[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2014132677A - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
JP2014132677A
JP2014132677A JP2014043992A JP2014043992A JP2014132677A JP 2014132677 A JP2014132677 A JP 2014132677A JP 2014043992 A JP2014043992 A JP 2014043992A JP 2014043992 A JP2014043992 A JP 2014043992A JP 2014132677 A JP2014132677 A JP 2014132677A
Authority
JP
Japan
Prior art keywords
wavelength conversion
light emitting
light
conversion member
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014043992A
Other languages
Japanese (ja)
Other versions
JP6024685B2 (en
Inventor
Masatsugu Ichikawa
将嗣 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2014043992A priority Critical patent/JP6024685B2/en
Publication of JP2014132677A publication Critical patent/JP2014132677A/en
Application granted granted Critical
Publication of JP6024685B2 publication Critical patent/JP6024685B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating

Landscapes

  • Led Device Packages (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a light emitting device capable of improving both of color shading and light extraction efficiency at the same time.SOLUTION: A first wavelength conversion member 24, a light emitting element 20, and a second wavelength conversion member 26 are sequentially formed on a bottom face of a container toward an opening of a recess 16a away from a side face of the recess via a translucent support member 32. The first wavelength conversion member is a plate-like member formed by compounding an inorganic binder made of an inorganic material and a fluorescent body. A scattering face 18 is formed on the side face of the recess at a portion at which light emitted parallel to a main face of the first wavelength conversion member at least from the side face of the first wavelength conversion member is radiated.

Description

本発明は、発光素子の発光を一部波長変換してもとの光と混色することにより、異なる色の発光を可能とする発光装置に関する。   The present invention relates to a light-emitting device that enables light emission of different colors by mixing light emitted from a light-emitting element with original light even after wavelength conversion.

発光ダイオード等の半導体発光素子は、小型で電力効率が良く鮮やかな色の発光をする。また、半導体発光素子は球切れ等の心配がなく、初期駆動特性に優れ、振動やオン・オフ点灯の繰り返しに強いという特徴を有する。また、半導体発光素子の発光と、これに励起されて異なる波長の光を発光できる波長変換部材とを組み合わせることで、光の混色の原理により、多様な色の光を出射可能な発光装置が開発されている。このような発光装置は、各種の光源として利用されている。特に近年は、蛍光灯に代わる低消費電力で長寿命の次世代照明として注目を集めており、更なる発光出力の向上及び発光効率の改善が求められている。また、車のヘッドライトなどの投光器、投光照明のように、高輝度な光源も求められている。   A semiconductor light emitting element such as a light emitting diode is small in size, has high power efficiency, and emits bright colors. In addition, the semiconductor light emitting device has the characteristics that there is no fear of a broken ball, etc., excellent initial drive characteristics, and resistance to vibration and repeated on / off lighting. In addition, a light-emitting device that can emit light of various colors based on the principle of light color mixing is developed by combining light emission of a semiconductor light-emitting element and a wavelength conversion member that can emit light of different wavelengths when excited by this. Has been. Such light emitting devices are used as various light sources. In particular, in recent years, it has attracted attention as a next-generation illumination with low power consumption and long life replacing fluorescent lamps, and further improvements in light emission output and light emission efficiency are required. In addition, there is a demand for a high-luminance light source such as a projector such as a car headlight and a floodlight.

このような発光装置について、特許文献1には、図9(a)及び(b)に示す構造が提案されている。図9(a)に示される発光半導体チップ組立体72は、蛍光体チップ74の上に透明な接着剤76を介して発光ダイオードチップ78を固着して構成されている。蛍光体チップ74は、シリカやアルミナなどの透明物質若しくは光反射性の良い不透明物質から成る基板80の上に蛍光体層82を有している。蛍光体層82は、樹脂中に蛍光体を分散して構成されている。図9(b)は、この発光半導体チップ組立体72を用いて構成した発光装置92の断面図を示している。発光装置92は、アノードリード88とカソードリード90を備え、カソードリード90の先端に設けられたカップ部90aに発光半導体チップ組立体72が固着されている。発光半導体チップ組立体72のアノード電極84、カソード電極86は、各々、アノードリード88、カソードリード90に接続されている。また、発光半導体チップ組立体72の周囲は、光散乱剤94を分散した保護接着剤96で覆われている。   Regarding such a light emitting device, Patent Document 1 proposes a structure shown in FIGS. 9A and 9B. A light emitting semiconductor chip assembly 72 shown in FIG. 9A is configured by fixing a light emitting diode chip 78 on a phosphor chip 74 via a transparent adhesive 76. The phosphor chip 74 has a phosphor layer 82 on a substrate 80 made of a transparent material such as silica or alumina or an opaque material having good light reflectivity. The phosphor layer 82 is configured by dispersing a phosphor in a resin. FIG. 9B shows a cross-sectional view of a light emitting device 92 configured using the light emitting semiconductor chip assembly 72. The light emitting device 92 includes an anode lead 88 and a cathode lead 90, and a light emitting semiconductor chip assembly 72 is fixed to a cup portion 90 a provided at the tip of the cathode lead 90. The anode electrode 84 and the cathode electrode 86 of the light emitting semiconductor chip assembly 72 are connected to the anode lead 88 and the cathode lead 90, respectively. The periphery of the light emitting semiconductor chip assembly 72 is covered with a protective adhesive 96 in which a light scattering agent 94 is dispersed.

特開2002−141559JP 2002-141559 A

図9(a)及び(b)に示した発光装置によれば、発光ダイオードチップ78の裏面に蛍光体チップ74が固着されているため、発光ダイオードチップ78の裏面をカソードリードのカップ部90aに直接接着する構造に比べて光出力が増大する。これは次の理由による。発光ダイオードチップ78の裏面をカソードリードのカップ部90aに銀ペースト等で直接接着した場合、発光ダイオードチップ78の裏面から出射する光は銀ペーストで反射することになるが、銀ペーストは反射率が高くなく、また反射した光の多くは発光ダイオードチップ78の内部に戻って吸収されてしまうため、光出力が低下してしまう。発光ダイオードチップ78の裏面に蛍光体チップ74を接着することにより、発光ダイオードチップ78の裏面から出射した光が発光ダイオードチップ78の内部に戻る割合が減少し、蛍光体チップ74を通じて効率よく外部に取り出されるため、光出力が向上する。また、保護接着剤96に分散された光散乱剤94の効果により、発光ダイオードチップ78と蛍光体チップ74の発光が混色され、色むらが抑制される。   According to the light emitting device shown in FIGS. 9A and 9B, since the phosphor chip 74 is fixed to the back surface of the light emitting diode chip 78, the back surface of the light emitting diode chip 78 is connected to the cup portion 90a of the cathode lead. The light output is increased compared to a structure that directly bonds. This is due to the following reason. When the back surface of the light emitting diode chip 78 is directly bonded to the cup portion 90a of the cathode lead with silver paste or the like, light emitted from the back surface of the light emitting diode chip 78 is reflected by the silver paste, but the silver paste has a reflectivity. It is not high, and most of the reflected light returns to the inside of the light emitting diode chip 78 and is absorbed, so that the light output is lowered. By adhering the phosphor chip 74 to the back surface of the light emitting diode chip 78, the ratio of the light emitted from the back surface of the light emitting diode chip 78 returning to the inside of the light emitting diode chip 78 is reduced. Since the light is extracted, the light output is improved. In addition, due to the effect of the light scattering agent 94 dispersed in the protective adhesive 96, the light emission of the light emitting diode chip 78 and the phosphor chip 74 is mixed and color unevenness is suppressed.

しかし、このような従来の発光装置では、色むらと発光出力の両方を十分に満足する発光装置を得ることが困難という問題があった。即ち、図9(a)及び(b)に示したような発光装置では、発光ダイオードチップ78の下方にのみ波長変換用の蛍光体層82が存在するため、発光ダイオードチップ78の発光の下面から出射する光は蛍光体チップ74の蛍光体層82を通過するが、発光ダイオードチップ78の上面や側面から出射する光は蛍光体層82を通過しない。このため色むらが生じ易い。発光ダイオードチップ78と蛍光体チップ74の発光を混色して色むらを十分抑制するためには、発光ダイオードチップ78と蛍光体チップ74の周囲に光散乱剤94を多量に分散させる必要がある。ところが、発光ダイオードチップ78の周囲に光散乱剤94が多量に分散されていると、光散乱剤94によって散乱された光が発光ダイオードチップ78の内部に戻り易くなり、発光ダイオードチップ78の内部で吸収される光の割合が増加してしまう。また、図9(a)及び(b)のような発光装置において、発光ダイオードチップ74の周囲を全て蛍光体層82で覆うことも考えられるが、蛍光体層82中に含まれる蛍光体粒子の散乱によっても発光ダイオードチップ78への戻り光が生じるため、やはり発光ダイオードチップ78の内部で吸収される光が増加してしまう。従って、色むらを改善しようとすると光取り出し効率が低下してしまい、色むらと光取り出し効率を同時に改善することが困難であった。   However, such a conventional light emitting device has a problem that it is difficult to obtain a light emitting device that sufficiently satisfies both color unevenness and light emission output. That is, in the light emitting device as shown in FIGS. 9A and 9B, since the phosphor layer 82 for wavelength conversion exists only below the light emitting diode chip 78, the light emitting diode chip 78 emits light from the lower surface. The emitted light passes through the phosphor layer 82 of the phosphor chip 74, but the light emitted from the top and side surfaces of the light emitting diode chip 78 does not pass through the phosphor layer 82. For this reason, uneven color tends to occur. In order to mix the light emission of the light emitting diode chip 78 and the phosphor chip 74 and sufficiently suppress the color unevenness, it is necessary to disperse a large amount of the light scattering agent 94 around the light emitting diode chip 78 and the phosphor chip 74. However, if the light scattering agent 94 is dispersed in a large amount around the light emitting diode chip 78, the light scattered by the light scattering agent 94 easily returns to the inside of the light emitting diode chip 78. The proportion of absorbed light will increase. Further, in the light emitting device as shown in FIGS. 9A and 9B, it is conceivable that the entire periphery of the light emitting diode chip 74 is covered with the phosphor layer 82, but the phosphor particles contained in the phosphor layer 82 are not covered. The light returning to the light emitting diode chip 78 is also generated by the scattering, so that the light absorbed inside the light emitting diode chip 78 also increases. Therefore, when trying to improve the color unevenness, the light extraction efficiency decreases, and it is difficult to improve the color unevenness and the light extraction efficiency at the same time.

そこで本件発明は、色むらと光取り出し効率の両方を同時に改善可能な新たな発光装置を提供することを目的とする。   Accordingly, an object of the present invention is to provide a new light emitting device that can simultaneously improve both color unevenness and light extraction efficiency.

上記目的を達成するために、本件発明の発光装置は、上面が開口した凹部を有する収納器中に、半導体を発光層とする発光素子と、前記発光素子の発光の一部を吸収して異なる波長の光を発光する波長変換部材とを備え、前記発光素子の発光と前記波長変換部材の発光とを混合して前記凹部の開口から出射する発光装置であって、
前記波長変換部材は、第1の波長変換部材と第2の波長変換部材とを有し、
前記収納器の底面上に、透光性の支持部材を介して、前記第1の波長変換部材と、発光素子と、前記第2の波長変換部材とが、順次前記凹部の開口に向かって、前記凹部の側面から離間するように形成され、
前記第1の波長変換部材は、無機材料から成る無機バインダーと蛍光体とが複合された板状部材であり、
前記凹部の側面には、少なくとも前記第1の波長変換部材の側面から第1の波長変換部材の主面に対して平行に出射した光が照射される部分に散乱面が形成されていることを特徴とする。
In order to achieve the above object, the light-emitting device of the present invention is different from a light-emitting element using a semiconductor as a light-emitting layer and a part of light emission of the light-emitting element in a container having a recess having an upper surface opened. A light emitting device comprising a wavelength conversion member that emits light of a wavelength, and mixing and emitting light emitted from the light emitting element and light emitted from the wavelength conversion member,
The wavelength conversion member has a first wavelength conversion member and a second wavelength conversion member,
On the bottom surface of the container, the first wavelength conversion member, the light emitting element, and the second wavelength conversion member are sequentially directed toward the opening of the recess through a translucent support member. Formed so as to be separated from the side surface of the recess,
The first wavelength conversion member is a plate-like member in which an inorganic binder made of an inorganic material and a phosphor are combined,
A scattering surface is formed on the side surface of the concave portion at least in a portion irradiated with light emitted parallel to the main surface of the first wavelength conversion member from the side surface of the first wavelength conversion member. Features.

本件発明によれば、収納器の底面上に、透光性の支持部材を介して、第1の波長変換部材と、前記発光素子と、第2の波長変換部材とを順次形成したため、発光素子の下方から効率よく光を取り出せる。また、発光素子の下方に無機バインダーと蛍光体から成る第1の波長変換部材を形成し、上方に第2の波長変換部材を設けることで、光取り出し効率を高く維持しながら色むらの発生を抑制することができる。即ち、発光素子の下側に位置する第1の波長変換部材は、無機バインダーと蛍光体とが複合された板状部材とするが、無機バインダーと蛍光体の屈折差は比較的小さいため、第1の波長変換部材を通過する光はあまり散乱されない。このため、上記図9(a)及び(b)に示したような樹脂と蛍光体粒子から成る蛍光体層82と異なり、第1の波長変換部材内での散乱による発光素子への戻り光は少ない。一方で、板状の第1の波長変換部材の内部で光が横方向に伝播しやすく、第1の波長変換部材の端面で強く発光する傾向にあるため、それによる色むらを生じ易い。そこで凹部の側面のうち、少なくとも第1の波長変換部材の側面から第1の波長変換部材の主面に対して平行に出射した光が照射される部分に散乱面を形成することにより、第1の波長変換部材によって生じる色むらを抑制することができる。第1の波長変換部材や発光素子は、散乱面を形成する凹部側面からは離間して形成されているため、この散乱面による発光素子への戻り光は比較的小さい。本件発明では、これらの効果により光取り出し効率を高く維持しながら色むらが改善された発光装置を提供することができる。   According to the present invention, the first wavelength conversion member, the light emitting element, and the second wavelength conversion member are sequentially formed on the bottom surface of the container via the translucent support member. Light can be extracted efficiently from below. In addition, by forming a first wavelength conversion member made of an inorganic binder and a phosphor below the light emitting element and providing a second wavelength conversion member above the light emitting element, color unevenness can be generated while maintaining high light extraction efficiency. Can be suppressed. That is, the first wavelength conversion member located on the lower side of the light emitting element is a plate-like member in which an inorganic binder and a phosphor are combined. However, the refractive difference between the inorganic binder and the phosphor is relatively small. Light passing through one wavelength conversion member is not scattered much. Therefore, unlike the phosphor layer 82 made of resin and phosphor particles as shown in FIGS. 9A and 9B, the return light to the light emitting element due to scattering in the first wavelength conversion member is Few. On the other hand, since light tends to propagate in the lateral direction inside the plate-like first wavelength conversion member and tends to emit light strongly at the end face of the first wavelength conversion member, uneven color due to this tends to occur. Therefore, by forming a scattering surface in a portion irradiated with light emitted parallel to the main surface of the first wavelength conversion member from at least the side surface of the first wavelength conversion member among the side surfaces of the recess, the first surface is formed. Color unevenness caused by the wavelength conversion member can be suppressed. Since the first wavelength conversion member and the light emitting element are formed apart from the side surface of the concave portion that forms the scattering surface, the return light to the light emitting element by this scattering surface is relatively small. In the present invention, it is possible to provide a light emitting device with improved color unevenness while maintaining high light extraction efficiency due to these effects.

図1は、本件発明の実施の形態1に係る発光装置を示す模式断面図である。FIG. 1 is a schematic cross-sectional view showing a light emitting device according to Embodiment 1 of the present invention. 図2は、図1の発光装置に用いる発光素子の一例を示す模式断面図である。FIG. 2 is a schematic cross-sectional view illustrating an example of a light-emitting element used in the light-emitting device of FIG. 図3は、凹部と発光層の関係を示す模式図である。FIG. 3 is a schematic diagram showing the relationship between the recesses and the light emitting layer. 図4は、図1に示す発光装置における光の進行方向を示す模式図である。FIG. 4 is a schematic diagram showing the traveling direction of light in the light emitting device shown in FIG. 図5は、本件発明の実施の形態1に係る発光装置の一例を示す模式的な斜視図である。FIG. 5 is a schematic perspective view showing an example of the light emitting device according to Embodiment 1 of the present invention. 図6は、本件発明の実施の形態1に係る発光装置の一例を示す模式的な上面図である。FIG. 6 is a schematic top view showing an example of the light emitting device according to Embodiment 1 of the present invention. 図7は、本件発明の実施の形態2に係る発光装置を示す模式断面図である。FIG. 7 is a schematic cross-sectional view showing a light-emitting device according to Embodiment 2 of the present invention. 図8は、本件発明の実施の形態3に係る発光装置を示す模式断面図である。FIG. 8 is a schematic cross-sectional view showing a light emitting device according to Embodiment 3 of the present invention. 図9(a)及び(b)は、従来の発光装置を示す模式断面図である。9A and 9B are schematic cross-sectional views showing a conventional light emitting device.

以下、本件発明の好ましい実施形態について図面を参照しながら説明する。各図面は模式図であり、そこに示された配置、寸法、比率、形状等は実際と異なる場合がある。また、各実施形態において他の実施形態と同一の符号を用いた部材は、同一又は対応する部材を表しており、説明を省略する場合がある。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. Each drawing is a schematic diagram, and the arrangement, dimensions, ratio, shape, and the like shown therein may be different from actual ones. Moreover, in each embodiment, the member using the same code | symbol as other embodiment represents the same or corresponding member, and may abbreviate | omit description.

本件明細書において、「上」、「下」という用語は、発光装置の発光を取り出す側とその逆側を指す用語としても用いる。例えば、「上方」は、発光装置の発光を取り出す方向を指し、「下方」は、その逆の方向を指す。また、「上面」とは発光装置の発光を取り出
す側にある面を指し、「下面」とはその逆側の面を指す。発光装置に関する「内」という用語は、発光素子の発光層に近い側を指し、「外」という用語は、その逆側を指す。また、本件明細書において「透光性」とは、発光素子の発光波長における透過率が10%以上あることを指す。光が「混合」するとは、異なる色度を持った2種類の光が、新たな色度を持つ光として人間の目に認識されるように空間的に混じり合うことを言う。本件発明における「屈折率」とは、発光素子の発光波長における屈折率を指す。
In this specification, the terms “upper” and “lower” are also used as terms indicating the side from which light emission of the light-emitting device is extracted and the opposite side. For example, “upward” refers to the direction in which the light emission of the light emitting device is extracted, and “downward” refers to the opposite direction. Further, the “upper surface” refers to the surface on the side from which light emission of the light emitting device is extracted, and the “lower surface” refers to the surface on the opposite side. The term “inside” with respect to the light emitting device refers to a side close to the light emitting layer of the light emitting element, and the term “outside” refers to the opposite side. In this specification, “translucency” means that the transmittance of the light emitting element at the emission wavelength is 10% or more. “Mixed” light means that two types of light having different chromaticities are spatially mixed so as to be recognized by human eyes as light having new chromaticity. The “refractive index” in the present invention refers to the refractive index at the emission wavelength of the light emitting element.

