path partitioned by a porous partition wall 3 from one first end surface 2a in the longitudinal direction 7 to the other second end surface 2b. 4 is provided. It is preferable that the base material 10 has 30 to 2500 cells 4 penetrating both ends in the longitudinal direction 7 and parallel to the longitudinal direction 7.

基材10のセル4の断面形状(セル4の延びる方向に直交する断面における形状)としては、例えば、円形、楕円形、多角形等を挙げることができ、多角形としては四角形、五角形、六角形、三角形等を挙げることができる。尚、セル4の延びる方向は、基材10が円柱状の場合には、長手方向7と同じである。   Examples of the cross-sectional shape of the cell 4 of the substrate 10 (the shape in the cross-section perpendicular to the extending direction of the cell 4) include a circle, an ellipse, a polygon, and the like. A square, a triangle, etc. can be mentioned. The direction in which the cells 4 extend is the same as the longitudinal direction 7 when the substrate 10 is cylindrical.

基材10のセル4の断面形状が円形の場合、セル4の直径は、1〜5mmであることが好ましい。セル4の断面が円でない場合は、断面積が同じ円の直径である。セル4の直径を1mm以上とすることにより、膜面積を十分に確保することができる。5mm以下とすることにより、強度を十分なものとすることができる。   When the cross-sectional shape of the cell 4 of the base material 10 is circular, the diameter of the cell 4 is preferably 1 to 5 mm. When the cross section of the cell 4 is not a circle, the cross-sectional area is the diameter of the same circle. By setting the diameter of the cell 4 to 1 mm or more, a sufficient film area can be secured. By making it 5 mm or less, the strength can be made sufficient.

基材10の材料としては、多孔質セラミックを用いることができる。強度や化学的安定性の観点から、アルミナ、シリカ、コージェライト、ムライト、チタニア、ジルコニア、炭化珪素等のセラミックス材料が好ましい。基材10の気孔率は、強度と透過性の観点から25〜55%程度とすることが好ましい。また、基材10の平均細孔径は、0.005〜5μm程度とすることが好ましい。   As a material of the substrate 10, porous ceramic can be used. From the viewpoint of strength and chemical stability, ceramic materials such as alumina, silica, cordierite, mullite, titania, zirconia, and silicon carbide are preferable. The porosity of the substrate 10 is preferably about 25 to 55% from the viewpoint of strength and permeability. Moreover, it is preferable that the average pore diameter of the base material 10 shall be about 0.005-5 micrometers.

(2−2)分離膜
本発明の分離膜の製造方法において製造される分離膜13としては、特に限定されるものではないが、例えば、シリカ膜、炭素膜、ゼオライト膜、チタニア膜等が挙げられる。以下の製造方法では、シリカ膜を例として説明する。
(2-2) Separation membrane Although it does not specifically limit as the separation membrane 13 manufactured in the manufacturing method of the separation membrane of this invention, For example, a silica membrane, a carbon membrane, a zeolite membrane, a titania membrane etc. are mentioned. It is done. In the following manufacturing method, a silica film will be described as an example.

(3)製造方法
(3−1)基材
次に、モノリス型の基材10を用いた分離膜構造体1の製造方法について説明する。最初に、基材10の原料を成形する。例えば、真空押出成形機を用い、押出成形する。これによりセル4を有するモノリス型の未焼成の基材10を得る。他にプレス成形、鋳込み成形などがあり、適宜選択できる。次いで、未焼成の基材10を、例えば、900〜1450℃で焼成する。
(3) Manufacturing Method (3-1) Base Material Next, a manufacturing method of the separation membrane structure 1 using the monolithic base material 10 will be described. First, the raw material of the base material 10 is molded. For example, extrusion is performed using a vacuum extruder. As a result, a monolith-type unfired base material 10 having the cells 4 is obtained. There are other methods such as press molding and cast molding, which can be selected as appropriate. Next, the unfired base material 10 is fired at 900 to 1450 ° C., for example.

付着工程の前に、基材10の長手方向7の両端面にガラスシールを設けることが好ましい。ガラスシールは、分離膜13の使用時に、分離膜13が形成されていない領域を通じて被処理流体が流入または流出することを防ぐ。   It is preferable to provide glass seals on both end faces of the base material 10 in the longitudinal direction 7 before the attaching step. The glass seal prevents the fluid to be processed from flowing in or out through the region where the separation membrane 13 is not formed when the separation membrane 13 is used.

(3−2)成膜用スラリー
次に、成膜用スラリー12を作製する。例えば、シリカ膜の場合、分離膜13を成膜するために、基材10に付着させ、乾燥させる対象となる成膜用スラリー12としては、シリカゾル液を用いることができる。シリカゾル液は、テトラエトシキシランを硝酸の存在下で、50℃にて5時間加水分解してゾル液とし、そのゾル液をエタノールで希釈し、シリカ換算で1.0質量%となるように調整することが好ましい。エタノール希釈後のシリカゾル液のエタノール濃度は96質量%であることが好ましい。エタノールで希釈する代わりに水で希釈することも可能ではあるが、エタノールで希釈する方が、1回の成膜において薄く成膜することができ、高透過速度の膜とすることができる。
(3-2) Film Forming Slurry Next, a film forming slurry 12 is prepared. For example, in the case of a silica membrane, a silica sol liquid can be used as the film-forming slurry 12 to be attached to the substrate 10 and dried to form the separation membrane 13. The silica sol solution is prepared by hydrolyzing tetraethoxysilane in the presence of nitric acid at 50 ° C. for 5 hours to obtain a sol solution, which is diluted with ethanol and adjusted to 1.0% by mass in terms of silica. It is preferable to do. The ethanol concentration of the silica sol solution after dilution with ethanol is preferably 96% by mass. Although it is possible to dilute with water instead of diluting with ethanol, diluting with ethanol allows a thinner film to be formed in a single film formation, and a film with a high transmission rate can be obtained.

