[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2014136989A - Catalyst early warming-up control device of spark ignition type engine - Google Patents

Catalyst early warming-up control device of spark ignition type engine Download PDF

Info

Publication number
JP2014136989A
JP2014136989A JP2013005232A JP2013005232A JP2014136989A JP 2014136989 A JP2014136989 A JP 2014136989A JP 2013005232 A JP2013005232 A JP 2013005232A JP 2013005232 A JP2013005232 A JP 2013005232A JP 2014136989 A JP2014136989 A JP 2014136989A
Authority
JP
Japan
Prior art keywords
exhaust
valve
exhaust valve
timing
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013005232A
Other languages
Japanese (ja)
Other versions
JP5983416B2 (en
Inventor
Tomomi Watanabe
友巳 渡辺
Junzo Sasaki
潤三 佐々木
Satoshi Ketadani
諭史 桁谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2013005232A priority Critical patent/JP5983416B2/en
Publication of JP2014136989A publication Critical patent/JP2014136989A/en
Application granted granted Critical
Publication of JP5983416B2 publication Critical patent/JP5983416B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst early warming-up control device of a spark ignition type engine capable of restraining exhaust noises while maintaining an early activation effect of a catalyst device during AWS execution.SOLUTION: An valve opening start timing of an exhaust valve is set so that the exhaust valve starts to be opened during an expansion stroke during which air-fuel mixture ignited in a spark timing retarded beyond a compression top dead point is combusted. In a cam profile of a cam for the exhaust valve, at an early stage of a normal acceleration zone except for a cushioning zone on a valve opening start side of the exhaust valve, a loose acceleration zone in which an increase ratio of lift acceleration to a crank angle is smaller than in an early stage of the normal acceleration zone of an intake valve is formed.

Description

本発明は、火花点火式エンジンの触媒早期暖機制御装置に関し、内燃機関のエミッション対策の技術分野に属する。   The present invention relates to a catalyst early warm-up control device for a spark ignition engine, and belongs to the technical field of emission countermeasures for internal combustion engines.

従来、火花点火式エンジンにおいて、排気通路に備えられた触媒装置の早期活性化を図るために、AWS(Accelerated Warm−up System)と称される技術が用いられることがある。このAWSは、例えばエンジンの冷間始動直後等で、前記触媒装置が未活性状態のときは、同じ運転状態(例えばアイドル運転)で活性状態のときよりも、吸入空気量を増量し、かつ点火時期を圧縮上死点を超えてリタードさせることにより、混合気を膨張行程中に後燃えさせ、これにより排気ガス温度ひいては排気熱量を増大させて前記触媒装置の暖機を促進する技術である(例えば特許文献1参照)。   Conventionally, in a spark ignition type engine, a technique called AWS (Accelerated Warm-up System) may be used to achieve early activation of a catalytic device provided in an exhaust passage. This AWS is, for example, immediately after the engine is cold started, and when the catalyst device is in an inactive state, the intake air amount is increased and ignition is performed in the same operating state (for example, idling operation) than in the active state. By retarding the timing beyond the compression top dead center, the air-fuel mixture is post-burned during the expansion stroke, thereby increasing the exhaust gas temperature and hence the exhaust heat quantity, thereby promoting the warm-up of the catalyst device ( For example, see Patent Document 1).

特開2007−321590号公報JP 2007-321590 A

AWSの実行中は、点火時期が圧縮上死点を超えてリタードされるため、混合気は膨張行程中に燃焼し、筒内圧力が膨張行程後半に上昇する。このタイミングは、排気ポートを開閉するための排気弁が開弁を開始する時期と重なるため、排気弁が開弁した際に気筒から排気ポートに流れ出るブローダウンエネルギーが高くなる。その結果、排気通路内の排気脈動の振幅が大きくなり、排気系の放射音が増大し、排気騒音が大きくなるという問題がある。   During execution of AWS, the ignition timing is retarded beyond the compression top dead center, so the air-fuel mixture burns during the expansion stroke, and the in-cylinder pressure rises in the latter half of the expansion stroke. Since this timing overlaps with the timing when the exhaust valve for opening and closing the exhaust port starts opening, the blowdown energy flowing from the cylinder to the exhaust port when the exhaust valve is opened increases. As a result, there is a problem that the amplitude of the exhaust pulsation in the exhaust passage increases, the emission sound of the exhaust system increases, and the exhaust noise increases.

この問題に対処するために、吸入空気量を減量してエンジン回転数を低下させることが考えられるが、そうすると、排気熱量が減少して触媒装置の早期活性化効果が目減りしてしまう。   In order to cope with this problem, it is conceivable to reduce the amount of intake air to reduce the engine speed. However, if this is done, the amount of exhaust heat is reduced and the early activation effect of the catalyst device is diminished.

そこで、本発明は、AWSの実行中、触媒装置の早期活性化効果を維持しつつ、排気騒音を抑制することのできる火花点火式エンジンの触媒早期暖機制御装置の提供を目的とする。   Therefore, an object of the present invention is to provide an early catalyst warm-up control device for a spark ignition engine that can suppress exhaust noise while maintaining the early activation effect of the catalyst device during execution of AWS.

前記課題を解決するためのものとして、本発明は、排気通路に備えられた触媒装置が未活性状態のときは、同じ運転状態で活性状態のときよりも、吸入空気量を増量し、かつ点火時期を圧縮上死点を超えてリタードさせる火花点火式エンジンの触媒早期暖機制御装置であって、前記リタードされた点火時期に点火された混合気が燃焼する膨張行程中に排気弁が開弁を開始するように排気弁の開弁開始時期を設定する排気開弁開始時期設定手段が備えられていると共に、前記排気弁用のカムのカムプロフィールにおいて、前記排気弁の開弁開始側の緩衝区間を除く正加速区間の初期に、吸気弁の正加速区間の初期と比べて、クランク角に対するリフト加速度の増加割合が小さい緩加速区間が形成されていることを特徴とする火花点火式エンジンの触媒早期暖機制御装置である(請求項1)。   In order to solve the above-mentioned problems, the present invention increases the amount of intake air when the catalyst device provided in the exhaust passage is in an inactive state and increases the amount of intake air compared with when the catalyst device is in the same operating state. A catalyst early warm-up control device for a spark ignition engine that retards the timing beyond the compression top dead center, and the exhaust valve opens during the expansion stroke in which the air-fuel mixture ignited at the retarded ignition timing burns. An exhaust valve opening start timing setting means for setting the valve opening start timing of the exhaust valve so as to start the exhaust valve, and in the cam profile of the cam for the exhaust valve, a buffer on the valve opening start side of the exhaust valve is provided. A spark-ignition engine characterized in that a slow acceleration zone in which the rate of increase in lift acceleration with respect to the crank angle is small is formed at the beginning of the positive acceleration zone excluding the zone compared to the initial time of the positive acceleration zone of the intake valve. A rapid catalyst warm-up control apparatus (claim 1).

本発明によれば、圧縮上死点を超えてリタードされた点火時期に点火された混合気が燃焼する膨張行程中に排気弁が開弁を開始するから、前述したように、排気弁が開弁した際に気筒から排気ポートに流れ出るブローダウンエネルギーが高くなり、その結果、排気通路内の排気脈動の振幅が大きくなり、排気系の放射音が増大し、排気騒音が大きくなるという問題が発生する。   According to the present invention, the exhaust valve starts to open during the expansion stroke in which the air-fuel mixture ignited at the ignition timing retarded beyond the compression top dead center is burned. The blowdown energy that flows from the cylinder to the exhaust port when the valve is turned on increases, resulting in an increase in the amplitude of exhaust pulsation in the exhaust passage, an increase in the emission noise of the exhaust system, and an increase in exhaust noise. To do.

この問題に対し、本発明では、排気弁用のカムのカムプロフィールにおいて、前記のような緩加速区間が形成されているから、この緩加速区間によって排気弁が相対的にゆっくり開弁することになる。そのため、たとえブローダウンエネルギーが高くても、ブローダウンエネルギーの排気系への放出ないし伝達が緩慢化し、その結果、排気通路内の排気脈動の振幅が小さくなり、排気系の放射音が減少し、排気騒音が抑制される。   In order to solve this problem, in the present invention, in the cam profile of the cam for the exhaust valve, the slow acceleration section as described above is formed. Therefore, the exhaust valve is opened relatively slowly by the slow acceleration section. Become. Therefore, even if the blowdown energy is high, the release or transmission of the blowdown energy to the exhaust system is slowed down. As a result, the amplitude of the exhaust pulsation in the exhaust passage is reduced, and the emission sound of the exhaust system is reduced. Exhaust noise is suppressed.

一方、触媒活性については、圧縮上死点を超えてリタードされた点火時期に点火された混合気が膨張行程中に後燃えしているから、排気ガス温度ひいては排気熱量が増大しており、触媒装置の早期活性化効果が十分維持される。すなわち、触媒活性と排気騒音との両立が図られる。   On the other hand, with respect to the catalyst activity, since the air-fuel mixture ignited at the ignition timing retarded beyond the compression top dead center is burned after the expansion stroke, the exhaust gas temperature and the exhaust heat quantity are increased. The early activation effect of the device is sufficiently maintained. That is, both catalyst activity and exhaust noise can be achieved.

以上により、本発明によれば、AWSの実行中、触媒装置の早期活性化効果を維持しつつ、排気騒音を抑制することのできる火花点火式エンジンの触媒早期暖機制御装置が提供される。   As described above, according to the present invention, a catalyst early warm-up control device for a spark ignition engine capable of suppressing exhaust noise while maintaining the early activation effect of the catalyst device during execution of AWS is provided.

本発明において、好ましくは、前記排気弁は1つの気筒に複数設けられ、前記排気開弁開始時期設定手段は、前記複数の排気弁の開弁開始時期が相違するように排気弁の開弁開始時期を設定する(請求項2)。   In the present invention, preferably, a plurality of the exhaust valves are provided in one cylinder, and the exhaust valve opening start timing setting means starts the opening of the exhaust valves so that the valve opening start timings of the plurality of exhaust valves are different. Time is set (Claim 2).

この構成によれば、複数の排気弁が互いに異なるタイミングで開弁を開始するので、排気ポートに排出された排気ガスの流れに乱れが生じ、ひいては排気通路内の排気ガスが攪拌されて、排気通路内での後燃えが促進される。そのため、より触媒装置に近い部位での後燃えが図られて、触媒活性の点でより一層有利となる。   According to this configuration, since the plurality of exhaust valves start opening at different timings, the flow of the exhaust gas discharged to the exhaust port is disturbed, and the exhaust gas in the exhaust passage is agitated, and the exhaust gas is exhausted. Afterburning in the passage is promoted. Therefore, afterburning is achieved at a site closer to the catalyst device, which is further advantageous in terms of catalyst activity.

本発明において、好ましくは、前記複数の排気弁のうち開弁開始時期がより早い排気弁にのみ前記緩加速区間が形成されている(請求項3)。   In the present invention, preferably, the slow acceleration section is formed only in an exhaust valve whose opening start timing is earlier among the plurality of exhaust valves.

この構成によれば、複数の排気弁が互いに異なるタイミングで開弁を開始しても、ブローダウンエネルギーの排気系への放出ないし伝達の緩慢化効果が確保される。   According to this configuration, even when the plurality of exhaust valves start opening at different timings, the effect of releasing or transmitting blowdown energy to the exhaust system is ensured.

本発明において、好ましくは、前記複数の排気弁のうち開弁開始時期がより早い排気弁の前記緩加速区間は他の排気弁の前記緩加速区間よりも開弁開始側に長く形成されている(請求項4)。   In the present invention, preferably, the slow acceleration section of the exhaust valve whose opening start timing is earlier among the plurality of exhaust valves is formed longer on the valve opening start side than the slow acceleration section of the other exhaust valves. (Claim 4).

この構成によれば、互いに異なるタイミングで開弁を開始する複数の排気弁が全体として連続する長い期間ブローダウンエネルギーを緩慢に放出するので、ブローダウンエネルギーが過大な場合に良好に対処することができる。   According to this configuration, since a plurality of exhaust valves that start valve opening at different timings slowly release blowdown energy for a long period that continues as a whole, it is possible to cope well when blowdown energy is excessive. it can.