実施の形態1
図1は、本発明の実施の形態1に係る発光装置10を示す模式断面図である。発光素子20と、発光素子20の発光の一部を吸収して異なる波長に変換する波長変換部材30とが、パッケージ16(収納器)に収納されている。本実施の形態におけるパッケージ16は、平板状の絶縁部材に配線を形成した実装基板12とその実装基板12の上に形成された円環状の側壁14によって構成される。発光素子20は、例えば図2に示すような構造を持ち、半導体から成る発光層38を内部に備えている。また、発光素子20の2つの電極42、46は、波長変換部材30に形成された電極とワイヤを介して実装基板12の配線12a、12bと接続されており、外部から通電可能となっている。
Embodiment 1
FIG. 1 is a schematic cross-sectional view showing a light emitting device 10 according to Embodiment 1 of the present invention. A light emitting element 20 and a wavelength conversion member 30 that absorbs part of the light emitted from the light emitting element 20 and converts it to a different wavelength are accommodated in a package 16 (accommodator). The package 16 in the present embodiment includes a mounting substrate 12 in which wiring is formed on a flat insulating member, and an annular side wall 14 formed on the mounting substrate 12. The light emitting element 20 has a structure as shown in FIG. 2, for example, and includes a light emitting layer 38 made of a semiconductor. Further, the two electrodes 42 and 46 of the light emitting element 20 are connected to the wirings 12a and 12b of the mounting substrate 12 through electrodes and wires formed on the wavelength conversion member 30, and can be energized from the outside. .

発光素子20と波長変換部材30が収納できるように、パッケージ16には上面が開口した凹部16aが形成されている。また、本実施の形態では、発光素子20と波長変換部材30の発光を効率良く取り出せるように、凹部16aはすり鉢状となっている。即ち、パッケージ16の側壁14の内面と実装基板12の上面とにより凹部16aが構成されているが、パッケージ16の側壁14は円環状となっており、その内径が上方にいくに従って広がっている。これによって凹部16aがすり鉢状となり、凹部16aの表面に入射した光を上方から効率的に取り出すことができる。また、凹部16aには透光性の封止部材28が充填されている。図1におけるパッケージ16の凹部16aは、図6に示すように、平面視では円形であり、その中央付近に矩形の発光素子20と矩形の波長変換部材30とが配置された構造となっている。また、発光素子20と波長変換部材24、26は、いずれも凹部16aの底面に対して平行に設置されている。   The package 16 is formed with a recess 16a having an open upper surface so that the light emitting element 20 and the wavelength conversion member 30 can be accommodated. Moreover, in this Embodiment, the recessed part 16a is mortar shape so that light emission of the light emitting element 20 and the wavelength conversion member 30 can be taken out efficiently. That is, the recess 16a is formed by the inner surface of the side wall 14 of the package 16 and the upper surface of the mounting substrate 12, but the side wall 14 of the package 16 has an annular shape, and its inner diameter increases as it goes upward. As a result, the concave portion 16a has a mortar shape, and light incident on the surface of the concave portion 16a can be efficiently extracted from above. The concave portion 16a is filled with a translucent sealing member 28. As shown in FIG. 6, the recess 16a of the package 16 in FIG. 1 is circular in plan view, and has a structure in which a rectangular light emitting element 20 and a rectangular wavelength conversion member 30 are arranged near the center thereof. . The light emitting element 20 and the wavelength conversion members 24 and 26 are both installed in parallel to the bottom surface of the recess 16a.

本実施の形態において、波長変換部材30は、無機材料から成る無機バインダーと蛍光体とが複合された板状部材である第1の波長変換部材24と、透光性樹脂中に蛍光体が分散されて成る第2の波長変換部材26とを有する。パッケージ16の底面上に、透光性の支持部材32を介して、第1の波長変換部材24と、発光素子20と、第2の波長変換部材26とが、順次凹部16aの開口に向かって、凹部16aの側面から離間するように形成されている。第1の波長変換部材24は、発光素子20を支持するよう発光素子20の下側に配置され、第2の波長変換部材26は、発光素子20の上面及び側面を覆うよう形成されている。発光素子20の上面及び側面から出射した光は、主として第2の波長変換部材26によって一部が波長変換され、発光素子20の下面から出射した光は、主として第1の波長変換部材24によって一部が波長変換される。こうして波長変換された光と、もとの発光素子20の光とが混合することにより、所望の色の発光が得られる。例えば、発光素子20が青色を発光し、波長変換部材30が黄色を発光すれば、それらの混合によって白色の発光が得られる。また、発光素子20として紫外光を発光する発光素子を用いる場合は、波長変換部材30を通過して変換された光によって、所望の色の発光が得られる。   In the present embodiment, the wavelength conversion member 30 includes a first wavelength conversion member 24 that is a plate-like member in which an inorganic binder made of an inorganic material and a phosphor are combined, and the phosphor is dispersed in a translucent resin. And a second wavelength conversion member 26 formed as described above. On the bottom surface of the package 16, the first wavelength conversion member 24, the light emitting element 20, and the second wavelength conversion member 26 are sequentially directed toward the opening of the concave portion 16 a via the translucent support member 32. , Formed so as to be separated from the side surface of the recess 16a. The first wavelength conversion member 24 is disposed below the light emitting element 20 so as to support the light emitting element 20, and the second wavelength conversion member 26 is formed so as to cover the upper surface and the side surface of the light emitting element 20. The light emitted from the upper and side surfaces of the light emitting element 20 is partly wavelength-converted mainly by the second wavelength conversion member 26, and the light emitted from the lower surface of the light emitting element 20 is mainly converted by the first wavelength conversion member 24. The part is wavelength-converted. Light of a desired color can be obtained by mixing the light thus converted in wavelength and the light of the original light emitting element 20. For example, if the light emitting element 20 emits blue light and the wavelength conversion member 30 emits yellow light, white light emission can be obtained by mixing them. When a light emitting element that emits ultraviolet light is used as the light emitting element 20, light having a desired color can be obtained by the light that has been converted through the wavelength conversion member 30.

本実施の形態の発光装置10によれば、パッケージ16の底面上に、透光性の支持部材32を介して、第1の波長変換部材24と、発光素子20と、第2の波長変換部材26とを順次形成したため、第1の波長変換部材24と支持部材32を通じて発光素子20の下方から効率よく光を取り出せる。また、発光素子20の上下両方に波長変換部材24、26を設けているため比較的均一な波長変換が可能である一方で、発光素子20の下側に位置する第1の波長変換部材24をガラスやサファイア等の無機材料から成る無機バインダーと蛍光体とが複合された板状部材としたため波長変換部材24の散乱による戻り光は抑制できる。即ち、第1の波長変換部材24中の無機バインダーと蛍光体の屈折率差は比較的小さいため、第1の波長変換部材24を通過する光はあまり散乱されず、光が第1の波長変換部材24内を通過する際の発光素子20への戻り光は少ない。   According to the light emitting device 10 of the present embodiment, the first wavelength conversion member 24, the light emitting element 20, and the second wavelength conversion member are provided on the bottom surface of the package 16 via the translucent support member 32. 26 are sequentially formed, so that light can be efficiently extracted from below the light emitting element 20 through the first wavelength conversion member 24 and the support member 32. In addition, since the wavelength conversion members 24 and 26 are provided on both the upper and lower sides of the light emitting element 20, relatively uniform wavelength conversion is possible, while the first wavelength conversion member 24 positioned below the light emitting element 20 is provided. Since a plate-like member in which an inorganic binder made of an inorganic material such as glass or sapphire is combined with a phosphor, return light due to scattering of the wavelength conversion member 24 can be suppressed. That is, since the refractive index difference between the inorganic binder and the phosphor in the first wavelength conversion member 24 is relatively small, the light passing through the first wavelength conversion member 24 is not scattered so much, and the light is not converted into the first wavelength conversion member. There is little return light to the light emitting element 20 when passing through the member 24.

しかし、発光素子20の下側に形成する第1の波長変換部材24は内部での散乱が少ない分、第1の波長変換部材24内での導波が起きやすく、第1の波長変換部材の側面で強く発光する傾向がある。このことは新たな色むらの原因となり得る。そこで本実施の形態では、凹部16aの側面に散乱面18を形成する。例えば、パッケージ16の側壁14を構成する透光性の母材にTiOなどの透光性の粒子17を分散させて、凹部16aの側面を散乱面18とすることができる。パッケージの凹部16aの側面に光が入射すると粒子17によって散乱される。これによって、図4に示すように発光素子20と波長変換部材30の出射光のうち、パッケージの凹部16aの側面に当たった光はそこで散乱してから外部に取り出されることになり、その散乱過程で発光素子20の光と波長変換部材30の光が混合されて色むらが抑制される。 However, the first wavelength conversion member 24 formed on the lower side of the light emitting element 20 is less likely to be internally scattered, so that the first wavelength conversion member 24 is likely to be guided. There is a tendency to emit light strongly on the side. This can cause new color unevenness. Therefore, in the present embodiment, the scattering surface 18 is formed on the side surface of the recess 16a. For example, light-transmitting particles 17 such as TiO 2 can be dispersed in a light-transmitting base material constituting the side wall 14 of the package 16, and the side surface of the recess 16 a can be used as the scattering surface 18. When light enters the side surface of the recess 16a of the package, it is scattered by the particles 17. As a result, as shown in FIG. 4, out of the light emitted from the light emitting element 20 and the wavelength conversion member 30, the light hitting the side surface of the recess 16a of the package is scattered there and then extracted to the outside. Thus, the light of the light emitting element 20 and the light of the wavelength conversion member 30 are mixed to suppress uneven color.

また、本実施の形態において発光素子20の発光層38はパッケージの凹部16aの側面から離間しているため、凹部16aの散乱面18で散乱された後で光が発光素子20に戻る光の割合は少ない。特に、凹部16aの内径を上側に向かって徐々に広くなるようにすれば、凹部16aの側面で散乱された光が平均として上方に向かいやすくなるため、発光素子20に戻る割合が一層少なくなる。したがって、パッケージ16の側壁14に色むらの抑制に十分な量の粒子17を分散させたとしても、発光出力は殆ど低下しない。   In the present embodiment, since the light emitting layer 38 of the light emitting element 20 is separated from the side surface of the recess 16a of the package, the ratio of the light returning to the light emitting element 20 after being scattered by the scattering surface 18 of the recess 16a. There are few. In particular, if the inner diameter of the concave portion 16a is gradually increased toward the upper side, the light scattered on the side surface of the concave portion 16a becomes easier to move upward on average, and the rate of returning to the light emitting element 20 is further reduced. Therefore, even if a sufficient amount of particles 17 are dispersed on the side wall 14 of the package 16 to suppress color unevenness, the light emission output hardly decreases.

散乱面18は、凹部16aの側面のできるだけ広い領域に形成することが好ましいが、少なくとも凹部16aの側面のうち、第1の波長変換部材24の側面から第1の波長変換部材24の主面に対して平行に出射した光が照射される領域には形成する。これによって第1の波長変換部材24の側面における発光を効果的に散乱して色むらを抑制することができる。好ましくは、第1の波長変換部材24の側面から第1の波長変換部材24の主面に対して平行に出射した光が照射される領域を含み、それより下方にある領域全てに散乱面18を形成する。さらに好ましくは、発光素子20の発光層38から発光素子20の主面に平行に出射した光があたる位置よりも下方にある全ての領域に散乱面18を形成する。最も好ましくは、凹部16aの側面全面に散乱面18を形成する。これにより色むらを効果的に抑制することができる。   The scattering surface 18 is preferably formed in the widest possible region of the side surface of the recess 16a. However, at least the side surface of the recess 16a from the side surface of the first wavelength conversion member 24 to the main surface of the first wavelength conversion member 24. It forms in the area | region where the light radiate | emitted with respect to parallel is irradiated. As a result, the light emitted from the side surface of the first wavelength conversion member 24 can be effectively scattered to suppress uneven color. Preferably, the scattering surface 18 includes a region irradiated with light emitted in parallel to the main surface of the first wavelength conversion member 24 from the side surface of the first wavelength conversion member 24, and all regions below the region are irradiated. Form. More preferably, the scattering surface 18 is formed in all regions below the position where the light emitted from the light emitting layer 38 of the light emitting element 20 in parallel with the main surface of the light emitting element 20 hits. Most preferably, the scattering surface 18 is formed on the entire side surface of the recess 16a. Thereby, uneven color can be effectively suppressed.

また、本実施の形態では、凹部16aの側面を散乱面としているが、凹部16aの底面にも散乱面を設けることができる。例えば、実装基板12の表面にワイヤ接続の領域を残すように適当な散乱層を形成しても良い。また、本実施の形態では、半導体素子20の発光を散乱面18で散乱以外の光学効果(例えば、吸収や波長変換)を伴わないように、そのまま散乱させる構成としている。これによって散乱面18で生じる光のロスを抑制し、光取り出し効率を高めることができる。また尚、発光素子20と波長変換部材30から出射し、凹部16aの底面及び側面で反射して取り出される光の大部分が散乱面で散乱されることが好ましいが、底面及び側面で反射した光の一部が散乱面に当たらずに凹部16aの開口から取り出されても構わない。また、発光素子20と波長変換部材30から出射した光には、底面や側面で反射を繰り返しながら凹部16aの開口から出射するものも多い。したがって、発光素子20と波長変換部材30から出射した光が最初から散乱面18に当たる必要はなく、一度、凹部16aの底面や側面で反射した後、凹部16aの開口から取り出される前に散乱面18に当たれば色むら抑制の効果は発揮される。   In the present embodiment, the side surface of the recess 16a is a scattering surface, but a scattering surface can also be provided on the bottom surface of the recess 16a. For example, an appropriate scattering layer may be formed so as to leave a wire connection region on the surface of the mounting substrate 12. In the present embodiment, the light emitted from the semiconductor element 20 is scattered as it is on the scattering surface 18 so as not to be accompanied by optical effects other than scattering (for example, absorption or wavelength conversion). As a result, the loss of light generated on the scattering surface 18 can be suppressed, and the light extraction efficiency can be increased. In addition, it is preferable that most of the light emitted from the light emitting element 20 and the wavelength conversion member 30 and reflected and extracted by the bottom surface and side surface of the recess 16a is scattered by the scattering surface, but the light reflected by the bottom surface and side surface. May be taken out from the opening of the recess 16a without hitting the scattering surface. Further, many of the light emitted from the light emitting element 20 and the wavelength conversion member 30 are emitted from the opening of the recess 16a while being repeatedly reflected on the bottom surface and the side surface. Therefore, the light emitted from the light emitting element 20 and the wavelength conversion member 30 does not need to strike the scattering surface 18 from the beginning, and after being reflected by the bottom surface and the side surface of the concave portion 16a, before being extracted from the opening of the concave portion 16a. If it hits, the effect of suppressing color unevenness is exhibited.

以下、本実施の形態に係る発光装置10の各部材の好ましい構成や配置について詳細に説明する。
(波長変換部材30)
本実施の形態では、波長変換部材30として第1の波長変換部材24と第2の波長変換部材26を有するが、両者に用いる蛍光体は同一でも良いし、異なっていても良い。第1の波長変換部材24及び第2の波長変換部材26に用いる蛍光体は、近紫外光や可視光で励起される蛍光体が好ましい。特に、発光素子20が青色発光素子であり、白色の発光装置を構成したい場合には、青色で励起されて黄色のブロードな発光を示す蛍光体を用いることが好ましい。このような蛍光体として、例えば、セリウムで付活されたガーネット構造を持つ蛍光体(特に、セリウムで付活され、アルミニウムを含みガーネット構造を持つ蛍光体)が挙げられる。セリウムで付活された蛍光体は、黄色にブロードは発光を示すため、青色発光との組合せによって演色性の良い白色を実現できる。また、ガーネット構造、特にアルミニウムを含むガーネット構造の蛍光体は、熱、光、水分に強く、高輝度な黄色発光を長時間維持することができる。例えば、波長変換物質として、(Re1-xSmx3(Al1-yGay512:Ce(0≦x<1、0≦y≦1、但し、Reは、Y、Gd、La、Lu、Tbからなる群より選択される少なくとも一種の元素である。)で表されるYAG系蛍光体(一般にYAGと略記される)を用いることが好ましい。また、黄色蛍光体の他に、LuAl12:Ce、BaMgAl1017:Eu、BaMgAl1017:Eu,Mn、(Zn,Cd)Zn:Cu、(Sr,Ca)10(POCl:Eu,Mn、(Sr,Ca)Si:Eu、CaAlSiB3+x:Eu及びCaAlSiN3:Euなどの蛍光体を用いて演色性を調整することもできる。
Hereinafter, a preferable configuration and arrangement of each member of the light emitting device 10 according to the present embodiment will be described in detail.
(Wavelength conversion member 30)
In the present embodiment, the wavelength conversion member 30 includes the first wavelength conversion member 24 and the second wavelength conversion member 26, but the phosphors used for both may be the same or different. The phosphor used for the first wavelength conversion member 24 and the second wavelength conversion member 26 is preferably a phosphor excited by near ultraviolet light or visible light. In particular, when the light emitting element 20 is a blue light emitting element and it is desired to form a white light emitting device, it is preferable to use a phosphor that is excited by blue and exhibits yellow broad light emission. Examples of such a phosphor include a phosphor having a garnet structure activated by cerium (particularly, a phosphor activated by cerium and containing aluminum and having a garnet structure). Since the phosphor activated with cerium emits light in yellow and broad, white having good color rendering properties can be realized in combination with blue light emission. In addition, a garnet structure, particularly a phosphor having a garnet structure containing aluminum, is resistant to heat, light, and moisture, and can maintain yellow light emission with high luminance for a long time. For example, as the wavelength conversion material, (Re 1-x Sm x ) 3 (Al 1-y Ga y) 5 O 12: Ce (0 ≦ x <1,0 ≦ y ≦ 1, where, Re is, Y, Gd It is preferable to use a YAG-based phosphor (generally abbreviated as YAG) represented by at least one element selected from the group consisting of La, Lu, and Tb. In addition to the yellow phosphor, Lu 3 Al 5 O 12 : Ce, BaMgAl 10 O 17 : Eu, BaMgAl 10 O 17 : Eu, Mn, (Zn, Cd) Zn: Cu, (Sr, Ca) 10 ( Color rendering properties can also be adjusted using phosphors such as PO 4 ) 6 Cl 2 : Eu, Mn, (Sr, Ca) 2 Si 5 N 8 : Eu, CaAlSiB x N 3 + x : Eu, and CaAlSiN 3 : Eu. .