(3−3)付着工程
次に、成膜用スラリー12(例えば、シリカゾル液)をモノリス型の基材10のセル4内に付着させる。基材10のセル4内に、成膜用スラリー12を付着させる方法として、特に限定されるものではないが、例えば、以下の方法が挙げられる。
(3-3) Adhering Step Next, the film-forming slurry 12 (for example, silica sol liquid) is attached in the cell 4 of the monolithic substrate 10. Although it does not specifically limit as a method of making the film-forming slurry 12 adhere in the cell 4 of the base material 10, For example, the following method is mentioned.

広口ロートの下端に基材10を固着し、広口ロートに成膜用スラリー12を供給して基材10の上部から成膜用スラリー12をセル4に流し込み、セル4内を通過させて成膜用スラリー12を付着させることができる。   The base material 10 is fixed to the lower end of the wide-mouth funnel, the film-forming slurry 12 is supplied to the wide-mouth funnel, the film-forming slurry 12 is poured into the cell 4 from the upper part of the base material 10, and is passed through the cell 4 to form the film. Slurry 12 can be deposited.

あるいは、送液ポンプを使用し、成膜用スラリー12を各セル4の一方の開口端から、0.3〜300cm/分程度の速度で各セル4内に送入するディップ成膜法を用いることもできる。   Alternatively, a dip film forming method is used in which the film forming slurry 12 is fed into each cell 4 from one open end of each cell 4 at a rate of about 0.3 to 300 cm / min using a liquid feed pump. You can also.

図2は、付着工程によって、セル4内に成膜用スラリー12を付着させたところを示す。なお、成膜用スラリー12が後の乾燥工程、熱処理工程を経て分離膜13となる。   FIG. 2 shows a state in which the film-forming slurry 12 is attached in the cell 4 by the attaching process. The film-forming slurry 12 becomes the separation membrane 13 through a subsequent drying step and heat treatment step.

(3−4)乾燥工程
次に、基材10に付着させた成膜用スラリー12を乾燥させる。図1は、乾燥工程の一実施形態を示す模式図である。基材10の一方の端面2(第一の端面2a)側に通風装置16を配置し、基材10のセル4内に、通風装置16から風を送り込み、基材10の他方の端面2(第二の端面2b)側より排気する。通風は、基材10の下から上に向かって行ってもよいし、上から下に向かって行ってもよい。このようにして、セル4内に風を通過させながら成膜用スラリー12によって形成された膜の通風乾燥を行う。このようにして基材10のセル4に風を通すことにより、セル4の表面に成膜されたシリカ膜等の成膜用スラリー12によって形成される膜の全体が風にて乾燥される。なお、本発明において、一度の成膜及び乾燥で所望の膜厚が得られない場合には、所望の膜厚が得られるまで成膜及び乾燥の工程を複数回繰り返すようにしても良い。
(3-4) Drying Step Next, the film-forming slurry 12 attached to the base material 10 is dried. FIG. 1 is a schematic diagram illustrating an embodiment of a drying process. The ventilation device 16 is arranged on one end surface 2 (first end surface 2a) side of the base material 10, and air is sent from the ventilation device 16 into the cell 4 of the base material 10, and the other end surface 2 ( It exhausts from the 2nd end surface 2b side. Ventilation may be performed from the bottom to the top of the substrate 10 or from the top to the bottom. In this manner, the film formed by the film-forming slurry 12 is ventilated and dried while passing air through the cell 4. By passing air through the cell 4 of the substrate 10 in this manner, the entire film formed by the film-forming slurry 12 such as a silica film formed on the surface of the cell 4 is dried by wind. In the present invention, when a desired film thickness cannot be obtained by one film formation and drying, the film formation and drying steps may be repeated a plurality of times until the desired film thickness is obtained.

シリカ膜の場合、通風装置16から送り込む風の温度は、好ましくは10〜80℃である。10℃以上の風を通過させることにより、乾燥を進めて密な膜を得ることができる。また、80℃以下とすることにより、膜面にクラックが発生しにくい。乾燥のための風がセル4内を通過する速度は、0.1〜100m/秒で行うことが好ましく、5〜30m/秒がさらに好ましい。風がセル4内を通過する速度を0.1m/秒以上とすることにより、乾燥させやすい。また、風がセル4内を通過する速度を100m/秒以下とすることにより、クラックが発生しにくい。   In the case of a silica film, the temperature of the wind sent from the ventilation device 16 is preferably 10 to 80 ° C. By passing a wind of 10 ° C. or higher, drying can proceed and a dense film can be obtained. Moreover, a crack is hard to generate | occur | produce on the film surface by setting it as 80 degrees C or less. The speed at which the wind for drying passes through the cell 4 is preferably 0.1 to 100 m / sec, and more preferably 5 to 30 m / sec. It is easy to dry by setting the speed at which the wind passes through the cell 4 to 0.1 m / second or more. Moreover, cracks are unlikely to occur when the speed at which the wind passes through the cell 4 is 100 m / second or less.

本発明の分離膜の製造方法では、乾燥工程において基材10の端面2の一部をマスク15で覆った状態で通風して乾燥させる。以下、マスク15を用いた方法について説明する。   In the separation membrane manufacturing method of the present invention, in the drying step, a part of the end surface 2 of the substrate 10 is covered with the mask 15 and then dried by ventilation. Hereinafter, a method using the mask 15 will be described.

(3−4−1)第一の方法
本発明の分離膜の製造法の乾燥工程における第一の方法は、基材10の通風の対象となる部分である通風対象領域の一部をマスク15で覆ったカバー領域を設けて通風を行い、マスク15を移動させることによりカバー領域を移動させてさらに通風を行う。マスク15で基材10の風の入口側の端面2を覆っても良いし、出口側の端面2を覆っても良い。出口側の端面2を覆っても風の流通が遮られるため、入口側の端面2を覆うのと同様の効果が得られる。
(3-4-1) First Method The first method in the drying step of the method for producing a separation membrane of the present invention is to mask a part of the ventilation target area, which is a part to be ventilated, of the base material 10 with a mask 15. The cover area covered with is provided to ventilate, and the mask 15 is moved to move the cover area and further ventilate. The mask 15 may cover the end surface 2 on the wind inlet side of the substrate 10 or the end surface 2 on the outlet side. Even if the end surface 2 on the outlet side is covered, the flow of the wind is blocked, so that the same effect as covering the end surface 2 on the inlet side can be obtained.