本発明は、AWSの実行中、触媒装置の早期活性化効果を維持しつつ、排気騒音を抑制することのできる火花点火式エンジンの触媒早期暖機制御装置に関するものであるから、内燃機関のエミッション対策に寄与し得るものである。   The present invention relates to an early catalyst warm-up control device for a spark ignition engine capable of suppressing exhaust noise while maintaining the early activation effect of the catalyst device during execution of AWS. It can contribute to countermeasures.

本発明の実施形態に係る火花点火式エンジンの概略構成図である。1 is a schematic configuration diagram of a spark ignition engine according to an embodiment of the present invention. マルチホール型インジェクタとピストンと点火プラグとの詳細構造を示した斜視図である。It is the perspective view which showed the detailed structure of the multi-hole type injector, piston, and spark plug. (a)はピストン冠面の平面図、(b)はピストンのA−A線矢視断面図である。(A) is a top view of a piston crown surface, (b) is an AA arrow directional cross-sectional view of a piston. 圧縮行程での燃料噴射状態を示す側面図である。It is a side view which shows the fuel-injection state in a compression stroke. (a)は燃料噴射直後の燃焼室内の様子を説明するための模式図、(b)はその後の様子を説明するための模式図である。(A) is a schematic diagram for demonstrating the mode in the combustion chamber immediately after fuel injection, (b) is a schematic diagram for demonstrating the mode after that. 前記エンジンの排気系の排気上流部を示す平面図である。It is a top view which shows the exhaust upstream part of the exhaust system of the said engine. 前記排気上流部の拡大平面図である。It is an enlarged plan view of the exhaust upstream portion. 前記エンジンの制御システム図である。It is a control system figure of the engine. AWS実行中の燃料噴射時期、点火時期、吸排気弁の開弁時期及び閉弁時期のタイムチャートである。6 is a time chart of fuel injection timing, ignition timing, intake / exhaust valve opening timing, and valve closing timing during execution of AWS. AWS実行中のエンジン回転及び点火時期のタイムチャートである。6 is a time chart of engine rotation and ignition timing during execution of AWS. (a)は点火時期のリタード量がATDC16°CA、ATDC26°CA及びATDC36°CAのときのAWS実行中の筒内圧力のタイムチャートに排気弁の開弁時期を重ねたもの、(b)はそのうち膨張行程後半の部分を拡大したものである。(A) is a time chart of in-cylinder pressure during execution of AWS when the retard amount of the ignition timing is ATDC 16 ° CA, ATDC 26 ° CA and ATDC 36 ° CA, and (b) Among them, the latter half of the expansion stroke is enlarged. 前記エンジンの排気弁用カムのカムプロフィールである。It is a cam profile of the cam for exhaust valves of the engine. 前記排気弁用カムのクランク角に対するリフト加速度の変化を示すグラフである。It is a graph which shows the change of the lift acceleration with respect to the crank angle of the said exhaust valve cam. 前記エンジンの吸気弁用カムのクランク角に対するリフト加速度の変化を示すグラフである。It is a graph which shows the change of the lift acceleration with respect to the crank angle of the intake valve cam of the engine.

以下、図面に基いて本発明の実施形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(1)全体構成
図1に示すように、本実施形態に係るエンジンEは直列4気筒(図6参照)の火花点火式エンジンであり、クランクシャフト1を回転自在に支持するシリンダブロック2と、シリンダブロック2の上部に配置されたシリンダヘッド3とを有し、これらのシリンダブロック2及びシリンダヘッド3に4つの気筒4が設けられている。
(1) Overall Configuration As shown in FIG. 1, an engine E according to this embodiment is an in-line four-cylinder (see FIG. 6) spark ignition engine, and a cylinder block 2 that rotatably supports a crankshaft 1. The cylinder block 3 has a cylinder head 3 disposed on the top of the cylinder block 2, and the cylinder block 2 and the cylinder head 3 are provided with four cylinders 4.

各気筒4にコンロッド5を介してクランクシャフト1に連結されたピストン6が収容されている。ピストン6の上方に燃焼室7が形成されている。シリンダヘッド3の下面に燃焼室7の天井壁部8が気筒4毎に形成されている。天井壁部8は中央部分からシリンダヘッド3の下端まで延びる吸気側傾斜面8aと排気側傾斜面8bとが対向して形成されたペントルーフ型である。吸気側傾斜面8aに吸気ポート9が開口し、排気側傾斜面8bに排気ポート10が開口している。吸気ポート9及び排気ポート10は気筒4側が2つに分岐し(図6参照)、それぞれに吸気ポート9を開閉するための吸気弁16及び排気ポート10を開閉するための排気弁17が設けられている。すなわち、1気筒4あたり2つの吸気弁16及び2つの排気弁17が設けられている。   Each cylinder 4 accommodates a piston 6 connected to the crankshaft 1 via a connecting rod 5. A combustion chamber 7 is formed above the piston 6. A ceiling wall 8 of the combustion chamber 7 is formed for each cylinder 4 on the lower surface of the cylinder head 3. The ceiling wall portion 8 is a pent roof type in which an intake side inclined surface 8a and an exhaust side inclined surface 8b extending from the central portion to the lower end of the cylinder head 3 are opposed to each other. An intake port 9 is opened on the intake side inclined surface 8a, and an exhaust port 10 is opened on the exhaust side inclined surface 8b. The intake port 9 and the exhaust port 10 branch into two on the cylinder 4 side (see FIG. 6), and an intake valve 16 for opening and closing the intake port 9 and an exhaust valve 17 for opening and closing the exhaust port 10 are provided respectively. ing. That is, two intake valves 16 and two exhaust valves 17 are provided per cylinder 4.

吸気側傾斜面8aの下端部にマルチホール型インジェクタ(燃料噴射弁)11が斜め下方を指向して配置されている。このマルチホール型インジェクタ11は燃料供給システム12に接続され、燃料供給システム12がエンジンコントロールユニット(ECU)13(図8参照)からパルス信号を受信することにより、その受信時期にパルス幅に対応する量の燃料を燃焼室7に直接噴射する。なお、このマルチホール型インジェクタ11の詳細構造については後述する。   A multi-hole injector (fuel injection valve) 11 is disposed at a lower end portion of the intake side inclined surface 8a so as to be directed obliquely downward. The multi-hole injector 11 is connected to a fuel supply system 12, and when the fuel supply system 12 receives a pulse signal from an engine control unit (ECU) 13 (see FIG. 8), the reception timing corresponds to the pulse width. An amount of fuel is injected directly into the combustion chamber 7. The detailed structure of the multi-hole injector 11 will be described later.

各気筒4の天井壁部8の中央部分に点火プラグ14が設けられている。点火プラグ14はシリンダヘッド3に固定され、燃焼室7内に電極14a(図2参照)を臨ませている。点火プラグ14は点火回路15に接続され、点火回路15がECU13から制御信号を受信することにより、その受信時期に電極14aに火花を放電し点火する。   A spark plug 14 is provided at the center of the ceiling wall 8 of each cylinder 4. The spark plug 14 is fixed to the cylinder head 3 and faces the electrode 14 a (see FIG. 2) in the combustion chamber 7. The spark plug 14 is connected to an ignition circuit 15, and when the ignition circuit 15 receives a control signal from the ECU 13, a spark is discharged to the electrode 14a and ignited at the reception timing.

各気筒4の2つの吸気弁16及び2つの排気弁17にそれぞれタペットユニット18,19が設けられている。タペットユニット18,19はシリンダヘッド3に設けられた図示しない動弁機構の吸気弁用カム20及び排気弁用カム21によってエンジン回転に連動して駆動される。   Tappet units 18 and 19 are provided on the two intake valves 16 and the two exhaust valves 17 of each cylinder 4, respectively. The tappet units 18 and 19 are driven in conjunction with engine rotation by an intake valve cam 20 and an exhaust valve cam 21 of a valve mechanism (not shown) provided in the cylinder head 3.

より詳しくは、動弁機構は、前記吸気弁用カム20及び排気弁用カム21が設けられた図示しない吸気カムシャフト及び排気カムシャフトと、吸気VVT120及び排気VVT121(図8参照)とを有している。吸気カムシャフト及び排気カムシャフトは、チェーン等を介してクランクシャフト1に連結され回転駆動される。   More specifically, the valve mechanism includes an intake camshaft and an exhaust camshaft (not shown) provided with the intake valve cam 20 and the exhaust valve cam 21, and an intake VVT120 and an exhaust VVT121 (see FIG. 8). ing. The intake camshaft and the exhaust camshaft are connected to the crankshaft 1 via a chain or the like and are driven to rotate.

吸気VVT120及び排気VVT121は、クランクシャフト1と吸気カムシャフト及び排気カムシャフトとの間の位相差を変更することにより、吸気弁16及び排気弁17のバルブタイミングを変更するためのものである。吸気VVT120及び排気VVT121は、ECU13からの制御信号に応じて吸気弁16及び排気弁17のバルブタイミングを変更する。   The intake VVT 120 and the exhaust VVT 121 are for changing the valve timing of the intake valve 16 and the exhaust valve 17 by changing the phase difference between the crankshaft 1 and the intake camshaft and the exhaust camshaft. The intake VVT 120 and the exhaust VVT 121 change the valve timing of the intake valve 16 and the exhaust valve 17 in accordance with a control signal from the ECU 13.

本実施形態では、吸気VVT120及び排気VVT121は、吸気弁16及び排気弁17の開弁期間及びリフト量、つまりバルブプロフィールをそれぞれ一定に保ったまま、吸気弁16及び排気弁17の開弁時期IVO,EVO及び閉弁時期IVC,EVC(図9参照)をそれぞれ変更する。   In the present embodiment, the intake VVT 120 and the exhaust VVT 121 are the valve opening periods IVO of the intake valve 16 and the exhaust valve 17 while maintaining the valve opening period and the lift amount of the intake valve 16 and the exhaust valve 17, that is, the valve profile, respectively. , EVO and valve closing timings IVC, EVC (see FIG. 9) are changed.

本実施形態では、吸気弁16及び排気弁17の開弁期間とは、バルブのリフト期間中、バルブの開弁開始側及び閉弁完了側においてバルブリフトの勾配が緩やかな部分(ランプ部)を除いた区間をいい、吸気弁16及び排気弁17の開弁時期及び閉弁時期とは、前記開弁期間の開弁開始時期及び閉弁完了時期をいう。例えば、ランプ部の高さが0.2mmである場合は、バルブリフト量が0.2mmに増大した時期又は減少した時期が、それぞれ開弁時期及び閉弁時期である。   In this embodiment, the valve opening period of the intake valve 16 and the exhaust valve 17 is a portion (ramp part) where the gradient of the valve lift is gentle on the valve opening start side and valve closing completion side during the valve lift period. The excluded section is referred to, and the valve opening timing and the valve closing timing of the intake valve 16 and the exhaust valve 17 are the valve opening start timing and the valve closing completion timing of the valve opening period. For example, when the height of the ramp portion is 0.2 mm, the timing when the valve lift amount increases or decreases to 0.2 mm is the valve opening timing and the valve closing timing, respectively.

各吸気ポート9に吸気マニホールドの独立吸気管22が接続されている。独立吸気管22の吸気上流側に吸入空気量を調節するためのスロットル弁28(図8参照)が備えられている。スロットル弁28は、ECU13からの制御信号に応じて開度を変更する。また、各排気ポート10に排気マニホールドの独立排気管23が接続されている。   An independent intake pipe 22 of an intake manifold is connected to each intake port 9. A throttle valve 28 (see FIG. 8) for adjusting the amount of intake air is provided on the intake upstream side of the independent intake pipe 22. The throttle valve 28 changes the opening according to a control signal from the ECU 13. An independent exhaust pipe 23 of the exhaust manifold is connected to each exhaust port 10.