また、特に発光素子20の発光波長が短波長である場合などは、波長変換部材30が2種類以上の蛍光体を含んでいても良い。発光素子20からの1次光によって1種類目の蛍光体を励起、発光させ、その蛍光体の発する2次光によって別の種類の蛍光体を励起、発光させることもできる。また、色度の異なる2種類の蛍光体を用いれば、2種類の蛍光体の量を調整することにより、色度図上において2種類の蛍光体と発光素子の色度点を結んでできる領域内の任意の色度点に対応する発光を得ることができる。   In particular, when the emission wavelength of the light emitting element 20 is a short wavelength, the wavelength conversion member 30 may include two or more types of phosphors. It is also possible to excite and emit the first type of phosphor by the primary light from the light emitting element 20, and to excite and emit another type of phosphor by the secondary light emitted from the phosphor. In addition, if two types of phosphors having different chromaticities are used, an area formed by connecting the two types of phosphors and the chromaticity points of the light emitting elements on the chromaticity diagram by adjusting the amount of the two types of phosphors. Light emission corresponding to any of the chromaticity points can be obtained.

以下に述べる通り、第1の波長変換部材24と第2の波長変換部材26は、発光装置10における役割が異なるため、好ましい構成が異なる。
(1)第1の波長変換部材24
発光素子20の下側に発光素子と平行に形成された第1の波長変換部材24は、主として発光素子20の下面から出射する光を波長変換すると共に、発光素子20を固定する基板としての役割や、発光素子20から実装基板12への放熱経路としての役割も果たす。発光素子20の下側に第1の波長変換部材24が配置されていることにより、発光素子20から下方向に出射する光を波長変換できるため、色むらの抑制に有利である。本実施の形態では、発光素子20の側面や下面から出射する光と第1の波長変換部材24から出射する光とは、凹部16aの側面に形成された散乱面18で散乱し、混合されてから外部に出射される。
As described below, the first wavelength conversion member 24 and the second wavelength conversion member 26 have different preferred configurations because of their different roles in the light emitting device 10.
(1) First wavelength conversion member 24
The first wavelength conversion member 24 formed below the light emitting element 20 in parallel with the light emitting element mainly converts the wavelength of light emitted from the lower surface of the light emitting element 20 and also serves as a substrate for fixing the light emitting element 20. In addition, it also serves as a heat dissipation path from the light emitting element 20 to the mounting substrate 12. Since the first wavelength conversion member 24 is disposed below the light emitting element 20, the wavelength of light emitted downward from the light emitting element 20 can be converted, which is advantageous for suppressing color unevenness. In the present embodiment, the light emitted from the side surface and the lower surface of the light emitting element 20 and the light emitted from the first wavelength conversion member 24 are scattered and mixed by the scattering surface 18 formed on the side surface of the recess 16a. To the outside.

第1の波長変換部材24は、無機材料から成る無機バインダーと蛍光体との複合材料とする。無機バインダーとしては、サファイア等の無機結晶、ガラス等のアモルファス材料、セラミック等の種々の無機材料を用いることができる。一般に、ガラスやサファイア等の無機材料は、無機材料から成る蛍光体との屈折率差が小さい。例えば、アルミニウムを含むガーネット構造の蛍光体の屈折率は約1.7〜1.8であるが、一般的な透光性樹脂の屈折率が約1.5であるのに対し、ガラスの屈折率は約1.6、サファイアの屈折率は約1.7である。このため、第1の波長変換部材24内における蛍光体による光の散乱が少なく、発光素子20への戻り光を抑制することができる。また、無機材料は樹脂などの有機材料に比べて硬度が高く、高温での加工も可能であるため、無機バインダーを用いた第1の波長変換部材24は、その上への配線形成も容易であり、発光素子20を実装する基板面として好ましい。   The first wavelength conversion member 24 is a composite material of an inorganic binder made of an inorganic material and a phosphor. As the inorganic binder, inorganic crystals such as sapphire, amorphous materials such as glass, and various inorganic materials such as ceramics can be used. In general, an inorganic material such as glass or sapphire has a small difference in refractive index from a phosphor made of an inorganic material. For example, the refractive index of a phosphor having a garnet structure including aluminum is about 1.7 to 1.8, whereas the refractive index of a general light-transmitting resin is about 1.5, whereas the refractive index of glass. The refractive index is about 1.6, and the refractive index of sapphire is about 1.7. For this reason, there is little scattering of the light by the fluorescent substance in the 1st wavelength conversion member 24, and the return light to the light emitting element 20 can be suppressed. In addition, since the inorganic material has higher hardness than organic materials such as resin and can be processed at a high temperature, the first wavelength conversion member 24 using the inorganic binder can easily form a wiring thereon. Yes, it is preferable as a substrate surface on which the light emitting element 20 is mounted.

第1の波長変換部材24の構造は、蛍光体と無機バインダーがほぼ均一に混在した構造であることが好ましい。例えば、第1の波長変換部材24の構造を、蛍光体と無機バインダーの一方が他方の中に島状に分散した海島構造にすれば、第1の波長変換部材24中で均一な波長変換を行うことができ好ましい。この場合、島状の蛍光体が無機バインダー中に分散している構造であっても、島状の無機バインダーが蛍光体中に分散している構造であっても良い。均一な波長変換のために海島構造における島の直径は例えば1μm〜50μmとすることができる。   The structure of the first wavelength conversion member 24 is preferably a structure in which a phosphor and an inorganic binder are mixed almost uniformly. For example, if the structure of the first wavelength conversion member 24 is a sea-island structure in which one of the phosphor and the inorganic binder is dispersed in an island shape in the other, uniform wavelength conversion can be performed in the first wavelength conversion member 24. It can be performed and is preferable. In this case, a structure in which the island-shaped phosphor is dispersed in the inorganic binder or a structure in which the island-shaped inorganic binder is dispersed in the phosphor may be employed. For uniform wavelength conversion, the island diameter in the sea-island structure can be, for example, 1 μm to 50 μm.

無機バインダーは、透光性であればどのような無機材料であっても良いが、蛍光体との屈折率差が0.3より小、より好ましくは0.2以下、さらに好ましくは0.1以下であることが望ましい。また、第1の波長変換部材24中における無機バインダーと蛍光体の屈折率差は、第2の波長変換部材26中における透光性樹脂と蛍光体の屈折率差よりも小さくすることが好ましい。これによって第1の波長変換部材24における散乱を減らし、光取り出し効率の低下を抑制することができる。   The inorganic binder may be any inorganic material as long as it is translucent, but the refractive index difference from the phosphor is smaller than 0.3, more preferably 0.2 or less, and even more preferably 0.1. The following is desirable. In addition, the difference in refractive index between the inorganic binder and the phosphor in the first wavelength conversion member 24 is preferably smaller than the difference in refractive index between the translucent resin and the phosphor in the second wavelength conversion member 26. Thereby, the scattering in the 1st wavelength conversion member 24 can be reduced, and the fall of light extraction efficiency can be suppressed.

また、無機バインダーは、第1の波長変換部材24の熱伝導率が全体として0.8[W/mK]以上、より好ましくは1.2[W/mK]以上、さらに好ましくは35[W/mK]以上となる材料であることが望ましい。このような材料で第1の波長変換部材24を構成することにより、第1の波長変換部材24自身の耐久性が高まると同時に、発光素子20から実装基板12に向かう放熱も良好になり、信頼性の高い発光装置10を実現することができる。   The inorganic binder has a thermal conductivity of the first wavelength conversion member 24 of 0.8 [W / mK] or more, more preferably 1.2 [W / mK] or more, and further preferably 35 [W / m]. mK] or more is desirable. By configuring the first wavelength conversion member 24 with such a material, the durability of the first wavelength conversion member 24 itself is enhanced, and at the same time, heat radiation from the light emitting element 20 toward the mounting substrate 12 is improved, and the reliability is improved. A highly light-emitting device 10 can be realized.

本実施の形態における第1の波長変換部材24は板状であるため、発光素子20を安定して固着することができる。また、第1の波長変換部材24を板状とすれば、発光装置10を製造する際に第1の波長変換部材を大きめの板状材料として加工しておき、それを所望の大きさに切り出して支持部材32の上に接着することができるため、発光装置10の組立が容易となる。さらに、本実施の形態における第1の波長変換部材24は発光素子20をフリップチップ実装する実装面としても機能するが、第1の波長変換部材24が板状であるため、配線の形成も容易となる。例えば、大きめの板状に加工された第1の波長変換部材24に配線パターンを一括して形成し、それを切り出して支持部材32の上に接着することもできる。第1の波長変換部材24表面の配線パターンと発光素子20を金属や樹脂などの導電性部材や接着剤によって接続することで、配線パターンを介して発光素子20の発熱を第1の波長変換部材24に逃がすことができる。発光素子20は、フリップチップ実装することで、発熱し易い発光層38を第1の波長変換部材24に接近させることができ、効率良く放熱できる。   Since the first wavelength conversion member 24 in the present embodiment has a plate shape, the light emitting element 20 can be stably fixed. Further, if the first wavelength conversion member 24 is plate-shaped, the first wavelength conversion member is processed as a large plate-shaped material when the light emitting device 10 is manufactured, and is cut into a desired size. As a result, the light emitting device 10 can be easily assembled. Further, the first wavelength conversion member 24 in the present embodiment also functions as a mounting surface on which the light emitting element 20 is flip-chip mounted. However, since the first wavelength conversion member 24 is plate-shaped, wiring can be easily formed. It becomes. For example, a wiring pattern can be collectively formed on the first wavelength conversion member 24 processed into a large plate shape, and the wiring pattern can be cut out and bonded onto the support member 32. By connecting the wiring pattern on the surface of the first wavelength conversion member 24 and the light emitting element 20 with a conductive member such as metal or resin, or an adhesive, the heat generation of the light emitting element 20 is transmitted through the wiring pattern to the first wavelength conversion member. You can escape to 24. When the light emitting element 20 is flip-chip mounted, the light emitting layer 38 that easily generates heat can be brought close to the first wavelength conversion member 24, and heat can be efficiently radiated.

第1の波長変換部材24の上面視形状は、好ましくは発光素子20と同じく略正方形とする。第1の波長変換部材24は上面視において発光素子20と重なっており、発光素子20より大きいサイズとすることが好ましい。具体的には、第1の波長変換部材24の1辺の長さを、発光素子20の1辺の長さの1.5〜3.5倍程度とすることができる。例えば、発光素子20が1辺約450μmの略正方形である場合には第1の波長変換部材24を1辺約1mmの略正方形とし、発光素子20が1辺約1mmの略正方形である場合には第1の波長変換部材24を1辺約1.5mmの略正方形とする。このとき、第1の波長変換部材24の側面から散乱面までの距離は0.5〜1.5mm程度とすることができる。また、第1の波長変換部材24の厚みは、所望の色度が得られる厚みを選択でき、例えば100μm〜300μmとする。尚、第1の波長変換部材24の上面視形状は、矩形に限らず、円形、楕円形などの種々の形状とすることができる。   The top-view shape of the first wavelength conversion member 24 is preferably substantially square, similar to the light emitting element 20. The first wavelength conversion member 24 overlaps with the light emitting element 20 in a top view and is preferably larger than the light emitting element 20. Specifically, the length of one side of the first wavelength conversion member 24 can be about 1.5 to 3.5 times the length of one side of the light emitting element 20. For example, when the light emitting element 20 has a substantially square shape with a side of about 450 μm, the first wavelength conversion member 24 has a substantially square shape with a side of about 1 mm, and the light emitting element 20 has a substantially square shape with a side of about 1 mm. The first wavelength conversion member 24 has a substantially square shape with a side of about 1.5 mm. At this time, the distance from the side surface of the first wavelength conversion member 24 to the scattering surface can be about 0.5 to 1.5 mm. Moreover, the thickness of the 1st wavelength conversion member 24 can select the thickness from which desired chromaticity is obtained, for example, shall be 100 micrometers-300 micrometers. In addition, the top view shape of the 1st wavelength conversion member 24 can be not only a rectangle but various shapes, such as circular and an ellipse.

第1の波長変換部材24は、内部での散乱が少ないため、第2の波長変換部材26に比べて発光素子20の光を波長変換する割合が低くなり易い。そこで第1の波長変換部材24によって十分な波長変換を行うために、第1の波長変換部材24をある程度厚く形成することが好ましい。例えば、第1の波長変換部材24は、発光素子20よりも厚いことが好ましい。また、第1の波長変換部材24は、第2の波長変換部材26よりも厚いことが好ましい。ここで第1の波長変換部材24及び第2の波長変換部材26の厚さは、発光素子20の中心を通り、発光素子20の主面に垂直な直線上での厚さで考えるものとする。また、同様の理由から、第1の波長変換部材24内における蛍光体の濃度は、第2の波長変換部材26内における蛍光体の濃度よりも高くすることが好ましい。ここで第1の波長変換部材24及び第2の波長変換部材26における蛍光体の濃度は、単位体積中の蛍光体の重量で考えるものとする。   Since the first wavelength conversion member 24 has less internal scattering, the ratio of wavelength conversion of light from the light emitting element 20 is likely to be lower than that of the second wavelength conversion member 26. Therefore, in order to perform sufficient wavelength conversion by the first wavelength conversion member 24, it is preferable to form the first wavelength conversion member 24 to be thick to some extent. For example, the first wavelength conversion member 24 is preferably thicker than the light emitting element 20. The first wavelength conversion member 24 is preferably thicker than the second wavelength conversion member 26. Here, the thickness of the first wavelength conversion member 24 and the second wavelength conversion member 26 is assumed to be a thickness on a straight line that passes through the center of the light emitting element 20 and is perpendicular to the main surface of the light emitting element 20. . For the same reason, the phosphor concentration in the first wavelength conversion member 24 is preferably higher than the phosphor concentration in the second wavelength conversion member 26. Here, the concentration of the phosphor in the first wavelength conversion member 24 and the second wavelength conversion member 26 is considered as the weight of the phosphor in a unit volume.

本実施の形態では、第1の波長変換部材24の上に発光素子20を直接固定しているが、板状の第1の波長変換部材の上面に透光性の部材を配置して、その上に発光素子を設けることもできる。例えば、第1の波長変換部材24と発光素子20との間にサファイアやガラス等の熱伝導が良好な透光性の部材を設けても良い。第1の波長変換部材24よりも平面方向の寸法が大きな透光性の部材を設けることで、透光性の部材の側面から発光素子の光を効率良く取り出すことができる。即ち、透光性の部材の側面から発光素子の光を取り出して、波長変換部材30を通過させずに散乱面18に照射することにより、波長変換部材30を通過する際の吸収ロスを低減できる。また、透光性の部材の平面方向の寸法が発光素子20よりも大きければ、透光性の部材が発光素子20から張り出した部分において透光性の部材の上下からも発光が可能になる。一方で、透光性の部材から出射した光は、凹部16aの側面に形成された散乱面18で散乱されるため色むらも抑制される。また、第1の波長変換部材24が、「板状」であるためには、全体の形状が板状であれば良く、発光素子を裁置するための凹部や孔を有していても良い。また、何らかの光学効果を得るためのパターンが表面に形成されていても良い。   In the present embodiment, the light emitting element 20 is directly fixed on the first wavelength conversion member 24. However, a translucent member is disposed on the upper surface of the plate-like first wavelength conversion member, A light-emitting element can be provided thereover. For example, a translucent member having good heat conduction, such as sapphire or glass, may be provided between the first wavelength conversion member 24 and the light emitting element 20. By providing a translucent member having a larger dimension in the planar direction than the first wavelength conversion member 24, light of the light emitting element can be efficiently extracted from the side surface of the translucent member. That is, by extracting the light of the light emitting element from the side surface of the translucent member and irradiating the scattering surface 18 without passing through the wavelength conversion member 30, absorption loss when passing through the wavelength conversion member 30 can be reduced. . Further, if the dimension of the translucent member in the planar direction is larger than that of the light emitting element 20, light can be emitted from above and below the translucent member at a portion where the translucent member projects from the light emitting element 20. On the other hand, since the light emitted from the translucent member is scattered by the scattering surface 18 formed on the side surface of the recess 16a, color unevenness is also suppressed. Further, in order for the first wavelength conversion member 24 to be “plate-shaped”, the entire shape may be a plate shape, and may have a recess or a hole for placing the light emitting element. . Further, a pattern for obtaining some optical effect may be formed on the surface.

(2)第2の波長変換部材26
次に、発光素子20の上面に形成された第2の波長変換部材26は、主として、発光素子20から出射する光のうちパッケージの凹部16aに当たらないで外部に取り出される光を波長変換する役割を果たす。そのような光は散乱面18による混色が行われないため、第2の波長変換部材26は内部で光が散乱するように、透光性樹脂中に蛍光体を分散した構造とする。また、発光素子20から出射した光が通過する光路長がほぼ均一となるように第2の波長変換部材26を形成することが好ましい。これによって色むらの少ない発光装置とすることができる。具体的には、ガーネット蛍光体等の無機材料から成る蛍光体を、それとの屈折率差が0.3以上、より好ましくは0.4以上の透光性樹脂中に分散する。透光性樹脂としては、シリコーン樹脂組成物、変性シリコーン樹脂組成物等を使用することが好ましいが、エポキシ樹脂組成物、変性エポキシ樹脂組成物、アクリル樹脂組成物等の透光性を有する絶縁樹脂を用いることができる。また、これらの樹脂を1種以上含むハイブリッド樹脂等、耐候性に優れた樹脂も利用できる。また、第2の波長変換部材26は、発光素子20の上面及び側面を略均一な厚みで覆うことが好ましい。蛍光体を透光性樹脂に分散して成る第2の波長変換部材26は、ポッティングなどの手法を用いることで発光素子20の上面及び側面を略均一な厚みで覆うことが容易である。
(2) Second wavelength conversion member 26
Next, the second wavelength conversion member 26 formed on the upper surface of the light emitting element 20 mainly performs a wavelength conversion process on the light emitted from the light emitting element 20 and extracted outside without hitting the package recess 16a. Fulfill. Since such light is not mixed by the scattering surface 18, the second wavelength conversion member 26 has a structure in which a phosphor is dispersed in a translucent resin so that light is scattered inside. In addition, it is preferable to form the second wavelength conversion member 26 so that the optical path length through which the light emitted from the light emitting element 20 passes is substantially uniform. Thus, a light emitting device with little color unevenness can be obtained. Specifically, a phosphor made of an inorganic material such as a garnet phosphor is dispersed in a translucent resin having a refractive index difference of 0.3 or more, more preferably 0.4 or more. As the translucent resin, it is preferable to use a silicone resin composition, a modified silicone resin composition, etc., but an insulating resin having translucency such as an epoxy resin composition, a modified epoxy resin composition, an acrylic resin composition, etc. Can be used. In addition, resins having excellent weather resistance such as hybrid resins containing one or more of these resins can also be used. The second wavelength conversion member 26 preferably covers the upper surface and side surfaces of the light emitting element 20 with a substantially uniform thickness. The second wavelength conversion member 26 formed by dispersing a phosphor in a translucent resin can easily cover the upper surface and side surfaces of the light emitting element 20 with a substantially uniform thickness by using a technique such as potting.