図1では、扇形の開口が形成されたマスク15を用いている。マスク15は、風の入口側の第一の端面2aを覆うように備えられている。図3に通風装置16側から見た図を示す。マスク15は、扇形の開口領域以外の部分で基材10の端面2を覆っている。マスク15の中心軸と基材10の中心軸とが一致するようにマスク15が配置されている。そして、マスク15を連続的に移動させる、または間欠的に移動させて、カバー領域を移動させる。具体的には、中心軸を中心として、時計回り、または反時計回りにマスク15を回転させる。回転は、連続的に行ってもよいし、間欠的に行ってもよい。   In FIG. 1, a mask 15 having a fan-shaped opening is used. The mask 15 is provided so as to cover the first end surface 2a on the wind inlet side. The figure seen from the ventilation apparatus 16 side in FIG. 3 is shown. The mask 15 covers the end surface 2 of the substrate 10 at a portion other than the fan-shaped opening area. The mask 15 is arranged so that the central axis of the mask 15 and the central axis of the substrate 10 coincide. Then, the cover area is moved by moving the mask 15 continuously or intermittently. Specifically, the mask 15 is rotated clockwise or counterclockwise around the central axis. The rotation may be performed continuously or intermittently.

第一の方法の他の実施形態を図4A及び図4Bを用いて説明する。図4Aでは、マスク15は、半円形である。左側がマスク15で覆われて、右側は、基材10の端面2が見えている。この状態で通風し、一定の時間の後、図4Bに示すように、マスク15を反転する。なお、図3で説明したように、マスク15を回転させてもよい。   Another embodiment of the first method will be described with reference to FIGS. 4A and 4B. In FIG. 4A, the mask 15 is semicircular. The left side is covered with a mask 15, and the end surface 2 of the substrate 10 is visible on the right side. Ventilation is performed in this state, and after a certain time, the mask 15 is inverted as shown in FIG. 4B. Note that the mask 15 may be rotated as described with reference to FIG.

通風対象領域の面積に対する、前記マスクで覆われていない開口領域の開口面積割合が、10〜50%であることが好ましい。このような範囲とすることにより、通風装置16からの風を特定の領域に集中的に送ることができるため、通風装置16を大型化しなくても、膜を効率よく乾燥させることができる。   It is preferable that the ratio of the opening area of the opening area not covered with the mask to the area of the ventilation target area is 10 to 50%. By setting it as such a range, since the wind from the ventilation apparatus 16 can be sent intensively to a specific area | region, even if it does not enlarge the ventilation apparatus 16, a film | membrane can be dried efficiently.

ある領域へのマスク15の開口からの通風時間は、5〜80秒が好ましく、10〜60秒がさらに好ましい。5秒以上とすることにより、余剰スラリーを吹飛ばして厚膜化することを防止し、クラックが発生することを防止することができる。また、乾燥不足で焼成時に急激な膜収縮がおこり、クラックが発生することを防止することができる。80秒以下とすることにより、マスク15部分の余剰スラリーの自然乾燥が進んで厚膜化し、クラックが発生することを防止することができる。   The ventilation time from the opening of the mask 15 to a certain region is preferably 5 to 80 seconds, and more preferably 10 to 60 seconds. By setting it to 5 seconds or more, it is possible to prevent the excess slurry from being blown off to increase the film thickness and to prevent generation of cracks. In addition, it is possible to prevent cracks from occurring due to rapid film shrinkage during firing due to insufficient drying. By setting it to 80 seconds or less, it is possible to prevent the surplus slurry in the mask 15 portion from being naturally dried to increase the thickness and prevent cracks from occurring.

(3−4−2)第二の方法
本発明の分離膜の製造法の乾燥工程における第二の方法は、乾燥工程が、マスク15で覆わず基材10の通風の対象となる部分である通風対象領域のすべてに通風を行うマスクなし工程と、通風対象領域の一部をマスク15で覆ったカバー領域を設けて通風を行うマスクあり工程と、を含む方法である。第二の方法においても、マスク15は、基材10の入口側の端面2を覆っても良いし、出口側の端面2を覆っても良い。
(3-4-2) Second Method The second method in the drying step of the separation membrane manufacturing method of the present invention is a portion in which the drying step is not covered with the mask 15 and is a target of ventilation of the base material 10. This is a method including a maskless process for ventilating all of the ventilation target areas and a masked process for ventilating by providing a cover area in which a part of the ventilation target area is covered with the mask 15. Also in the second method, the mask 15 may cover the end surface 2 on the inlet side of the substrate 10 or may cover the end surface 2 on the outlet side.

この場合、マスクなし工程を行った後に、マスクあり工程を行うことが好ましい。図5A及び図5Bを用いて、第二の方法を説明する。図5Aは、マスクなし工程である。通風は、基材10の端面2の全領域に対して行われる。一定の時間経過後、図5Bに示すように、通風対象領域の一部をマスク15で覆ったカバー領域を設ける。このとき、カバー領域は、端面2の中央部を覆うことが好ましい。通風装置16にて通風すると、通常、中央部に風が多く流れ、外周部は、風が弱い。そのため、膜の乾燥に中央部と外周部とにおいて差が生じやすい。カバーあり工程にて、中央部にカバー領域を設けることで、中央部と外周部における膜の乾燥の差を減少させることができる。これにより、均一的な膜を製造することができる。   In this case, it is preferable to perform the masked process after performing the maskless process. The second method will be described with reference to FIGS. 5A and 5B. FIG. 5A shows a maskless process. Ventilation is performed over the entire region of the end surface 2 of the substrate 10. After a certain period of time, as shown in FIG. 5B, a cover area is provided in which a part of the ventilation target area is covered with a mask 15. At this time, the cover region preferably covers the central portion of the end surface 2. When ventilation is performed by the ventilation device 16, normally, a large amount of wind flows in the central portion, and the wind is weak in the outer peripheral portion. Therefore, a difference is likely to occur between the central portion and the outer peripheral portion in drying the film. By providing the cover region in the center part in the process with cover, the difference in drying of the film between the center part and the outer peripheral part can be reduced. Thereby, a uniform film can be manufactured.