次に、図6を参照してこのエンジンEの排気系の構造を説明する。図6に示すように、このエンジンEは、吸気系が車両前後方向の前側、排気系が車両前後方向の後側に位置するように車両前部に横置きされている。このエンジンEの気筒列方向の一端に変速機Tが結合され、これらのエンジンEと変速機Tとでパワートレインが構成されている。変速機Tは図示しないトルクコンバータと変速歯車機構とを有する自動変速機(AT)である。すなわち、本実施形態に係る車両はAT車両である。ここで、トルクコンバータは、クランクシャフト1に連結された重量物であるため、エンジンEにとって回転の抵抗となる外部負荷である。   Next, the structure of the exhaust system of the engine E will be described with reference to FIG. As shown in FIG. 6, the engine E is placed horizontally at the front of the vehicle so that the intake system is located on the front side in the vehicle front-rear direction and the exhaust system is located on the rear side in the vehicle front-rear direction. A transmission T is coupled to one end of the engine E in the cylinder row direction, and the engine E and the transmission T constitute a power train. The transmission T is an automatic transmission (AT) having a torque converter and a transmission gear mechanism (not shown). That is, the vehicle according to the present embodiment is an AT vehicle. Here, since the torque converter is a heavy object connected to the crankshaft 1, it is an external load that serves as a rotational resistance for the engine E.

4つの気筒は、反変速機側から、第1気筒4a、第2気筒4b、第3気筒4c、第4気筒4dが配置され、第1気筒4a、第3気筒4c、第4気筒4d、第2気筒4bの順に、吸気、圧縮、膨張、排気の各行程が1行程づつずれて進行する。   In the four cylinders, the first cylinder 4a, the second cylinder 4b, the third cylinder 4c, and the fourth cylinder 4d are arranged from the non-transmission side, and the first cylinder 4a, the third cylinder 4c, the fourth cylinder 4d, and the fourth cylinder In the order of the two cylinders 4b, the intake, compression, expansion, and exhaust strokes are shifted by one stroke.

相互に排気行程が連続しない第1気筒4aと第4気筒4dとに接続する第1独立排気管23aと第4独立排気管23dとがそれぞれ車両後方に延びた後、合流し、第1合流管24aを形成する。同様に、相互に排気行程が連続しない第2気筒4bと第3気筒4cとに接続する第2独立排気管23bと第3独立排気管23cとがそれぞれ車両後方に延びた後、合流し、第2合流管24bを形成する。第1合流管24aと第2合流管24bとが湾曲しつつ合流し、単一の集合管25を形成する。すなわち、このエンジンEの排気系は4−2−1排気と称される構造である。   The first independent exhaust pipe 23a and the fourth independent exhaust pipe 23d connected to the first cylinder 4a and the fourth cylinder 4d, whose exhaust strokes are not continuous with each other, extend to the rear of the vehicle, and then merge to form the first merge pipe. 24a is formed. Similarly, the second independent exhaust pipe 23b and the third independent exhaust pipe 23c, which are connected to the second cylinder 4b and the third cylinder 4c, which do not have an exhaust stroke continuous with each other, extend to the rear of the vehicle, and then merge. Two junction pipes 24b are formed. The first merging pipe 24a and the second merging pipe 24b merge while being curved to form a single collecting pipe 25. That is, the exhaust system of the engine E has a structure called 4-2-1 exhaust.

そして、図7にも示すように、集合管25の排気下流側に触媒装置26が接続され、触媒装置26の排気下流側に単一の排気管27が接続される。図示しないが、排気管27は車両後方に延び、その途中にサイレンサ等が配設される。触媒装置26は三元触媒であり、特にエンジンEの冷間時にHC及びCOの浄化を図るものである。そのため、触媒装置26はこのエンジンEの排気系の比較的排気上流側に配設されている。   As shown in FIG. 7, the catalyst device 26 is connected to the exhaust downstream side of the collecting pipe 25, and the single exhaust pipe 27 is connected to the exhaust downstream side of the catalyst device 26. Although not shown, the exhaust pipe 27 extends rearward of the vehicle, and a silencer or the like is disposed in the middle thereof. The catalyst device 26 is a three-way catalyst, and is intended to purify HC and CO particularly when the engine E is cold. Therefore, the catalyst device 26 is disposed relatively upstream of the exhaust system of the engine E.

もっとも、このエンジンEの排気系は排気脈動によって気筒4a〜4dの掃気を図るものであるため、排気ポート10の気筒側の開口から触媒装置26までの距離が比較的長い値に設定されている。それゆえ、触媒装置26は排気ガス温度により暖機され難くなっており、触媒装置26の活性化のためのAWSが必要とされる。   However, since the exhaust system of the engine E is intended to scavenge the cylinders 4a to 4d by exhaust pulsation, the distance from the cylinder side opening of the exhaust port 10 to the catalyst device 26 is set to a relatively long value. . Therefore, it is difficult for the catalyst device 26 to be warmed up by the exhaust gas temperature, and AWS for activating the catalyst device 26 is required.

また、前記各独立排気管23a〜23d、各合流管24a,24b、集合管25、及び排気管27は、エンジンEの軽量化のため、それぞれ例えばステンレススチール製の薄肉の鋼管で作製されている。それゆえ、このエンジンEの排気系は放射音が出やすくなっており、排気騒音を抑制する対策が必要とされる。   The independent exhaust pipes 23a to 23d, the joining pipes 24a and 24b, the collecting pipe 25, and the exhaust pipe 27 are each made of, for example, a thin steel pipe made of stainless steel in order to reduce the weight of the engine E. . Therefore, the exhaust system of the engine E is likely to emit radiated sound, and measures to suppress the exhaust noise are required.

なお、前記各独立排気管23a〜23d(独立排気管23)、各合流管24a,24b、集合管25、及び排気管27は、それぞれ本発明の排気通路に相当する。   In addition, each said independent exhaust pipe 23a-23d (independent exhaust pipe 23), each joining pipe 24a, 24b, the collection pipe 25, and the exhaust pipe 27 are respectively corresponded to the exhaust passage of this invention.

次に、図2を参照してマルチホール型インジェクタ11の構造を説明する。図2に示すように、このインジェクタ11は、先端の噴射面11aが斜め下方を指向するように配置され、圧縮上死点近傍にあるピストン6の冠面30に向けて複数(図例では6つ)の燃料噴霧Ga〜Gfを噴射する。   Next, the structure of the multi-hole injector 11 will be described with reference to FIG. As shown in FIG. 2, the injector 11 is disposed such that the injection surface 11a at the tip is directed obliquely downward, and a plurality (6 in the example) is directed toward the crown surface 30 of the piston 6 near the compression top dead center. The fuel sprays Ga to Gf are injected.

噴射面詳細図に示すように、噴射面11aに6つの噴口40a〜40fが形成されている。具体的に、噴射面11aの1段目中央に第1噴口40a、2段目左右両側に第2噴口40b及び第3噴口40c、3段目左右両端に第4噴口40d及び第5噴口40e、4段目中央に第6噴口40fが形成されている。   As shown in the detailed view of the ejection surface, six ejection ports 40a to 40f are formed in the ejection surface 11a. Specifically, a first nozzle hole 40a at the center of the first stage of the ejection surface 11a, a second nozzle hole 40b and a third nozzle hole 40c on the left and right sides of the second stage, a fourth nozzle hole 40d and a fifth nozzle hole 40e at the left and right ends of the third stage, A sixth nozzle hole 40f is formed at the center of the fourth stage.

各噴口40の径は例えば0.1mm程度と極小である。この噴口40の径及び向きにより各噴口40からの燃料噴射量や燃料噴射方向が決定される。具体的に、第1噴口40aからの第1噴霧Gaが最も上方で中央方向に、第2噴口40bからの第2噴霧Gb及び第3噴口40cからの第3噴霧Gcが第1噴霧Gaの下方で左右方向に、第4噴口40dからの第4噴霧Gd及び第5噴口40eからの第5噴霧Geが第2噴霧Gb及び第3噴霧Gcの下方で左右方向に、第6噴口40fからの第6噴霧Gfが最も下方で中央方向に噴射される。なお、第1噴霧Gaは、点火プラグ14の電極14aに燃料が付着しないように、電極14aよりも下方に噴射される。   The diameter of each nozzle 40 is as small as about 0.1 mm, for example. The fuel injection amount and fuel injection direction from each nozzle 40 are determined by the diameter and direction of this nozzle 40. Specifically, the first spray Ga from the first nozzle 40a is the uppermost in the central direction, the second spray Gb from the second nozzle 40b and the third spray Gc from the third nozzle 40c are below the first spray Ga. In the left-right direction, the fourth spray Gd from the fourth nozzle 40d and the fifth spray Ge from the fifth nozzle 40e are shifted from the sixth nozzle 40f in the left-right direction below the second spray Gb and the third spray Gc. Six sprays Gf are sprayed in the central direction at the lowest position. The first spray Ga is injected below the electrode 14a so that fuel does not adhere to the electrode 14a of the spark plug 14.

このような構造により、マルチホール型インジェクタ11は、複数の燃料噴霧Ga〜Gfを斜め下方に向けて筒内に均等に噴射する。そのため、通常運転時の均質燃焼時には、筒内全てに燃料が行き渡り、混合気を効率的に燃焼させることができる。また、後述するように、AWSの実行中は、噴射時期を適切に制御することにより、筒内に弱成層状態を生成させることができる。ここで、弱成層状態とは、筒内の混合気が点火プラグ14周り(より詳しくはその電極14a周り)で相対的にリッチとなり、その周囲で相対的にリーンとなる状態をいう(筒内混合気の弱成層化)。   With such a structure, the multi-hole injector 11 uniformly injects a plurality of fuel sprays Ga to Gf obliquely downward into the cylinder. Therefore, at the time of homogeneous combustion during normal operation, fuel spreads throughout the cylinder, and the air-fuel mixture can be burned efficiently. Further, as will be described later, during the execution of the AWS, a weakly stratified state can be generated in the cylinder by appropriately controlling the injection timing. Here, the weakly stratified state refers to a state in which the air-fuel mixture in the cylinder becomes relatively rich around the spark plug 14 (more specifically, around the electrode 14a) and becomes relatively lean around the circumference (in-cylinder). Weak stratification of mixture).

次に、図3を参照してピストン6の構造を説明する。図3に示すように、本実施形態に係るピストン6は、前述した燃焼室7のペントルーフ型の天井壁部8に対応して同様にペントルーフ形状の隆起部31をピストン冠面30に備える。すなわち、隆起部31は、クランク軸方向に沿って対向して形成された吸気側傾斜面31aと排気側傾斜面31bとを有する。   Next, the structure of the piston 6 will be described with reference to FIG. As shown in FIG. 3, the piston 6 according to the present embodiment similarly includes a pent roof-shaped raised portion 31 on the piston crown surface 30 corresponding to the pent roof type ceiling wall portion 8 of the combustion chamber 7 described above. That is, the raised portion 31 has an intake side inclined surface 31a and an exhaust side inclined surface 31b formed to face each other along the crankshaft direction.

隆起部31より吸気側及び排気側にピストン冠面30の基準面となる吸気側水平面部32及び排気側水平面部33が設けられている。各水平面部32,33に吸気弁16及び排気弁17に対応する吸気弁リセス32a及び排気弁リセス33aが形成されている(図2参照)。   An intake side horizontal plane portion 32 and an exhaust side horizontal plane portion 33 that are reference surfaces of the piston crown surface 30 are provided on the intake side and the exhaust side from the raised portion 31. An intake valve recess 32a and an exhaust valve recess 33a corresponding to the intake valve 16 and the exhaust valve 17 are formed in each horizontal plane portion 32, 33 (see FIG. 2).

隆起部31の中央に平面視で略円形の凹状キャビティ34が形成されている。この凹状キャビティ34は、略半球面状に形成された内周面35と、略水平面状に形成された底面36とを有し、ピストン6が上死点近傍に位置したときに、点火プラグ14の電極14aを中心とした略球状の燃焼空間を形成する。この略球状の燃焼空間により圧縮比が極めて高いエンジンが提供される。   A substantially circular concave cavity 34 is formed in the center of the raised portion 31 in plan view. The concave cavity 34 has an inner peripheral surface 35 formed in a substantially hemispherical shape and a bottom surface 36 formed in a substantially horizontal surface. When the piston 6 is positioned near the top dead center, the spark plug 14 A substantially spherical combustion space centering on the electrode 14a is formed. This substantially spherical combustion space provides an engine with an extremely high compression ratio.