一方、第2の波長変換部材26は、第1の波長変換部材24の側面を覆わないように形成することが好ましい。これによって第1の波長変換部材24の側面から光を効率良く取り出すことができる。また、同様の理由から、第2の波長変換部材26は、第1の波長変換部材24の上面のうち、発光素子20の近傍は第2の波長変換部材26によって覆う一方で、第1の波長変換部材24の外周近傍は第2の波長変換部材によって覆わないことが好ましい。   On the other hand, the second wavelength conversion member 26 is preferably formed so as not to cover the side surface of the first wavelength conversion member 24. Thereby, light can be efficiently extracted from the side surface of the first wavelength conversion member 24. For the same reason, the second wavelength conversion member 26 covers the first wavelength conversion member 24 in the vicinity of the light emitting element 20, while the first wavelength conversion member 26 covers the first wavelength. The vicinity of the outer periphery of the conversion member 24 is preferably not covered with the second wavelength conversion member.

また、第2の波長変換部材26の上面は、なだらかな曲面とすることが好ましい。これによって第2の波長変換部材26内における光の全反射を抑制して、光取り出し効率を高めることができる。第2の波長変換部材26の上面をなだらかな曲面とするには、ポッティング等の手法を用いることができる。   In addition, the upper surface of the second wavelength conversion member 26 is preferably a gentle curved surface. Thereby, total reflection of light in the second wavelength conversion member 26 can be suppressed, and light extraction efficiency can be increased. In order to make the upper surface of the second wavelength conversion member 26 a gentle curved surface, a technique such as potting can be used.

尚、第1の波長変換部材24及び第2の波長変換部材26の受光面、発光面にレンズパターンなどの、何らかの光学効果を得るためのパターンを形成しても良い。前述の通り、本実施の形態における第1の波長変換部材24は「板状」であるが、全体的な形状が板状であれば、表面に何らかのパターンが形成されていても構わない。また、あるパターンが発光素子の固着面にあったとしても、そのパターンの周期が発光素子の大きさに対して十分に小さければ、発光素子を安定して固定することが可能である。   A pattern for obtaining some optical effect, such as a lens pattern, may be formed on the light receiving surface and the light emitting surface of the first wavelength conversion member 24 and the second wavelength conversion member 26. As described above, the first wavelength conversion member 24 in the present embodiment is “plate-like”, but any pattern may be formed on the surface as long as the overall shape is plate-like. Further, even if a certain pattern is on the fixing surface of the light emitting element, the light emitting element can be stably fixed if the period of the pattern is sufficiently small with respect to the size of the light emitting element.

(発光素子20、波長変換部材30の配置)
本実施の形態において、発光素子20の発光と波長変換部材30の発光が散乱面18によって良好に混色するためには、発光素子20と波長変換部材30の発光が凹部の散乱面18の広い面に均一にあたることが有利である。そのためには、発光素子20の発光層38と波長変換部材30との両方が、凹部16aの側面及び底面から離れていることが好ましい。また、発光層38と波長変換部材30の両方が凹部16aの側面及び底面から離れていると、散乱又は反射した光が発光素子20や波長変換部材30に戻る割合も減少し、光取り出し効率も向上する。
(Arrangement of light emitting element 20 and wavelength conversion member 30)
In the present embodiment, in order for the light emission of the light emitting element 20 and the light emission of the wavelength conversion member 30 to be favorably mixed by the scattering surface 18, the light emission of the light emitting element 20 and the wavelength conversion member 30 is a surface having a wide scattering surface 18 of the recess. It is advantageous to apply evenly. For that purpose, it is preferable that both the light emitting layer 38 and the wavelength conversion member 30 of the light emitting element 20 are separated from the side surface and the bottom surface of the recess 16a. Further, if both the light emitting layer 38 and the wavelength conversion member 30 are separated from the side surface and the bottom surface of the recess 16a, the ratio of the scattered or reflected light returning to the light emitting element 20 or the wavelength conversion member 30 is reduced, and the light extraction efficiency is also improved. improves.

例えば、本実施の形態では、図3に示すように、発光層38の平面方向の最大幅をw[μm]として、発光素子20の発光層38から凹部16aの底面までの距離dが少なくとも0.5w[μm]以上となるように発光層38が配置されている。パッケージ16の構造によっては、凹部16aの底面が何らかの積層構造となっている場合もあり得るが、その場合は発光層38の発光が最も強く反射する面を基準とし、そこから発光層38までの距離をdとする。発光素子20が凹部16aの底面に直接固着される場合など、発光層38から光を反射する凹部16aの表面までの距離が近すぎる場合、発光層38から出た光は殆どが発光素子20に戻り、発光素子20内の半導体層や電極で再吸収されてしまう。発光層38の端から出て凹部16aの底面で反射する光を想定すると、発光層38から凹部16aの底面までの距離dが0.5w以上であれば、発光層38の端から下方に出射した光のうち、凹部16aの底面に対する入射角α(凹部16aの底面に対する法線と底面に入射する光線のなす角)が45°以上であれば外部に取り出せる。したがって、発光層38から凹部16aの底面までの距離dを0.5w以上とすることで、発光層38から下方に出射した光が発光素子20に戻らずに外部に出射され易くなる。この入射角αの臨界値は、発光層から凹部16aの底面までの距離dが長くなるほど小さくなり、発光を外部に取り出し易くなる。発光層38から凹部16aの底面までの距離dは、好ましくは1w[μm]以上、さらに好ましくは2w[μm]以上とすることが望ましい。また、発光層38は、凹部16aの深さ(=凹部の底面から上面までの距離)の3分の1よりも上に配置することが望ましい。このように発光素子20中の発光層8を凹部16aの底面から十分に離間して配置することにより、発光層38から下方に発した光が凹部16aの底面で反射した後で再び発光素子20自身に戻る確率が下がり、発光素子20の発光を効率良く利用することが可能となる。また、発光層38から凹部16aの底面までの距離dが長いほど、発光層38から下方に出射した光が広い範囲の散乱面に照射されるため好ましい。同様に、波長変換部材30から凹部16aの底面までの距離は、波長変換部材30の最大幅をw’として、0.5w’以上、好ましくは1w’以上とすることが望ましい。   For example, in the present embodiment, as shown in FIG. 3, the maximum width in the planar direction of the light emitting layer 38 is w [μm], and the distance d from the light emitting layer 38 of the light emitting element 20 to the bottom surface of the recess 16a is at least 0. The light emitting layer 38 is disposed so as to be 5 w [μm] or more. Depending on the structure of the package 16, the bottom surface of the recess 16 a may have some laminated structure. In this case, the surface from which the light emission layer 38 reflects the light most strongly is used as a reference, and from there to the light emission layer 38. Let the distance be d. When the distance from the light emitting layer 38 to the surface of the recess 16a that reflects light is too close, such as when the light emitting element 20 is directly fixed to the bottom surface of the recess 16a, most of the light emitted from the light emitting layer 38 is directed to the light emitting element 20. Returning, the light is absorbed again by the semiconductor layer and the electrode in the light emitting element 20. Assuming light that exits from the end of the light emitting layer 38 and is reflected by the bottom surface of the recess 16a, if the distance d from the light emitting layer 38 to the bottom surface of the recess 16a is 0.5 w or more, the light is emitted downward from the end of the light emitting layer 38. If the incident angle α with respect to the bottom surface of the recess 16a (the angle formed by the normal to the bottom surface of the recess 16a and the light beam incident on the bottom surface) is 45 ° or more, the light can be extracted outside. Therefore, by setting the distance d from the light emitting layer 38 to the bottom surface of the recess 16 a to be 0.5 w or more, the light emitted downward from the light emitting layer 38 is easily emitted outside without returning to the light emitting element 20. The critical value of the incident angle α becomes smaller as the distance d from the light emitting layer to the bottom surface of the recess 16a becomes longer, and it becomes easier to extract the emitted light to the outside. The distance d from the light emitting layer 38 to the bottom surface of the recess 16a is preferably 1 w [μm] or more, more preferably 2 w [μm] or more. In addition, the light emitting layer 38 is desirably disposed above one third of the depth of the recess 16a (= distance from the bottom surface to the top surface of the recess). As described above, the light emitting layer 8 in the light emitting element 20 is disposed sufficiently apart from the bottom surface of the recess 16a, so that light emitted downward from the light emitting layer 38 is reflected by the bottom surface of the recess 16a and then again emitted from the light emitting element 20. The probability of returning to itself decreases, and the light emission of the light emitting element 20 can be used efficiently. Further, it is preferable that the distance d from the light emitting layer 38 to the bottom surface of the recess 16a is longer because light emitted downward from the light emitting layer 38 is irradiated to a wide range of scattering surfaces. Similarly, the distance from the wavelength conversion member 30 to the bottom surface of the recess 16a is desirably 0.5 w 'or more, preferably 1 w' or more, where the maximum width of the wavelength conversion member 30 is w '.

また、発光素子20の発光層38を含み、発光素子20に平行な平面内で考えて、発光層38の端から凹部16aの側面までの最短距離が、発光層38の平面方向の最大幅をw[μm]として、0.5w[μm]以上、1w[μm]以上、より好ましくは3w[μm]以上となるように発光層38を配置することが望ましい。これによって、発光層38から横方向に出射した光がより広い散乱面に当たるようになる。また、凹部16aの散乱面で散乱した光が発光素子20に戻る割合も減少する。同様に、波長変換部材30を含み、波長変換部材30に平行な平面内で考えて、波長変換部材30から散乱面が形成される凹部16aの側面までの最短距離は、0.5w’以上、好ましくは1w’以上とすることが望ましい。尚、上記の距離を考える際には、発光素子20或いは波長変換部材30の端から凹部側面までの最短距離を考える。尚、波長変換部材30が複数ある場合は、各々について、上記の距離の関係を個別に考える。   In addition, the shortest distance from the end of the light emitting layer 38 to the side surface of the recess 16a includes the light emitting layer 38 of the light emitting element 20, and the maximum width in the planar direction of the light emitting layer 38 is considered. It is desirable to arrange the light emitting layer 38 so that w [μm] is 0.5 w [μm] or more, 1 w [μm] or more, more preferably 3 w [μm] or more. As a result, the light emitted from the light emitting layer 38 in the lateral direction strikes a wider scattering surface. Further, the rate at which the light scattered by the scattering surface of the recess 16a returns to the light emitting element 20 also decreases. Similarly, the shortest distance from the wavelength conversion member 30 to the side surface of the recess 16a where the scattering surface is formed is 0.5 w ′ or more, considering the wavelength conversion member 30 in a plane parallel to the wavelength conversion member 30. Preferably it is 1 w 'or more. In considering the above distance, the shortest distance from the end of the light emitting element 20 or the wavelength conversion member 30 to the side surface of the concave portion is considered. In addition, when there are a plurality of wavelength conversion members 30, the relationship between the distances is considered individually for each.

また、発光素子20の発光と波長変換部材30の発光を散乱面18によって良好に混色するためには、発光素子20、波長変換部材30、散乱面18の間の相対的な位置関係も考慮する必要がある。混色を良好にして色むらを抑制するためには、波長変換部材30と発光素子20との距離は、波長変換部材30と散乱面18との距離よりも小さいことが好ましい。波長変換部材30が、発光素子20から離れ、散乱面18に近づきすぎると、波長変換部材30を通過せずに散乱面に到達する発光素子20の光が増加し、波長変換部材30から発する光も散乱面18に対して均一に照射されにくくなるからである。少なくとも主たる波長変換部材は、上記の関係を充足することが好ましい。また、発光素子20及び波長変換部材30の側方から出射する光の色むらが強いため、発光素子20及び波長変換部材30とその側方の散乱面18との離間距離が、凹部16aの底面との離間距離より大きくなるように配置することが望ましい。   Further, in order to satisfactorily mix the light emission of the light emitting element 20 and the light emission of the wavelength conversion member 30 by the scattering surface 18, the relative positional relationship among the light emitting element 20, the wavelength conversion member 30 and the scattering surface 18 is also considered. There is a need. In order to improve color mixing and suppress color unevenness, the distance between the wavelength conversion member 30 and the light emitting element 20 is preferably smaller than the distance between the wavelength conversion member 30 and the scattering surface 18. If the wavelength conversion member 30 is separated from the light emitting element 20 and is too close to the scattering surface 18, the light of the light emitting element 20 that reaches the scattering surface without passing through the wavelength conversion member 30 increases and light emitted from the wavelength conversion member 30. This is because it is difficult to uniformly irradiate the scattering surface 18. It is preferable that at least the main wavelength conversion member satisfies the above relationship. Further, since the color unevenness of the light emitted from the side of the light emitting element 20 and the wavelength conversion member 30 is strong, the separation distance between the light emitting element 20 and the wavelength conversion member 30 and the side scattering surface 18 is the bottom surface of the recess 16a. It is desirable to arrange it so that it is larger than the separation distance from each other.

尚、本実施の形態の発光装置10において、発光素子20と波長変換部材30とから出射した光のうち、パッケージの凹部16aの側面に当たらない光については散乱による混合を行うことができない。発光素子20の上面から凹部16aの上面に対して垂直な方向に出射する光は、凹部16aの側壁に当たらずに直接外に取り出される。例えば、図4に示すように、発光素子20の上面が凹部16aの上面と平行に実装された場合には、発光素子20の上面から法線方向に出射する光は、凹部16aの散乱面18に当たらずに直接外に取り出される。そこで、本実施の形態では、発光素子20の上面側に第2の波長変換部材26を形成し、発光素子20の上面から出射して凹部16aの表面に当たらずに外部に取り出される光が第2の波長変換部材26を通過するようにしている。これにより、第2の波長変換部材26を通過した光と散乱面18において散乱された光とが、凹部16aの上面の開口から取り出され、発光装置の発光となる。第2の波長変換部材26は、発光素子20を実装した後で、その上を覆うように形成することができるため、発光素子20に沿った形状とすることは比較的容易である。尚、発光素子20の上面を覆う第2の波長変換部材26を設けない場合は、発光素子20から出射した光のうち凹部16aの表面に直接当たらない光を、適当な反射板などで凹部16aに戻しても良い。   In the light emitting device 10 of the present embodiment, among the light emitted from the light emitting element 20 and the wavelength conversion member 30, light that does not hit the side surface of the recess 16a of the package cannot be mixed by scattering. The light emitted from the upper surface of the light emitting element 20 in the direction perpendicular to the upper surface of the recess 16a is directly taken out without hitting the side wall of the recess 16a. For example, as shown in FIG. 4, when the upper surface of the light emitting element 20 is mounted parallel to the upper surface of the recess 16a, the light emitted from the upper surface of the light emitting element 20 in the normal direction is the scattering surface 18 of the recess 16a. It is taken out directly without hitting. Therefore, in the present embodiment, the second wavelength conversion member 26 is formed on the upper surface side of the light emitting element 20, and the light emitted from the upper surface of the light emitting element 20 and extracted outside without hitting the surface of the recess 16a is first. The second wavelength conversion member 26 is passed through. As a result, the light that has passed through the second wavelength conversion member 26 and the light that has been scattered on the scattering surface 18 are taken out from the opening on the upper surface of the recess 16a and emitted from the light emitting device. Since the second wavelength conversion member 26 can be formed so as to cover the light emitting element 20 after it is mounted, it is relatively easy to form the second wavelength converting member 26 along the light emitting element 20. In the case where the second wavelength conversion member 26 that covers the upper surface of the light emitting element 20 is not provided, the light emitted from the light emitting element 20 that does not directly hit the surface of the concave part 16a is reflected by the concave part 16a with an appropriate reflector or the like. You may return to.

また、発光素子20から出射して第2の波長変換部材26を通過した光についても、光路長を完全に均一にすることは難しい。特に、第2の波長変換部材26を斜めに通過する光については色むらが生じ易い。したがって、発光素子20から出射する光は、直接外部に取り出すのではなく、できるだけ散乱面18で散乱をさせた方が色むらの抑制には有利である。発光素子20と波長変換部材30から出射する光のうち、パッケージの凹部16aで反射せずに直接外部に取り出される光の割合は、凹部16a内における発光層38の位置によっても変わる。発光層38が凹部16aの上面から離間して配置されていると、凹部16aの側面に当たらずに外部に取り出される光の割合が減るため、散乱面18による混色の効果が高まる。また、発光素子20から横向きに出射した光が散乱面18で散乱してから凹部16aの上面にある開口を通じて取り出される場合、発光素子20が凹部16aの上面から離れている方が、散乱した光が十分に広がってから取り出されるため好ましい。発光層38の平面方向の最大幅をw[μm]として、発光素子20の発光層38から凹部16aの上面までの距離dが少なくとも0.5w[μm]以上、より好ましくは1w[μm]以上となるように発光層38を配置することが望ましい。また、発光層38からの光の大部分を散乱面18において散乱させるためには、距離dを距離dと同程度か、それよりも大きくすることが望ましい。ここで凹部16aの「上面」とは、凹部16aの上端を含む平面を指す。また、凹部16aに封止部材が充填され、凹部16aの上端を含む平面より発光素子20側に封止部材の表面が配置される場合には、封止部材と空気の界面で光の反射が起こるため、封止部材の表面を凹部16aの「上面」として各部材の位置を決定することが望ましい。特に、封止部材の表面が略平坦面である場合は、このように取り扱うことが望ましい。この「上面」の解釈は、他の実施形態でも同様である。 Also, it is difficult to make the optical path length completely uniform for the light emitted from the light emitting element 20 and passing through the second wavelength conversion member 26. In particular, uneven color tends to occur with respect to light that passes through the second wavelength conversion member 26 obliquely. Therefore, the light emitted from the light emitting element 20 is not directly taken out to the outside, but is preferably scattered by the scattering surface 18 as much as possible to suppress color unevenness. Of the light emitted from the light emitting element 20 and the wavelength conversion member 30, the ratio of the light extracted directly without being reflected by the recess 16a of the package varies depending on the position of the light emitting layer 38 in the recess 16a. When the light emitting layer 38 is arranged away from the upper surface of the recess 16a, the ratio of light extracted outside without hitting the side surface of the recess 16a is reduced, and the effect of color mixing by the scattering surface 18 is enhanced. Further, when the light emitted from the light emitting element 20 in the lateral direction is scattered by the scattering surface 18 and then taken out through the opening on the upper surface of the recess 16a, the scattered light is more when the light emitting element 20 is farther from the upper surface of the recess 16a. Is preferably taken out after sufficiently spreading. The maximum width in the planar direction of the light emitting layer 38 is w [μm], and the distance d 2 from the light emitting layer 38 of the light emitting element 20 to the upper surface of the recess 16a is at least 0.5 w [μm], more preferably 1 w [μm]. It is desirable to arrange the light emitting layer 38 so as to achieve the above. Further, in order to scatter most of the light from the light emitting layer 38 in the scattering surface 18, the distance d 2 the distance d and either the same extent, it is preferably larger than that. Here, the “upper surface” of the recess 16a refers to a plane including the upper end of the recess 16a. In addition, when the recess 16a is filled with the sealing member and the surface of the sealing member is disposed on the light emitting element 20 side from the plane including the upper end of the recess 16a, light is reflected at the interface between the sealing member and the air. Therefore, it is desirable to determine the position of each member with the surface of the sealing member as the “upper surface” of the recess 16a. In particular, when the surface of the sealing member is a substantially flat surface, it is desirable to handle in this way. The interpretation of this “upper surface” is the same in other embodiments.