なお、マスクあり工程とマスクなし工程を繰り返し行ってもよいし、マスクなし工程の後、マスクあり工程を行ってもよいが、マスクなし工程の後、マスクあり工程を行うと、最初にスラリーをある程度吹き飛ばすことができるため好ましい。   Note that the process with a mask and the process without a mask may be repeated, or the process with a mask may be performed after the process without a mask. This is preferable because it can be blown off to some extent.

通風対象領域の面積に対する、マスク15で覆われていない開口領域の開口面積割合が、15〜50%であることが好ましい。このような範囲とすることにより、通風装置16からの風を特定の領域に集中的に送ることができるため、通風装置16を大型化しなくても、膜を効率よく乾燥させることができる。   It is preferable that the ratio of the opening area of the opening area not covered with the mask 15 to the area of the ventilation target area is 15 to 50%. By setting it as such a range, since the wind from the ventilation apparatus 16 can be sent intensively to a specific area | region, even if it does not enlarge the ventilation apparatus 16, a film | membrane can be dried efficiently.

(3−4−3)第三の方法
本発明の分離膜の製造法の乾燥工程における第三の方法は、風の乱流を発生させる突出空洞部22、風の乱流を減衰させる整流胴部23、縮流ノズル部24のある風洞装置21を用いて基材10に送風する方法である。すなわち、突出空洞部22、整流胴部23、縮流ノズル部24のある風洞装置21を用いて基材10の一方の端面2側から送風して成膜用スラリー12を乾燥させる乾燥工程を行って分離膜13を形成する。突出空洞部22とは、風の乱流を発生させるためのもので、風の流通方向25と異なる方向に突出して形成された空洞部である。整流胴部23とは風の乱れを減衰させ、縮流ノズル部24とは、さらに風の乱れを減衰させる部分である。図6A、および図6Bは、突出空洞部22、整流胴部23、縮流ノズル部24を有する風洞装置21を用いた乾燥工程を示す。図6Aの風洞装置21は、風の流出方向27が流入方向26に対し直角に折れ曲がって形成されている。流入方向26に突出形成された突出空洞部22が設けられ、風洞装置21は、T字形状に形成されている。図6Bでは、突出空洞22部は、流路の径が拡径された拡径部22aとして形成されている。つまり、突出空洞部22は、風の流通方向とは異なる方向に突出して形成されている。
(3-4-3) Third Method The third method in the drying step of the method for producing a separation membrane of the present invention includes a projecting cavity portion 22 that generates wind turbulence and a rectifying cylinder that attenuates wind turbulence. This is a method of blowing air to the substrate 10 using the wind tunnel device 21 having the portion 23 and the contracted nozzle portion 24. That is, a drying process is performed in which the film forming slurry 12 is dried by blowing air from one end face 2 side of the substrate 10 using the wind tunnel device 21 having the projecting cavity portion 22, the rectifying body portion 23, and the contracted nozzle portion 24. Thus, the separation membrane 13 is formed. The projecting cavity portion 22 is for generating a turbulent wind flow, and is a cavity portion that projects in a direction different from the wind flow direction 25. The rectifying body portion 23 attenuates the turbulence of the wind, and the contracted nozzle portion 24 is a portion that further attenuates the turbulence of the wind. 6A and 6B show a drying process using the wind tunnel device 21 having the protruding cavity portion 22, the rectifying body portion 23, and the reduced flow nozzle portion 24. The wind tunnel device 21 of FIG. 6A is formed by bending a wind outflow direction 27 perpendicular to the inflow direction 26. A projecting cavity portion 22 projecting in the inflow direction 26 is provided, and the wind tunnel device 21 is formed in a T shape. In FIG. 6B, the protruding cavity 22 part is formed as a diameter-enlarged part 22a in which the diameter of the flow path is increased. In other words, the protruding cavity 22 is formed so as to protrude in a direction different from the flow direction of the wind.

突出空洞部22は、バッファとなる空間であり、整流胴部23と縮流ノズル部24は風の乱れを取り除く空間であり、これらの空間によって風の流れの不均一を取り除き、乱れを減衰させることが好ましい。図6Aの実施形態では、風の流通方向25を変化させる(折れ曲がらせる)ことによって、さらに風の不均一を取り除く効果が得られる。風の流通方向25が変化する部分に、突出空洞部22が形成されていることにより、さらに効果が高まる。突出空洞部22の形状としては、球状、円柱状、四角柱などの形状が挙げられる。整流胴部23の中に、20メッシュ(1インチ当たりの目の数が20)程度の整流網などを複数枚挿入するとさらに好ましい。また、風の速度分布を一様にし、乱れを小さくするためには絞り比(整流空間である整流胴部の径28と流出口の径29の比(整流胴部の径28/流出口の径29))を5〜20程度にすることが好ましい。図6Bは、絞り比を5以上とした実施形態を示す。   The projecting cavity portion 22 is a space serving as a buffer, and the rectifying body portion 23 and the contracted-flow nozzle portion 24 are spaces for removing the turbulence of the wind, and these spaces remove the non-uniformity of the wind flow and attenuate the turbulence. It is preferable. In the embodiment of FIG. 6A, the effect of removing wind non-uniformity can be further obtained by changing (bending) the flow direction 25 of the wind. The effect is further enhanced by the formation of the protruding cavity 22 at the portion where the wind flow direction 25 changes. Examples of the shape of the protruding cavity 22 include a spherical shape, a cylindrical shape, and a quadrangular prism shape. It is more preferable to insert a plurality of rectifying networks of about 20 mesh (the number of eyes per inch is 20) into the rectifying body 23. Further, in order to make the wind velocity distribution uniform and reduce the turbulence, the restriction ratio (ratio of the diameter 28 of the rectifying cylinder portion and the diameter 29 of the outlet which is the rectifying space (the diameter 28 of the rectifying cylinder / the diameter of the outlet) The diameter 29)) is preferably about 5 to 20. FIG. 6B shows an embodiment in which the aperture ratio is 5 or more.