図3(a)に示すように、吸気側傾斜面31aに燃料噴霧を受ける受け面37が形成されている。この受け面37は平面視で略長円形状の凹部で構成されている。受け面37を形成したことにより、図3(b)に示すように、凹状キャビティ34の吸気側上端部34aは排気側上端部34bよりも下方に位置する。そのため、インジェクタ11から噴射された第1噴霧Gaが凹状キャビティ34内に入りやすく出にくくなる。   As shown in FIG. 3A, a receiving surface 37 for receiving fuel spray is formed on the intake side inclined surface 31a. The receiving surface 37 is formed of a substantially oval concave portion in plan view. By forming the receiving surface 37, as shown in FIG. 3B, the intake-side upper end 34a of the concave cavity 34 is positioned below the exhaust-side upper end 34b. Therefore, the first spray Ga injected from the injector 11 easily enters the concave cavity 34 and is difficult to exit.

図3(a)に示すように、凹状キャビティ34を除く、吸気側傾斜面31aと排気側傾斜面31bとの間の隆起部31の稜線に上面部38,38が形成されている。この上面部38,38は、ピストン外周側が低い傾斜面で構成されている。この上面部38,38により、ピストン6が上死点に位置したときでも、燃焼室7上部に吸気側と排気側とを連通する連通空間が形成される。   As shown in FIG. 3A, upper surface portions 38, 38 are formed on the ridge line of the raised portion 31 between the intake side inclined surface 31a and the exhaust side inclined surface 31b, excluding the concave cavity 34. The upper surface portions 38 and 38 are formed of inclined surfaces having a low piston outer peripheral side. Even when the piston 6 is located at the top dead center, a communication space that connects the intake side and the exhaust side is formed in the upper portion of the combustion chamber 7.

(2)AWSの基本動作
次に、図9を参照してエンジンEの冷間時における運転状態を説明する。すなわち、例えばエンジンEの冷間始動直後等で、触媒温度センサSW5(図8参照)等により触媒装置26が暖機されていないことが検出され、触媒装置26が未活性状態のときは、ECU13によりAWS(Accelerated Warm−up System)が実行される。AWSは、触媒装置26が未活性状態のときは、同じ運転状態(例えばアイドル運転)で活性状態のときよりも、吸入空気量を増量し、かつ点火時期を圧縮上死点を超えてリタードさせることにより、混合気を膨張行程中に後燃えさせ、これにより排気ガス温度ひいては排気熱量(ヒートフラックス)を増大させて前記触媒装置26の暖機を促進する技術である。
(2) Basic Operation of AWS Next, the operation state when the engine E is cold will be described with reference to FIG. That is, for example, immediately after a cold start of the engine E, it is detected by the catalyst temperature sensor SW5 (see FIG. 8) that the catalyst device 26 is not warmed up. When the catalyst device 26 is in an inactive state, the ECU 13 Thus, AWS (Accelerated Warm-up System) is executed. The AWS increases the intake air amount and retards the ignition timing beyond the compression top dead center when the catalytic device 26 is in an inactive state, compared to when the catalytic device 26 is in an active state in the same operating state (for example, idle operation). Thus, the air-fuel mixture is burnt after the expansion stroke, thereby increasing the exhaust gas temperature and hence the exhaust heat quantity (heat flux), thereby promoting the warm-up of the catalyst device 26.

AWSの実行中は、マルチホール型インジェクタ11は、1サイクル当り、吸気行程で1回、圧縮行程で1回、計2回、燃料を2つに分割して噴射するように、ECU13により制御される。   During execution of the AWS, the multi-hole injector 11 is controlled by the ECU 13 so that fuel is divided into two parts and injected twice per cycle, once in the intake stroke and once in the compression stroke. The

具体的に、図9に示すように、吸気行程の開始を0°CA(「°CA」はクランク角を表す)とした場合に、インジェクタ11は、吸気行程後期の所定時期T1(例えば150〜170°CA)に第一段噴射を開始し、圧縮行程中期の所定時期T2(例えば300〜320°CA)に第二段噴射を開始する。この2回の燃料噴射量の合計が理論空燃比(A/F=14.7)を実現するように各回の燃料噴射量が設定される。   Specifically, as shown in FIG. 9, when the start of the intake stroke is set to 0 ° CA (“° CA” represents a crank angle), the injector 11 performs a predetermined timing T1 (for example, 150 to The first stage injection is started at 170 ° CA), and the second stage injection is started at a predetermined time T2 (for example, 300 to 320 ° CA) in the middle of the compression stroke. The fuel injection amount of each time is set so that the total of the two fuel injection amounts realizes the theoretical air-fuel ratio (A / F = 14.7).

このように燃料を適切なタイミングで2分割して噴射することにより、筒内に弱成層状態が生成される。すなわち、吸気行程での第一段噴射によって燃料が早期に筒内で気化霧化し、その後、圧縮行程での第二段噴射によって点火プラグ14周りに燃料濃度の濃いリッチな混合気の層が形成される。   In this way, a weakly stratified state is generated in the cylinder by injecting the fuel into two parts at an appropriate timing. That is, the fuel is vaporized and atomized early in the cylinder by the first stage injection in the intake stroke, and then a rich mixture layer having a high fuel concentration is formed around the spark plug 14 by the second stage injection in the compression stroke. Is done.

また、AWSの実行中は、点火プラグ14は、圧縮上死点(TDC)を大幅に超えたタイミングで点火するように、ECU13により制御される。すなわち、点火時期が圧縮上死点を超えて膨張行程に移行するまで遅角(リタード)される。なお、後述するように、点火時期はエンジンEの外部負荷の大小(高低)によって変更される。図9は、点火時期が膨張行程初期の所定時期T3(例えば375〜400°CA)に設定される場合を示している。   Further, during execution of the AWS, the spark plug 14 is controlled by the ECU 13 so as to ignite at a timing significantly exceeding the compression top dead center (TDC). That is, the ignition timing is retarded until the ignition timing exceeds the compression top dead center and shifts to the expansion stroke. As will be described later, the ignition timing is changed according to the magnitude (high or low) of the external load of the engine E. FIG. 9 shows a case where the ignition timing is set to a predetermined timing T3 (for example, 375 to 400 ° CA) in the initial stage of the expansion stroke.

このように点火時期をリタードさせることにより、エンジンEの燃焼エネルギーの多くが熱エネルギーに変換され(すなわちピストン6を押し下げる仕事に変換される割合が減り)、排気損失が増大する。その結果、排気ガス温度ひいては排気熱量が増大し、触媒装置26の暖機が促進される。そのため、触媒装置26が早期に活性化され、排気ガスの浄化が早期に開始される。しかも、本実施形態では、点火時期を圧縮上死点を大幅に(例えば図11に実線で例示するように36°CA)超えてリタードさせるため、混合気は膨張行程中に後燃えし、より一層、排気ガス温度ひいては排気熱量が高くなり、触媒装置26の早期活性化効果が増大する。   By retarding the ignition timing in this way, much of the combustion energy of the engine E is converted into heat energy (that is, the rate of conversion into work that pushes down the piston 6 decreases), and exhaust loss increases. As a result, the exhaust gas temperature and the exhaust heat quantity are increased, and warming up of the catalyst device 26 is promoted. Therefore, the catalyst device 26 is activated early, and the purification of the exhaust gas is started early. In addition, in the present embodiment, the ignition timing is retarded significantly beyond the compression top dead center (for example, 36 ° CA as illustrated by the solid line in FIG. 11), so that the air-fuel mixture is burned after the expansion stroke, and more Further, the exhaust gas temperature and the exhaust heat quantity are increased, and the early activation effect of the catalyst device 26 is increased.

また、AWSの実行中は、スロットル弁28は、同じアイドル運転で触媒装置26が活性状態のときに比べて、吸入空気量が増量するように、ECU13により制御される。これにより、点火時期が圧縮上死点を超えてリタードされても、トルク及びエンジン回転を維持することができる。また、排気ガス量が増量するため、排気熱量を増大させることができる。   Further, during execution of the AWS, the throttle valve 28 is controlled by the ECU 13 so that the intake air amount is increased as compared with the case where the catalyst device 26 is in the active state in the same idle operation. Thereby, even if the ignition timing is retarded beyond the compression top dead center, the torque and the engine rotation can be maintained. Moreover, since the amount of exhaust gas increases, the amount of exhaust heat can be increased.

なお、点火時期をリタードさせると、燃焼状態が不安定となり、燃焼が確実に生じない可能性がある。しかし、本実施形態では、燃料噴射時期を適切に制御することにより、筒内混合気を弱成層化しているため、点火時期が大幅にリタードされても、安定した燃焼状態を得ることができる。   If the ignition timing is retarded, the combustion state becomes unstable, and combustion may not occur reliably. However, in this embodiment, since the in-cylinder mixture is weakly stratified by appropriately controlling the fuel injection timing, a stable combustion state can be obtained even if the ignition timing is significantly retarded.

具体的に、吸気行程での第一段噴射では、最も下方に噴射される第6噴口40fからの第6噴霧Gfが筒内の側壁面(ライナー)に到達することなくピストン冠面30の凹状キャビティ34に入るように設定されている。このように、最も下方に噴射される第6噴霧Gfがピストン冠面30に到達するので、筒内で最も温度が低い筒内の側壁面の下部に燃料が付着することが防がれる。そのため、吸気行程での燃料の気化霧化が促進され、排気ガスに未燃成分であるHC(Raw HC)が含有されることが抑制される。   Specifically, in the first stage injection in the intake stroke, the sixth spray Gf from the sixth injection port 40f, which is injected downward, does not reach the side wall surface (liner) in the cylinder, and the concave shape of the piston crown surface 30 is reached. It is set to enter the cavity 34. As described above, the sixth spray Gf that is injected to the bottom reaches the piston crown surface 30, so that it is possible to prevent the fuel from adhering to the lower portion of the side wall surface in the cylinder having the lowest temperature in the cylinder. Therefore, the vaporization of the fuel in the intake stroke is promoted, and the exhaust gas is suppressed from containing HC (Raw HC), which is an unburned component.

一方、圧縮行程での第二段噴射では、図4に示すように、最も上方に噴射される第1噴口40aからの第1噴霧Gaがピストン冠面30の凹状キャビティ34に入るように、より詳しくは凹状キャビティ34の内周面35に向かうように設定されている。また、第2噴口40b及び第3噴口40cからの第2噴霧Gb及び第3噴霧Gcは、凹状キャビティ34より手前の吸気側傾斜面31a、より詳しくは受け面37に向かうように設定されている。受け面37に衝突して勢いが弱まった第2噴霧Gb及び第3噴霧Gcは、第1噴霧Gaが通過した後に発生する負圧によって凹状キャビティ34内に引き込まれる。   On the other hand, in the second stage injection in the compression stroke, as shown in FIG. 4, the first spray Ga from the first injection port 40 a that is injected at the uppermost position enters the concave cavity 34 of the piston crown surface 30. Specifically, it is set so as to face the inner peripheral surface 35 of the concave cavity 34. Further, the second spray Gb and the third spray Gc from the second nozzle hole 40b and the third nozzle hole 40c are set so as to face the intake side inclined surface 31a, more specifically the receiving surface 37, in front of the concave cavity 34. . The second spray Gb and the third spray Gc that have collided with the receiving surface 37 and weakened momentum are drawn into the concave cavity 34 by the negative pressure generated after the first spray Ga passes.