また、図3に示すように、発光層38の中心と凹部16aの上端を結ぶ線と凹部16aの光軸(=凹部が散乱機能のない反射鏡である場合の光軸方向)とがなす角をβとすると、発光層38の中心から上面に出射する光のうち、凹部16aの光軸と出射する光線のなす角がβ以下の光線は全てパッケージの凹部16aで反射せずに凹部16aの上面に到達する。従って、上記角度βが小さくなるように凹部16aと発光層38の関係を決めれば、凹部16aの表面における散乱の効果が増大するため好ましい。角度βは、90°以下、より好ましくは70°以下であることが望ましい。一方、角度βが小すぎると、発光の指向性が強い発光装置となってしまい、用途によっては好ましくない。また、角度βが小さすぎると、発光素子20の発光が凹部16aの表面で散乱を繰り返して発光素子20に戻り易くなり、発光装置10の出力が低下する。したがって、上記角度βは、30°以上、より好ましくは50°以上とすることが望ましい。角度βは、距離dによって調整できる。dが長くなるほど、βは小さくなる。また、角度βは、出射部である凹部16aの開口部の幅を増減させることによっても調整できる。開口部の幅を狭くすれば、βは小さくなる。 Further, as shown in FIG. 3, an angle formed by a line connecting the center of the light emitting layer 38 and the upper end of the recess 16a and the optical axis of the recess 16a (= the optical axis direction when the recess is a reflecting mirror having no scattering function). , Β of the light emitted from the center of the light emitting layer 38 to the upper surface is not reflected by the concave portion 16a of the package and is not reflected by the concave portion 16a of the package. Reach the top surface. Therefore, it is preferable to determine the relationship between the concave portion 16a and the light emitting layer 38 so that the angle β is small because the scattering effect on the surface of the concave portion 16a is increased. It is desirable that the angle β is 90 ° or less, more preferably 70 ° or less. On the other hand, if the angle β is too small, the light emitting device has a strong light emission directivity, which is not preferable depending on the application. On the other hand, if the angle β is too small, light emission of the light emitting element 20 is likely to return to the light emitting element 20 due to repeated scattering on the surface of the recess 16a, and the output of the light emitting device 10 is reduced. Therefore, the angle β is desirably 30 ° or more, more preferably 50 ° or more. Angle β can be adjusted by the distance d 2. about d 2 is longer, β decreases. Further, the angle β can also be adjusted by increasing or decreasing the width of the opening of the recess 16a that is the emission part. If the width of the opening is narrowed, β becomes smaller.

尚、凹部16a内に封止部材が充填される場合は、凹部16aの上面に到達した光は、全反射する臨界角θ以下の角度で凹部16aの上面に入射した光線は、そのまま外部に取り出され、臨界角θより大きな角度で入射した光線は全反射により凹部16a内に戻される。したがって、臨界角θが角度βよりも小さい場合は、直接取り出される光を少なくでき、全反射によって凹部16a内へ戻された光を散乱面で散乱させることができるので、より一層色むらが改善できる。封止部材は、その上面略平坦な面とすることで、封止部材の表面における全反射を促進できる。一方、臨界角θが角度βよりも大きい場合は、直接取り出される光の割合が大きくなるが、そのことは光取り出し効率の点からは好ましい。また、封止部材は、その上面が凸曲面となるように凹部16aから突出した形状とすることで、封止部材の表面反射を低減でき、光取り出し効率を向上できる。 In the case where the sealing member is filled in the recess 16a, the light that has reached the upper surface of the recess 16a is, light incident on the upper surface of the total reflection critical angle theta c following angles recess 16a is directly outside retrieved, light rays incident at an angle greater than the critical angle theta c is returned to the recess 16a by total internal reflection. Therefore, when the critical angle θ c is smaller than the angle β, the light extracted directly can be reduced, and the light returned into the recess 16a by the total reflection can be scattered by the scattering surface, so that the color unevenness is further increased. Can improve. The sealing member can promote total reflection on the surface of the sealing member by making the upper surface substantially flat. On the other hand, when the critical angle theta c is larger than the angle β is the ratio of light to be extracted directly increases, the it is preferred in terms of light extraction efficiency. In addition, since the sealing member has a shape protruding from the recess 16a so that the upper surface thereof is a convex curved surface, surface reflection of the sealing member can be reduced and light extraction efficiency can be improved.

(支持部材32)
本実施の形態では、発光素子20の発光層38がパッケージの凹部16aの底面から所定距離だけ離間するように、発光素子20を第1の波長変換部材24と支持部材32を介して実装基板12に固着されている。本実施に形態における支持部材32は、発光層38から下方に出射する光を効率良く利用できるよう発光層38の発光に対して透光性である。また、支持部材32は、第1の波長変換部材24と共に発光素子20から実装基板12に至る放熱経路を形成しているため、熱伝導率の高い材料から成ることが好ましい。熱伝導率が0.8[W/mK]以上、より好ましくは1.2[W/mK]以上、さらに好ましくは35[W/mK]以上の材料で構成することが望ましい。支持部材32としては、例えば、サファイア、ガラス等の無機材料を用いることができる。中でもサファイアは、熱伝導率が比較的高く、発光素子20の発光する青色光に対して高い透過率を示すため好ましい。また、支持部材32は、蛍光体も含めて、光を散乱する粒子を含まないことが好ましい。少なくとも支持部材32の内部における散乱が、第1及び第2の波長変換部材24、26の内部における散乱よりも弱いことが必要である。また、支持部材32の上に第1の波長変換部材24を配置して凹部16aの底面から離間させるため、支持部材32として透光性の基板を用いることが好ましい。
(Supporting member 32)
In the present embodiment, the light-emitting element 20 is mounted on the mounting substrate 12 via the first wavelength conversion member 24 and the support member 32 so that the light-emitting layer 38 of the light-emitting element 20 is separated from the bottom surface of the recess 16a of the package by a predetermined distance. It is fixed to. The support member 32 in the present embodiment is translucent to the light emission of the light emitting layer 38 so that the light emitted downward from the light emitting layer 38 can be used efficiently. Further, since the support member 32 forms a heat radiation path from the light emitting element 20 to the mounting substrate 12 together with the first wavelength conversion member 24, the support member 32 is preferably made of a material having high thermal conductivity. It is desirable to use a material having a thermal conductivity of 0.8 [W / mK] or more, more preferably 1.2 [W / mK] or more, and still more preferably 35 [W / mK] or more. As the support member 32, for example, an inorganic material such as sapphire or glass can be used. Among these, sapphire is preferable because it has a relatively high thermal conductivity and exhibits high transmittance with respect to the blue light emitted from the light emitting element 20. Moreover, it is preferable that the support member 32 does not contain the particle | grains which scatter light including a fluorescent substance. At least the scattering inside the support member 32 needs to be weaker than the scattering inside the first and second wavelength conversion members 24 and 26. In addition, a translucent substrate is preferably used as the support member 32 in order to dispose the first wavelength conversion member 24 on the support member 32 and separate it from the bottom surface of the recess 16a.

支持部材32も含めて、発光素子20と実装基板12の間に介在する部材は、発光素子20から実装基板12に向かう放熱経路となるため、熱伝導率の高い材料とすることが好ましい。例えば、本実施の形態であれば、第1の波長変換部材24と支持部材32の両方を熱伝導率の高い材料とすることが好ましい。支持部材32は、その主たる材料を熱伝導率が0.8[W/mK]以上、より好ましくは1.2[W/mK]以上、さらに好ましくは35[W/mK]以上とすることが望ましい。これによって発光素子20の放熱効率が高くなるため、長時間点灯しても発光出力の低下が少ない発光装置10とすることができる。尚、発光素子20と凹部16aの底面の間に、熱伝導率が低い部材が全体の熱伝導を大きく阻害しない程度の薄膜に存在していても構わない。例えば、熱伝導率が高い第1の波長変換部材24と支持部材32とを、熱伝導率の低い接着層で接合しても、全体としての熱伝導が上述の範囲に収まる程度であれば良い。熱引きを考慮すると、図1に示すように、支持部材32は配線12a、12bの少なくともいずれか一方に接するように設けることが望ましい。また、配線と絶縁された金属部材等の放熱体を設け、この放熱体に支持部材32を設けても良い。支持部材32と配線12a、12bは樹脂、金属ペーストなどで接着される。熱伝導率の高い金属ペーストを用いることが望ましい。この場合、支持部材32の表面に金属膜を設けて金属膜側を金属ペーストで接着すると、密着力を向上できる。金属膜は反射層として利用することもできる。   Since the members interposed between the light emitting element 20 and the mounting substrate 12 including the support member 32 serve as a heat dissipation path from the light emitting element 20 toward the mounting substrate 12, it is preferable to use a material having high thermal conductivity. For example, in the present embodiment, it is preferable that both the first wavelength conversion member 24 and the support member 32 be made of a material having high thermal conductivity. The main material of the support member 32 has a thermal conductivity of 0.8 [W / mK] or more, more preferably 1.2 [W / mK] or more, and further preferably 35 [W / mK] or more. desirable. As a result, the heat dissipation efficiency of the light emitting element 20 is increased, and thus the light emitting device 10 can be obtained in which the light emission output is hardly reduced even when the light emitting element 20 is lit for a long time. It should be noted that a member having low thermal conductivity may be present between the light emitting element 20 and the bottom surface of the recess 16a in a thin film that does not significantly hinder the overall thermal conduction. For example, even if the first wavelength conversion member 24 and the support member 32 having a high thermal conductivity are joined by an adhesive layer having a low thermal conductivity, the overall thermal conductivity may be within the above range. . Considering heat sinking, as shown in FIG. 1, the support member 32 is desirably provided so as to be in contact with at least one of the wirings 12a and 12b. Further, a radiator such as a metal member insulated from the wiring may be provided, and the support member 32 may be provided on the radiator. The support member 32 and the wirings 12a and 12b are bonded with resin, metal paste, or the like. It is desirable to use a metal paste having a high thermal conductivity. In this case, adhesion can be improved by providing a metal film on the surface of the support member 32 and bonding the metal film side with a metal paste. The metal film can also be used as a reflective layer.

また、支持部材32を含めて、発光素子20と凹部16aの間に介在する部材は、発光素子20の発光を吸収しないよう、透光性を有することが好ましい。尚、発光素子20と凹部16aの底面の間に、透光性の低い部材が全体の透光性を阻害しない程度の薄膜に存在していても構わない。例えば、透光性の第1の波長変換部材24と透光性の支持部材32とを、透光性の低い接着層で接合しても、発光素子20を支持する部材全体としての透光性が阻害されなければ良い。このような透光性の低い部材を発光素子20と凹部16aの底面との間に介在させる場合は、発光層38から凹部16aの底面に向かう光を遮断する割合が小さくなるように、第1の波長変換部材24よりも狭い幅で設けることが望ましく、さらに好ましくは発光層38よりも狭い幅で設けることが望ましい。また、発光素子20と凹部16aの底面との間に発光素子20より面積の大きい光反射部材が存在する場合は、この光反射部材を実質的な凹部の底面として、発光層38や第1の波長変換部材24の配置を調整することが望ましい。   Moreover, it is preferable that the member interposed between the light emitting element 20 and the recessed part 16a including the support member 32 has translucency so that the light emission of the light emitting element 20 may not be absorbed. It should be noted that a member with low translucency may exist between the light emitting element 20 and the bottom surface of the recess 16a in a thin film that does not hinder the entire translucency. For example, even if the translucent first wavelength conversion member 24 and the translucent support member 32 are joined with an adhesive layer having low translucency, the translucency of the entire member that supports the light emitting element 20 is achieved. If it is not hindered. When such a low translucency member is interposed between the light emitting element 20 and the bottom surface of the recess 16a, the first ratio is set so that the ratio of blocking light from the light emitting layer 38 toward the bottom surface of the recess 16a is reduced. It is desirable to provide a width narrower than that of the wavelength conversion member 24, more preferably a width narrower than that of the light emitting layer 38. When a light reflecting member having a larger area than the light emitting element 20 is present between the light emitting element 20 and the bottom surface of the recess 16a, the light reflecting layer 38 and the first light emitting member 38 are used with the light reflecting member as the bottom surface of the substantial recess. It is desirable to adjust the arrangement of the wavelength conversion member 24.

尚、凹部16aの底面から支持部材32、第1の波長変換部材24の順に積層することが好ましく、それによって第1の波長変換部材24を凹部16aの底面から離間させることができる。第1の波長変換部材24が、凹部16aの底面と側面から離間していると、第1の波長変換部材24から発する光が散乱面に広く照射され易くなる。また、凹部16aで散乱や反射された光が第1の波長変換部材24に戻る割合も減少する。また、支持部材32は透光性の部材であるが、支持部材32とその周囲の部材との界面における全反射により一部の光は取り出されずに閉じ込められてしまうため、支持部材32の幅は第1の波長変換部材24を支持できる程度として、第1の波長変換部材24から下方に向かう光が直接散乱面18に到達できるように支持部材32を配置することが望ましい。好ましくは支持部材32の幅を第1の波長変換部材24の幅と同程度以下、第1の波長変換部材24の幅の半分以上とすることが望ましい。   In addition, it is preferable to laminate | stack in order of the support member 32 and the 1st wavelength conversion member 24 from the bottom face of the recessed part 16a, and, thereby, the 1st wavelength conversion member 24 can be spaced apart from the bottom face of the recessed part 16a. When the first wavelength conversion member 24 is separated from the bottom surface and the side surface of the concave portion 16a, the light emitted from the first wavelength conversion member 24 is likely to be widely irradiated on the scattering surface. Further, the rate at which the light scattered or reflected by the recess 16a returns to the first wavelength conversion member 24 also decreases. Further, although the support member 32 is a light-transmitting member, a part of light is trapped without being extracted due to total reflection at the interface between the support member 32 and the surrounding members. It is desirable to arrange the support member 32 so that the light traveling downward from the first wavelength conversion member 24 can directly reach the scattering surface 18 to the extent that the first wavelength conversion member 24 can be supported. Preferably, the width of the support member 32 is equal to or less than the width of the first wavelength conversion member 24 and is preferably half or more of the width of the first wavelength conversion member 24.

(発光素子20)
発光素子20は、半導体から成る発光層を備えたものであれば良い。特に窒化物半導体から成る発光層、中でも窒化ガリウム系化合物半導体(特にInGaN)から成る発光層を備えた発光素子であれば、可視光域の短波長域や近紫外域で強い発光が可能であるため、波長変換部材と好適に組み合わせることができる。発光素子20は、発光層38から出力される出射光の発光ピーク波長が近紫外線から可視光の短波長領域である240nm
〜500nm付近、好ましくは380nm〜420nm、さらに好ましくは450nm〜470nmにある発光スペクトルを有することが望ましい。この波長域で発光をする発光素子であれば、種々の波長変換部材との組合せにより、所望の色、特に白色光の発光が可能となる。尚、発光素子20は、ZnSe系、InGaAs系、AlInGaP系などの半導体から成る発光層を有するものでも良い。
(Light emitting element 20)
The light emitting element 20 only needs to have a light emitting layer made of a semiconductor. In particular, a light emitting device including a light emitting layer made of a nitride semiconductor, particularly a light emitting layer made of a gallium nitride compound semiconductor (particularly InGaN), can emit strong light in the short wavelength region of the visible light region or the near ultraviolet region. Therefore, it can be suitably combined with the wavelength conversion member. In the light emitting element 20, the emission peak wavelength of the emitted light output from the light emitting layer 38 is 240 nm, which is a short wavelength region from near ultraviolet to visible light.
It is desirable to have an emission spectrum in the vicinity of ˜500 nm, preferably 380 nm to 420 nm, more preferably 450 nm to 470 nm. If it is a light emitting element which emits light in this wavelength range, it becomes possible to emit a desired color, particularly white light, in combination with various wavelength conversion members. The light emitting element 20 may have a light emitting layer made of a semiconductor such as ZnSe, InGaAs, or AlInGaP.

図2は、発光素子20の一例を示す模式断面図である。サファイア等の透光性で絶縁性の基板34に、第1導電型(例えば、n型)の半導体層36、発光層38、第1導電型とは異なる導電型である第2導電型(例えば、p型)の半導体層40が順次積層されている。第2導電型の半導体層40と発光層38が一部除去されて第1導電型の半導体層36が露出しており、その露出面に第1電極(n側電極)42が形成されている。また、第2導電型の半導体層40には、第2電極(p側オーミック電極)44がほぼ全面に形成され、さらに外部と接続するためのパッド電極(p側パッド電極)46が形成されている。各電極は、透光性又は反射性の電極とすることができ、通常、電極形成面を上側として実装される場合は透光性の電極が用いられ、図1に示すように電極形成面を下側としてフリップチップ実装される発光素子20の場合には反射電極が用いられる。   FIG. 2 is a schematic cross-sectional view illustrating an example of the light emitting element 20. A light-transmitting insulating substrate 34 such as sapphire is provided on a first conductivity type (for example, n-type) semiconductor layer 36, a light emitting layer 38, and a second conductivity type (for example, a conductivity type different from the first conductivity type). , P-type) semiconductor layers 40 are sequentially stacked. The second conductive type semiconductor layer 40 and the light emitting layer 38 are partially removed to expose the first conductive type semiconductor layer 36, and a first electrode (n-side electrode) 42 is formed on the exposed surface. . The second conductivity type semiconductor layer 40 has a second electrode (p-side ohmic electrode) 44 formed on substantially the entire surface, and a pad electrode (p-side pad electrode) 46 for connection to the outside. Yes. Each electrode can be a translucent or reflective electrode. Usually, a translucent electrode is used when the electrode forming surface is mounted on the upper side, and the electrode forming surface is formed as shown in FIG. In the case of the light emitting element 20 that is flip-chip mounted as the lower side, a reflective electrode is used.