第三の方法は、第一の方法や第二の方法と併用して行うこともできるし、単独で行うこともできる。第三の方法を第一の方法や第二の方法と併用する場合は、図6A、および図6Bに示すように、分離膜構造体1の風の出口側にマスク15を備える。出口側にマスク15を備えることでも、入口側に備えるのと同様の効果が得られる。   The third method can be performed in combination with the first method or the second method, or can be performed alone. When the third method is used in combination with the first method or the second method, a mask 15 is provided on the wind outlet side of the separation membrane structure 1 as shown in FIGS. 6A and 6B. By providing the mask 15 on the outlet side, the same effect as that provided on the inlet side can be obtained.

(3−5)熱処理工程
上記のように成膜、乾燥を行った後、100℃/hrにて昇温し、500℃で1時間保持した後、100℃/hrで降温する。以上の成膜用スラリー12(例えば、シリカゾル液)の付着工程、乾燥工程、熱処理工程を3回〜5回繰り返し、分離膜13(シリカ膜)を得ることができる。
(3-5) Heat treatment step After film formation and drying as described above, the temperature is raised at 100 ° C./hr, held at 500 ° C. for 1 hour, and then lowered at 100 ° C./hr. The adhesion process, the drying process, and the heat treatment process of the film forming slurry 12 (for example, silica sol solution) can be repeated 3 to 5 times to obtain the separation membrane 13 (silica membrane).

最終的に得られる分離膜13の膜厚は、0.1〜10μmとすることが好ましく、0.1〜3μmとするとより好ましい。この範囲とすることにより、十分な選択性を得るとともに、透過流速を大きくすることができる。   The film thickness of the separation membrane 13 finally obtained is preferably 0.1 to 10 μm, and more preferably 0.1 to 3 μm. By setting this range, sufficient selectivity can be obtained and the permeation flow rate can be increased.

本発明の一実施形態により製造された分離膜13の用途については、特に限定されるものではないが、混合液体等を分離するフィルタとして好適に用いることができる。   The use of the separation membrane 13 manufactured according to the embodiment of the present invention is not particularly limited, but can be suitably used as a filter for separating a mixed liquid or the like.

以下、本発明を実施例に基づいてさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited to these Examples.

(基材)
モノリス型の基材10として、図1に示すような、直径(外径)が180mm、長手方向7の長さが1000mmのアルミナからなる多孔質の基材10を用いた。また、基材10は長手方向7の両端側に貫通し、長手方向7と平行なセル4を、2000個有するものであった。セル4の内径は、2.0mmであった。
(Base material)
As the monolithic substrate 10, a porous substrate 10 made of alumina having a diameter (outer diameter) of 180 mm and a length in the longitudinal direction 7 of 1000 mm as shown in FIG. 1 was used. Further, the substrate 10 had 2000 cells 4 penetrating to both end sides in the longitudinal direction 7 and parallel to the longitudinal direction 7. The inner diameter of the cell 4 was 2.0 mm.

基材10の両端面(第一の端面2a,第二の端面2b)に、ガラスシール材を塗布し、ガラスシール材を650℃で加熱することによりガラスシールを形成した。   A glass seal material was applied to both end faces (first end face 2a, second end face 2b) of the substrate 10, and the glass seal material was heated at 650 ° C. to form a glass seal.

(成膜用スラリー)
テトラエトシキシランを硝酸の存在下で、50℃にて5時間加水分解してゾル液とし、そのゾル液をエタノールまたは水で希釈し、シリカ換算で1.0質量%となるように調整することによりシリカゾル液(成膜用スラリー12)を製造した。
(Slurry for film formation)
Tetraethoxysilane is hydrolyzed in the presence of nitric acid at 50 ° C. for 5 hours to form a sol solution, which is diluted with ethanol or water and adjusted to 1.0% by mass in terms of silica. Thus, a silica sol solution (film forming slurry 12) was produced.

(付着工程)
セル4の長手方向7が鉛直方向で、第一の端面2aが上方、第二の端面2bが下方となるように基材10を設置した。基材10の上部から3〜23℃に温度を制御したセラミックゾルを約8000mlをセル4内に流し込み、通過させた。基材10の上部から通風を約5秒行い、余剰なゾル液を除去した。なお、この成膜工程により、図2に示すように、セル4の内壁の全体に成膜されていることを確認した。
(Adhesion process)
The base material 10 was installed so that the longitudinal direction 7 of the cell 4 was the vertical direction, the first end surface 2a was upward, and the second end surface 2b was downward. About 8000 ml of ceramic sol, the temperature of which was controlled at 3 to 23 ° C., was poured into the cell 4 from the upper part of the substrate 10 and allowed to pass through. Ventilation was performed from the upper part of the substrate 10 for about 5 seconds to remove excess sol solution. In addition, it confirmed that it formed into a film on the whole inner wall of the cell 4 by this film-forming process, as shown in FIG.

(乾燥工程)
付着工程の後、図1に示すように、シリカ膜を成膜した基材10の第一の端面2a側に通風装置16を配置し、45℃の風を送り、シリカ膜を乾燥させた。以下、詳しく説明する。
(Drying process)
After the attaching step, as shown in FIG. 1, the ventilation device 16 was disposed on the first end face 2a side of the substrate 10 on which the silica film was formed, and 45 ° C. air was sent to dry the silica film. This will be described in detail below.