次に、図5を参照してこの引き込み現象を説明する。図5(a)に示すように、第1噴霧Gaは凹状キャビティ34の略半球面状の内周面35に向かうように噴射される。そのため、図5(b)に示すように、第1噴霧Gaは前記内周面35の円弧状傾斜面35aに案内されて円滑良好に上方に方向転換し、点火プラグ14(天井壁部8)に向かう。   Next, the pulling phenomenon will be described with reference to FIG. As shown in FIG. 5A, the first spray Ga is jetted toward the substantially hemispherical inner peripheral surface 35 of the concave cavity 34. Therefore, as shown in FIG. 5 (b), the first spray Ga is guided smoothly by the arc-shaped inclined surface 35a of the inner peripheral surface 35 and smoothly smoothly turns upward, and the spark plug 14 (ceiling wall portion 8). Head for.

一方、図5(a)に示すように、第2噴霧Gb及び第3噴霧Gcは受け面37に向かうように噴射される。そのため、第2噴霧Gb及び第3噴霧Gcは受け面37に衝突して勢いが弱まり、受け面37の上方を漂う。ここで、第1噴霧Gaが通過した後に凹状キャビティ34内に引き込む負圧が発生しているため、図5(b)に示すように、第2噴霧Gb及び第3噴霧Gcはこの負圧によって凹状キャビティ34内に引き込まれる。   On the other hand, as shown in FIG. 5A, the second spray Gb and the third spray Gc are injected toward the receiving surface 37. Therefore, the second spray Gb and the third spray Gc collide with the receiving surface 37 to weaken the momentum, and drift above the receiving surface 37. Here, since a negative pressure is drawn into the concave cavity 34 after the first spray Ga has passed, the second spray Gb and the third spray Gc are caused by this negative pressure, as shown in FIG. It is drawn into the concave cavity 34.

このように、第1噴霧Gaに加えて第2噴霧Gb及び第3噴霧Gcが凹状キャビティ34内に引き込まれることにより、より多くの燃料が点火プラグ14周りに位置し、結果として、燃料濃度の濃いリッチな混合気が点火プラグ14周りに多く存在することになる。   In this way, the second spray Gb and the third spray Gc in addition to the first spray Ga are drawn into the concave cavity 34, so that more fuel is located around the spark plug 14, and as a result, the fuel concentration A rich rich air-fuel mixture is present around the spark plug 14.

なお、第2噴霧Gb及び第3噴霧Gcは吸気側傾斜面31aから一段凹んだ受け面37に噴射されるため、吸気側傾斜面31aからの漏れが抑制されて、確実に凹状キャビティ34内に引き込まれる。   Since the second spray Gb and the third spray Gc are injected to the receiving surface 37 that is recessed by one step from the intake side inclined surface 31a, the leakage from the intake side inclined surface 31a is suppressed and surely entered into the concave cavity 34. Be drawn.

(3)制御系
図8に示すように、本実施形態に係る車両(AT車両)には、エンジン水温を検出するためのエンジン水温センサSW1と、エンジン回転数を検出するためのエンジン回転数センサSW2と、クランクシャフト1の回転角を検出するためのクランク角センサSW3と、運転者のアクセル操作(アクセルペダルの踏込み)の有無及びアクセル操作量(アクセルペダルの踏込量)を検出するためのアクセルポジションセンサSW4と、触媒装置26の温度を検出するための触媒温度センサSW5とが設けられている。ECU13は、これらの各種センサSW1〜SW5と相互に電気的に接続されている。
(3) Control System As shown in FIG. 8, the vehicle (AT vehicle) according to this embodiment includes an engine water temperature sensor SW1 for detecting the engine water temperature, and an engine speed sensor for detecting the engine speed. SW2, a crank angle sensor SW3 for detecting the rotation angle of the crankshaft 1, an accelerator for detecting the presence / absence of the accelerator operation (depressing the accelerator pedal) and the accelerator operation amount (depressing the accelerator pedal). A position sensor SW4 and a catalyst temperature sensor SW5 for detecting the temperature of the catalyst device 26 are provided. The ECU 13 is electrically connected to these various sensors SW1 to SW5.

ECU13は、周知の通り、CPU、ROM、RAM等から構成されるマイクロプロセッサであり、本発明の点火時期設定手段、排気開弁開始時期設定手段、噴射時期設定手段、及び外部負荷低減手段に相当する。   As is well known, the ECU 13 is a microprocessor including a CPU, a ROM, a RAM, and the like, and corresponds to the ignition timing setting means, the exhaust valve opening start timing setting means, the injection timing setting means, and the external load reduction means of the present invention. To do.

ECU13は、車両に設けられた前記各種センサSW1〜SW5から入力される種々の情報に基き、エンジンEの通常運転(均質燃焼)を制御する他、エンジンEの冷間始動時に、触媒装置26が未活性状態のときは、触媒装置26の早期活性化を図るAWSを実行する。   The ECU 13 controls the normal operation (homogeneous combustion) of the engine E based on various information input from the various sensors SW1 to SW5 provided in the vehicle. When the catalyst device 26 is in an inactive state, AWS is executed to activate the catalyst device 26 at an early stage.

AWSの実行のため、ECU13は、燃料供給システム12、点火回路15、スロットル弁28、エアコン(より詳しくはそのコンプレッサ)101、オルタネータ102、オイルポンプ103、吸気VVT120、排気VVT121と相互に電気的に接続されており、これらの各種機器に制御信号を出力する。ここで、エアコン101、オルタネータ102、及びオイルポンプ103等の補機は、ベルト等を介してクランクシャフト1に連結され駆動されるものであるため、エンジンEにとって回転の抵抗となる外部負荷である。   For execution of AWS, the ECU 13 is electrically connected to the fuel supply system 12, the ignition circuit 15, the throttle valve 28, the air conditioner (more specifically, its compressor) 101, the alternator 102, the oil pump 103, the intake VVT 120, and the exhaust VVT 121. Connected and outputs control signals to these various devices. Here, since the auxiliary equipment such as the air conditioner 101, the alternator 102, and the oil pump 103 is connected to the crankshaft 1 through a belt or the like and driven, it is an external load that serves as a rotational resistance for the engine E. .

(4)本実施形態の特徴
次に、図9〜図14を参照して本実施形態の特徴を説明する。図9は、AWS実行中の燃料噴射時期、点火時期、吸排気弁の開弁時期IVO,EVO及び閉弁時期IVC,EVCのタイムチャート、図10は、AWS実行中のエンジン回転及び点火時期のタイムチャート、図11(a)は点火時期のリタード量がATDC(圧縮上死点後)16°CA、26°CA及び36°CAのときのAWS実行中の筒内圧力のタイムチャートに排気弁17の開弁時期EVOを重ねたもの、図11(b)はそのうち膨張行程後半の部分を拡大したものである。また、図12は、前記エンジンEの排気弁用カム21のカムプロフィール、図13は、前記排気弁用カム21のクランク角に対するリフト加速度の変化を示すグラフ、図14は、前記エンジンEの吸気弁用カム20のクランク角に対するリフト加速度の変化を示すグラフである。
(4) Features of the present embodiment Next, features of the present embodiment will be described with reference to FIGS. FIG. 9 is a time chart of fuel injection timing, ignition timing, intake / exhaust valve opening timings IVO, EVO and valve closing timings IVC, EVC during execution of AWS, and FIG. 10 shows engine rotation and ignition timing during execution of AWS. FIG. 11A is a time chart of in-cylinder pressure during execution of AWS when the retard amount of the ignition timing is ATDC (after compression top dead center) 16 ° CA, 26 ° CA, and 36 ° CA. FIG. 11 (b) is an enlarged view of the latter half of the expansion stroke. 12 is a cam profile of the exhaust valve cam 21 of the engine E, FIG. 13 is a graph showing changes in lift acceleration with respect to the crank angle of the exhaust valve cam 21, and FIG. 6 is a graph showing a change in lift acceleration with respect to a crank angle of the valve cam 20.

前述したように、ECU13は、AWSの実行中、点火時期を圧縮上死点を超えてリタードさせるため、混合気は膨張行程中に燃焼し、筒内圧力が膨張行程後半に上昇してピークを迎える。このタイミングは、排気弁17の開弁開始時期EVOと重なるため、排気弁17が開弁した際に気筒4から排気ポート10に流れ出るブローダウンエネルギーが高くなる。その結果、独立排気管23a〜23d、合流管24a,24b、及び集合管25内の排気脈動の振幅が大きくなり、排気系の放射音が増大し、排気騒音が大きくなる。この問題に対処するため、吸入空気量を減量してエンジン回転数を低下させると、排気熱量が減少して触媒装置26の早期活性化効果が目減りしてしまう。   As described above, during execution of the AWS, the ECU 13 retards the ignition timing beyond the compression top dead center, so that the air-fuel mixture burns during the expansion stroke, and the in-cylinder pressure rises in the latter half of the expansion stroke and peaks. Welcome. Since this timing overlaps with the valve opening start timing EVO of the exhaust valve 17, the blowdown energy flowing out from the cylinder 4 to the exhaust port 10 when the exhaust valve 17 is opened becomes high. As a result, the amplitude of the exhaust pulsation in the independent exhaust pipes 23a to 23d, the merge pipes 24a and 24b, and the collecting pipe 25 increases, the emission sound of the exhaust system increases, and the exhaust noise increases. In order to cope with this problem, when the intake air amount is reduced to lower the engine speed, the exhaust heat amount is reduced and the early activation effect of the catalyst device 26 is reduced.

そこで、本実施形態では、触媒装置26の早期活性化効果を維持しつつ、排気騒音を抑制するために、ECU13は、AWSの実行中、前記リタードされた点火時期に点火された混合気が燃焼する膨張行程中に排気弁17が開弁を開始するように排気弁17の開弁開始時期EVOを設定すると共に、前記排気弁17用のカム(排気弁用カム21)のカムプロフィールにおいて、前記排気弁17の開弁開始側の緩衝区間を除く正加速区間の初期に、吸気弁16の正加速区間の初期と比べて、クランク角に対するリフト加速度の増加割合が小さい緩加速区間が形成されている。   Therefore, in the present embodiment, in order to suppress the exhaust noise while maintaining the early activation effect of the catalyst device 26, the ECU 13 burns the air-fuel mixture ignited at the retarded ignition timing during the execution of the AWS. In the cam profile of the cam for the exhaust valve 17 (exhaust valve cam 21), the valve opening start timing EVO of the exhaust valve 17 is set so that the exhaust valve 17 starts to open during the expansion stroke. In the initial stage of the positive acceleration section excluding the buffer section on the valve opening start side of the exhaust valve 17, a slow acceleration section is formed in which the increase rate of the lift acceleration with respect to the crank angle is small compared to the initial stage of the positive acceleration section of the intake valve 16. Yes.

図10に示すように、ECU13は、エンジンEの始動時において、完爆後のアイドル運転時にAWSを所定時間実行する。このAWSの実行中は、ECU13は、点火時期を圧縮上死点(TDC)を超えてリタード(遅角)させるため、スロットル弁28を制御して吸入空気量を増量しなければ、そのような点火時期のリタードを行わない場合に比べて、トルクが低下し、エンジン回転が低下する。しかも、ECU13は、図中の破線から実線への変化を矢印で示すように、エンジンEの外部負荷が低いほど圧縮上死点からのリタード量が大きくなるように点火時期を設定するので、前記外部負荷が低いほどエンジン回転が大幅に低下する。なお、図中の破線は点火時期のリタード量がATDC(圧縮上死点後)16°CAの場合を示し、実線は点火時期のリタード量がATDC36°CAの場合を示す。   As shown in FIG. 10, when the engine E is started, the ECU 13 executes AWS for a predetermined time during the idle operation after the complete explosion. During the execution of the AWS, the ECU 13 retards the ignition timing beyond the compression top dead center (TDC). Therefore, if the intake air amount is not increased by controlling the throttle valve 28, the ECU 13 Compared to the case where the ignition timing is not retarded, the torque is reduced and the engine speed is reduced. Moreover, the ECU 13 sets the ignition timing so that the retard amount from the compression top dead center becomes larger as the external load of the engine E is lower, as indicated by the arrow in FIG. The lower the external load, the lower the engine speed. The broken line in the figure shows the case where the ignition timing retard amount is ATDC (after compression top dead center) 16 ° CA, and the solid line shows the case where the ignition timing retard amount is ATDC 36 ° CA.