図1に示すように、本実施の形態では、発光素子20の基板34を上側にして第1の波長変換部材24の上にフリップチップ実装している。第1の波長変換部材24の上面には実装用の電極が形成されており、はんだバンプ等を介して、発光素子20の第1電極42及び第2電極46と接続される。第1の波長変換部材24の上面に形成された電極は、さらにワイヤによって実装基板12の配線12a、12bと接続される。これによって外部から発光素子20を電気駆動することが可能となる。第1の波長変換部材24の上面に形成される電極には、通常、発光層38からの光を実質的に遮光する部材が用いられる。このため、第1の波長変換部材24上面の電極は、第1の波長変換部材24上面の一部のみに形成し、発光素子20から下方に向かう光が凹部16aの底面に到達できるようにする。好ましくは、上面視において発光素子20から突出した電極部を、発光素子20の幅よりも小さい幅で形成することが望ましい。   As shown in FIG. 1, in this embodiment, the substrate 34 of the light emitting element 20 is flip-chip mounted on the first wavelength conversion member 24 with the substrate 34 facing upward. A mounting electrode is formed on the upper surface of the first wavelength conversion member 24 and is connected to the first electrode 42 and the second electrode 46 of the light emitting element 20 via solder bumps or the like. The electrodes formed on the upper surface of the first wavelength conversion member 24 are further connected to the wirings 12a and 12b of the mounting substrate 12 by wires. As a result, the light emitting element 20 can be electrically driven from the outside. For the electrode formed on the upper surface of the first wavelength conversion member 24, a member that substantially shields light from the light emitting layer 38 is usually used. For this reason, the electrode on the upper surface of the first wavelength conversion member 24 is formed only on a part of the upper surface of the first wavelength conversion member 24 so that light traveling downward from the light emitting element 20 can reach the bottom surface of the recess 16a. . Preferably, the electrode portion protruding from the light emitting element 20 in a top view is formed with a width smaller than the width of the light emitting element 20.

尚、本発明で用いることのできる発光素子20は、図2に示す構造のものに限定されない。例えば、各導電型層に、絶縁、半絶縁性、逆導電型構造が一部に設けられても良い。また、基板34は、導電性を持つものでも良く、その場合には、第1電極42を基板34の裏面に形成しても良い。また、基板34は、半導体層を成長させる際の基板であっても良いし、半導体層を成長させた後で貼りあわせたものでも良い。また、基板を剥離して半導体層のみを発光素子として用いることもできる。発光素子20の上面視形状は、典型的には矩形であり、好ましくは略正方形とする。略正方形とすることで発光素子20の各辺から散乱面までの距離をほぼ等しくでき、色むらを抑制し易い。波長変換部材24の上面視形状は発光素子20と略同一とすることが好ましい。発光素子20としては、1辺数百μm〜数mm程度のものを用いることができ、具体的には1辺400μm〜1mm程度の略正方形の素子を用いることができる。このとき、発光素子20の側面から散乱面18までの距離は例えば0.5〜2mm程度とする。   The light emitting element 20 that can be used in the present invention is not limited to the structure shown in FIG. For example, each conductive type layer may be provided with an insulating, semi-insulating, and reverse conductive type structure in part. Further, the substrate 34 may be conductive, and in this case, the first electrode 42 may be formed on the back surface of the substrate 34. The substrate 34 may be a substrate used for growing a semiconductor layer, or may be a substrate bonded after the semiconductor layer is grown. Alternatively, the substrate can be peeled off and only the semiconductor layer can be used as a light-emitting element. The shape of the light emitting element 20 in a top view is typically a rectangle, and preferably a substantially square shape. By making it substantially square, the distance from each side of the light emitting element 20 to the scattering surface can be made substantially equal, and color unevenness can be easily suppressed. The top view shape of the wavelength conversion member 24 is preferably substantially the same as that of the light emitting element 20. As the light emitting element 20, one having a side of about several hundred μm to several mm can be used, and specifically, a substantially square element having a side of about 400 μm to 1 mm can be used. At this time, the distance from the side surface of the light emitting element 20 to the scattering surface 18 is, for example, about 0.5 to 2 mm.

(パッケージ16、凹部16a)
パッケージ16は、表面の一部が散乱面となった凹部16aを有し、発光素子20への電気的な接続が可能となるように発光素子20と波長変換部材30を収納可能であれば、どのような構造でも良い。本実施の形態では、パッケージ16は、平板状の絶縁部材に配線12a、12bを形成した実装基板12とその実装基板12の上に形成された環状の側壁14によって構成され、上面視においてパッケージ16の外形は矩形であり、円形にくりぬかれて環状の側壁14が形成される。実装基板12の上面と側壁14の内面とによって凹部16aが構成されている。また、本実施の形態では、側壁14を構成する透光性の母材中に母材と屈折率が異なる透光性の粒子17を分散することによって凹部16aの側面を散乱面18としている。
(Package 16, recess 16a)
If the package 16 has a concave portion 16a having a part of the surface as a scattering surface and can accommodate the light emitting element 20 and the wavelength conversion member 30 so that electrical connection to the light emitting element 20 is possible, Any structure is acceptable. In the present embodiment, the package 16 includes a mounting substrate 12 in which wirings 12a and 12b are formed on a flat insulating member, and an annular side wall 14 formed on the mounting substrate 12, and the package 16 in a top view. The outer shape of this is a rectangle and is cut into a circle to form an annular side wall 14. A recess 16 a is configured by the upper surface of the mounting substrate 12 and the inner surface of the side wall 14. In the present embodiment, the side surfaces of the recesses 16 a are used as the scattering surfaces 18 by dispersing translucent particles 17 having a refractive index different from that of the base material in the translucent base material constituting the side wall 14.

凹部16aは、発光素子20と波長変換部材30を収納可能であり、上面が光を取り出せるように開放されていれば、どのような形状でも良い。但し、凹部16aの底面は、発光素子20等を安定して固定できるように平坦であることが好ましい。また、凹部16aの内径は、底面から上面に向かって徐々に内径が大きくなっていることが好ましい。また、凹部16aは、平面視の形状が円形であることが好ましく、それによって発光の均一性を高めて色むらを抑制することができる。一例を図5及び図6に示す。図5及び図6は、本実施の形態における発光装置の一例を示す模式的な斜視図及び上面図である。特に、発光素子20と波長変換部材30を含む光源の平面視形状が矩形である場合には、矩形の辺から出射される光と角部周辺から出射される光とで強度差が生じてしまうが、このように取り出された光を円形の凹部16aにおいて散乱させることで、光源の形状に起因する色むらを抑制することができる。さらに、凹部16aは、いずれの高さで見ても平面視で円形であるすり鉢状であることが好ましい。また、凹部16aは、平面視の形状が発光素子20と相似形である矩形としても良い。発光素子20と波長変換部材30を含む光源は、平面視で凹部16aの中心に配置されることが好ましい。また、図6に示すように、上面視において、凹部16aの側面に形成された散乱面18は、発光素子20及び波長変換部材30の外側に配置されて観察可能であることが好ましい。特に、上面視において、発光素子20と波長変換部材30とは、凹部16aの底面の中に形成されていることが好ましい。   The concave portion 16a may have any shape as long as the light emitting element 20 and the wavelength conversion member 30 can be accommodated and the upper surface is opened so that light can be extracted. However, the bottom surface of the recess 16a is preferably flat so that the light emitting element 20 and the like can be stably fixed. Moreover, it is preferable that the internal diameter of the recessed part 16a becomes large gradually from the bottom face toward the upper surface. Further, the recess 16a preferably has a circular shape in plan view, thereby improving the uniformity of light emission and suppressing color unevenness. An example is shown in FIGS. 5 and 6 are a schematic perspective view and a top view showing an example of the light-emitting device in this embodiment. In particular, when the planar view shape of the light source including the light emitting element 20 and the wavelength conversion member 30 is rectangular, there is a difference in intensity between the light emitted from the sides of the rectangle and the light emitted from around the corners. However, the unevenness of color due to the shape of the light source can be suppressed by scattering the light thus extracted in the circular recess 16a. Furthermore, it is preferable that the concave portion 16a has a mortar shape that is circular in plan view when viewed at any height. Further, the recess 16a may be a rectangle having a shape similar to that of the light emitting element 20 in plan view. The light source including the light emitting element 20 and the wavelength conversion member 30 is preferably disposed at the center of the recess 16a in plan view. In addition, as shown in FIG. 6, it is preferable that the scattering surface 18 formed on the side surface of the recess 16 a is disposed outside the light emitting element 20 and the wavelength conversion member 30 and can be observed when viewed from above. In particular, the light emitting element 20 and the wavelength conversion member 30 are preferably formed in the bottom surface of the recess 16a in a top view.

凹部16aの表面に形成する散乱面18は、発光素子20の発光と波長変換部材30の発光とを散乱可能な面である。散乱可能な面とするためには、発光素子20の発光と波長変換部材30の発光の波長の短い方と同程度以下の大きさであって、周囲と屈折率の異なる材料からなる微細構造が分布した面とすれば良い。   The scattering surface 18 formed on the surface of the recess 16a is a surface capable of scattering the light emission of the light emitting element 20 and the light emission of the wavelength conversion member 30. In order to obtain a surface that can be scattered, a fine structure made of a material having a refractive index different from that of the surroundings is equal to or smaller than the shorter wavelength of the light emitted from the light emitting element 20 and the light emitted from the wavelength conversion member 30. A distributed surface may be used.

例えば、本実施の形態の側壁14のように、透光性の母材中に母材と屈折率の異なる透光性の粒子を分散することで散乱面18とすることができる。粒子と周囲の材料との屈折率差は、0.1以上、より好ましくは1.0以上とすることが望ましい。また、粒子としては、ガラス繊維、ガラスビーズ、タルク、シリカ、アルミナ、マグネシア、亜鉛華、炭酸カルシウム、硫酸バリウム、チタニア、水酸化アルミニウム、マイカ、長石粉、石英粉などの無機系粒子、シリコーン樹脂、フッ素樹脂、エポキシ樹脂、スチレン系架橋樹脂などの有機系粒子が使用でき、これらの1種を単独で又は2種以上を併用して用いることができる。粒子17としては、特に、Ti、Zr、Nb、Al、Siのいずれかを含む酸化物、AlN、MgF等が好ましい(Ti、Zr、Nb、Al、Siを含む酸化物としては、TiO2、ZrO2、Nb25、Al23が好ましい)。中でも、Ti、Zr、Nb、Alのいずれかを含む酸化物、特にTiOが好ましい。これらの材料から成る粒子17は、屈折率が大きく、母材との屈折率が大きく取れるため散乱が強くなるので好ましい。何れの酸化物も、可視光領域では吸収を伴わず、効率の低減に関与しないため好ましい。 For example, as in the side wall 14 of the present embodiment, the scattering surface 18 can be formed by dispersing translucent particles having a refractive index different from that of the base material in the translucent base material. The refractive index difference between the particles and the surrounding material is preferably 0.1 or more, more preferably 1.0 or more. The particles include glass fibers, glass beads, talc, silica, alumina, magnesia, zinc white, calcium carbonate, barium sulfate, titania, aluminum hydroxide, mica, feldspar powder, quartz powder and other inorganic particles, silicone resin Organic particles such as fluorine resin, epoxy resin, and styrene-based crosslinked resin can be used, and one of these can be used alone or in combination of two or more. The particles 17 are particularly preferably oxides containing any of Ti, Zr, Nb, Al, Si, AlN, MgF, etc. (as oxides containing Ti, Zr, Nb, Al, Si, TiO 2 , preferably ZrO 2, Nb 2 O 5, Al 2 O 3). Among these, an oxide containing any of Ti, Zr, Nb, and Al, particularly TiO 2 is preferable. The particles 17 made of these materials are preferable because they have a large refractive index and a large refractive index with the base material, so that the scattering becomes strong. Any oxide is preferable because it does not absorb in the visible light region and does not contribute to a reduction in efficiency.

粒子の平均粒径Rは、散乱が効率良く生じるように、発光素子20の発光波長をλとして、0.4×λ/π<R<λを充足することが好ましい。粒子の平均粒径Rが0.4×λ/π以下になるとレイリー散乱領域に入り、散乱強度が波長の4乗に比例するようになる。したがって、長波長である蛍光体の発光の散乱が弱くなってしまう。粒子の平均粒径Rは、70nm以上、好ましくは200nm以上であり、400nm以下、好ましくは300nm以下であることが望ましい。   The average particle size R of the particles preferably satisfies 0.4 × λ / π <R <λ, where λ is the emission wavelength of the light emitting element 20 so that scattering occurs efficiently. When the average particle diameter R of the particles becomes 0.4 × λ / π or less, the particle enters the Rayleigh scattering region, and the scattering intensity is proportional to the fourth power of the wavelength. Therefore, the scattering of the light emission of the phosphor having a long wavelength is weakened. The average particle diameter R of the particles is 70 nm or more, preferably 200 nm or more, and is 400 nm or less, preferably 300 nm or less.

一方、粒子17を含有する周囲の母材としては、シリコーン樹脂、エポキシ樹脂、ガラス等が好ましい。中でもシリコーン樹脂は、熱硬化性で、耐光性が良く、比較的柔らかいという特性を持つ。シリコーン樹脂は、屈折率が約1.4と低いため、TiO2(屈折率約2.5)等の粒子との間の屈折率差をつけやすく、散乱面18による散乱を強くするために好ましい。   On the other hand, the surrounding base material containing the particles 17 is preferably a silicone resin, an epoxy resin, glass or the like. Among them, silicone resins have thermosetting properties, light resistance, and relatively soft properties. Silicone resin has a low refractive index of about 1.4, so that it is easy to make a refractive index difference between particles such as TiO 2 (refractive index of about 2.5), and is preferable for enhancing scattering by the scattering surface 18.

粒子17は、白色として観察される程度に含有させることが好ましく、これによって透光性が低く反射率の高い散乱面18とでき、凹部16aの開口からの光取り出し効率を向上できる。また、粒子を含有させる量によって散乱面の散乱係数を調整することができる。例えば、粒子の量を全体の10〜50重量%とすることができ、特にTiO2の粒子を含有させる場合は、20〜40重量%とすることが望ましい。粒子の含有量を30重量%以上とすれば、散乱面18における散乱が強くなると同時に、反射率も高くなるため好ましい。 The particles 17 are preferably contained to such an extent that they are observed as white. This makes it possible to form the scattering surface 18 with low translucency and high reflectance, and to improve the light extraction efficiency from the opening of the recess 16a. Moreover, the scattering coefficient of a scattering surface can be adjusted with the quantity which contains particle | grains. For example, the amount of the particles can be 10 to 50% by weight, and particularly when the particles of TiO 2 are contained, the amount is preferably 20 to 40% by weight. If the content of the particles is 30% by weight or more, it is preferable because the scattering on the scattering surface 18 becomes strong and the reflectance becomes high.

尚、凹部16aの表面に形成する散乱面18を別の手法で形成しても良い。例えば、粒子を凝集、焼結して形成した多孔質体を用いて側壁14を形成すれば、その内面を散乱面とすることができる。また、ゾル・ゲル法によって成形した多孔質体を用いて側壁14としても良い。こうした多孔質体では、多孔質体の材料と多孔質体の孔に存在する空気(或いは、そこに充填された異なる屈折率の物質)との屈折率差に基づいて散乱が生じる。尚、こうした多孔質体を側壁14に用いた場合、封止性能や気密性を高めるために多孔質体と樹脂との複合材料としても良い。また、透光性部材または反射性部材の表面に凹凸加工や粗面化を施すことや、表面に散乱粒子層を形成することで、散乱面とすることもできる。   In addition, you may form the scattering surface 18 formed in the surface of the recessed part 16a with another method. For example, if the side wall 14 is formed using a porous body formed by agglomerating and sintering particles, the inner surface thereof can be used as a scattering surface. Moreover, it is good also as the side wall 14 using the porous body shape | molded by the sol gel method. In such a porous body, scattering occurs based on a difference in refractive index between the material of the porous body and air (or a substance having a different refractive index filled therein) existing in the pores of the porous body. In addition, when such a porous body is used for the side wall 14, in order to improve sealing performance and airtightness, it is good also as a composite material of a porous body and resin. Moreover, it can also be set as a scattering surface by giving uneven | corrugated processing or roughening to the surface of a translucent member or a reflective member, or forming a scattering particle layer in the surface.

また、散乱面18を凹部16aの底面にも形成することで、光を広く散乱させて凹部16aの開口から取り出すことができる。一方、凹部16aの底面は散乱面18より散乱が小さい面としても良く、この場合、光反射性の部材を凹部16aの底面に配置することが好ましい。これによって、光源部から凹部16aの底面に到達した光を反射させて取り出すことができ、さらに反射した光の一部が凹部16aの側面の散乱面18に到達する設計としておくと、光源部から下方に出射した光も散乱面18において散乱させて取り出すことができる。   Further, by forming the scattering surface 18 also on the bottom surface of the recess 16a, light can be widely scattered and extracted from the opening of the recess 16a. On the other hand, the bottom surface of the recess 16a may be a surface that is smaller in scattering than the scattering surface 18, and in this case, it is preferable to arrange a light reflective member on the bottom surface of the recess 16a. Accordingly, the light that has reached the bottom surface of the recess 16a from the light source part can be reflected and extracted, and if a part of the reflected light reaches the scattering surface 18 on the side surface of the recess 16a, Light emitted downward can also be scattered by the scattering surface 18 and extracted.

尚、凹部16aの側面に散乱面18を設ける場合、発光素子20の周囲を均等に囲むように散乱面18を形成することが好ましい。即ち、平面視において、発光素子20の中心を基準として全ての方位に均等に散乱面18が形成されていることが好ましい。発光素子20の中心を基準として、ある方位にだけ散乱面18が広く形成されていたり、ある方位にだけ散乱面18が形成されていないような場合、色むらの原因となるからである。また、上述の角度βを小さくすること、具体的には、上述の距離dを距離dよりも大きくすることや、凹部16aの開口部の幅を小さくすることによって、発光素子20と波長変換部材30とを含む光源の全光束に占める散乱領域の割合を大きくできる。また、光源と散乱面18との距離を大きくすることによっても散乱領域の割合を大きくできるため、光源と散乱面18との距離を距離dと同じかそれ以上とすることが好ましい。凹部16aの底面を散乱面としない場合には、底面を小さくすることが好ましく、平面視において、底面の最大幅を光源の最大幅の1〜1.2倍程度とすることが好ましい。また、散乱面に照射された光を効率良く取り出すためには、図6に示すように、上面視において、凹部16aの側面に形成された散乱面18が発光素子20及び波長変換部材30の外側に配置されて観察可能であることが望ましい。 In addition, when providing the scattering surface 18 in the side surface of the recessed part 16a, it is preferable to form the scattering surface 18 so that the circumference | surroundings of the light emitting element 20 may be enclosed equally. That is, it is preferable that the scattering surface 18 is formed uniformly in all directions with the center of the light emitting element 20 as a reference in plan view. This is because, when the scattering surface 18 is formed widely only in a certain direction with respect to the center of the light emitting element 20, or when the scattering surface 18 is not formed only in a certain direction, color unevenness is caused. Also, reducing the angle β described above, specifically, or be greater than the distance d the distance d 2 described above, by reducing the width of the opening of the recess 16a, the light emitting element 20 and the wavelength conversion The ratio of the scattering region to the total luminous flux of the light source including the member 30 can be increased. Further, since the ratio of the scattering region can be increased by increasing the distance between the light source and the scattering surface 18, it is preferable that the distance between the light source and the scattering surface 18 is equal to or longer than the distance d. In the case where the bottom surface of the recess 16a is not a scattering surface, it is preferable to make the bottom surface small, and in plan view, the maximum width of the bottom surface is preferably about 1 to 1.2 times the maximum width of the light source. In order to efficiently extract the light irradiated on the scattering surface, as shown in FIG. 6, the scattering surface 18 formed on the side surface of the recess 16a is located outside the light emitting element 20 and the wavelength conversion member 30 as viewed from above. It is desirable to be able to be observed by being arranged in the area.