(実施例1〜16、比較例1)
実施例1〜16については、上述の第一の方法を用いた。すなわち、マスク15で覆ったカバー領域を設けて通風を行い、マスク15を移動させることによりカバー領域を移動させた。図3、図4A、図4Bに示すようなマスク15を用いた。マスク15を備えた位置、マスク15の開口面積割合や中心角15a(開口部分の角度)は、表1に示す。実施例1〜12,14,15は、マスク15を連続的に回転させた。実施例13は、マスク15を間欠的に反転させた。表1の「ある領域への通風時間」は、通風の対象となる、ある通風対象領域に通風していた時間である。例えば、実施例2は、中心角が90°の開口が設けられたマスク15を用いており、中心角が90°の通風対象領域に30秒通風した。マスク15を回転させて、残りの270°の領域も同様に乾燥させたので、全乾燥時間は、30秒×(360/90)=120秒である。比較例1〜4は、マスク15を用いなかった例である(開口面積割合100%、中心角360°)。比較例1〜4の表1の「ある領域への通風時間」とは、マスクを用いずに乾燥に要した全通風時間である。
(Examples 1 to 16, Comparative Example 1)
About Examples 1-16, the above-mentioned 1st method was used. That is, the cover area covered with the mask 15 was provided to ventilate, and the cover area was moved by moving the mask 15. A mask 15 as shown in FIGS. 3, 4A, and 4B was used. Table 1 shows the position where the mask 15 is provided, the opening area ratio of the mask 15 and the central angle 15a (angle of the opening). In Examples 1 to 12, 14, and 15, the mask 15 was continuously rotated. In Example 13, the mask 15 was inverted intermittently. “Ventilation time to a certain area” in Table 1 is a time during which ventilation is performed in a certain ventilation target area that is a target of ventilation. For example, in Example 2, the mask 15 provided with an opening having a central angle of 90 ° was used, and air was passed through a ventilation target region having a central angle of 90 ° for 30 seconds. Since the mask 15 was rotated and the remaining 270 ° region was similarly dried, the total drying time was 30 seconds × (360/90) = 120 seconds. Comparative Examples 1 to 4 are examples in which the mask 15 was not used (opening area ratio 100%, center angle 360 °). “Ventilation time to a certain area” in Table 1 of Comparative Examples 1 to 4 is the total ventilation time required for drying without using a mask.

(熱処理工程)
次に、試料を、電気炉で100℃/hにて昇温し、500℃で1時間保持した後、100℃/hで降温して熱処理した。成膜用スラリー12(シリカゾル液)の付着工程、乾燥工程、熱処理工程を4回繰り返し、実施例、比較例の試料を得た。
(Heat treatment process)
Next, the sample was heated at 100 ° C./h in an electric furnace, held at 500 ° C. for 1 hour, and then cooled at 100 ° C./h for heat treatment. The deposition process of the film-forming slurry 12 (silica sol solution), the drying process, and the heat treatment process were repeated four times to obtain samples of Examples and Comparative Examples.

(評価)
分離膜13の欠陥量を調べるために、セル4の真空度を測定した。セル4の一方を真空ポンプ(アルバック機工(株)製:直結型油回転真空ポンプ、型番:G−20DA、排気速度24L/min、到達圧力1.3×10-1Pa、2段式)で吸引し、他方のセル4に真空計(GE Sensing社製:キャリブレーター、型番:DPI800)を接続してセル4内を真空引きし、セル4内の到達真空度を測定した。
(Evaluation)
In order to investigate the amount of defects in the separation membrane 13, the degree of vacuum of the cell 4 was measured. One of the cells 4 is a vacuum pump (manufactured by ULVAC KIKOH Co., Ltd .: direct-coupled oil rotary vacuum pump, model number: G-20DA, exhaust speed 24 L / min, ultimate pressure 1.3 × 10 −1 Pa, two-stage type) A vacuum gauge (manufactured by GE Sensing: calibrator, model number: DPI800) was connected to the other cell 4 to evacuate the inside of the cell 4, and the ultimate vacuum in the cell 4 was measured.

真空度がマスクなしの比較例1よりも良いものを○(良)と評価した。さらに、特に真空度が良い−85kPa以下のものは、◎(優)と評価したが、真空度が良くても通風時間が長いものや風速が大きいものは、製造工程上好ましくないため、×(不可)と評価した。   A sample having a better degree of vacuum than Comparative Example 1 without a mask was evaluated as ◯ (good). Furthermore, those having a particularly good vacuum degree of −85 kPa or less were evaluated as ◎ (excellent), but those having a long ventilation time and a high wind speed even though the degree of vacuum is good are not preferable in the manufacturing process. No).

Figure 2014208334
Figure 2014208334

表1に示すように、開口面積割合が12.5〜50%であると特に良い結果が得られた。ある領域への通風時間は、10秒や60秒よりも、30秒が良かった。また、風速は、5m/秒や30m/秒よりも10m/秒の方が良かった。マスク15の移動の方法は、連続式(実施例4)と反転式(実施例13)で差はなかった。マスク15を出口側に備えた場合も入口側に備えた場合と同様の結果が得られた。   As shown in Table 1, particularly good results were obtained when the opening area ratio was 12.5 to 50%. The ventilation time to a certain area was 30 seconds better than 10 seconds or 60 seconds. The wind speed was better at 10 m / sec than at 5 m / sec or 30 m / sec. The method of moving the mask 15 was not different between the continuous method (Example 4) and the inversion method (Example 13). When the mask 15 was provided on the outlet side, the same result as that obtained when the mask 15 was provided on the inlet side was obtained.

比較例1〜4は、マスクを用いずに乾燥させたものであるが、比較例1、2は、真空度が良くなかった。比較例3、4は、真空度を良くすることができたものの、比較例3では、全通風時間が長く、比較例4では、風速を40m/秒と大きくする必要があった。   Comparative Examples 1 to 4 were dried without using a mask, but Comparative Examples 1 and 2 had poor vacuum. In Comparative Examples 3 and 4, the degree of vacuum could be improved, but in Comparative Example 3, the total ventilation time was long, and in Comparative Example 4, the wind speed had to be increased to 40 m / second.