図9に示すように、本実施形態では、吸気弁16及び排気弁17の開弁期間、つまり吸気弁16及び排気弁17の開弁時期IVO,EVOから閉弁時期IVC,EVCまでの期間が比較的大きく設定されている。特に、AWSの実行中、吸気VVT120及び排気VVT121がECU13により制御されて、排気上死点(720°CA)を挟んで吸気弁16及び排気弁17の双方が開くオーバーラップ期間が設けられている。しかも、その場合、排気上死点からの吸気弁16の開弁時期IVOの進角量が、排気上死点からの排気弁17の閉弁時期EVCの遅角量よりも大きく設定されている。その結果、吸気系に排気ガス、すなわち内部EGRガスが大量に排出されるので、新気量を確保するためにスロットル弁28の開度が大きくされる。そのため、ポンピングロスが低減され、燃費の向上が図られる。   As shown in FIG. 9, in the present embodiment, the valve opening period of the intake valve 16 and the exhaust valve 17, that is, the period from the valve opening timings IVO, EVO of the intake valve 16 and the exhaust valve 17 to the valve closing timings IVC, EVC. It is set relatively large. In particular, during execution of the AWS, the intake VVT 120 and the exhaust VVT 121 are controlled by the ECU 13 to provide an overlap period in which both the intake valve 16 and the exhaust valve 17 are opened across the exhaust top dead center (720 ° CA). . In addition, in that case, the advance amount of the valve opening timing IVO of the intake valve 16 from the exhaust top dead center is set larger than the retard amount of the valve closing timing EVC of the exhaust valve 17 from the exhaust top dead center. . As a result, a large amount of exhaust gas, that is, internal EGR gas is discharged to the intake system, so that the opening degree of the throttle valve 28 is increased in order to secure a new air amount. Therefore, the pumping loss is reduced and the fuel consumption is improved.

具体的に、図9に示すように、AWSの実行中、吸気弁16の開弁時期IVOは排気行程の後半の略中間のタイミングに設定され、閉弁時期IVCは圧縮行程の前半の略中間のタイミングに設定される。一方、排気弁17の開弁時期EVOは膨張行程中期の所定時期T4(例えば470〜490°CA)に設定され、閉弁時期EVCは吸気行程初期の所定時期T5(例えば0〜10°CA)に設定される。このように、排気弁17の開弁時期EVOが膨張下死点(BDC)から大きく進角される。   Specifically, as shown in FIG. 9, during the execution of the AWS, the valve opening timing IVO of the intake valve 16 is set to a substantially middle timing in the latter half of the exhaust stroke, and the valve closing timing IVC is substantially in the middle of the first half of the compression stroke. The timing is set. On the other hand, the valve opening timing EVO of the exhaust valve 17 is set to a predetermined timing T4 (for example, 470 to 490 ° CA) in the middle of the expansion stroke, and the valve closing timing EVC is a predetermined timing T5 (for example, 0 to 10 ° CA) in the initial stage of the intake stroke. Set to Thus, the valve opening timing EVO of the exhaust valve 17 is greatly advanced from the expansion bottom dead center (BDC).

本実施形態において、エンジンEの外部負荷は、エアコン101、オルタネータ102、及びオイルポンプ103の駆動の度合いやオン・オフ等により種々変化し得るものである。本実施形態では、エアコン101がオン、オルタネータ102が最高発電状態(オルタネータ102内に磁界を発生させるためのフィールドコイルの電流値が最大値に設定された状態)、オイルポンプ103が最高駆動状態(オイルポンプ103によるオイルの吐出圧が最大値に設定された状態)のときに最も外部負荷が高くなり、エアコン101がオフ、オルタネータ102が最低発電状態(前記フィールドコイルの電流値が最小値に設定された状態)、オイルポンプ103が最低駆動状態(前記オイルの吐出圧が最小値に設定された状態)のときに最も外部負荷が低くなる。ECU13は、外部負荷が最も高いとき、点火回路15を制御して、点火時期のリタード量をATDC(圧縮上死点後)16°CAとし(図11参照)、外部負荷が最も低いとき、同じく点火回路15を制御して、点火時期のリタード量をATDC36°CAとする(図11参照)。   In the present embodiment, the external load of the engine E can be changed variously depending on the driving degree of the air conditioner 101, the alternator 102, and the oil pump 103, on / off, and the like. In this embodiment, the air conditioner 101 is on, the alternator 102 is in the maximum power generation state (the state where the current value of the field coil for generating a magnetic field in the alternator 102 is set to the maximum value), and the oil pump 103 is in the maximum drive state ( When the oil discharge pressure by the oil pump 103 is set to the maximum value), the external load is highest, the air conditioner 101 is off, and the alternator 102 is in the lowest power generation state (the current value of the field coil is set to the minimum value). The external load is lowest when the oil pump 103 is in the lowest drive state (the oil discharge pressure is set to the minimum value). When the external load is the highest, the ECU 13 controls the ignition circuit 15 to set the ignition timing retard amount to 16 ° CA (after compression top dead center) (see FIG. 11). The ignition circuit 15 is controlled to set the ignition timing retard amount to ATDC 36 ° CA (see FIG. 11).

図11(a)及び図11(b)に示すように、点火時期のリタード量がATDC16°CAの場合(鎖線)は、筒内圧力のピークがおよそATDC90°CAに到来し、点火時期のリタード量がATDC36°CAの場合(実線)は、筒内圧力のピークがおよそATDC140°CAに到来する。なお、実線の場合と鎖線の場合とで吸入空気量及び燃料噴射量は略同じに調節されている。前述したように、ECU13は、エンジンEの外部負荷が低いほど圧縮上死点からの点火時期のリタード量を大きくする。つまり、エンジンEの外部負荷が低いほど(実線は鎖線に比べて)、筒内圧力がピークを迎える時期が遅くなり、そのピーク値が低くなっている。   As shown in FIGS. 11 (a) and 11 (b), when the ignition timing retard amount is ATDC 16 ° CA (dashed line), the in-cylinder pressure peak reaches approximately ATDC 90 ° CA, and the ignition timing retarded. When the amount is ATDC 36 ° CA (solid line), the in-cylinder pressure peak reaches approximately ATDC 140 ° CA. The intake air amount and the fuel injection amount are adjusted to be substantially the same in the case of the solid line and the case of the chain line. As described above, the ECU 13 increases the retard amount of the ignition timing from the compression top dead center as the external load of the engine E is lower. That is, the lower the external load of the engine E (the solid line is compared to the chain line), the later the time when the in-cylinder pressure reaches its peak, the lower the peak value.

本実施形態において、基準負荷とは、外部負荷が最も高いときに筒内圧力のピークが到来するタイミング(ATDC90°CA)と、外部負荷が最も低いときに筒内圧力のピークが到来するタイミング(ATDC140°CA)との間のタイミングに、筒内圧力のピークが到来する外部負荷をいう。本実施形態では、図11に図示したように、点火時期のリタード量がATDC26°CAとされる外部負荷である(破線)。この外部負荷(基準負荷)は、前述した外部負荷が最も高い状態と外部負荷が最も低い状態との間の値の外部負荷であり、エアコン101のオン・オフ状態、オルタネータ102の発電状態、及びオイルポンプ103の駆動状態が所定の組み合わせのときに達成される外部負荷である。   In the present embodiment, the reference load refers to the timing at which the peak of in-cylinder pressure arrives when the external load is the highest (ATDC 90 ° CA), and the timing at which the peak of in-cylinder pressure arrives when the external load is the lowest (ATDC 90 ° CA). This is the external load at which the peak of the in-cylinder pressure arrives at the timing of the ATDC 140 ° CA). In this embodiment, as shown in FIG. 11, the ignition load is an external load with a retard amount of ATDC 26 ° CA (broken line). This external load (reference load) is an external load having a value between the above-described state where the external load is the highest and the state where the external load is the lowest, and the on / off state of the air conditioner 101, the power generation state of the alternator 102, and This is an external load achieved when the driving state of the oil pump 103 is a predetermined combination.

図11(a)及び図11(b)に示すように、ECU13は、点火時期のリタード量がATDC36°CAの場合(実線)、つまり外部負荷が最も低い場合は、排気弁17の開弁開始時期EVOを筒内圧力がピークを迎えるATDC140°CAより前のATDC126°CA(BBDC54°CA)に設定する。   As shown in FIGS. 11A and 11B, the ECU 13 starts opening the exhaust valve 17 when the ignition timing retard amount is ATDC 36 ° CA (solid line), that is, when the external load is the lowest. The timing EVO is set to ATDC 126 ° CA (BBDC 54 ° CA) before ATDC 140 ° CA at which the in-cylinder pressure reaches its peak.

ただし、後述するように、本実施形態では、1気筒4あたり2つ設けられる排気弁17の開弁開始時期EVOが相互に僅かに異なっている。ここで開弁開始時期EVOがATDC126°CA(BBDC54°CA)に設定されるのは、開弁開始時期EVOがより早いほうの排気弁17である(以下同様)。   However, as will be described later, in this embodiment, the valve opening start timings EVO of the two exhaust valves 17 provided per cylinder 4 are slightly different from each other. Here, the valve opening start timing EVO is set to ATDC 126 ° CA (BBDC 54 ° CA) for the exhaust valve 17 whose valve opening start timing EVO is earlier (the same applies hereinafter).

点火時期のリタード量がATDC16°CAの場合(鎖線)、つまり外部負荷が最も高い場合も、ECU13は、排気弁17の開弁開始時期EVOをATDC126°CA(BBDC54°CA)に設定する。この開弁開始時期EVO(=ATDC126°CA)は、筒内圧力がピークを迎えるATDC90°CAより遅れたタイミングとなる。   When the retard amount of the ignition timing is ATDC 16 ° CA (chain line), that is, when the external load is the highest, the ECU 13 sets the valve opening start timing EVO of the exhaust valve 17 to ATDC 126 ° CA (BBDC 54 ° CA). This valve opening start timing EVO (= ATDC 126 ° CA) is delayed from ATDC 90 ° CA at which the in-cylinder pressure reaches its peak.

さらに、点火時期のリタード量がATDC26°CAの場合(破線)、つまり外部負荷が最も低い場合と最も高い場合との間の基準負荷である場合も、ECU13は、排気弁17の開弁開始時期EVOをATDC126°CA(BBDC54°CA)に設定する。この開弁開始時期EVO(=ATDC126°CA)は、筒内圧力がピークを迎えるATDC125°CAに近接する(略一致する)タイミングとなる。   Further, when the retard amount of the ignition timing is ATDC 26 ° CA (broken line), that is, when the external load is the reference load between the lowest and the highest, the ECU 13 also opens the opening timing of the exhaust valve 17. EVO is set to ATDC 126 ° CA (BBDC 54 ° CA). This valve opening start timing EVO (= ATDC 126 ° CA) is a timing close to (substantially coincides with) ATDC 125 ° CA at which the in-cylinder pressure reaches its peak.

いずれの場合も、圧縮上死点を超えてリタードされた点火時期に点火された混合気が燃焼する膨張行程中に排気弁17が開弁を開始するから、排気弁17が開弁した際に気筒4から排気ポート10に流れ出るブローダウンエネルギーが高くなり、その結果、独立排気管23a〜23d内、合流管24a,24b内、及び集合管25内の排気脈動の振幅が大きくなり、排気系の放射音が増大し、排気騒音が大きくなるという問題が発生し得る。   In any case, since the exhaust valve 17 starts to open during the expansion stroke in which the air-fuel mixture ignited at the ignition timing retarded beyond the compression top dead center is opened, when the exhaust valve 17 is opened. The blowdown energy flowing out from the cylinder 4 to the exhaust port 10 is increased. As a result, the amplitude of exhaust pulsation in the independent exhaust pipes 23a to 23d, the merge pipes 24a and 24b, and the collecting pipe 25 is increased. There may be a problem that the emission noise increases and the exhaust noise increases.