尚、凹部16aの「底面」とは、凹部16aのうち、凹部16aの光軸方向における発光素子20の投影面を含み、その投影面と同じ高さ以下の領域をいい、凹部16aの「側面」とは、その「底面」から立ち上がった領域を指す。この「底面」と「側面」の解釈は、他の実施形態における凹部16aについても同様である。   The “bottom surface” of the concave portion 16a refers to a region of the concave portion 16a that includes the projection surface of the light emitting element 20 in the optical axis direction of the concave portion 16a and is not more than the same height as the projection surface. "" Refers to the region rising from the "bottom surface". The interpretation of the “bottom surface” and the “side surface” is the same for the recess 16a in the other embodiments.

(実装基板12)
実装基板12は、表面に発光素子20と電気的に接続される配線を形成したものであれば良い。本実施の形態では、平板状の絶縁部材に配線を形成して実装基板12としている。絶縁部材として、窒化アルミニウムやアルミナ等のセラミック、ガラスを用いることができる。また、Si等の半金属あるいは金属の表面に窒化アルミニウム等の絶縁性の薄膜層を形成して用いても良い。これらの実装基板12は、放熱性が高いため、好ましい。また、配線は、イオンミリング法或いはエッチング法等によって金属層のパターニングを施すことによって形成できる。例えば、窒化アルミニウムの表面に白金薄膜等からなる配線パターンを形成できる。更に、配線パターンを保護する目的で、SiO2等の薄膜からなる保護膜を形成してもよい。また、支持部材が設けられる領域に、実装基板の配線と絶縁された金属部材等の放熱体を設けることもできる。
(Mounting board 12)
The mounting substrate 12 only needs to have a wiring on the surface that is electrically connected to the light emitting element 20. In the present embodiment, wiring is formed on a flat insulating member to form the mounting substrate 12. As the insulating member, ceramic such as aluminum nitride or alumina, or glass can be used. Further, an insulating thin film layer such as aluminum nitride may be formed on the surface of a semimetal such as Si or metal. These mounting boards 12 are preferable because of their high heat dissipation. The wiring can be formed by patterning the metal layer by an ion milling method or an etching method. For example, a wiring pattern made of a platinum thin film or the like can be formed on the surface of aluminum nitride. Furthermore, a protective film made of a thin film such as SiO 2 may be formed for the purpose of protecting the wiring pattern. Further, a heat radiator such as a metal member insulated from the wiring of the mounting board can be provided in the region where the support member is provided.

(封止部材28)
凹部16aに充填される封止部材28の材料は透光性であれば特に限定されない。シリコーン樹脂組成物、変性シリコーン樹脂組成物等を使用することが耐久性の面で好ましいが、エポキシ樹脂組成物、変性エポキシ樹脂組成物、アクリル樹脂組成物等の透光性を有する絶縁樹脂組成物を用いることもできる。また、これらの樹脂を少なくとも一種以上含むハイブリッド樹脂等、耐候性に優れた封止部材も利用できる。さらに、ガラス、シリカゲル等の耐光性に優れた無機物を用いることもできる。封止部材は、発光素子20及び波長変換部材30からの光の透過率が波長変換部材30より高い部材であり、蛍光体の含有率が波長変換部材30より小さいことが好ましく、さらに好ましくは蛍光体を含有しない透光性の部材とする。また、光を散乱させる散乱剤は含有しないことが好ましい。尚、封止部材28の上面は、略平坦で、かつ、前記第1の波長変換部材24と略平行であることが好ましい。これによって、板状である第1の波長変換部材24の主面から斜めに出射した光や側面から出射した光が封止部材28に高角度で入射し易くなるため、凹部16aに戻し、散乱させ易くなる。また、封止部材28の発光面側を所望の形状にすることによってレンズ効果を持たせることもできる。レンズの大きさは、凹部16aの上面よりも小さいものや大きいものを選択でき、レンズの表面に溝を設けて配光を制御することもできる。
(Sealing member 28)
The material of the sealing member 28 filled in the recess 16a is not particularly limited as long as it is translucent. Although it is preferable in terms of durability to use a silicone resin composition, a modified silicone resin composition, etc., an insulating resin composition having translucency such as an epoxy resin composition, a modified epoxy resin composition, an acrylic resin composition, etc. Can also be used. Moreover, sealing members excellent in weather resistance, such as hybrid resins containing at least one of these resins, can also be used. Furthermore, inorganic materials having excellent light resistance such as glass and silica gel can be used. The sealing member is a member having a light transmittance from the light emitting element 20 and the wavelength conversion member 30 higher than that of the wavelength conversion member 30, and the phosphor content is preferably smaller than that of the wavelength conversion member 30, and more preferably fluorescent. It is set as the translucent member which does not contain a body. Moreover, it is preferable not to contain the scattering agent which scatters light. The upper surface of the sealing member 28 is preferably substantially flat and substantially parallel to the first wavelength conversion member 24. Accordingly, light emitted obliquely from the main surface of the plate-shaped first wavelength conversion member 24 or light emitted from the side surface is easily incident on the sealing member 28 at a high angle, and is thus returned to the recess 16a and scattered. It becomes easy to let. Further, a lens effect can be provided by making the light emitting surface side of the sealing member 28 have a desired shape. The size of the lens can be selected to be smaller or larger than the upper surface of the recess 16a, and the light distribution can be controlled by providing a groove on the surface of the lens.

実施の形態2
図7は、実施の形態2に係る発光装置を示す模式断面図である。本実施の形態では、第1の波長変換物質の上面に発光素子20をフェースアップ実装し、発光素子の周囲に第2の波長変換物質を設けている。その他の点は、実施の形態1と同様である。波長変換物質は、例えば蛍光体を含有した樹脂を印刷することで形成することができる。
Embodiment 2
FIG. 7 is a schematic cross-sectional view showing the light emitting device according to the second embodiment. In the present embodiment, the light emitting element 20 is mounted face up on the upper surface of the first wavelength converting material, and the second wavelength converting material is provided around the light emitting element. Other points are the same as in the first embodiment. The wavelength converting substance can be formed, for example, by printing a resin containing a phosphor.

発光素子20は、例えば図2に示す構造を有しているが、基板34を下側にして第1の波長変換部材24の上に固着されている。発光素子20は、発光層38の下方向への発光が有効に利用できるように、サファイア等の透光性の基板34を有することが好ましい。また、発光素子20を第1の波長変換部材24に上面に固着するには、透光性のある接着剤を用いることが好ましい。例えば、シリコーンなどを用いることができる。発光素子20の上面に形成された第1電極42、第2電極46は、各々、ワイヤによって実装基板の配線12a、12bと接続される。   The light emitting element 20 has the structure shown in FIG. 2, for example, and is fixed on the first wavelength conversion member 24 with the substrate 34 facing down. The light-emitting element 20 preferably has a light-transmitting substrate 34 such as sapphire so that light emission in the downward direction of the light-emitting layer 38 can be used effectively. In order to fix the light emitting element 20 to the upper surface of the first wavelength conversion member 24, it is preferable to use a translucent adhesive. For example, silicone or the like can be used. The first electrode 42 and the second electrode 46 formed on the upper surface of the light emitting element 20 are connected to the wirings 12a and 12b of the mounting substrate by wires, respectively.

このように発光素子20をフェースアップ実装することにより、発光素子20への光再入射を抑制できる。また、第1の波長変換部材24に配線が不要となり、簡便に製造することができる。   As described above, by mounting the light emitting element 20 face up, light re-incident on the light emitting element 20 can be suppressed. In addition, the first wavelength conversion member 24 does not require wiring and can be easily manufactured.

また、本実施の形態では、第2の波長変換部材26を発光素子20の外周に沿って略均一な厚みで形成する。したがって、凹部16aの表面で散乱せずに外部に取り出される発光について、効果的に色むらを抑制できる。また、第1の波長変換部材24の上面を第2の波長変換部材26よりも広く形成している。これによって第1の波長変換部材24の上面の一部を第2の波長変換部材26の外側に露出させ、第2の波長変換部材26の上面からも光を直接取り出すことができる。   In the present embodiment, the second wavelength conversion member 26 is formed with a substantially uniform thickness along the outer periphery of the light emitting element 20. Therefore, color unevenness can be effectively suppressed for the light emitted outside without being scattered on the surface of the recess 16a. Further, the upper surface of the first wavelength conversion member 24 is formed wider than the second wavelength conversion member 26. Thereby, a part of the upper surface of the first wavelength conversion member 24 is exposed to the outside of the second wavelength conversion member 26, and light can be directly extracted also from the upper surface of the second wavelength conversion member 26.

実施の形態3
図8は、本発明の実施の形態3に係る発光装置を示す模式断面図である。本実施の形態では、第1の波長変換部材24と第2の波長変換部材26の両方が板状であり、半導体発光素子20の側面が波長変換物質30に覆われずに露出している。また、第1の波長変換部材24と支持部材32とにビアホールを設け、そこに充填した導電材50を通じて実装基板の配線12a、12bと導通を取っている。その他の点は、実施の形態1と同様である。
Embodiment 3
FIG. 8 is a schematic cross-sectional view showing a light-emitting device according to Embodiment 3 of the present invention. In the present embodiment, both the first wavelength conversion member 24 and the second wavelength conversion member 26 are plate-like, and the side surfaces of the semiconductor light emitting element 20 are exposed without being covered with the wavelength conversion substance 30. Further, via holes are provided in the first wavelength conversion member 24 and the support member 32, and electrical connection is established with the wirings 12a and 12b of the mounting substrate through the conductive material 50 filled therein. Other points are the same as in the first embodiment.

本実施の形態における波長変換部材30は、発光素子20の下面に接する第1の波長変換部材24と、発光素子20の上面に接する第2の波長変換部材26とから成る。第2の波長変換部材26は、平面方向の外寸が発光素子20よりも大きく、発光素子20の外周から庇状に張り出していることが好ましい。これによって発光素子20の上面からの出射光が第2の波長変換部材26を通過してから外部に取り出されるようすることができる。例えば第2の波長変換部材26の大きさが発光素子20と同一である場合には、発光層38の側面から斜め上方に出射する光線は、第2の波長変換部材26を通過せず、かつ、凹部16aの表面による散乱も受けない場合があり得る。そこで図8に示すように、第2の波長変換部材26を発光素子20よりも大きくし、発光素子20の外周から庇状に張り出すようにすれば、発光素子20の発光層38から出射する光のうち、凹部16aで散乱を受けない光が必ず第2の波長変換部材16aを通過するようにできる。尚、このことが達成可能な程度に第2の波長変換部材30が発光素子20の外周から張り出していれば、第2の波長変換部材の大きさや平面形状は特に限定されない。但し、第2の波長変換部材26があまり大きすぎると、凹部16aで散乱した光が再度第2の波長変換部材26を通過することになり、色むらや発光出力低下の原因となる。本実施の形態における第2の波長変換部材26の平面方向の最大寸法は、発光素子20の発光層38の平面方向の最大寸法の1.1倍以上、好ましくは1.5倍以上、かつ、3倍以下、好ましくは2倍以下とすることが望ましい。   The wavelength conversion member 30 in the present embodiment includes a first wavelength conversion member 24 that contacts the lower surface of the light emitting element 20 and a second wavelength conversion member 26 that contacts the upper surface of the light emitting element 20. The second wavelength conversion member 26 preferably has an outer dimension in the planar direction larger than that of the light emitting element 20 and projects from the outer periphery of the light emitting element 20 in a bowl shape. Thereby, the emitted light from the upper surface of the light emitting element 20 can be extracted outside after passing through the second wavelength conversion member 26. For example, when the size of the second wavelength conversion member 26 is the same as that of the light emitting element 20, the light beam emitted obliquely upward from the side surface of the light emitting layer 38 does not pass through the second wavelength conversion member 26 and In some cases, the surface of the recess 16a may not be scattered. Therefore, as shown in FIG. 8, if the second wavelength conversion member 26 is made larger than the light emitting element 20 so as to project in a bowl shape from the outer periphery of the light emitting element 20, the light is emitted from the light emitting layer 38 of the light emitting element 20. Of the light, the light that is not scattered by the recess 16a can surely pass through the second wavelength conversion member 16a. In addition, if the 2nd wavelength conversion member 30 protrudes from the outer periphery of the light emitting element 20 to such an extent that this can be achieved, the magnitude | size and planar shape of a 2nd wavelength conversion member will not be specifically limited. However, if the second wavelength conversion member 26 is too large, the light scattered by the recess 16a will pass through the second wavelength conversion member 26 again, causing uneven color and a decrease in light emission output. The maximum dimension in the planar direction of the second wavelength conversion member 26 in the present embodiment is 1.1 times or more, preferably 1.5 or more times the maximum dimension in the planar direction of the light emitting layer 38 of the light emitting element 20, and It is desirable to make it 3 times or less, preferably 2 times or less.

本実施の形態のように第2の波長変換部材26を板状とし、発光素子20から庇のように張り出した形状とすれば、色むらの問題を抑制しながら、発光素子20の側面を波長変換部材30から露出させることができる。発光素子20の側面を波長変換部材30によって覆わずに露出させると、発光素子20の内部に戻る光を一層減らし、また、発光素子20の発熱による第2の波長変換部材26の劣化も抑制できる。即ち、第2の波長変換部材26によって、発光素子20の上面及び側面を覆う場合、第2の波長変換部材26に含まれる蛍光体の粒子によって光が散乱されるため、発光素子20の内部に戻る光の割合が少なからずある。本実施の形態のように、発光素子20の側面を波長変換部材30で覆わずに露出させれば、発光素子20の側面から出射した光が発光素子20に戻る確率が大幅に低下し、発光素子20の発光をより効率良く取り出すことができる。また、第2の波長変換部材26と発光素子20の接触面積も減少するため、発光素子26の発熱による第2の波長変換部材26の劣化も抑制することができる。   If the second wavelength conversion member 26 has a plate-like shape and protrudes like a ridge from the light emitting element 20 as in the present embodiment, the wavelength of the side surface of the light emitting element 20 is reduced while suppressing the problem of color unevenness. It can be exposed from the conversion member 30. When the side surface of the light emitting element 20 is exposed without being covered with the wavelength conversion member 30, the light returning to the inside of the light emitting element 20 can be further reduced, and deterioration of the second wavelength conversion member 26 due to heat generation of the light emitting element 20 can be suppressed. . That is, when the second wavelength conversion member 26 covers the upper surface and the side surface of the light emitting element 20, the light is scattered by the phosphor particles contained in the second wavelength conversion member 26. There is a considerable percentage of light returning. If the side surface of the light emitting element 20 is exposed without being covered with the wavelength conversion member 30 as in the present embodiment, the probability that light emitted from the side surface of the light emitting element 20 returns to the light emitting element 20 is greatly reduced, and light emission is performed. The light emitted from the element 20 can be taken out more efficiently. Further, since the contact area between the second wavelength conversion member 26 and the light emitting element 20 is also reduced, deterioration of the second wavelength conversion member 26 due to heat generation of the light emitting element 26 can be suppressed.

尚、従来の発光装置で、単純に発光素子20の側面を波長変換部材30で覆わずに露出した場合、発光素子20の側面から出射した光は波長変換部材30を通過しないで外部に取り出されるため、強い色むらが発生する。凹部内が封止部材28によって封止された発光装置の場合は、封止部材28と空気との界面で一部の光は全反射されて凹部内に戻されるが、依然として強い色むらが残る。本実施の形態では、発光素子20の側面から出射した光が凹部16aで散乱し、波長変換部材20によって波長変換された光と混合されるため、色むら発生の問題を防止することができる。   In the conventional light emitting device, when the side surface of the light emitting element 20 is simply exposed without being covered with the wavelength conversion member 30, the light emitted from the side surface of the light emitting element 20 is extracted outside without passing through the wavelength conversion member 30. Therefore, strong color unevenness occurs. In the case of a light emitting device in which the inside of the recess is sealed by the sealing member 28, some light is totally reflected at the interface between the sealing member 28 and air and returned to the inside of the recess, but strong color unevenness still remains. . In the present embodiment, since the light emitted from the side surface of the light emitting element 20 is scattered by the concave portion 16a and mixed with the light whose wavelength is converted by the wavelength conversion member 20, the problem of uneven color generation can be prevented.

本実施の形態においても、凹部16aの表面に形成する散乱面18は、できるだけ広い範囲に形成することが好ましいが、少なくとも凹部16aの側面の一部、より好ましくは側面全体に形成することが望ましい。これにより色むらを効果的に抑制することができる。即ち、色むらの原因の一つは、発光素子20から出射した光が波長変換部材30を通過する際の光路長の違いにある。発光素子20から凹部16aの底面に向かう光については、波長変換部材30の正面から照射される光であるため、波長変換部材30の光路長が比較的均一で色むらが発生しにくい。これに対し、発光素子20から凹部16aの側面に向かって斜めに進行する光については、波長変換部材30を斜めに進行して出射する光であるため、波長変換部材30の光路長の違いによる色むらが発生し易い。また、波長変換部材30が板状である場合、波長変換部材30内の光の一部は、対向する2つの主面で全反射され、側面から出射する。このため、側面から出射する光は波長変換部材内における光路長が大きく、波長変換光の強度が強くなる傾向にあり、原理的に色むらが発生し易い。   Also in the present embodiment, the scattering surface 18 formed on the surface of the recess 16a is preferably formed in as wide a range as possible, but it is desirable to form at least a part of the side surface of the recess 16a, more preferably the entire side surface. . Thereby, uneven color can be effectively suppressed. That is, one of the causes of the color unevenness is a difference in optical path length when the light emitted from the light emitting element 20 passes through the wavelength conversion member 30. The light traveling from the light emitting element 20 toward the bottom surface of the concave portion 16a is light irradiated from the front surface of the wavelength conversion member 30, so that the optical path length of the wavelength conversion member 30 is relatively uniform and color unevenness is unlikely to occur. On the other hand, light that travels obliquely from the light emitting element 20 toward the side surface of the recess 16a is light that travels obliquely and exits the wavelength conversion member 30, and therefore depends on the optical path length of the wavelength conversion member 30. Color unevenness is likely to occur. Moreover, when the wavelength conversion member 30 is plate-shaped, a part of light in the wavelength conversion member 30 is totally reflected by two opposing main surfaces, and is emitted from the side surface. For this reason, the light emitted from the side surface has a large optical path length in the wavelength conversion member, and the intensity of the wavelength conversion light tends to increase, and in principle, color unevenness is likely to occur.

特に、本実施の形態のように、発光素子20の側面を波長変換部材30で覆わずに露出した場合、発光素子20の側面から出射する光による色むらが発生し易い。しかし、凹部16aの底面に対して平行に設置された発光素子20であれば、発光素子20の側面から出射した光は凹部16aの側面のうちの発光層38の側面に対面する領域に最も入射し易い。そこで、凹部16aの側面の中でも、特に発光層38の側面と対面する領域を含むように散乱面を形成することが好ましい。これにより、発光素子20の側面が波長変換部材に覆われずに露出していることによって発生する色むらも効果的に抑制することができる。   In particular, when the side surface of the light emitting element 20 is exposed without being covered with the wavelength conversion member 30 as in the present embodiment, color unevenness due to light emitted from the side surface of the light emitting element 20 is likely to occur. However, in the case of the light emitting element 20 installed parallel to the bottom surface of the recess 16a, the light emitted from the side surface of the light emitting element 20 is most incident on the region facing the side surface of the light emitting layer 38 among the side surfaces of the recess 16a. Easy to do. Therefore, it is preferable to form the scattering surface so as to include a region facing the side surface of the light emitting layer 38 among the side surfaces of the recess 16a. Thereby, the color nonuniformity which generate | occur | produces when the side surface of the light emitting element 20 is exposed without being covered with the wavelength conversion member can also be suppressed effectively.

本実施の形態における第2の波長変換部材26は、実施の形態1における第1の波長変換部材24と同様に、無機材料から成ることが好ましい。このような材料で第2の波長変換部材26を構成することにより、第2の波長変換部材26自身の耐久性が高まると同時に、第2の波長変換部材26の機械的強度も高くなるため、上記のように、板状にして発光素子20の外周から庇状に張り出させることが容易となる。尚、第1の波長変換部材24と第2の波長変換部材26を同一材料とすれば、部材の共通化によって製造コストの低減が可能になると共に、発光素子20の上下に加わる熱膨張係数差による応力も均等となり、発光装置10の信頼性の向上にも役立つ。   Similarly to the first wavelength conversion member 24 in the first embodiment, the second wavelength conversion member 26 in the present embodiment is preferably made of an inorganic material. By configuring the second wavelength conversion member 26 with such a material, the durability of the second wavelength conversion member 26 itself increases, and at the same time, the mechanical strength of the second wavelength conversion member 26 also increases. As described above, it is easy to form a plate shape and project from the outer periphery of the light emitting element 20 in a bowl shape. If the first wavelength conversion member 24 and the second wavelength conversion member 26 are made of the same material, it is possible to reduce the manufacturing cost due to the common use of the members, and the difference in thermal expansion coefficient applied to the top and bottom of the light emitting element 20. The stress due to the light becomes uniform, which helps to improve the reliability of the light emitting device 10.

また、本実施の形態では、第1の波長変換部材24と支持部材32とにビアホールを設け、そこに充填した導電材50を通じて実装基板の配線12a、12bと導通を取っている。導電材50と実装基板の配線12a、12bは、はんだ、金属共晶等の適当な材料で接合すれば良い。本実施の形態のように、導電材50を通じて発光素子20と実装基板の配線12a、12bを直接接続することにより、発光素子20の放熱が一層良好となる。導電材50としては、熱伝導率と導電率の高い材料を用いることが好ましく、例えば、Cu、Ag、Au、Niなどを用いることができる。また、このような導電材50をビアホールに充填することで、導電材50を反射部として利用できる。これにより、第1の波長変換部材24及び支持部材32の内部の光を反射して散乱面18側へ取り出すことができる。   In the present embodiment, via holes are provided in the first wavelength conversion member 24 and the support member 32, and electrical connection is established with the wirings 12 a and 12 b on the mounting substrate through the conductive material 50 filled therein. The conductive material 50 and the wiring 12a, 12b of the mounting substrate may be joined with an appropriate material such as solder or metal eutectic. As in this embodiment, by directly connecting the light emitting element 20 and the wirings 12a and 12b of the mounting substrate through the conductive material 50, the heat dissipation of the light emitting element 20 is further improved. As the conductive material 50, a material having high thermal conductivity and high conductivity is preferably used. For example, Cu, Ag, Au, Ni, or the like can be used. Further, by filling the via hole with such a conductive material 50, the conductive material 50 can be used as a reflecting portion. Thereby, the light inside the first wavelength conversion member 24 and the support member 32 can be reflected and extracted to the scattering surface 18 side.

また、本実施の形態のように、金属部材等の実質的に光を遮断する遮光性の部材を支持部材の内部に設ける場合は、上面視において発光素子20と重複する位置に遮光性の部材を配置することが好ましい。金属部材のような遮光性の部材を発光素子20の外側に配置すると、発光素子20に対して特定の方位の光のみが遮断され、色むらが強く現れるためである。また、図8に示すようにフリップチップ実装される発光素子20は、通常、実装面側に反射電極が形成されるため、発光素子20の直下に遮光性の部材を設けても、発光素子20の直下に取り出される光が少なく、発光素子20から出射する光は阻害され難い。   Further, when a light-shielding member that substantially blocks light, such as a metal member, is provided inside the support member as in the present embodiment, the light-shielding member is located at a position overlapping the light emitting element 20 in a top view. Is preferably arranged. This is because when a light-shielding member such as a metal member is disposed outside the light emitting element 20, only light in a specific direction is blocked with respect to the light emitting element 20, and color unevenness appears strongly. In addition, as shown in FIG. 8, the light-emitting element 20 that is flip-chip mounted usually has a reflective electrode formed on the mounting surface side. Therefore, even if a light-shielding member is provided immediately below the light-emitting element 20, the light-emitting element 20 The amount of light extracted directly under the light is small, and the light emitted from the light emitting element 20 is hardly disturbed.

以上の実施形態は単なる例示であり、本件発明はこれらに限定されない。また、本件発明の各要素は、上記実施の形態で説明した部材で構成する場合に限られず、発明の複数の要素を単一の部材で構成したり、一つの要素を複数の部材で構成することもできる。   The above embodiments are merely examples, and the present invention is not limited to these. In addition, each element of the present invention is not limited to the case of being configured with the members described in the above embodiment, and a plurality of elements of the invention may be configured with a single member, or one element may be configured with a plurality of members. You can also

10 発光装置
12 実装基板
12a、12b 配線
14 側壁
16 パッケージ
16a 凹部
17 粒子
18 散乱面
20 発光素子
24 第1の波長変換部材
26 第2の波長変換部材
28 封止部材
30 波長変換部材
32 支持部材
34 基板
36 n型窒化物半導体層
38 発光層
40 p型窒化物半導体層
42 n側電極
44 p側オーミック電極
46 p側パッド電極
48 保護絶縁膜
50 導電部材
52 はんだ
54 蛍光体粒子
55 蛍光体保持部材
56 蛍光体層
72 発光半導体チップ組立体
74 蛍光体チップ
76 接着剤
78 発光ダイオードチップ
80 基板
82 蛍光体層
84 アノード電極
86 カソード電極
88 アノードリード
90 カソードリード
90a カップ部
92 発光装置
94 光散乱剤
96 保護接着剤
DESCRIPTION OF SYMBOLS 10 Light-emitting device 12 Mounting board 12a, 12b Wiring 14 Side wall 16 Package 16a Recess 17 Particle 18 Scattering surface 20 Light-emitting element 24 First wavelength conversion member 26 Second wavelength conversion member 28 Sealing member 30 Wavelength conversion member 32 Support member 34 Substrate 36 n-type nitride semiconductor layer 38 light emitting layer 40 p-type nitride semiconductor layer 42 n-side electrode 44 p-side ohmic electrode 46 p-side pad electrode 48 protective insulating film 50 conductive member 52 solder 54 phosphor particle 55 phosphor holding member 56 phosphor layer 72 light emitting semiconductor chip assembly 74 phosphor chip 76 adhesive 78 light emitting diode chip 80 substrate 82 phosphor layer 84 anode electrode 86 cathode electrode 88 anode lead 90 cathode lead 90a cup unit 92 light emitting device 94 light scattering agent 96 Protective adhesive

Claims (9)

上面が開口した凹部を有する収納器中に、半導体を発光層とする発光素子と、前記発光素子の発光の一部を吸収して異なる波長の光を発光する波長変換部材とを備え、前記発光素子の発光と前記波長変換部材の発光とを混合して前記凹部の開口から出射する発光装置であって、
前記波長変換部材は、第1の波長変換部材と第2の波長変換部材とを有し、
前記収納器の底面上に、透光性の支持部材を介して、前記第1の波長変換部材と、発光素子と、前記第2の波長変換部材とが、順次前記凹部の開口に向かって、前記凹部の側面から離間するように形成され、
前記第1の波長変換部材は、無機材料から成る無機バインダーと蛍光体とが複合された板状部材であり、
前記凹部の側面には、少なくとも前記第1の波長変換部材の側面から第1の波長変換部材の主面に対して平行に出射した光が照射される部分に散乱面が形成されていることを特徴とする発光装置。
A light emitting element having a semiconductor as a light emitting layer and a wavelength conversion member that absorbs part of the light emitted from the light emitting element and emits light of a different wavelength in a container having a recess having an upper surface opened, the light emission A light-emitting device that mixes the light emission of the element and the light emission of the wavelength conversion member and emits the light from the opening of the recess,
The wavelength conversion member has a first wavelength conversion member and a second wavelength conversion member,
On the bottom surface of the container, the first wavelength conversion member, the light emitting element, and the second wavelength conversion member are sequentially directed toward the opening of the recess through a translucent support member. Formed so as to be separated from the side surface of the recess,
The first wavelength conversion member is a plate-like member in which an inorganic binder made of an inorganic material and a phosphor are combined,
A scattering surface is formed on the side surface of the concave portion at least in a portion irradiated with light emitted parallel to the main surface of the first wavelength conversion member from the side surface of the first wavelength conversion member. A light emitting device characterized.
前記第2の波長変換部材は、透光性樹脂中に蛍光体が分散されて成ることを特徴とする請求項1に記載の発光装置。   2. The light emitting device according to claim 1, wherein the second wavelength conversion member is formed by dispersing a phosphor in a translucent resin. 前記第1の波長変換部材中における前記無機バインダーと前記蛍光体との屈折率差よりも、前記第2の波長変換部材中における前記透光性樹脂と前記蛍光体の屈折率差が大きいことを特徴とする請求項2に記載の発光装置。   The difference in refractive index between the translucent resin and the phosphor in the second wavelength conversion member is larger than the difference in refractive index between the inorganic binder and the phosphor in the first wavelength conversion member. The light-emitting device according to claim 2. 前記第1の波長変換部材は、前記発光素子よりも厚いことを特徴とする請求項1乃至3のいずれか1項に記載の発光装置。   The light emitting device according to any one of claims 1 to 3, wherein the first wavelength conversion member is thicker than the light emitting element. 前記第1の波長変換部材は、前記第2の波長変換部材よりも厚いことを特徴とする請求項1乃至4のいずれか1項に記載の発光装置。   5. The light emitting device according to claim 1, wherein the first wavelength conversion member is thicker than the second wavelength conversion member. 前記第1の波長変換部材に含まれる蛍光体の濃度は、前記第2の波長変換部材に含まれる蛍光体の濃度よりも高いことを特徴とする請求項1乃至5のいずれか1項に記載の発光装置。   The density | concentration of the fluorescent substance contained in a said 1st wavelength conversion member is higher than the density | concentration of the fluorescent substance contained in a said 2nd wavelength conversion member, The any one of Claim 1 thru | or 5 characterized by the above-mentioned. Light-emitting device. 前記発光素子の上面及び側面は、前記第2の波長変換部材によって覆われていることを特徴とする請求項1乃至6のいずれか1項に記載の発光装置。   The light emitting device according to claim 1, wherein an upper surface and a side surface of the light emitting element are covered with the second wavelength conversion member. 前記第1の波長変換部材の側面は、前記第2の波長変換部材に覆われていないことを特徴とする請求項1乃至7のいずれか1項に記載の発光装置。   The light-emitting device according to claim 1, wherein a side surface of the first wavelength conversion member is not covered with the second wavelength conversion member. 前記第1の波長変換部材の上面のうち、前記発光素子の近傍は前記第2の波長変換部材によって覆われる一方、前記第1の波長変換部材の外周近傍は前記第2の波長変換部材に覆われていないことを特徴とする請求項1乃至8のいずれか1項に記載の発光装置。   Of the upper surface of the first wavelength conversion member, the vicinity of the light emitting element is covered with the second wavelength conversion member, while the vicinity of the outer periphery of the first wavelength conversion member is covered with the second wavelength conversion member. The light-emitting device according to claim 1, wherein the light-emitting device is not broken.
JP2014043992A 2014-03-06 2014-03-06 Light emitting device Active JP6024685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014043992A JP6024685B2 (en) 2014-03-06 2014-03-06 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014043992A JP6024685B2 (en) 2014-03-06 2014-03-06 Light emitting device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010088330A Division JP5515992B2 (en) 2010-04-07 2010-04-07 Light emitting device

Publications (2)

Publication Number Publication Date
JP2014132677A true JP2014132677A (en) 2014-07-17
JP6024685B2 JP6024685B2 (en) 2016-11-16

Family

ID=51411582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014043992A Active JP6024685B2 (en) 2014-03-06 2014-03-06 Light emitting device

Country Status (1)

Country Link
JP (1) JP6024685B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170004725A (en) * 2015-07-03 2017-01-11 엘지이노텍 주식회사 Light emitting device and lighting module having thereof
JP2017163001A (en) * 2016-03-09 2017-09-14 パナソニックIpマネジメント株式会社 Light-emitting module and lighting device

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1168169A (en) * 1997-08-19 1999-03-09 Sanken Electric Co Ltd Light emitting diode device
JP2002134795A (en) * 2000-10-27 2002-05-10 Sanken Electric Co Ltd Semiconductor light-emitting device and manufacturing method therefor
JP2002141559A (en) * 2000-10-31 2002-05-17 Sanken Electric Co Ltd Light emitting semiconductor chip assembly and light emitting semiconductor lead frame
JP2005268786A (en) * 2004-03-18 2005-09-29 Agilent Technol Inc Device and method for emitting composite output light using multiple wavelength-conversion mechanism
JP2006216953A (en) * 2005-01-31 2006-08-17 Samsung Electronics Co Ltd Light emitting diode device
JP2006299168A (en) * 2005-04-22 2006-11-02 Nichia Chem Ind Ltd Fluorescent substance and light-emitting device using the same
JP2007059781A (en) * 2005-08-26 2007-03-08 Toyoda Gosei Co Ltd Submount-attached light emitting element and light emitting device
JP2007073306A (en) * 2005-09-06 2007-03-22 Mirai:Kk Illumination unit and illumination device
JP2007088318A (en) * 2005-09-26 2007-04-05 Taiwan Oasis Technology Co Ltd White light-emitting diode and manufacturing process therefor
JP2007287713A (en) * 2006-04-12 2007-11-01 Showa Denko Kk Light-emitting device, and manufacturing method thereof
JP2008300460A (en) * 2007-05-29 2008-12-11 Toshiba Corp Optical semiconductor device
JP2009267039A (en) * 2008-04-24 2009-11-12 Citizen Electronics Co Ltd Light-emitting device

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1168169A (en) * 1997-08-19 1999-03-09 Sanken Electric Co Ltd Light emitting diode device
JP2002134795A (en) * 2000-10-27 2002-05-10 Sanken Electric Co Ltd Semiconductor light-emitting device and manufacturing method therefor
JP2002141559A (en) * 2000-10-31 2002-05-17 Sanken Electric Co Ltd Light emitting semiconductor chip assembly and light emitting semiconductor lead frame
JP2005268786A (en) * 2004-03-18 2005-09-29 Agilent Technol Inc Device and method for emitting composite output light using multiple wavelength-conversion mechanism
JP2006216953A (en) * 2005-01-31 2006-08-17 Samsung Electronics Co Ltd Light emitting diode device
JP2006299168A (en) * 2005-04-22 2006-11-02 Nichia Chem Ind Ltd Fluorescent substance and light-emitting device using the same
JP2007059781A (en) * 2005-08-26 2007-03-08 Toyoda Gosei Co Ltd Submount-attached light emitting element and light emitting device
JP2007073306A (en) * 2005-09-06 2007-03-22 Mirai:Kk Illumination unit and illumination device
JP2007088318A (en) * 2005-09-26 2007-04-05 Taiwan Oasis Technology Co Ltd White light-emitting diode and manufacturing process therefor
JP2007287713A (en) * 2006-04-12 2007-11-01 Showa Denko Kk Light-emitting device, and manufacturing method thereof
JP2008300460A (en) * 2007-05-29 2008-12-11 Toshiba Corp Optical semiconductor device
JP2009267039A (en) * 2008-04-24 2009-11-12 Citizen Electronics Co Ltd Light-emitting device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170004725A (en) * 2015-07-03 2017-01-11 엘지이노텍 주식회사 Light emitting device and lighting module having thereof
KR102426840B1 (en) * 2015-07-03 2022-07-29 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 Light emitting device and lighting module having thereof
JP2017163001A (en) * 2016-03-09 2017-09-14 パナソニックIpマネジメント株式会社 Light-emitting module and lighting device

Also Published As

Publication number Publication date
JP6024685B2 (en) 2016-11-16

Similar Documents

Publication Publication Date Title
JP5515992B2 (en) Light emitting device
US8723409B2 (en) Light emitting device
JP5707697B2 (en) Light emitting device
JP5521325B2 (en) Light emitting device and manufacturing method thereof
JP5689225B2 (en) Light emitting device
JP5326705B2 (en) Light emitting device
JP5799988B2 (en) Light emitting device
JP6020657B2 (en) Light emitting device
JP2010283281A (en) Light emitting device
JP5610036B2 (en) Light emitting device
JP6015734B2 (en) Light emitting device
JP2011096740A (en) Light-emitting device
JP2015099940A (en) Light-emitting device
JP5644967B2 (en) Light emitting device and manufacturing method thereof
JP6225910B2 (en) Light emitting device
JP5786278B2 (en) Light emitting device
JP5678462B2 (en) Light emitting device
JP6665143B2 (en) Light emitting device manufacturing method
JP2007294890A (en) Light emitting device
JP6222325B2 (en) Light emitting device
JP6680302B2 (en) Light emitting device
JP5931006B2 (en) Light emitting device
JP2009071090A (en) Light-emitting device
JP6024685B2 (en) Light emitting device
JP2024083405A (en) Light-emitting device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151013

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160308

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160926

R150 Certificate of patent or registration of utility model

Ref document number: 6024685

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250