(実施例17〜30、比較例5)
実施例17〜30については、実施例1等と同様に基材10を作製後、成膜用スラリー12を基材10に付着させ、上述の第二の方法による乾燥工程を行った。すなわち、図5A及び図5Bに示すように、マスクなし工程を30秒間行った後、マスクあり工程を行った。マスク15を備えた位置、マスク15の開口面積割合やマスクあり工程の時間は、表2に示す。比較例5は、マスク15を用いなかった例である(比較例5は、表1の比較例1と同じで、マスクなし工程30秒、マスクあり工程0秒である。)。
(Examples 17 to 30, Comparative Example 5)
About Examples 17-30, after producing the base material 10 like Example 1 etc., the slurry 12 for film-forming was made to adhere to the base material 10, and the drying process by the above-mentioned 2nd method was performed. That is, as shown in FIGS. 5A and 5B, the maskless process was performed for 30 seconds, and then the masked process was performed. Table 2 shows the position where the mask 15 is provided, the ratio of the opening area of the mask 15 and the time of the process with the mask. Comparative Example 5 is an example in which the mask 15 was not used (Comparative Example 5 is the same as Comparative Example 1 in Table 1 and has a maskless process of 30 seconds and a masked process of 0 seconds).

実施例1等と同様に熱処理を行い、シリカ膜を得、そのシリカ膜を評価した。真空度がマスクなしの比較例5よりも良いものを○(良)と評価した。さらに、特に真空度が良い−85kPa以下のものは、◎(優)と評価した。   Heat treatment was performed in the same manner as in Example 1 to obtain a silica film, and the silica film was evaluated. A sample having a better degree of vacuum than Comparative Example 5 without a mask was evaluated as ◯ (good). Furthermore, those having a particularly good vacuum degree of −85 kPa or less were evaluated as ◎ (excellent).

Figure 2014208334
Figure 2014208334

表2に示すように、開口面積割合が16〜49%であると特に良い結果が得られた。また、風速は、5m/秒や30m/秒よりも10m/秒の方が良かった。マスク15を出口側に備えた場合も入口側に備えた場合と同様の結果が得られた。   As shown in Table 2, particularly good results were obtained when the opening area ratio was 16 to 49%. The wind speed was better at 10 m / sec than at 5 m / sec or 30 m / sec. When the mask 15 was provided on the outlet side, the same result as that obtained when the mask 15 was provided on the inlet side was obtained.

本発明の分離膜の製造方法は、混合流体を分離するための、欠陥の少ない分離膜の製造方法として利用することができる。   The method for producing a separation membrane of the present invention can be used as a method for producing a separation membrane with few defects for separating a mixed fluid.

1:分離膜構造体、2,2a,2b:端面、3:隔壁、4:セル、7:長手方向、10:基材、12:成膜用スラリー、13:分離膜、15:マスク、15a:(開口部分の)中心角、16:通風装置、21:風洞装置、22:突出空洞部、22a:拡径部、23:整流胴部、24:縮流ノズル部、25:風の流通方向、26:流入方向、27:流出方向、28:整流胴部の径、29:流出口の径。 1: separation membrane structure, 2, 2a, 2b: end face, 3: partition, 4: cell, 7: longitudinal direction, 10: substrate, 12: slurry for film formation, 13: separation membrane, 15: mask, 15a : Center angle (of the opening), 16: Ventilation device, 21: Wind tunnel device, 22: Projection cavity, 22a: Expanded diameter portion, 23: Rectification body portion, 24: Reduced flow nozzle portion, 25: Wind flow direction , 26: inflow direction, 27: outflow direction, 28: diameter of the rectifying body, 29: diameter of the outlet.

Claims (8)

モノリス型の基材に、分離膜を成膜するための成膜用スラリーを付着させた後に、
前記基材の端面の一部をマスクで覆った状態で通風して前記成膜用スラリーを乾燥させる乾燥工程を行って前記分離膜を形成する分離膜の製造方法。
After depositing a slurry for forming a separation membrane on a monolithic substrate,
A method for producing a separation membrane, wherein the separation membrane is formed by performing a drying process in which a part of the end face of the base material is covered with a mask to ventilate and dry the film-forming slurry.
前記基材の前記通風の対象となる部分である通風対象領域の一部をマスクで覆ったカバー領域を設けて前記通風を行い、前記マスクを移動させることにより前記カバー領域を移動させてさらに前記通風を行う請求項1に記載の分離膜の製造方法。   A cover region in which a part of the ventilation target region that is the target of ventilation of the base material is covered with a mask is provided to perform the ventilation, and the cover region is moved by moving the mask to further move the cover. The manufacturing method of the separation membrane of Claim 1 which ventilates. 前記マスクを連続的に移動させる、または間欠的に移動させる請求項2に記載の分離膜の製造方法。   The method for manufacturing a separation membrane according to claim 2, wherein the mask is moved continuously or intermittently. 前記通風対象領域の面積に対する、前記マスクで覆われていない開口領域の開口面積割合が、10〜50%である請求項2または3に記載の分離膜の製造方法。   The method for manufacturing a separation membrane according to claim 2 or 3, wherein an opening area ratio of an opening region not covered with the mask to an area of the ventilation target region is 10 to 50%. 前記乾燥工程が、前記マスクで覆わず前記基材の前記通風の対象となる部分である通風対象領域のすべてに前記通風を行うマスクなし工程と、前記通風対象領域の一部をマスクで覆ったカバー領域を設けて前記通風を行うマスクあり工程と、を含む請求項1に記載の分離膜の製造方法。   In the drying step, a maskless step of performing the ventilation on all ventilation target regions that are portions to be ventilated of the base material that are not covered with the mask, and a part of the ventilation target region is covered with a mask. A method for producing a separation membrane according to claim 1, further comprising a step with a mask that provides a cover region and performs the ventilation. 前記乾燥工程において、前記マスクなし工程を行った後に、前記マスクあり工程を行う請求項5に記載の分離膜の製造方法。   The method for manufacturing a separation membrane according to claim 5, wherein in the drying step, the step with the mask is performed after the step without the mask is performed. 前記通風対象領域の面積に対する、前記マスクで覆われていない開口領域の開口面積割合が、15〜50%である請求項5または6に記載の分離膜の製造方法。   The method for manufacturing a separation membrane according to claim 5 or 6, wherein an opening area ratio of the opening area not covered with the mask to the area of the ventilation target area is 15 to 50%. モノリス型の基材に、分離膜を成膜するための成膜用スラリーを付着させた後に、
風の乱流を発生させる突出空洞部のある風洞装置を用いて前記基材の一方の端面側から送風して前記成膜用スラリーを乾燥させる乾燥工程を行って前記分離膜を形成する分離膜の製造方法。
After depositing a slurry for forming a separation membrane on a monolithic substrate,
Separation membrane for forming the separation membrane by performing a drying step of drying the slurry for film formation by blowing air from one end face side of the substrate using a wind tunnel device having a projecting cavity that generates turbulent flow of wind Manufacturing method.
JP2014058757A 2013-03-29 2014-03-20 Manufacturing method of separation membrane Active JP6189775B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014058757A JP6189775B2 (en) 2013-03-29 2014-03-20 Manufacturing method of separation membrane

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013073184 2013-03-29
JP2013073184 2013-03-29
JP2014058757A JP6189775B2 (en) 2013-03-29 2014-03-20 Manufacturing method of separation membrane

Publications (2)

Publication Number Publication Date
JP2014208334A true JP2014208334A (en) 2014-11-06
JP6189775B2 JP6189775B2 (en) 2017-08-30

Family

ID=51902961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014058757A Active JP6189775B2 (en) 2013-03-29 2014-03-20 Manufacturing method of separation membrane

Country Status (1)

Country Link
JP (1) JP6189775B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016190201A (en) * 2015-03-31 2016-11-10 日本碍子株式会社 Separation membrane structure and method for manufacturing the same
JP2018021720A (en) * 2016-08-04 2018-02-08 パナソニックIpマネジメント株式会社 Hot blast circulation type heating device and process of manufacture of separation film structure using the hot blast circulation type heating device
WO2018088064A1 (en) * 2016-11-08 2018-05-17 日本碍子株式会社 Method for drying separation membrane and method for producing separation membrane structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60216848A (en) * 1984-04-10 1985-10-30 Toyota Motor Corp Preparation of monolithic catalyst
JPH06298563A (en) * 1993-02-26 1994-10-25 Corning Inc Method for rotating dielectric drying of honeycomb ceramic article
JP2005081313A (en) * 2003-09-11 2005-03-31 Nissan Motor Co Ltd Production method for monolith type catalyst, and drying apparatus used for the same
JP2007237085A (en) * 2006-03-09 2007-09-20 Cataler Corp Slurry drying method and drying apparatus
JP2008246304A (en) * 2007-03-29 2008-10-16 Ngk Insulators Ltd Ceramic porous membrane, its manufacturing method, and manufacturing method of ceramic filter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60216848A (en) * 1984-04-10 1985-10-30 Toyota Motor Corp Preparation of monolithic catalyst
JPH06298563A (en) * 1993-02-26 1994-10-25 Corning Inc Method for rotating dielectric drying of honeycomb ceramic article
JP2005081313A (en) * 2003-09-11 2005-03-31 Nissan Motor Co Ltd Production method for monolith type catalyst, and drying apparatus used for the same
JP2007237085A (en) * 2006-03-09 2007-09-20 Cataler Corp Slurry drying method and drying apparatus
JP2008246304A (en) * 2007-03-29 2008-10-16 Ngk Insulators Ltd Ceramic porous membrane, its manufacturing method, and manufacturing method of ceramic filter

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016190201A (en) * 2015-03-31 2016-11-10 日本碍子株式会社 Separation membrane structure and method for manufacturing the same
JP2018021720A (en) * 2016-08-04 2018-02-08 パナソニックIpマネジメント株式会社 Hot blast circulation type heating device and process of manufacture of separation film structure using the hot blast circulation type heating device
WO2018088064A1 (en) * 2016-11-08 2018-05-17 日本碍子株式会社 Method for drying separation membrane and method for producing separation membrane structure
CN109890489A (en) * 2016-11-08 2019-06-14 日本碍子株式会社 The drying means of seperation film and the manufacturing method for separating film structure
JPWO2018088064A1 (en) * 2016-11-08 2019-09-26 日本碍子株式会社 Method for drying separation membrane and method for producing separation membrane structure
JP7096163B2 (en) 2016-11-08 2022-07-05 日本碍子株式会社 Method for drying the separation membrane and method for manufacturing the separation membrane structure
US11534724B2 (en) 2016-11-08 2022-12-27 Ngk Insulators, Ltd. Method for drying separation membrane and method for producing separation membrane structure

Also Published As

Publication number Publication date
JP6189775B2 (en) 2017-08-30

Similar Documents

Publication Publication Date Title
CN101791524B (en) Asymmetric structure ceramic ultrafiltration membrane and preparation method thereof
US8481110B2 (en) Methods of making inorganic membranes
CA2666279C (en) Method of manufacturing ceramic porous membrane and method of manufacturing ceramic filter
JP5048371B2 (en) Method for producing ceramic porous membrane and method for producing ceramic filter
JP6189775B2 (en) Manufacturing method of separation membrane
US10391454B2 (en) Monolithic separation membrane structure and method for producing monolithic separation membrane structure
US10183242B2 (en) Porous inorganic membranes and method of manufacture
US10328391B2 (en) Structural body
US10987637B2 (en) DDR-type zeolite seed crystal and method for manufacturing DDR-type zeolite membrane
JP6767876B2 (en) Separation film structure and its manufacturing method
JP2009241054A (en) Method for manufacturing of ceramic filter
JP5897334B2 (en) Method for producing silica film
JP2013031830A (en) Porous body with separation membrane
JP5033670B2 (en) Manufacturing method of ceramic filter
JP2007229564A (en) Manufacturing method of ceramic filter
JP6479534B2 (en) Separation membrane structure and method for producing the same
JP2009255031A (en) Treatment method of ceramic porous film
JP6767995B2 (en) Separation membrane repair method and separation membrane structure manufacturing method
JP2017131849A (en) Method of manufacturing gas separation filter
WO2022163064A1 (en) Separation membrane composite body and production method for separation membrane composite body
JP6059062B2 (en) Method for producing metal-containing film
JP6009541B2 (en) Manufacturing method of separation membrane
JP2013223842A (en) Honeycomb structure and honeycomb filter
JP2015188840A (en) Monolithic separation membrane structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170803

R150 Certificate of patent or registration of utility model

Ref document number: 6189775

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150