この問題に対処するために、本実施形態では、図12及び図13に示すように、排気弁用カム21のカムプロフィールにおいて、排気弁17の開弁開始側の緩衝区間を除く正加速区間の初期に、図14に示す吸気弁16の正加速区間の初期と比べて、クランク角に対するリフト加速度の増加割合が小さい緩加速区間が形成されている。   In order to cope with this problem, in this embodiment, as shown in FIGS. 12 and 13, in the cam profile of the exhaust valve cam 21, the positive acceleration section excluding the buffer section on the valve opening start side of the exhaust valve 17. Initially, a slow acceleration section is formed in which the rate of increase in lift acceleration with respect to the crank angle is small compared to the initial stage of the positive acceleration section of the intake valve 16 shown in FIG.

ただし、本実施形態では、ECU13は、1気筒4あたり2つの排気弁17の開弁開始時期EVOを相違させると共に、2つの排気弁17のうち開弁開始時期EVOがより早いほうの排気弁17にのみ前記緩加速区間が形成されている。   However, in this embodiment, the ECU 13 makes the valve opening start timing EVO of the two exhaust valves 17 different per cylinder 4 and the exhaust valve 17 with the earlier valve opening start timing EVO of the two exhaust valves 17. The slow acceleration section is formed only in

具体的に、2つの排気弁17のうち開弁開始時期EVOがより早い排気弁17を駆動する排気弁用カム21を「P用カム」、もう一方の排気弁17を駆動する排気弁用カム21を「S用カム」とすると、図13に示すように、P用カムにのみ(実線)、緩衝区間を除く正加速区間の初期に、クランク角に対するリフト加速度の増加割合が小さい緩加速区間が形成されている。これに対し、S用カムには(破線)、緩衝区間を除く正加速区間の初期に、クランク角に対するリフト加速度の増加割合が小さい緩加速区間が形成されていない。したがって、図13に示すS用カムのリフト加速度の特性(破線)は、図14に示す吸気弁用カム20のリフト加速度の特性と類似している。   Specifically, of the two exhaust valves 17, the exhaust valve cam 21 that drives the exhaust valve 17 whose valve opening start timing EVO is earlier is the “P cam”, and the exhaust valve cam that drives the other exhaust valve 17. If 21 is an “S cam”, as shown in FIG. 13, only the P cam (solid line), a slow acceleration zone where the increase rate of the lift acceleration with respect to the crank angle is small at the beginning of the positive acceleration zone except the buffer zone. Is formed. On the other hand, in the S cam (broken line), a slow acceleration section in which the increase rate of the lift acceleration with respect to the crank angle is small is not formed at the initial stage of the positive acceleration section excluding the buffer section. Therefore, the lift acceleration characteristic (broken line) of the S cam shown in FIG. 13 is similar to the lift acceleration characteristic of the intake valve cam 20 shown in FIG.

ここで、緩衝区間とは、前述したバルブリフトの勾配が緩やかな部分(ランプ部)に対応し、バルブのリフト期間中、バルブリフト量が0.2mmに増大するまでの区間、あるいは、バルブリフト量が0.2mmに減少した後の区間である。   Here, the buffer section corresponds to a portion where the gradient of the valve lift described above is gentle (ramp part), and the section until the valve lift amount increases to 0.2 mm during the valve lift period, or the valve lift. This is the interval after the amount has decreased to 0.2 mm.

なお、図中の符号「a」は、緩加速区間が終了するカムの割り付け角度である。   In addition, the code | symbol "a" in a figure is the allocation angle of the cam which a slow acceleration area complete | finishes.

図12に拡大して示すように、P用カムの開弁開始時期(図11(b)において「EVOP」と記す)がS用カムの開弁開始時期(同じく「EVOS」と記す)よりも早い時期に設定されている。そして、図11(b)に示すように、P用カムの開弁開始時期EVOPがATDC126°CA(BBDC54°CA)に設定されている(なお、S用カムの開弁開始時期EVOSはATDC128°CA(BBDC52°CA)に設定されている)。これにより、1気筒4あたり2つ設けられた排気弁17のうち、開弁開始時期EVOPがより早いP用カムが開弁を開始したとき、前記緩加速区間により、P用カムが相対的にゆっくり開弁することになり、ブローダウンエネルギーの排気系への放出ないし伝達が緩慢化する。   As shown in an enlarged view in FIG. 12, the valve opening start timing of the P cam (referred to as “EVOP” in FIG. 11B) is greater than the valve opening start timing of the S cam (also referred to as “EVOS”). It is set early. Then, as shown in FIG. 11B, the valve opening start timing EVOP of the P cam is set to ATDC 126 ° CA (BBDC 54 ° CA) (Note that the valve opening start timing EVOS of the S cam is ATDC 128 °. CA (set to BBDC 52 ° CA)). Accordingly, when the P cam having the earlier valve opening start timing EVOP among the two exhaust valves 17 provided per cylinder 4 starts to open, the P cam is relatively moved by the slow acceleration section. The valve opens slowly, and the release or transmission of blowdown energy to the exhaust system slows down.

(5)作用等
以上のように、本実施形態では、集合管25と排気管27との間に備えられた触媒装置26が未活性状態のときは、同じアイドル運転で触媒装置26が活性状態のときよりも、吸入空気量を増量し、かつ点火時期を圧縮上死点を超えてリタードさせる火花点火式エンジンの触媒早期暖機制御装置において、次のような特徴的構成を採用した。
(5) Operation, etc. As described above, in this embodiment, when the catalyst device 26 provided between the collecting pipe 25 and the exhaust pipe 27 is in an inactive state, the catalyst device 26 is in an active state in the same idle operation. As compared with the above, the following characteristic configuration was adopted in the catalyst early warm-up control device of the spark ignition engine that increases the intake air amount and retards the ignition timing beyond the compression top dead center.

すなわち、排気弁用カム21のカムプロフィールにおいて、排気弁17の開弁開始側の緩衝区間を除く正加速区間の初期に、吸気弁16の正加速区間の初期と比べて、クランク角に対するリフト加速度の増加割合が小さい緩加速区間が形成されているから、この緩加速区間によって排気弁17が相対的にゆっくり開弁することになる。そのため、たとえブローダウンエネルギーが高くても、ブローダウンエネルギーの排気系への放出ないし伝達が緩慢化し、その結果、独立排気管23a〜23d内、合流管24a,24b内、及び集合管25内の排気脈動の振幅が小さくなり、排気系の放射音が減少し、排気騒音が抑制される。   That is, in the cam profile of the exhaust valve cam 21, the lift acceleration relative to the crank angle at the initial stage of the positive acceleration section excluding the buffer section on the valve opening start side of the exhaust valve 17 compared to the initial stage of the positive acceleration section of the intake valve 16. Therefore, the exhaust valve 17 is opened relatively slowly by the slow acceleration section. Therefore, even if the blowdown energy is high, the release or transmission of the blowdown energy to the exhaust system is slowed down. As a result, in the independent exhaust pipes 23a to 23d, in the merging pipes 24a and 24b, and in the collecting pipe 25 The amplitude of the exhaust pulsation is reduced, the emission sound of the exhaust system is reduced, and the exhaust noise is suppressed.

一方、触媒活性については、圧縮上死点を超えてリタードされた点火時期に点火された混合気が膨張行程中に後燃えしているから、排気ガス温度ひいては排気熱量が増大しており、触媒装置26の早期活性化効果が十分維持される。すなわち、触媒活性と排気騒音との両立が図られる。   On the other hand, with respect to the catalyst activity, since the air-fuel mixture ignited at the ignition timing retarded beyond the compression top dead center is burned after the expansion stroke, the exhaust gas temperature and the exhaust heat quantity are increased. The early activation effect of the device 26 is sufficiently maintained. That is, both catalyst activity and exhaust noise can be achieved.

以上により、本実施形態によれば、AWSの実行中、触媒装置26の早期活性化効果を維持しつつ、排気騒音を抑制することのできる火花点火式エンジンの触媒早期暖機制御装置が提供される。   As described above, according to the present embodiment, there is provided a catalyst early warm-up control device for a spark ignition engine that can suppress exhaust noise while maintaining the early activation effect of the catalyst device 26 during execution of AWS. The

本実施形態では、ECU13は、前記設定された点火時期に筒内の混合気が点火プラグ14周りで相対的にリッチとなるように、筒内に燃料を直接噴射するマルチホール型インジェクタ11の噴射時期を設定する(図9の「第一段噴射」及び「第二段噴射」参照)。   In this embodiment, the ECU 13 injects the fuel into the cylinder directly so that the air-fuel mixture in the cylinder becomes relatively rich around the spark plug 14 at the set ignition timing. The timing is set (see “first stage injection” and “second stage injection” in FIG. 9).

この構成によれば、AWSの実行中、点火時期が大幅にリタードされても燃焼状態が不安定とならず、混合気が安定して確実に燃焼する。   According to this configuration, even when the ignition timing is largely retarded during execution of the AWS, the combustion state does not become unstable, and the air-fuel mixture is stably and reliably burned.

本実施形態では、排気弁17は1つの気筒4に2つ設けられ、ECU13は、前記2つの排気弁17の開弁開始時期EVOが相違するように前記2つの排気弁17の開弁開始時期EVOを設定する。   In this embodiment, two exhaust valves 17 are provided in one cylinder 4, and the ECU 13 opens the two exhaust valves 17 so that the two exhaust valves 17 have different valve opening start times EVO. Set EVO.

この構成によれば、1気筒4あたり2つの排気弁17が互いに異なるタイミングで開弁を開始するので、排気ポート10に排出された排気ガスの流れに乱れが生じ、ひいては独立排気管23a〜23d内、合流管24a,24b内、及び集合管25内の排気ガスが攪拌されて、これらの管内での後燃えが促進される。そのため、より触媒装置26に近い部位での後燃えが図られて、触媒活性の点でより一層有利となる。   According to this configuration, since the two exhaust valves 17 per cylinder 4 start to open at different timings, the flow of exhaust gas discharged to the exhaust port 10 is disturbed, and as a result, the independent exhaust pipes 23a to 23d. The exhaust gas in the merging pipes 24a and 24b and the collecting pipe 25 is agitated to promote afterburning in these pipes. Therefore, afterburning is achieved at a portion closer to the catalyst device 26, which is further advantageous in terms of catalyst activity.

本実施形態では、前記2つの排気弁17のうち開弁開始時期EVOがより早い排気弁17を駆動する排気弁用カム21(P用カム)にのみ前記緩加速区間が形成されている。   In the present embodiment, the slow acceleration section is formed only in the exhaust valve cam 21 (P cam) that drives the exhaust valve 17 whose valve opening start timing EVO is earlier among the two exhaust valves 17.

この構成によれば、2つの排気弁17が互いに異なるタイミングで開弁を開始しても、ブローダウンエネルギーの排気系への放出ないし伝達の緩慢化効果が確保される。   According to this configuration, even if the two exhaust valves 17 start opening at different timings, the effect of releasing or transmitting blowdown energy to the exhaust system is ensured.

なお、前記2つの排気弁17のうち開弁開始時期EVOが遅いほうの排気弁17を駆動する排気弁用カム21(S用カム)にも緩加速区間を形成してもよい。その場合、S用カムの緩加速区間よりもP用カムの緩加速区間を開弁開始側に長く形成することが好ましい。それによって、互いに異なるタイミングで開弁を開始する2つの排気弁17が全体として連続する長い期間ブローダウンエネルギーを緩慢に放出し、ブローダウンエネルギーが過大な場合に良好に対処することができるからである。   A slow acceleration zone may also be formed in the exhaust valve cam 21 (S cam) that drives the exhaust valve 17 having the later valve opening start timing EVO of the two exhaust valves 17. In that case, it is preferable to form the slow acceleration section of the P cam longer than the slow acceleration section of the S cam on the valve opening start side. As a result, the two exhaust valves 17 that start opening at different timings release the blowdown energy slowly for a long period of time as a whole, and can cope well when the blowdown energy is excessive. is there.

なお、前記実施形態では、排気弁17の開弁開始時期EVOをATDC126°CA(BBDC54°CA)に設定したが、これに限られず、例えば筒内圧力のピークが到来する時期等に応じて種々変更できる。   In the above embodiment, the valve opening start timing EVO of the exhaust valve 17 is set to ATDC 126 ° CA (BBDC 54 ° CA). However, the present invention is not limited to this. Can change.

また、前記実施形態では、車両はAT車両であったが、これに限られず、変速機Tが手動変速機(MT)であるMT車両でもよい。その場合、重量物であるトルクコンバータがクランクシャフト1に連結されていないため、エンジンEの外部負荷はAT車両に比べて総じて低くなり、AWSの実行中、より一層点火時期のリタード量を大きくすることができる。   Moreover, in the said embodiment, although the vehicle was an AT vehicle, it is not restricted to this, The MT vehicle whose transmission T is a manual transmission (MT) may be sufficient. In that case, since the heavy torque converter is not connected to the crankshaft 1, the external load of the engine E is generally lower than that of the AT vehicle, and the retard amount of the ignition timing is further increased during execution of the AWS. be able to.

1 クランクシャフト
4a〜4d 第1〜第4気筒
6 ピストン
7 燃焼室
9 吸気ポート
10 排気ポート
11 マルチホール型インジェクタ(燃料噴射弁)
12 燃料供給システム
13 エンジンコントロールユニット(排気開弁開始時期設定手段)
14 点火プラグ
15 点火回路
16 吸気弁
17 排気弁
20 吸気弁用カム
21 排気弁用カム
23 独立排気管(排気通路)
23a〜23d 第1〜第4独立排気管(排気通路)
24a 第1合流管(排気通路)
24b 第2合流管(排気通路)
25 集合管(排気通路)
26 触媒装置
27 排気管(排気通路)
28 スロットル弁
40a〜40f 第1〜第4噴口
101 エアコン
102 オルタネータ
103 オイルポンプ
120 吸気VVT
121 排気VVT
E エンジン
SW1 エンジン水温センサ
SW2 エンジン回転数センサ
SW3 クランク角センサ
SW4 アクセルポジションセンサ
SW5 触媒温度センサ
T 変速機
DESCRIPTION OF SYMBOLS 1 Crankshaft 4a-4d 1st-4th cylinder 6 Piston 7 Combustion chamber 9 Intake port 10 Exhaust port 11 Multi-hole injector (fuel injection valve)
12 Fuel supply system 13 Engine control unit (exhaust valve opening start timing setting means)
DESCRIPTION OF SYMBOLS 14 Spark plug 15 Ignition circuit 16 Intake valve 17 Exhaust valve 20 Intake valve cam 21 Exhaust valve cam 23 Independent exhaust pipe (exhaust passage)
23a-23d 1st-4th independent exhaust pipe (exhaust passage)
24a First junction pipe (exhaust passage)
24b Second junction pipe (exhaust passage)
25 Collecting pipe (exhaust passage)
26 Catalytic device 27 Exhaust pipe (exhaust passage)
28 Throttle valve 40a-40f 1st-4th nozzle 101 Air-conditioner 102 Alternator 103 Oil pump 120 Intake VVT
121 Exhaust VVT
E Engine SW1 Engine water temperature sensor SW2 Engine speed sensor SW3 Crank angle sensor SW4 Accelerator position sensor SW5 Catalyst temperature sensor T Transmission

Claims (4)

排気通路に備えられた触媒装置が未活性状態のときは、同じ運転状態で活性状態のときよりも、吸入空気量を増量し、かつ点火時期を圧縮上死点を超えてリタードさせる火花点火式エンジンの触媒早期暖機制御装置であって、
前記リタードされた点火時期に点火された混合気が燃焼する膨張行程中に排気弁が開弁を開始するように排気弁の開弁開始時期を設定する排気開弁開始時期設定手段が備えられていると共に、
前記排気弁用のカムのカムプロフィールにおいて、前記排気弁の開弁開始側の緩衝区間を除く正加速区間の初期に、吸気弁の正加速区間の初期と比べて、クランク角に対するリフト加速度の増加割合が小さい緩加速区間が形成されていることを特徴とする火花点火式エンジンの触媒早期暖機制御装置。
Spark ignition type that increases the intake air amount and retards the ignition timing beyond the compression top dead center when the catalyst device provided in the exhaust passage is in an inactive state than in the active state in the same operating state An engine early catalyst warm-up control device,
Exhaust valve opening start timing setting means is provided for setting the opening timing of the exhaust valve so that the exhaust valve starts opening during the expansion stroke in which the air-fuel mixture ignited at the retarded ignition timing burns. And
In the cam profile of the cam for the exhaust valve, the lift acceleration increases with respect to the crank angle at the beginning of the positive acceleration section excluding the buffer section on the valve opening start side of the exhaust valve compared to the initial stage of the positive acceleration section of the intake valve. A catalyst early warm-up control device for a spark ignition engine, characterized in that a slow acceleration section with a small ratio is formed.
請求項1に記載の火花点火式エンジンの触媒早期暖機制御装置において、
前記排気弁は1つの気筒に複数設けられ、
前記排気開弁開始時期設定手段は、前記複数の排気弁の開弁開始時期が相違するように排気弁の開弁開始時期を設定することを特徴とする火花点火式エンジンの触媒早期暖機制御装置。
The catalyst early warm-up control device for a spark ignition type engine according to claim 1,
A plurality of the exhaust valves are provided in one cylinder,
The exhaust valve opening start timing setting means sets the exhaust valve opening start timing so that the opening timings of the plurality of exhaust valves are different from each other. apparatus.
請求項2に記載の火花点火式エンジンの触媒早期暖機制御装置において、
前記複数の排気弁のうち開弁開始時期がより早い排気弁にのみ前記緩加速区間が形成されていることを特徴とする火花点火式エンジンの触媒早期暖機制御装置。
The catalyst early warm-up control device for a spark ignition type engine according to claim 2,
The catalyst early warm-up control device for a spark ignition engine, wherein the slow acceleration section is formed only in an exhaust valve whose opening start timing is earlier among the plurality of exhaust valves.
請求項2又は3に記載の火花点火式エンジンの触媒早期暖機制御装置において、
前記複数の排気弁のうち開弁開始時期がより早い排気弁の前記緩加速区間は他の排気弁の前記緩加速区間よりも開弁開始側に長く形成されていることを特徴とする火花点火式エンジンの触媒早期暖機制御装置。
The catalyst early warm-up control device for a spark ignition engine according to claim 2 or 3,
The spark ignition characterized in that the slow acceleration section of the exhaust valve whose opening start timing is earlier among the plurality of exhaust valves is formed longer on the valve opening start side than the slow acceleration section of the other exhaust valves. Type early catalyst warm-up controller
JP2013005232A 2013-01-16 2013-01-16 Catalyst early warm-up controller for spark ignition engine Expired - Fee Related JP5983416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013005232A JP5983416B2 (en) 2013-01-16 2013-01-16 Catalyst early warm-up controller for spark ignition engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013005232A JP5983416B2 (en) 2013-01-16 2013-01-16 Catalyst early warm-up controller for spark ignition engine

Publications (2)

Publication Number Publication Date
JP2014136989A true JP2014136989A (en) 2014-07-28
JP5983416B2 JP5983416B2 (en) 2016-08-31

Family

ID=51414648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013005232A Expired - Fee Related JP5983416B2 (en) 2013-01-16 2013-01-16 Catalyst early warm-up controller for spark ignition engine

Country Status (1)

Country Link
JP (1) JP5983416B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016170583A1 (en) * 2015-04-20 2016-10-27 日産自動車株式会社 Engine control device and engine control method
DE102017002321A1 (en) 2016-03-14 2017-09-14 Mazda Motor Corporation Motor controller
US10208692B2 (en) 2016-03-23 2019-02-19 Mazda Motor Corporation Misfire detecting system for engine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5027211U (en) * 1973-07-06 1975-03-28
JPH04143406A (en) * 1990-10-05 1992-05-18 Nissan Motor Co Ltd Cam structure in exhaust valve system
JPH07332027A (en) * 1994-06-09 1995-12-19 Nissan Motor Co Ltd Valve system for internal combustion engine
JPH0941955A (en) * 1995-07-28 1997-02-10 Mazda Motor Corp Exhaust system for engine
JP2000110644A (en) * 1998-10-07 2000-04-18 Nissan Motor Co Ltd Exhaust emission control device for internal combustion engine
JP2006112365A (en) * 2004-10-18 2006-04-27 Nissan Motor Co Ltd Control device of cylinder direct injection type spark ignition internal combustion engine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5027211U (en) * 1973-07-06 1975-03-28
JPH04143406A (en) * 1990-10-05 1992-05-18 Nissan Motor Co Ltd Cam structure in exhaust valve system
JPH07332027A (en) * 1994-06-09 1995-12-19 Nissan Motor Co Ltd Valve system for internal combustion engine
JPH0941955A (en) * 1995-07-28 1997-02-10 Mazda Motor Corp Exhaust system for engine
JP2000110644A (en) * 1998-10-07 2000-04-18 Nissan Motor Co Ltd Exhaust emission control device for internal combustion engine
JP2006112365A (en) * 2004-10-18 2006-04-27 Nissan Motor Co Ltd Control device of cylinder direct injection type spark ignition internal combustion engine

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016170583A1 (en) * 2015-04-20 2016-10-27 日産自動車株式会社 Engine control device and engine control method
KR20170124606A (en) * 2015-04-20 2017-11-10 닛산 지도우샤 가부시키가이샤 Engine control device and engine control method
JPWO2016170583A1 (en) * 2015-04-20 2018-02-08 日産自動車株式会社 ENGINE CONTROL DEVICE AND ENGINE CONTROL METHOD
RU2662661C1 (en) * 2015-04-20 2018-07-26 Ниссан Мотор Ко., Лтд. Engine control device and engine control method
KR101894693B1 (en) * 2015-04-20 2018-09-04 닛산 지도우샤 가부시키가이샤 Engine control device and engine control method
US10280858B2 (en) 2015-04-20 2019-05-07 Nissan Motor Co., Ltd. Engine control device and engine control method
DE102017002321A1 (en) 2016-03-14 2017-09-14 Mazda Motor Corporation Motor controller
US10385791B2 (en) 2016-03-14 2019-08-20 Mazda Motor Corporation Engine control device
DE102017002321B4 (en) * 2016-03-14 2021-06-02 Mazda Motor Corporation Engine control device
US10208692B2 (en) 2016-03-23 2019-02-19 Mazda Motor Corporation Misfire detecting system for engine

Also Published As

Publication number Publication date
JP5983416B2 (en) 2016-08-31

Similar Documents

Publication Publication Date Title
JP6020600B2 (en) Catalyst early warm-up controller for spark ignition engine
JP5835497B2 (en) Spark ignition direct injection engine
JP5392165B2 (en) Control unit for gasoline engine
JP5834829B2 (en) Control device for spark ignition gasoline engine
US7765053B2 (en) Multi-injection combustion cycle systems for SIDI engines
JP5494545B2 (en) Spark ignition gasoline engine
JP5502033B2 (en) Control device for internal combustion engine
JP6015565B2 (en) Internal combustion engine
JP5983416B2 (en) Catalyst early warm-up controller for spark ignition engine
JP5831169B2 (en) Control device for spark ignition gasoline engine
JP2006070863A (en) Control device for cylinder direct injection type spark ignition internal combustion engine
JP7294099B2 (en) Control device for compression ignition engine
JP5942862B2 (en) Catalyst early warm-up controller for spark ignition engine
JP2009243360A (en) Engine combustion control device
JP6544419B2 (en) Premixed compression ignition engine
JP6631575B2 (en) Control device for homogeneous charge compression ignition engine
JP2006257921A (en) Control device and control method of cylinder direct injection type spark ignition internal combustion engine
JP2006046128A (en) Control device for cylinder direct injection type spark ignition internal combustion engine
JP4525509B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4311300B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2018172980A (en) Premixing compression ignition type engine
JP2006177181A (en) Control device for cylinder direct injection type spark ignition internal combustion engine
JP4155242B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2006161733A (en) Control device for cylinder direct injection type spark ignition internal combustion engine
JP2006037793A (en) Cylinder direct injection spark ignition internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160718

R150 Certificate of patent or registration of utility model

Ref document number: 5983416

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees