JP2014125597A - 熱可塑性樹脂組成物、波長変換部材、発光装置、及びled照明器具 - Google Patents
熱可塑性樹脂組成物、波長変換部材、発光装置、及びled照明器具 Download PDFInfo
- Publication number
- JP2014125597A JP2014125597A JP2012284922A JP2012284922A JP2014125597A JP 2014125597 A JP2014125597 A JP 2014125597A JP 2012284922 A JP2012284922 A JP 2012284922A JP 2012284922 A JP2012284922 A JP 2012284922A JP 2014125597 A JP2014125597 A JP 2014125597A
- Authority
- JP
- Japan
- Prior art keywords
- phosphor
- thermoplastic resin
- resin composition
- light
- polycarbonate resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 0 *NO[N+]([O-])O* Chemical compound *NO[N+]([O-])O* 0.000 description 1
Images
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Polyesters Or Polycarbonates (AREA)
- Led Device Packages (AREA)
Abstract
【課題】十分な耐候性を有し、輝度・色度変化が少なく、発光効率の優れたLED照明用樹脂組成物、波長変換部材、発光装置、照明器具を提供することを課題とする。
【解決手段】構造の一部に特定ジヒドロキシ化合物に由来する構造単位を少なくとも有するポリカーボネート樹脂を含む熱可塑性樹脂組成物であって、該熱可塑性樹脂組成物における蛍光体の含有量が、0.01重量%以上であることを特徴とする熱可塑性樹脂組成物により課題を解決する。
【選択図】図1
【解決手段】構造の一部に特定ジヒドロキシ化合物に由来する構造単位を少なくとも有するポリカーボネート樹脂を含む熱可塑性樹脂組成物であって、該熱可塑性樹脂組成物における蛍光体の含有量が、0.01重量%以上であることを特徴とする熱可塑性樹脂組成物により課題を解決する。
【選択図】図1
Description
本発明は熱可塑性樹脂組成物に関し、特に、蛍光体を含有し、発光装置やLED照明器具の波長変換部材として好ましく適用される熱可塑性樹脂組成物に関する。
半導体発光素子を用いた発光装置(以下、単にLED発光装置ともいう。)は、省エネルギー発光装置としてその存在感が高まっている。LED発光装置は、半導体発光素子とともに、半導体発光素子が発する光によって励起されて異なる波長の光を放出する蛍光体を含む。
LED発光装置に含まれる蛍光体は、例えば蛍光体を樹脂中に分散させたスラリーを成形し、波長変換部材としてLED発光装置に含まれる(例えば特許文献1および2参照)。
LED発光装置に含まれる蛍光体は、例えば蛍光体を樹脂中に分散させたスラリーを成形し、波長変換部材としてLED発光装置に含まれる(例えば特許文献1および2参照)。
LED発光装置としては、より明るいもの、すなわち高い全光束が要求されており、より多くの光束をLED発光装置から出射するために、波長変換部材を構成する樹脂には透光性の材料が用いられている。例えば、特許文献2ではシリコーン樹脂が例示されているが、その他エポキシ樹脂やガラスなども用いられることがある。
しかしながら、これらのLED照明器具や発光装置に用いられる波長変換部材の母材材料として、透明性、剛性及び成型性に優れた芳香族ポリカーボネート樹脂が好適に用いられるが、必ずしも十分な耐候性を有しているわけではなく、過酷な条件で長期間使用しても輝度・色度変化が少なく、発光効率の優れたLED照明用樹脂組成物、波長変換部材、発光装置、照明器具の開発が望まれていた。また、街灯や道路標識等の紫外線の多い屋外で使用しても劣化が少なく、半導体発光素子の波長が短波長であっても耐久性に優れている波長変換部材の開発が望まれていた。
本発明者らは、上記課題を解決すべく検討を重ね、特定の熱可塑性樹脂組成物を用いることによって、耐久性に優れ、輝度・色度変化が少なく、発光効率の優れたLED用樹脂組成物を提供することができることを見出し、本発明を完成させた。
本発明の第一の態様は以下の熱可塑性樹脂組成物である。
構造の一部に下記一般式(1)で表される部位を有するジヒドロキシ化合物(以下「特定ジヒドロキシ化合物」と称す。)に由来する構造単位を少なくとも有するポリカーボネート樹脂を含む熱可塑性樹脂組成物であって、
該熱可塑性樹脂組成物における蛍光体の含有量が、0.01重量%以上であることを特徴とする熱可塑性樹脂組成物。
本発明の第一の態様は以下の熱可塑性樹脂組成物である。
構造の一部に下記一般式(1)で表される部位を有するジヒドロキシ化合物(以下「特定ジヒドロキシ化合物」と称す。)に由来する構造単位を少なくとも有するポリカーボネート樹脂を含む熱可塑性樹脂組成物であって、
該熱可塑性樹脂組成物における蛍光体の含有量が、0.01重量%以上であることを特徴とする熱可塑性樹脂組成物。
(但し、上記一般式(1)で表される部位が−CH2−O−Hの一部である場合を除く。)
さらに、前記熱可塑性樹脂組成物における蛍光体の含有量が、0.2重量%以上、50重量%以下であることが好ましい。
また、前記熱可塑性樹脂組成物に含有される熱可塑性樹脂の合計量に対する前記ポリカーボネート樹脂の含有量が、50重量%以上、100重量%以下であることが好ましい。
さらに、前記熱可塑性樹脂組成物における蛍光体の含有量が、0.2重量%以上、50重量%以下であることが好ましい。
また、前記熱可塑性樹脂組成物に含有される熱可塑性樹脂の合計量に対する前記ポリカーボネート樹脂の含有量が、50重量%以上、100重量%以下であることが好ましい。
また、特定ジヒドロキシ化合物が、下記一般式(2)で表される化合物であることが好ましい。
また、前記ポリカーボネート樹脂が、さらに、脂肪族ジヒドロキシ化合物及び脂環式ジヒドロキシ化合物からなる群より選ばれた少なくとも1種の化合物に由来する構造単位を含むことが好ましい。
さらに、前記ポリカーボネート樹脂が、該ポリカーボネート樹脂を構成する全ジヒドロキシ化合物に由来する構造単位に対して、特定ジヒドロキシ化合物に由来する構造単位を、90mol%以下含有することが好ましい。
さらに、前記ポリカーボネート樹脂が、該ポリカーボネート樹脂を構成する全ジヒドロキシ化合物に由来する構造単位に対して、特定ジヒドロキシ化合物に由来する構造単位を、90mol%以下含有することが好ましい。
一方、前記蛍光体が、無機化合物であることが好ましい。
また、前記蛍光体が短残光蛍光体であることが好ましい。
さらに、透過率調整剤を配合することが好ましい。
また、前記熱可塑性樹脂組成物の1.0mm厚プレートの全光線透過率が30〜70%であることが好ましい。
また、前記蛍光体が短残光蛍光体であることが好ましい。
さらに、透過率調整剤を配合することが好ましい。
また、前記熱可塑性樹脂組成物の1.0mm厚プレートの全光線透過率が30〜70%であることが好ましい。
また、本発明の第二の発明の態様は、
入射光の少なくとも一部を波長変換して、前記入射光とは異なる波長の出射光を放出する波長変換部材であって、
該波長変換部材は、前記入射光の少なくとも一部を吸収して前記入射光とは異なる波長の出射光を放出する蛍光体と、該蛍光体を保持する熱可塑性樹脂を含む、面状構造を有するものであって、
該熱可塑性樹脂が、前記特定ジヒドロキシ化合物に由来する構造単位を少なくとも有するポリカーボネート樹脂を含有し、
該面状構造の少なくとも一部は、全光線透過率が30%以上、70%以下
である波長変換部材である。
入射光の少なくとも一部を波長変換して、前記入射光とは異なる波長の出射光を放出する波長変換部材であって、
該波長変換部材は、前記入射光の少なくとも一部を吸収して前記入射光とは異なる波長の出射光を放出する蛍光体と、該蛍光体を保持する熱可塑性樹脂を含む、面状構造を有するものであって、
該熱可塑性樹脂が、前記特定ジヒドロキシ化合物に由来する構造単位を少なくとも有するポリカーボネート樹脂を含有し、
該面状構造の少なくとも一部は、全光線透過率が30%以上、70%以下
である波長変換部材である。
また、本発明の第三の発明の態様は、第二の態様に係る波長変換部材を備える発光装置であり、本発明の第四の発明の態様は、第三の態様に係る発光装置を備えるLED照明器
具である。
具である。
耐久性に優れ、輝度・色度変化が少なく、発光効率の優れたLED照明用樹脂組成物、波長変換部材、発光装置、LED照明器具を提供する。また、紫外線の多い屋外で使用しても劣化が少ない波長変換部材、発光装置、LED照明器具を提供する。さらに、半導体発光素子の発光波長が短波長であっても耐久性に優れている波長変換部材、発光装置、LED照明器具を提供する。
<1.熱可塑性樹脂組成物>
本発明の第一の態様は、構造の一部に下記一般式(1)で表される部位を有するジヒドロキシ化合物(以下「特定ジヒドロキシ化合物」と称す。)に由来する構造単位を少なくとも有するポリカーボネート樹脂を含む熱可塑性樹脂組成物であって、該熱可塑性樹脂組成物における蛍光体の含有量が、0.01重量%以上であることを特徴とする熱可塑性樹脂組成物に関する。
本発明の第一の態様は、構造の一部に下記一般式(1)で表される部位を有するジヒドロキシ化合物(以下「特定ジヒドロキシ化合物」と称す。)に由来する構造単位を少なくとも有するポリカーボネート樹脂を含む熱可塑性樹脂組成物であって、該熱可塑性樹脂組成物における蛍光体の含有量が、0.01重量%以上であることを特徴とする熱可塑性樹脂組成物に関する。
(但し、上記一般式(1)で表される部位が−CH2−O−Hの一部である場合を除く。)
前記熱可塑性樹脂組成物に含有される熱可塑性樹脂の合計量に対する前記ポリカーボネート樹脂の含有量が、50重量%以上、100重量%以下であることが好ましい。前記ポリカーボネート樹脂の含有量が少ないと、十分な耐候性を持つことができなくなることがある等、前記ポリカーボネート樹脂の特徴を維持することが困難になる。
前記熱可塑性樹脂組成物に含有される熱可塑性樹脂の合計量に対する前記ポリカーボネート樹脂の含有量が、50重量%以上、100重量%以下であることが好ましい。前記ポリカーボネート樹脂の含有量が少ないと、十分な耐候性を持つことができなくなることがある等、前記ポリカーボネート樹脂の特徴を維持することが困難になる。
<1−1.ポリカーボネート樹脂>
本発明で使用するポリカーボネート樹脂は、特定ジヒドロキシ化合物に由来する構造単位を少なくとも含むポリカーボネート樹脂である。
本発明で使用するポリカーボネート樹脂は、特定ジヒドロキシ化合物に由来する構造単位を少なくとも含むポリカーボネート樹脂である。
(但し、上記式(1)で表される部位が−CH2−OHの一部を構成する部位である場合を除く。)
[ポリカーボネート樹脂の製造方法]
以下、本発明のポリカーボネート樹脂を製造する方法について詳述する。
[ポリカーボネート樹脂の製造方法]
以下、本発明のポリカーボネート樹脂を製造する方法について詳述する。
<原料>
(ジヒドロキシ化合物)
本発明のポリカーボネート樹脂は、特定ジヒドロキシ化合物に由来する構造単位を少な
くとも含む。即ち、特定ジヒドロキシ化合物は、2つのヒドロキシル基と、さらに下記式(1)の構造単位を少なくとも含むものを言う。
(ジヒドロキシ化合物)
本発明のポリカーボネート樹脂は、特定ジヒドロキシ化合物に由来する構造単位を少な
くとも含む。即ち、特定ジヒドロキシ化合物は、2つのヒドロキシル基と、さらに下記式(1)の構造単位を少なくとも含むものを言う。
(但し、上記式(1)で表される部位が−CH2−OHの一部を構成する部位である場合を除く。)
特定ジヒドロキシ化合物としては、具体的には、オキシアルキレングリコール類、芳香族基に結合したエーテル基を主鎖中に有するジヒドロキシ化合物、環状エーテル構造を有するジヒドロキシ化合物等が挙げられる。これらのジヒドロキシ化合物は重合反応性が良好であり、得られるポリカーボネート樹脂の機械物性や耐熱性、光学特性なども優れている点において好ましい。
特定ジヒドロキシ化合物としては、具体的には、オキシアルキレングリコール類、芳香族基に結合したエーテル基を主鎖中に有するジヒドロキシ化合物、環状エーテル構造を有するジヒドロキシ化合物等が挙げられる。これらのジヒドロキシ化合物は重合反応性が良好であり、得られるポリカーボネート樹脂の機械物性や耐熱性、光学特性なども優れている点において好ましい。
前記のオキシアルキレングリコール類としては、例えば、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリトリメチレングリコール、ポリテトラメチレングリコール等が挙げられる。
前記の主鎖に芳香族基に結合したエーテル基を有するジヒドロキシ化合物としては、例えば、9,9−ビス[4−(2−ヒドロキシエトキシ)フェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシプロポキシ)フェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシエトキシ)−3−メチルフェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシプロポキシ)−3−メチルフェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシエトキシ)−3−イソプロピルフェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシエトキシ)−3−イソブチルフェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシエトキシ)−3−tert−ブチルフェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシエトキシ)−3−シクロヘキシルフェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシエトキシ)−3−フェニルフェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシエトキシ)−3,5−ジメチルフェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシエトキシ)−3−tert−ブチル−6−メチルフェニル]フルオレン、9,9−ビス[4−(3−ヒドロキシ−2,2−ジメチルプロポキシ)フェニル]フルオレン、2,2−ビス[4−(2−ヒドロキシエトキシ)フェニル]プロパン、2,2−ビス[4−(2−ヒドロキシプロポキシ)フェニル]プロパン、1,3−ビス(2−ヒドロキシエトキシ)ベンゼン、4,4’−ビス(2−ヒドロキシエトキシ)ビフェニルおよびビス[4−(2−ヒドロキシエトキシ)フェニル]スルホン等が挙げられる。
前記の主鎖に芳香族基に結合したエーテル基を有するジヒドロキシ化合物としては、例えば、9,9−ビス[4−(2−ヒドロキシエトキシ)フェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシプロポキシ)フェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシエトキシ)−3−メチルフェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシプロポキシ)−3−メチルフェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシエトキシ)−3−イソプロピルフェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシエトキシ)−3−イソブチルフェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシエトキシ)−3−tert−ブチルフェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシエトキシ)−3−シクロヘキシルフェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシエトキシ)−3−フェニルフェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシエトキシ)−3,5−ジメチルフェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシエトキシ)−3−tert−ブチル−6−メチルフェニル]フルオレン、9,9−ビス[4−(3−ヒドロキシ−2,2−ジメチルプロポキシ)フェニル]フルオレン、2,2−ビス[4−(2−ヒドロキシエトキシ)フェニル]プロパン、2,2−ビス[4−(2−ヒドロキシプロポキシ)フェニル]プロパン、1,3−ビス(2−ヒドロキシエトキシ)ベンゼン、4,4’−ビス(2−ヒドロキシエトキシ)ビフェニルおよびビス[4−(2−ヒドロキシエトキシ)フェニル]スルホン等が挙げられる。
前記の環状エーテル構造を有するジヒドロキシ化合物としては、例えば、下記式(2)で表されるジヒドロキシ化合物、下記式(4)および下記式(5)で表されるスピログリコール等が挙げられる。なお、前記の「環状エーテル構造を有するジヒドロキシ化合物」の「環状エーテル構造」とは、環状構造中にエーテル基を有し、環状鎖を構成する炭素原子が脂肪族炭素原子である構造からなるものを意味する。
前記式(2)で表されるジヒドロキシ化合物としては、立体異性体の関係にある、イソソルビド(ISB)、イソマンニドおよびイソイデットが挙げられる。これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
これらの特定ジヒドロキシ化合物の中でも、入手のし易さ、ハンドリング、重合時の反応性および得られるポリカーボネート樹脂の色相の観点から、前記式(2)、(4)または(5)で表されるジヒドロキシ化合物に代表される、環状エーテル構造を有するジヒドロキシ化合物が好ましく、前記式(2)で表されるジヒドロキシ化合物または前記式(5)で表されるスピログリコール等の環状エーテル構造を2つ有するジヒドロキシ化合物がさらに好ましく、中でも植物由来の資源として豊富に存在し、容易に入手可能な種々のデンプンから製造されるソルビトールを脱水縮合して得られる上記式(2)で表されるジヒドロキシ化合物等の無水糖アルコールが、入手及び製造のし易さ、耐候性、光学特性、成形性、耐熱性およびカーボンニュートラルの面から最も好ましい。
これらの特定ジヒドロキシ化合物の中でも、入手のし易さ、ハンドリング、重合時の反応性および得られるポリカーボネート樹脂の色相の観点から、前記式(2)、(4)または(5)で表されるジヒドロキシ化合物に代表される、環状エーテル構造を有するジヒドロキシ化合物が好ましく、前記式(2)で表されるジヒドロキシ化合物または前記式(5)で表されるスピログリコール等の環状エーテル構造を2つ有するジヒドロキシ化合物がさらに好ましく、中でも植物由来の資源として豊富に存在し、容易に入手可能な種々のデンプンから製造されるソルビトールを脱水縮合して得られる上記式(2)で表されるジヒドロキシ化合物等の無水糖アルコールが、入手及び製造のし易さ、耐候性、光学特性、成形性、耐熱性およびカーボンニュートラルの面から最も好ましい。
これらの特定ジヒドロキシ化合物は、得られるポリカーボネート樹脂の要求性能に応じて、単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、本発明のポリカーボネート樹脂は、耐熱性や機械物性、光学物性などのバランスを考慮すると、特定ジヒドロキシ化合物に由来する構造を25重量%以上含有することが好ましく、特に30重量%以上、80重量%以下、とりわけ35重量%以上、75重量%以下含有することが好ましい。
本発明のポリカーボネート樹脂は、上記の特定ジヒドロキシ化合物以外のジヒドロキシ化合物(以下「その他のジヒドロキシ化合物」と称す場合がある。)に由来する構造単位を含んでいてもよい。前記その他のジヒドロキシ化合物としては、例えば、脂肪族ジヒドロキシ化合物(直鎖脂肪族炭化水素のジヒドロキシ化合物、分岐を有する直鎖脂肪族炭化水素のジヒドロキシ化合物)、脂環式炭化水素のジヒドロキシ化合物および芳香族ビスフェノール類等が挙げられる。
前記の直鎖脂肪族炭化水素のジヒドロキシ化合物としては、例えば、エチレングリコー
ル、1,3−プロパンジオール、1,2−プロパンジオール、1,4−ブタンジオール、1,3−ブタンジオール、1,2−ブタンジオール、1,5−ヘプタンジオール、1,6−ヘキサンジオール、1,10−デカンジオールおよび1,12−ドデカンジオール等が挙げられる。
ル、1,3−プロパンジオール、1,2−プロパンジオール、1,4−ブタンジオール、1,3−ブタンジオール、1,2−ブタンジオール、1,5−ヘプタンジオール、1,6−ヘキサンジオール、1,10−デカンジオールおよび1,12−ドデカンジオール等が挙げられる。
前記の分岐を有する直鎖脂肪族炭化水素のジヒドロキシ化合物としては、例えば、ネオペンチルグリコールおよびヘキシレングリコール等が挙げられる。
前記の脂環式炭化水素のジヒドロキシ化合物としては、例えば、1,2−シクロヘキサンジオール、1,2−シクロヘキサンジメタノール、1,3−シクロヘキサンジメタノール、1,4−シクロヘキサンジメタノール、トリシクロデカンジメタノール、ペンタシクロペンタデカンジメタノール、2,6−デカリンジメタノール、1,5−デカリンジメタノール、2,3−デカリンジメタノール、2,3−ノルボルナンジメタノール、2,5−ノルボルナンジメタノール、1,3−アダマンタンジメタノール、リモネンなどのテルペン化合物から誘導されるジヒドロキシ化合物等が挙げられる。
前記の脂環式炭化水素のジヒドロキシ化合物としては、例えば、1,2−シクロヘキサンジオール、1,2−シクロヘキサンジメタノール、1,3−シクロヘキサンジメタノール、1,4−シクロヘキサンジメタノール、トリシクロデカンジメタノール、ペンタシクロペンタデカンジメタノール、2,6−デカリンジメタノール、1,5−デカリンジメタノール、2,3−デカリンジメタノール、2,3−ノルボルナンジメタノール、2,5−ノルボルナンジメタノール、1,3−アダマンタンジメタノール、リモネンなどのテルペン化合物から誘導されるジヒドロキシ化合物等が挙げられる。
前記の芳香族ビスフェノール類としては、例えば、2,2−ビス(4−ヒドロキシフェニル)プロパン(=ビスフェノールA)、2,2−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3,5−ジエチルフェニル)プロパン、2,2−ビス(4−ヒドロキシ−(3,5−ジフェニル)フェニル)プロパン、2,2−ビス(4−ヒドロキシ−3,5−ジブロモフェニル)プロパン、2,2−ビス(4−ヒドロキシフェニル)ペンタン、2,4’−ジヒドロキシ−ジフェニルメタン、ビス(4−ヒドロキシフェニル)メタン、ビス(4−ヒドロキシ−5−ニトロフェニル)メタン、1,1−ビス(4−ヒドロキシフェニル)エタン、1,1−ビス(4−ヒドロキシフェニル)−2−エチルヘキサン、1,1−ビス(4−ヒドロキシフェニル)デカン、1,3−ビス[2−(4−ヒドロキシフェニル)−2−プロピル]ベンゼン、2,2−ビス(4−ヒドロキシフェニル)オクタン、2,2−ビス(4−ヒドロキシフェニル)ノナン、2,2−ビス(4−ヒドロキシフェニル)デカン、3,3−ビス(4−ヒドロキシフェニル)ペンタン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、ビス(4−ヒドロキシフェニル)スルホン、2,4’−ジヒドロキシジフェニルスルホン、ビス(4−ヒドロキシフェニル)スルフィド、4,4’−ジヒドロキシジフェニルエーテル、4,4’−ジヒドロキシ−3,3’−ジクロロジフェニルエーテル、4,4’−ジヒドロキシ−2,5−ジエトキシジフェニルエーテル、9,9−ビス(4−ヒドロキシフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−エチルフェニル)フルオレン、(4−ヒドロキシ−3−n−プロピルフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−イソプロピルフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−n−ブチルフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−sec−ブチルフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−tert−ブチルフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−シクロヘキシルフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−フェニルフェニル)フルオレン等が挙げられる。
上記のその他のジヒドロキシ化合物の中でも、得られるポリカーボネート樹脂の光学特性や耐熱性、機械物性の観点からは、2,2−ビス(4−ヒドロキシフェニル)プロパン(=ビスフェノールA)または下記式(3)で表されるジヒドロキシ化合物を用いることが好ましい。入手及び製造のしやすさや前述の性能の点から、特に好ましいのは、2,2−ビス(4−ヒドロキシフェニル)プロパン(=ビスフェノールA)、9,9−ビス[4−(2−ヒドロキシエトキシ)フェニル]フルオレン、9,9−ビス(4−ヒドロキシフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレンである。
(上記一般式(3)中、R1〜R4はそれぞれ独立に、水素原子、置換若しくは無置換の炭素数1〜20のアルキル基、置換若しくは無置換の炭素数6〜20のシクロアルキル基、または、置換若しくは無置換の炭素数6〜20のアリール基を表し、X1とX2はそれぞれ独立に、置換若しくは無置換の炭素数2〜10のアルキレン基、置換若しくは無置換の炭素数6〜20のシクロアルキレン基、または、置換若しくは無置換の炭素数6〜20のアリーレン基を表す。m及びnはそれぞれ独立に0〜5の整数である。)
本発明のポリカーボネート樹脂において、位相差の波長分散性や耐熱性などの所望とする光学特性や機械物性を満足するには、前記式(3)で表されるジヒドロキシ化合物に由来する構造単位を25重量%以上、75重量%以下含有することが好ましく、30重量%以上、70重量%以下含有することがより好ましい。
本発明のポリカーボネート樹脂において、位相差の波長分散性や耐熱性などの所望とする光学特性や機械物性を満足するには、前記式(3)で表されるジヒドロキシ化合物に由来する構造単位を25重量%以上、75重量%以下含有することが好ましく、30重量%以上、70重量%以下含有することがより好ましい。
これらの前記その他のジヒドロキシ化合物も、得られるポリカーボネート樹脂の要求性能に応じて、単独で前記特定ジヒドロキシ化合物と併用してもよく、2種以上を組み合わせた上で前記特定ジヒドロキシ化合物と併用してもよい。中でも、ポリカーボネート樹脂の色調や耐候性、光学特性の観点からは、分子構造内に芳香環構造を有しないジヒドロキシ化合物、即ち脂肪族炭化水素のジヒドロキシ化合物または脂環式炭化水素のジヒドロキシ化合物が好ましく、これらを併用してもよい。
前記したうち、脂肪族炭化水素のジヒドロキシ化合物としては、特に1,3−プロパンジオール、1,4−ブタンジオール、1,5−ヘプタンジオールまたは1,6−ヘキサンジオール等の炭素数3〜6で両末端にヒドロキシ基を有する直鎖脂肪族炭化水素のジヒドロキシ化合物が好ましい。
脂環式炭化水素のジヒドロキシ化合物としては、1,2−シクロヘキサンジメタノール、1,3−シクロヘキサンジメタノール、1,4−シクロヘキサンジメタノールまたはトリシクロデカンジメタノールが好ましく、より好ましいのは1,2−シクロヘキサンジメタノール、1,3−シクロヘキサンジメタノールまたは1,4−シクロヘキサンジメタノールなどのシクロヘキサン構造を有するジヒドロキシ化合物であり、最も好ましいのは1,4−シクロヘキサンジメタノールである。
脂環式炭化水素のジヒドロキシ化合物としては、1,2−シクロヘキサンジメタノール、1,3−シクロヘキサンジメタノール、1,4−シクロヘキサンジメタノールまたはトリシクロデカンジメタノールが好ましく、より好ましいのは1,2−シクロヘキサンジメタノール、1,3−シクロヘキサンジメタノールまたは1,4−シクロヘキサンジメタノールなどのシクロヘキサン構造を有するジヒドロキシ化合物であり、最も好ましいのは1,4−シクロヘキサンジメタノールである。
これら前記その他のジヒドロキシ化合物を、前記特定ジヒドロキシ化合物と併用することにより、ポリカーボネート樹脂の柔軟性や機械物性の改善、および成形性の改善などの効果を得ることも可能である。ただし、ポリカーボネート樹脂中の前記その他のジヒドロキシ化合物に由来する構造単位の含有割合が多過ぎると、機械的物性の低下または耐熱性の低下を招くことがあるため、本発明のポリカーボネート樹脂において、前記その他のジヒドロキシ化合物に由来する構造単位の割合は、好ましくは70重量%以下、さらに好ましくは65重量%以下、特に好ましくは60重量%以下である。一方、好ましくは10重量%以上、さらに好ましくは15重量%以上、特に好ましくは20重量%以上である。
また、その他のジヒドロキシ化合物と特定ジヒドロキシ化合物との併用による上記効果
を有効に得るために、ポリカーボネート樹脂中の全ジヒドロキシ化合物に由来する構造単位に占める特定ジヒドロキシ化合物に由来する構造単位の割合は、モル比で、全ジヒドロキシ化合物に由来する構造単位を1とした場合、0.1以上、0.95以下、とりわけ0.2以上、0.9以下であることが好ましい。
を有効に得るために、ポリカーボネート樹脂中の全ジヒドロキシ化合物に由来する構造単位に占める特定ジヒドロキシ化合物に由来する構造単位の割合は、モル比で、全ジヒドロキシ化合物に由来する構造単位を1とした場合、0.1以上、0.95以下、とりわけ0.2以上、0.9以下であることが好ましい。
また、特定ジヒドロキシ化合物として、前記式(2)で表されるジヒドロキシ化合物と前記式(3)で表されるジヒドロキシ化合物とを併用する場合、さらにオキシアルキレングリコール類を併用することが好ましく、この場合において、ポリカーボネート樹脂中の全ジヒドロキシ化合物に由来する構造単位に占める前記式(2)で表されるジヒドロキシ化合物に由来する構造単位、前記式(3)で表されるジヒドロキシ化合物に由来する構造単位、およびオキシアルキレングリコール類に由来する構造単位の割合は、全ジヒドロキシ化合物に由来する構造単位を1とした場合のモル比で、前記式(2)で表されるジヒドロキシ化合物に由来する構造単位を0.1〜0.7、前記式(3)で表されるジヒドロキシ化合物に由来する構造単位を0.1〜0.5、オキシアルキレングリコール類に由来する構造単位を0.001〜0.3とすることが好ましい。
本発明のポリカーボネート樹脂の製造に使用される全てのジヒドロキシ化合物は、還元剤、抗酸化剤、脱酸素剤、光安定剤、制酸剤、pH安定剤または熱安定剤等の安定剤を含んでいてもよい。特に酸性下で本発明の特定ジヒドロキシ化合物は変質しやすいことから、塩基性安定剤を含むことが好ましい。
塩基性安定剤としては、例えば、長周期型周期表(Nomenclature of Inorganic Chemistry IUPAC Recommendations2005)における1族または2族の金属の水酸化物、炭酸塩、リン酸塩、亜リン酸塩、次亜リン酸塩、硼酸塩および脂肪酸塩、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、トリメチルエチルアンモニウムヒドロキシド、トリメチルベンジルアンモニウムヒドロキシド、トリメチルフェニルアンモニウムヒドロキシド、トリエチルメチルアンモニウムヒドロキシド、トリエチルベンジルアンモニウムヒドロキシド、トリエチルフェニルアンモニウムヒドロキシド、トリブチルベンジルアンモニウムヒドロキシド、トリブチルフェニルアンモニウムヒドロキシド、テトラフェニルアンモニウムヒドロキシド、ベンジルトリフェニルアンモニウムヒドロキシド、メチルトリフェニルアンモニウムヒドロキシドおよびブチルトリフェニルアンモニウムヒドロキシド等の塩基性アンモニウム化合物、ジエチルアミン、ジブチルアミン、トリエチルアミン、モルホリン、N−メチルモルホリン、ピロリジン、ピペリジン、3−アミノ−1−プロパノール、エチレンジアミン、N−メチルジエタノールアミン、ジエチルエタノールアミン、4−アミノピリジン、2−アミノピリジン、N,N−ジメチル−4−アミノピリジン、4−ジエチルアミノピリジン、2−ヒドロキシピリジン、2−メトキシピリジン、4−メトキシピリジン、2−ジメチルアミノイミダゾール、2−メトキシイミダゾール、イミダゾール、2−メルカプトイミダゾール、2−メチルイミダゾールおよびアミノキノリン等のアミン系化合物、並びにジ−(tert−ブチル)アミンおよび2,2,6,6−テトラメチルピペリジン等のヒンダードアミン系化合物が挙げられる。これらの安定剤の中でも安定化の効果からはテトラメチルアンモニウムヒドロキシド、イミダゾールまたはヒンダードアミン系化合物が好ましい。
塩基性安定剤としては、例えば、長周期型周期表(Nomenclature of Inorganic Chemistry IUPAC Recommendations2005)における1族または2族の金属の水酸化物、炭酸塩、リン酸塩、亜リン酸塩、次亜リン酸塩、硼酸塩および脂肪酸塩、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、トリメチルエチルアンモニウムヒドロキシド、トリメチルベンジルアンモニウムヒドロキシド、トリメチルフェニルアンモニウムヒドロキシド、トリエチルメチルアンモニウムヒドロキシド、トリエチルベンジルアンモニウムヒドロキシド、トリエチルフェニルアンモニウムヒドロキシド、トリブチルベンジルアンモニウムヒドロキシド、トリブチルフェニルアンモニウムヒドロキシド、テトラフェニルアンモニウムヒドロキシド、ベンジルトリフェニルアンモニウムヒドロキシド、メチルトリフェニルアンモニウムヒドロキシドおよびブチルトリフェニルアンモニウムヒドロキシド等の塩基性アンモニウム化合物、ジエチルアミン、ジブチルアミン、トリエチルアミン、モルホリン、N−メチルモルホリン、ピロリジン、ピペリジン、3−アミノ−1−プロパノール、エチレンジアミン、N−メチルジエタノールアミン、ジエチルエタノールアミン、4−アミノピリジン、2−アミノピリジン、N,N−ジメチル−4−アミノピリジン、4−ジエチルアミノピリジン、2−ヒドロキシピリジン、2−メトキシピリジン、4−メトキシピリジン、2−ジメチルアミノイミダゾール、2−メトキシイミダゾール、イミダゾール、2−メルカプトイミダゾール、2−メチルイミダゾールおよびアミノキノリン等のアミン系化合物、並びにジ−(tert−ブチル)アミンおよび2,2,6,6−テトラメチルピペリジン等のヒンダードアミン系化合物が挙げられる。これらの安定剤の中でも安定化の効果からはテトラメチルアンモニウムヒドロキシド、イミダゾールまたはヒンダードアミン系化合物が好ましい。
これら塩基性安定剤の、本発明で用いる全てのジヒドロキシ化合物中の含有量に特に制限はないが、本発明で用いる前記の特定ジヒドロキシ化合物は酸性状態では不安定であるので、上記の安定剤を含む特定ジヒドロキシ化合物の水溶液のpHが7付近となるように安定剤を添加することが好ましい。
安定剤の量が少なすぎると特定ジヒドロキシ化合物の変質を防止する効果が得られない可能性があり、多すぎると特定ジヒドロキシ化合物の変性を招く場合があるので、本発明
で用いるそれぞれのジヒドロキシ化合物に対して、0.0001重量%〜1重量%であることが好ましく、より好ましくは0.001重量%〜0.1重量%である。
安定剤の量が少なすぎると特定ジヒドロキシ化合物の変質を防止する効果が得られない可能性があり、多すぎると特定ジヒドロキシ化合物の変性を招く場合があるので、本発明
で用いるそれぞれのジヒドロキシ化合物に対して、0.0001重量%〜1重量%であることが好ましく、より好ましくは0.001重量%〜0.1重量%である。
これら塩基性安定剤を本発明で用いるジヒドロキシ化合物に含めたままポリカーボネート樹脂の製造原料として用いると、塩基性安定剤自体が重合触媒となり、重合速度または品質の制御が困難になるだけでなく、樹脂色相の悪化を招いてしまう。
このため、特定ジヒドロキシ化合物または前記その他のジヒドロキシ化合物のうち塩基性安定剤を含有するものについては、ポリカーボネート樹脂の製造原料として使用する前に塩基性安定剤をイオン交換樹脂または蒸留等で除去することが好ましい。
このため、特定ジヒドロキシ化合物または前記その他のジヒドロキシ化合物のうち塩基性安定剤を含有するものについては、ポリカーボネート樹脂の製造原料として使用する前に塩基性安定剤をイオン交換樹脂または蒸留等で除去することが好ましい。
また、本発明で用いられる特定ジヒドロキシ化合物は、酸素によって徐々に酸化されやすいので、保管または製造時の取り扱いの際には、酸素による分解を防ぐため、水分が混入しないようにし、また、脱酸素剤を用いたり、窒素雰囲気下にしたりすることが好ましい。
(炭酸ジエステル)
本発明のポリカーボネート樹脂は、上述した特定ジヒドロキシ化合物を含むジヒドロキシ化合物と炭酸ジエステルとを原料として、エステル交換反応により重縮合させて得ることができる。用いられる炭酸ジエステルとしては、通常、下記式(6)で表されるものが挙げられる。これらの炭酸ジエステルは、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
本発明のポリカーボネート樹脂は、上述した特定ジヒドロキシ化合物を含むジヒドロキシ化合物と炭酸ジエステルとを原料として、エステル交換反応により重縮合させて得ることができる。用いられる炭酸ジエステルとしては、通常、下記式(6)で表されるものが挙げられる。これらの炭酸ジエステルは、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
上記式(6)において、A1およびA2は、それぞれ置換もしくは無置換の炭素数1〜18の脂肪族炭化水素基または置換もしくは無置換の芳香族炭化水素基であり、A1とA2とは同一であっても異なっていてもよい。A1およびA2の好ましいものは置換もしくは無置換の芳香族炭化水素基であり、より好ましいのは無置換の芳香族炭化水素基である。
前記式(6)で表される炭酸ジエステルとしては、例えば、ジフェニルカーボネート(DPC)およびジトリルカーボネート等の置換ジフェニルカーボネート、ジメチルカーボネート、ジエチルカーボネート並びにジ−t−ブチルカーボネート等が挙げられる。中でも好ましくはジフェニルカーボネートまたは置換ジフェニルカーボネートであり、特に好ましくはジフェニルカーボネートである。
なお、炭酸ジエステルは、塩化物イオンなどの不純物を含む場合があり、不純物が重合反応を阻害したり、得られるポリカーボネート樹脂の色相を悪化させたりする場合があるため、必要に応じて、蒸留などにより精製したものを使用することが好ましい。
<エステル交換反応触媒>
本発明のポリカーボネート樹脂は、上述したジヒドロキシ化合物と炭酸ジエステルをエステル交換反応させて製造される。より詳細には、エステル交換させ、副生するモノヒドロキシ化合物等を系外に除去することによって得られる。
<エステル交換反応触媒>
本発明のポリカーボネート樹脂は、上述したジヒドロキシ化合物と炭酸ジエステルをエステル交換反応させて製造される。より詳細には、エステル交換させ、副生するモノヒドロキシ化合物等を系外に除去することによって得られる。
前記エステル交換反応の際には、エステル交換反応触媒存在下で重縮合を行うが、本発明のポリカーボネート樹脂の製造時に使用し得るエステル交換反応触媒(以下、単に触媒
、重合触媒と言うことがある)は、反応速度または重縮合して得られるポリカーボネート樹脂の品質に非常に大きな影響を与え得る。
用いられる触媒としては、製造されたポリカーボネート樹脂の透明性、色相、耐熱性、耐候性、及び機械的強度を満足させ得るものであれば限定されない。例えば、長周期型周期表における1族または2族(以下、単に「1族」、「2族」と表記する。)の金属化合物、並びに塩基性ホウ素化合物、塩基性リン化合物、塩基性アンモニウム化合物およびアミン系化合物等の塩基性化合物が挙げられる。好ましくは1族金属化合物及び/又は2族金属化合物が使用される。
、重合触媒と言うことがある)は、反応速度または重縮合して得られるポリカーボネート樹脂の品質に非常に大きな影響を与え得る。
用いられる触媒としては、製造されたポリカーボネート樹脂の透明性、色相、耐熱性、耐候性、及び機械的強度を満足させ得るものであれば限定されない。例えば、長周期型周期表における1族または2族(以下、単に「1族」、「2族」と表記する。)の金属化合物、並びに塩基性ホウ素化合物、塩基性リン化合物、塩基性アンモニウム化合物およびアミン系化合物等の塩基性化合物が挙げられる。好ましくは1族金属化合物及び/又は2族金属化合物が使用される。
前記の1族金属化合物としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化セシウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素リチウム、炭酸水素セシウム、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸セシウム、酢酸ナトリウム、酢酸カリウム、酢酸リチウム、酢酸セシウム、ステアリン酸ナトリウム、ステアリン酸カリウム、ステアリン酸リチウム、ステアリン酸セシウム、水素化ホウ素ナトリウム、水素化ホウ素カリウム、水素化ホウ素リチウム、水素化ホウ素セシウム、フェニル化ホウ素ナトリウム、フェニル化ホウ素カリウム、フェニル化ホウ素リチウム、フェニル化ホウ素セシウム、安息香酸ナトリウム、安息香酸カリウム、安息香酸リチウム、安息香酸セシウム、リン酸水素2ナトリウム、リン酸水素2カリウム、リン酸水素2リチウム、リン酸水素2セシウム、フェニルリン酸2ナトリウム、フェニルリン酸2カリウム、フェニルリン酸2リチウム、フェニルリン酸2セシウム、ナトリウム、カリウム、リチウム、セシウムのアルコレート、フェノレート、ビスフェノールAの2ナトリウム塩、2カリウム塩、2リチウム塩および2セシウム塩等が挙げられる。中でも重合活性と得られるポリカーボネート樹脂の色相の観点から、リチウム化合物が好ましい。
前記の2族金属化合物としては、例えば、水酸化カルシウム、水酸化バリウム、水酸化マグネシウム、水酸化ストロンチウム、炭酸水素カルシウム、炭酸水素バリウム、炭酸水素マグネシウム、炭酸水素ストロンチウム、炭酸カルシウム、炭酸バリウム、炭酸マグネシウム、炭酸ストロンチウム、酢酸カルシウム、酢酸バリウム、酢酸マグネシウム、酢酸ストロンチウム、ステアリン酸カルシウム、ステアリン酸バリウム、ステアリン酸マグネシウムおよびステアリン酸ストロンチウム等が挙げられる。中でもマグネシウム化合物、カルシウム化合物またはバリウム化合物が好ましく、重合活性と得られるポリカーボネート樹脂の色相の観点から、マグネシウム化合物及び/又はカルシウム化合物が更に好ましく、最も好ましくはカルシウム化合物である。
なお、前記の1族金属化合物及び/又は2族金属化合物と共に補助的に、塩基性ホウ素化合物、塩基性リン化合物、塩基性アンモニウム化合物、アミン系化合物等の塩基性化合物を併用することも可能であるが、1族金属化合物及び/又は2族金属化合物のみを使用することが特に好ましい。
前記の塩基性リン化合物としては、例えば、トリエチルホスフィン、トリ−n−プロピルホスフィン、トリイソプロピルホスフィン、トリ−n−ブチルホスフィン、トリフェニルホスフィン、トリブチルホスフィンおよび四級ホスホニウム塩等が挙げられる。
前記の塩基性リン化合物としては、例えば、トリエチルホスフィン、トリ−n−プロピルホスフィン、トリイソプロピルホスフィン、トリ−n−ブチルホスフィン、トリフェニルホスフィン、トリブチルホスフィンおよび四級ホスホニウム塩等が挙げられる。
前記の塩基性アンモニウム化合物としては、例えば、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、トリメチルエチルアンモニウムヒドロキシド、トリメチルベンジルアンモニウムヒドロキシド、トリメチルフェニルアンモニウムヒドロキシド、トリエチルメチルアンモニウムヒドロキシド、トリエチルベンジルアンモニウムヒドロキシド、トリエチルフェニルアンモニウムヒドロキシド、トリブチルベンジルアンモニウムヒドロキシド、トリブチルフェニルアンモニウムヒドロキシド、テトラフェニルアンモニウムヒドロキシド、ベンジルトリフェニルアンモニウムヒドロキシド、メ
チルトリフェニルアンモニウムヒドロキシドおよびブチルトリフェニルアンモニウムヒドロキシド等が挙げられる。
チルトリフェニルアンモニウムヒドロキシドおよびブチルトリフェニルアンモニウムヒドロキシド等が挙げられる。
前記のアミン系化合物としては、例えば、4−アミノピリジン、2−アミノピリジン、N,N−ジメチル−4−アミノピリジン、4−ジエチルアミノピリジン、2−ヒドロキシピリジン、2−メトキシピリジン、4−メトキシピリジン、2−ジメチルアミノイミダゾール、2−メトキシイミダゾール、イミダゾール、2−メルカプトイミダゾール、2−メチルイミダゾール、アミノキノリンおよびグアニジン等が挙げられる。
上記重合触媒の使用量は、重合に使用した全ジヒドロキシ化合物1mol当たり0.1μmol〜300μmolが好ましく、より好ましくは0.5μmol〜100μmolであり、特に1μmol〜50μmolが好ましい。
中でも長周期型周期表における2族からなる群及びリチウムより選ばれた少なくとも1種の金属を含む化合物を用いる場合、特にはマグネシウム化合物及び/またはカルシウム化合物を用いる場合は、金属量として、前記全ジヒドロキシ化合物1mol当たり、0.1μmol以上が好ましく、より好ましくは0.3μmol以上、特に好ましくは0.5μmol以上とする。また上限としては、20μmol以下が好ましく、より好ましくは10μmol以下であり、さらに好ましくは5μmol以下で、特に好ましくは3μmol以下である。
中でも長周期型周期表における2族からなる群及びリチウムより選ばれた少なくとも1種の金属を含む化合物を用いる場合、特にはマグネシウム化合物及び/またはカルシウム化合物を用いる場合は、金属量として、前記全ジヒドロキシ化合物1mol当たり、0.1μmol以上が好ましく、より好ましくは0.3μmol以上、特に好ましくは0.5μmol以上とする。また上限としては、20μmol以下が好ましく、より好ましくは10μmol以下であり、さらに好ましくは5μmol以下で、特に好ましくは3μmol以下である。
触媒量が少なすぎると、重合速度が遅くなるため、所望の分子量のポリカーボネート樹脂を得ようとするにはその分だけ重合温度を高くせざるを得なくなる。そのために、得られたポリカーボネート樹脂の色相が悪化する可能性が高くなり、また、未反応の原料が重合途中で揮発してジヒドロキシ化合物と炭酸ジエステルのモル比率が崩れ、所望の分子量に到達しない可能性がある。一方、重合触媒の使用量が多すぎると、好ましくない副反応を併発し、得られるポリカーボネート樹脂の色相の悪化または成形加工時の樹脂の着色を招く可能性がある。
ただし、1族金属の中でもナトリウム、カリウムまたはセシウムは、ポリカーボネート樹脂中に多く含まれると色相に悪影響を及ぼす可能性がある。そして、これらの金属は使用する触媒からのみではなく、原料または反応装置から混入する場合がある。出所にかかわらず、ポリカーボネート樹脂中のこれらの金属の化合物の合計量は、金属量として、1重量ppm以下であることが好ましく、さらには0.5重量ppm以下であることが好ましい。
<ポリカーボネート樹脂の製造方法>
本発明のポリカーボネート樹脂は、特定ジヒドロキシ化合物を含むジヒドロキシ化合物と炭酸ジエステルとをエステル交換反応により重縮合させることによって得られる。
原料であるジヒドロキシ化合物と炭酸ジエステルは、エステル交換反応前に均一に混合することが好ましい。混合の温度は通常80℃以上、好ましくは90℃以上であり、その上限は通常250℃以下、好ましくは200℃以下、更に好ましくは150℃以下である。中でも100℃以上120℃以下が好適である。混合の温度が低すぎると溶解速度が遅かったり、溶解度が不足する可能性があり、しばしば固化等の不具合を招き、混合の温度が高すぎるとジヒドロキシ化合物の熱劣化を招く場合があり、結果的に得られるポリカーボネート樹脂の色相や熱安定性に悪影響を及ぼす可能性がある。
本発明のポリカーボネート樹脂は、特定ジヒドロキシ化合物を含むジヒドロキシ化合物と炭酸ジエステルとをエステル交換反応により重縮合させることによって得られる。
原料であるジヒドロキシ化合物と炭酸ジエステルは、エステル交換反応前に均一に混合することが好ましい。混合の温度は通常80℃以上、好ましくは90℃以上であり、その上限は通常250℃以下、好ましくは200℃以下、更に好ましくは150℃以下である。中でも100℃以上120℃以下が好適である。混合の温度が低すぎると溶解速度が遅かったり、溶解度が不足する可能性があり、しばしば固化等の不具合を招き、混合の温度が高すぎるとジヒドロキシ化合物の熱劣化を招く場合があり、結果的に得られるポリカーボネート樹脂の色相や熱安定性に悪影響を及ぼす可能性がある。
本発明のポリカーボネート樹脂の原料である特定ジヒドロキシ化合物を含むジヒドロキシ化合物と炭酸ジエステルと混合する操作は、酸素濃度10vol%以下、更には0.0001vol%〜10vol%、中でも0.0001vol%〜5vol%、特には0.0001vol%〜1vol%の雰囲気下で行うことが、色相悪化防止の観点から好まし
い。
い。
本発明のポリカーボネート樹脂を得るためには、反応に用いる特定ジヒドロキシ化合物を含む全ジヒドロキシ化合物に対して、炭酸ジエステルを0.90〜1.20のモル比率で用いることが好ましく、さらに好ましくは、0.95〜1.10のモル比率である。このモル比率が小さくなると、製造されたポリカーボネート樹脂の末端水酸基が増加して、ポリマーの熱安定性が悪化し、成形時に着色を招いたり、エステル交換反応の速度が低下したり、所望する高分子量体が得られない可能性がある。
また、このモル比率が大きくなると、エステル交換反応の速度が低下したり、所望とする分子量のポリカーボネート樹脂の製造が困難となる場合がある。エステル交換反応速度の低下は、重合反応時の熱履歴を増大させ、結果的に得られたポリカーボネート樹脂の色相や耐候性を悪化させる可能性がある。さらには、特定ジヒドロキシ化合物を含む全ジヒドロキシ化合物に対して、炭酸ジエステルのモル比率が増大すると、得られるポリカーボネート樹脂中の残存炭酸ジエステル量が増加し、成形時の汚れや臭気の問題を招く場合があり、好ましくない。
本発明において、ジヒドロキシ化合物と炭酸ジエステルとを重縮合させる方法は、上述の触媒存在下、通常、複数の反応器を用いて多段階で実施される。反応の形式は、バッチ式、連続式、あるいはバッチ式と連続式の組み合わせのいずれの方法でもよいが、より少ない熱履歴でポリカーボネート樹脂が得られ、生産性にも優れている連続式が好ましい。
重合初期においては、相対的に低温、低真空でプレポリマーを得、重合後期においては相対的に高温、高真空で所定の値まで分子量を上昇させることが好ましいが、各分子量段階でのジャケット温度と内温、反応系内の圧力を適切に選択することが重合速度の制御や得られるポリカーボネート樹脂の品質の観点から重要である。例えば、重合反応が所定の値に到達する前に温度、圧力のどちらか一方でも早く変化させすぎると、未反応のモノマーが留出し、ジヒドロキシ化合物と炭酸ジエステルのモル比率を狂わせ、重合速度の低下を招いたり、所定の分子量や末端基を持つポリマーが得られなかったりして結果的に本発明の目的を達成することができない可能性がある。
重合初期においては、相対的に低温、低真空でプレポリマーを得、重合後期においては相対的に高温、高真空で所定の値まで分子量を上昇させることが好ましいが、各分子量段階でのジャケット温度と内温、反応系内の圧力を適切に選択することが重合速度の制御や得られるポリカーボネート樹脂の品質の観点から重要である。例えば、重合反応が所定の値に到達する前に温度、圧力のどちらか一方でも早く変化させすぎると、未反応のモノマーが留出し、ジヒドロキシ化合物と炭酸ジエステルのモル比率を狂わせ、重合速度の低下を招いたり、所定の分子量や末端基を持つポリマーが得られなかったりして結果的に本発明の目的を達成することができない可能性がある。
更には、留出するモノマーの量を抑制するために、重合反応器に還流冷却器を用いることが有効であり、特に未反応モノマー成分が多い重合初期の反応器でその効果は大きい。還流冷却器に導入される冷媒の温度は使用するモノマーに応じて適宜選択することができるが、通常、還流冷却器に導入される冷媒の温度は該還流冷却器の入口において45〜180℃であり、好ましくは80〜150℃、特に好ましくは100〜130℃である。冷媒の温度が高すぎると還流量が減り、その効果が低下し、逆に低すぎると、本来留去すべきモノヒドロキシ化合物の留去効率が低下する傾向にある。冷媒としては、温水、蒸気、熱媒オイル等が用いられ、蒸気、熱媒オイルが好ましい。
重合速度を適切に維持し、モノマーの留出を抑制しながら、最終的なポリカーボネート樹脂の色相を損なわないようにするためには、前述の触媒の種類と量の選定が重要である。本発明のポリカーボネート樹脂は、触媒を用いて、複数の反応器を用いて多段階で重合させて製造することが好ましいが、重合を複数の反応器で実施する理由は、重合反応初期においては、反応液中に含まれるモノマーが多いために、必要な重合速度を維持しつつ、モノマーの揮散を抑制することが重要であり、重合反応後期においては、平衡を重合側にシフトさせるために、副生するモノヒドロキシ化合物を十分留去させることが重要になるためである。このように、異なった重合反応条件を設定するには、直列に配置された複数の重合反応器を用いることが、生産効率の観点から好ましい。
本発明のポリカーボネート樹脂の製造に使用される反応器は、上述の通り、少なくとも
2つ以上であればよいが、生産効率などの観点からは、3つ以上、好ましくは3〜5つ、特に好ましくは4つである。本発明において、反応器が2つ以上であれば、その反応器中で、更に条件の異なる反応段階を複数持たせる、連続的に温度・圧力を変えていくなどしてもよい。
2つ以上であればよいが、生産効率などの観点からは、3つ以上、好ましくは3〜5つ、特に好ましくは4つである。本発明において、反応器が2つ以上であれば、その反応器中で、更に条件の異なる反応段階を複数持たせる、連続的に温度・圧力を変えていくなどしてもよい。
本発明において、重合触媒は原料調製槽、原料貯槽に添加することもできるし、重合槽に直接添加することもできるが、供給の安定性、重合の制御の観点からは、重合槽に供給される前の原料ラインの途中に触媒供給ラインを設置し、好ましくは水溶液で供給する。
重合反応の温度は、低すぎると生産性の低下や製品への熱履歴の増大を招き、高すぎるとモノマーの揮散を招くだけでなく、ポリカーボネート樹脂の分解や着色を助長する可能性がある。具体的には、第1段目の反応は、重合反応器の内温の最高温度として、130〜250℃、好ましくは150〜240℃、更に好ましくは170〜230℃で、1〜110kPa、好ましくは5〜70kPa、さらに好ましくは7〜30kPa(絶対圧力)の圧力下、0.1〜10時間、好ましくは0.5〜3時間、発生するモノヒドロキシ化合物を反応系外へ留去しながら実施される。
重合反応の温度は、低すぎると生産性の低下や製品への熱履歴の増大を招き、高すぎるとモノマーの揮散を招くだけでなく、ポリカーボネート樹脂の分解や着色を助長する可能性がある。具体的には、第1段目の反応は、重合反応器の内温の最高温度として、130〜250℃、好ましくは150〜240℃、更に好ましくは170〜230℃で、1〜110kPa、好ましくは5〜70kPa、さらに好ましくは7〜30kPa(絶対圧力)の圧力下、0.1〜10時間、好ましくは0.5〜3時間、発生するモノヒドロキシ化合物を反応系外へ留去しながら実施される。
第2段目以降は、反応系の圧力を第1段目の圧力から徐々に下げ、引き続き発生するモノヒドロキシ化合物を反応系外へ除きながら、最終的には反応系の圧力(絶対圧力)を200Pa以下にして、内温の最高温度210〜270℃、好ましくは220〜250℃で、通常0.1〜10時間、好ましくは1〜6時間、特に好ましくは0.5〜3時間行う。
所定の分子量のポリカーボネート樹脂を得るために、重合温度を高く、重合時間を長くし過ぎると色調が悪化する傾向にある。特にポリカーボネート樹脂の着色や熱劣化を抑制し、色相の良好なポリカーボネート樹脂を得るには、全反応段階における内温の最高温度が250℃未満、特に220〜245℃であることが好ましい。また、重合反応後半の重合速度の低下を抑止し、熱履歴による劣化を最小限に抑えるためには、重合の最終段階でプラグフロー性と界面更新性に優れた横型反応器を使用することが好ましい。
副生したモノヒドロキシ化合物は、資源有効活用の観点から、必要に応じ精製を行った後、炭酸ジフェニルやビスフェノールA等の原料として再利用することが好ましい。
本発明のポリカーボネート樹脂は、上述の通り重縮合後、通常、冷却固化させ、回転式カッター等でペレット化される。ペレット化の方法は限定されるものではないが、最終重合反応器から溶融状態で抜き出し、ストランドの形態で冷却固化させてペレット化させる方法、最終重合反応器から溶融状態で一軸または二軸の押出機に樹脂を供給し、溶融押出しした後、冷却固化させてペレット化させる方法、又は、最終重合反応器から溶融状態で抜き出し、ストランドの形態で冷却固化させて一旦ペレット化させた後に、再度一軸または二軸の押出機に樹脂を供給し、溶融押出しした後、冷却固化させてペレット化させる方法等が挙げられる。
本発明のポリカーボネート樹脂は、上述の通り重縮合後、通常、冷却固化させ、回転式カッター等でペレット化される。ペレット化の方法は限定されるものではないが、最終重合反応器から溶融状態で抜き出し、ストランドの形態で冷却固化させてペレット化させる方法、最終重合反応器から溶融状態で一軸または二軸の押出機に樹脂を供給し、溶融押出しした後、冷却固化させてペレット化させる方法、又は、最終重合反応器から溶融状態で抜き出し、ストランドの形態で冷却固化させて一旦ペレット化させた後に、再度一軸または二軸の押出機に樹脂を供給し、溶融押出しした後、冷却固化させてペレット化させる方法等が挙げられる。
押出機を使用した場合、押出機において、残存モノマーの減圧脱揮や、通常知られている熱安定剤、中和剤、紫外線吸収剤、光安定剤、離型剤、着色剤、帯電防止剤、滑剤、潤滑剤、可塑剤、相溶化剤、難燃剤等を添加、混練を行うこともできる。
押出機中の溶融混練温度は、ポリカーボネート樹脂のガラス転移温度や分子量に依存するが、通常200〜300℃、好ましくは210〜280℃、更に好ましくは220〜270℃である。溶融混練温度が200℃より低いと、ポリカーボネート樹脂の溶融粘度が高く、押出機への負荷が大きくなり、生産性が低下する。300℃より高いと、ポリカーボネート樹脂の熱劣化が激しくなり、分子量の低下による機械的強度の低下や着色、ガスの発生を招く。
押出機中の溶融混練温度は、ポリカーボネート樹脂のガラス転移温度や分子量に依存するが、通常200〜300℃、好ましくは210〜280℃、更に好ましくは220〜270℃である。溶融混練温度が200℃より低いと、ポリカーボネート樹脂の溶融粘度が高く、押出機への負荷が大きくなり、生産性が低下する。300℃より高いと、ポリカーボネート樹脂の熱劣化が激しくなり、分子量の低下による機械的強度の低下や着色、ガスの発生を招く。
このようにして得られた本発明のポリカーボネート樹脂の分子量は、還元粘度で表すこ
とができ、還元粘度は、通常0.30dL/g以上であり、0.35dL/g以上が好ましく、還元粘度の上限は、1.20dL/g以下、1.00dL/g以下がより好ましく、0.80dL/g以下が更に好ましい。ポリカーボネート樹脂の還元粘度が低すぎると成形品の機械的強度が小さい可能性があり、大きすぎると、成形する際の流動性が低下し、生産性や成形性を低下させる傾向がある。なお、ポリカーボネート樹脂の還元粘度は、溶媒として塩化メチレンを用い、ポリカーボネート樹脂濃度を0.6g/dLに精密に調整し、温度20.0℃±0.1℃でウベローデ粘度管を用いて測定される。還元粘度の測定方法の詳細は実施例の項で記載する。
とができ、還元粘度は、通常0.30dL/g以上であり、0.35dL/g以上が好ましく、還元粘度の上限は、1.20dL/g以下、1.00dL/g以下がより好ましく、0.80dL/g以下が更に好ましい。ポリカーボネート樹脂の還元粘度が低すぎると成形品の機械的強度が小さい可能性があり、大きすぎると、成形する際の流動性が低下し、生産性や成形性を低下させる傾向がある。なお、ポリカーボネート樹脂の還元粘度は、溶媒として塩化メチレンを用い、ポリカーボネート樹脂濃度を0.6g/dLに精密に調整し、温度20.0℃±0.1℃でウベローデ粘度管を用いて測定される。還元粘度の測定方法の詳細は実施例の項で記載する。
[ポリカーボネート樹脂の添加剤]
<リン系化合物>
本発明のポリカーボネート樹脂には、重合触媒を失活させ、さらに高温下でのポリカーボネート樹脂の着色を抑制するために添加された、リン系化合物を含有することが好ましい。このリン系化合物としては、リン酸、亜リン酸、ホスホン酸、次亜リン酸、ポリリン酸、ホスホン酸エステル、酸性リン酸エステル、脂肪族環状亜リン酸エステルからなる群より選ばれる少なくとも1種を用いることが好ましい。上記の中でも触媒失活と着色抑制の効果がさらに優れているのは、亜リン酸、ホスホン酸、ホスホン酸エステルであり、特にホスホン酸エステルが好ましい。
<リン系化合物>
本発明のポリカーボネート樹脂には、重合触媒を失活させ、さらに高温下でのポリカーボネート樹脂の着色を抑制するために添加された、リン系化合物を含有することが好ましい。このリン系化合物としては、リン酸、亜リン酸、ホスホン酸、次亜リン酸、ポリリン酸、ホスホン酸エステル、酸性リン酸エステル、脂肪族環状亜リン酸エステルからなる群より選ばれる少なくとも1種を用いることが好ましい。上記の中でも触媒失活と着色抑制の効果がさらに優れているのは、亜リン酸、ホスホン酸、ホスホン酸エステルであり、特にホスホン酸エステルが好ましい。
ホスホン酸としては、ホスホン酸(亜リン酸)、メチルホスホン酸、エチルホスホン酸、ビニルホスホン酸、デシルホスホン酸、フェニルホスホン酸、ベンジルホスホン酸、アミノメチルホスホン酸、メチレンジホスホン酸、1−ヒドロキシエタン−1,1−ジホスホン酸、4−メトキシフェニルホスホン酸、ニトリロトリス(メチレンホスホン酸)、プロピルホスホン酸無水物などが挙げられる。
ホスホン酸エステルとしては、ホスホン酸ジメチル、ホスホン酸ジエチル、ホスホン酸ビス(2−エチルヘキシル)、ホスホン酸ジラウリル、ホスホン酸ジオレイル、ホスホン酸ジフェニル、ホスホン酸ジベンジル、メチルホスホン酸ジメチル、メチルホスホン酸ジフェニル、エチルホスホン酸ジエチル、ベンジルホスホン酸ジエチル、フェニルホスホン酸ジメチル、フェニルホスホン酸ジエチル、フェニルホスホン酸ジプロピル、(メトキシメチル)ホスホン酸ジエチル、ビニルホスホン酸ジエチル、ヒドロキシメチルホスホン酸ジエチル、(2−ヒドロキシエチル)ホスホン酸ジメチル、p−メチルベンジルホスホン酸ジエチル、ジエチルホスホノ酢酸、ジエチルホスホノ酢酸エチル、ジエチルホスホノ酢酸tert−ブチル、(4−クロロベンジル)ホスホン酸ジエチル、シアノホスホン酸ジエチル、シアノメチルホスホン酸ジエチル、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸ジエチル、ジエチルホスホノアセトアルデヒドジエチルアセタール、(メチルチオメチル)ホスホン酸ジエチルなどが挙げられる。
酸性リン酸エステルとしては、リン酸ジメチル、リン酸ジエチル、リン酸ジビニル、リン酸ジプロピル、リン酸ジブチル、リン酸ビス(ブトキシエチル)、リン酸ビス(2−エチルヘキシル)、リン酸ジイソトリデシル、リン酸ジオレイル、リン酸ジステアリル、リン酸ジフェニル、リン酸ジベンジルなどのリン酸ジエステル、またはジエステルとモノエステルの混合物、クロロリン酸ジエチル、リン酸ステアリル亜鉛塩などが挙げられる。
脂肪族環状亜リン酸エステルは、リン原子を含む環状構造中に芳香族基を含まない亜リン酸エステル化合物と定義する。例えば、ビス(デシル)ペンタエリスリトールジホスファイト、ビス(トリデシル)ペンタエリスリトールジホスファイト、ジステアリルペンタエリスリトールジホスファイト、ビス(2,6−tert−ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(ノニルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイ
ト、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト、水添ビスフェノールA・ペンタエリスリトールホスファイトポリマーなどジヒドロキシ化合物とペンタエリスリトールジホスファイトからなるポリマー型の化合物などが挙げられる。
ト、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト、水添ビスフェノールA・ペンタエリスリトールホスファイトポリマーなどジヒドロキシ化合物とペンタエリスリトールジホスファイトからなるポリマー型の化合物などが挙げられる。
これらは1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で混合して用いてもよい。
ポリカーボネート樹脂中の前記リン系化合物の含有量が少なすぎると、触媒失活や着色抑制の効果が不十分であり、多すぎるとかえってポリカーボネート樹脂が着色してしまうため、リン系化合物の含有量は、ポリカーボネート樹脂中のリン原子の含有量として1重量ppm以上、8重量ppm以下であり、1.2重量ppm以上、7重量ppm以下が好ましく、1.5重量ppm以上、6重量ppm以下がより好ましい。
ポリカーボネート樹脂中の前記リン系化合物の含有量が少なすぎると、触媒失活や着色抑制の効果が不十分であり、多すぎるとかえってポリカーボネート樹脂が着色してしまうため、リン系化合物の含有量は、ポリカーボネート樹脂中のリン原子の含有量として1重量ppm以上、8重量ppm以下であり、1.2重量ppm以上、7重量ppm以下が好ましく、1.5重量ppm以上、6重量ppm以下がより好ましい。
前記リン系化合物は通常、三塩化リンを出発原料に用いられるため、未反応物や脱離した塩酸由来の含塩素成分が残存する場合があるが、前記リン系化合物に含有される塩素原子の量は5重量%以下であることが好ましい。塩素原子の残存量が多いと、前記リン系化合物を添加する製造設備の金属部を腐食させたり、ポリカーボネート樹脂の熱安定性を低下させ、着色や熱劣化による分子量低下を促進させる懸念がある。
前記リン系化合物は前述のとおり、押出機を用いてポリカーボネート樹脂に添加、混練されることが好ましい。特に、ポリカーボネート樹脂を重合後に溶融状態のまま押出機に供給し、ただちに前記リン系化合物を樹脂に添加することが最も効果的である。さらに、触媒を失活させた状態で、押出機で真空ベントにより脱揮処理を行うと、効率的に低分子成分を脱揮除去することができる。
<ヒンダードフェノール化合物>
本発明のポリカーボネート樹脂には、前記リン系化合物に加えて、ヒンダードフェノール化合物も含有することで、ポリカーボネート樹脂のさらなる色調向上が期待できる。
ヒンダードフェノール系化合物としては、具体的には、2,6−ジ−tert−ブチルフェノール、2,4−ジ−tert−ブチルフェノール、2−tert−ブチル−4−メトキシフェノール、2−tert−ブチル−4,6−ジメチルフェノール、2,6−ジ−tert−ブチル−4−メチルフェノール、2,6−ジ−tert−ブチル−4−エチルフェノール、2,5−ジ−tert−ブチルヒドロキノン、n−オクタデシル−3−(3',5’−ジ−tert−ブチル−4’−ヒドロキシフェニル)プロピオネート、2−t
ert−ブチル−6−(3’−tert−ブチル−5’−メチル−2’−ヒドロキシベンジル)−4−メチルフェニルアクリレート、2,2’−メチレン−ビス−(4−メチル−6−tert−ブチルフェノール)、2,2’−メチレン−ビス−(6−シクロヘキシル−4−メチルフェノール)、2,2’−エチリデン−ビス−(2,4−ジ−tert−ブチルフェノール)、テトラキス−[メチレン−3−(3’,5’−ジ−tert−ブチル−4’−ヒドロキシフェニル)プロピオネート]−メタン、n−オクタデシル−3−(3',5’−ジ−tert−ブチル−4’−ヒドロキシフェニル)プロピオネート、1,3
,5−トリメチル−2,4,6−トリス−(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)ベンゼン、トリエチレングリコール−ビス[3−(3−tert−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート]、1,6−ヘキサンジオール−ビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、ペンタエリスリトール−テトラキス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]などが挙げられる。
本発明のポリカーボネート樹脂には、前記リン系化合物に加えて、ヒンダードフェノール化合物も含有することで、ポリカーボネート樹脂のさらなる色調向上が期待できる。
ヒンダードフェノール系化合物としては、具体的には、2,6−ジ−tert−ブチルフェノール、2,4−ジ−tert−ブチルフェノール、2−tert−ブチル−4−メトキシフェノール、2−tert−ブチル−4,6−ジメチルフェノール、2,6−ジ−tert−ブチル−4−メチルフェノール、2,6−ジ−tert−ブチル−4−エチルフェノール、2,5−ジ−tert−ブチルヒドロキノン、n−オクタデシル−3−(3',5’−ジ−tert−ブチル−4’−ヒドロキシフェニル)プロピオネート、2−t
ert−ブチル−6−(3’−tert−ブチル−5’−メチル−2’−ヒドロキシベンジル)−4−メチルフェニルアクリレート、2,2’−メチレン−ビス−(4−メチル−6−tert−ブチルフェノール)、2,2’−メチレン−ビス−(6−シクロヘキシル−4−メチルフェノール)、2,2’−エチリデン−ビス−(2,4−ジ−tert−ブチルフェノール)、テトラキス−[メチレン−3−(3’,5’−ジ−tert−ブチル−4’−ヒドロキシフェニル)プロピオネート]−メタン、n−オクタデシル−3−(3',5’−ジ−tert−ブチル−4’−ヒドロキシフェニル)プロピオネート、1,3
,5−トリメチル−2,4,6−トリス−(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)ベンゼン、トリエチレングリコール−ビス[3−(3−tert−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート]、1,6−ヘキサンジオール−ビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、ペンタエリスリトール−テトラキス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]などが挙げられる。
これらは1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で混合して用いてもよい。
本発明のポリカーボネート樹脂中の上記のヒンダードフェノール化合物の含有量は、ポリカーボネート樹脂を100重量部とした場合、0.001重量部〜1重量部が好ましく、0.005重量部〜0.5重量部がより好ましく、0.01重量部〜0.3重量部がさらに好ましい。
なお、ヒンダードフェノール化合物や以下の酸化防止剤についても、リン系化合物と同様に、押出機を用いてポリカーボネート樹脂に添加、混練されることが好ましい。
本発明のポリカーボネート樹脂中の上記のヒンダードフェノール化合物の含有量は、ポリカーボネート樹脂を100重量部とした場合、0.001重量部〜1重量部が好ましく、0.005重量部〜0.5重量部がより好ましく、0.01重量部〜0.3重量部がさらに好ましい。
なお、ヒンダードフェノール化合物や以下の酸化防止剤についても、リン系化合物と同様に、押出機を用いてポリカーボネート樹脂に添加、混練されることが好ましい。
<酸化防止剤>
本発明のポリカーボネート樹脂には、酸化防止の目的で、通常知られている酸化防止剤を添加することもできる。
本発明のポリカーボネート樹脂には、酸化防止の目的で、通常知られている酸化防止剤を添加することもできる。
酸化防止剤としては、具体的には、トリフェニルホスファイト、トリス(ノニルフェニル)ホスファイト、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト、トリデシルホスファイト、トリオクチルホスファイト、トリオクタデシルホスファイト、ジデシルモノフェニルホスファイト、ジオクチルモノフェニルホスファイト、ジイソプロピルモノフェニルホスファイト、モノブチルジフェニルホスファイト、モノデシルジフェニルホスファイト、モノオクチルジフェニルホスファイト、2,2−メチレンビス(4,6−ジ−tert−ブチルフェニル)オクチルホスファイト、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト、トリブチルホスフェート、トリエチルホスフェート、トリメチルホスフェート、トリフェニルホスフェート、ジフェニルモノオルソキセニルホスフェート、ジブチルホスフェート、ジオクチルホスフェート、ジイソプロピルホスフェート、4,4’−ビフェニレンジホスフィン酸テトラキス(2,4−ジ−tert−ブチルフェニル)、ペンタエリスリトールテトラキス(3−メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3−ラウリルチオプロピオネート)、グリセロール−3−ステアリルチオプロピオネート、N,N−ヘキサメチレンビス(3,5−ジ−tert−ブチル−4−ヒドロキシ−ヒドロシンナマイド)、トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)イソシアヌレート、4,4’−ビフェニレンジホスフィン酸テトラキス(2,4−ジ−tert−ブチルフェニル)、3,9−ビス{1,1−ジメチル−2−[β−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ]エチル}−2,4,8,10−テトラオキサスピロ(5,5)ウンデカンなどが挙げられる。
これらの酸化防止剤は、1種を単独で用いても良く、2種以上を併用してもよい。
これらの酸化防止剤の配合量は、ポリカーボネート樹脂を100重量部とした場合、0.0001重量部〜0.1重量部が好ましく、0.0005重量部〜0.08重量部がより好ましく、0.001重量部〜0.05重量部がさらに好ましい。
これらの酸化防止剤の配合量は、ポリカーボネート樹脂を100重量部とした場合、0.0001重量部〜0.1重量部が好ましく、0.0005重量部〜0.08重量部がより好ましく、0.001重量部〜0.05重量部がさらに好ましい。
[ポリカーボネート樹脂の物性]
以下に本発明のポリカーボネート樹脂の好ましい物性について説明する。
<特定ジヒドロキシ化合物に由来する二重結合末端基量>
本発明のポリカーボネート樹脂が前記式(2)で表される特定ジヒドロキシ化合物に由来する構造単位を含む場合、前記式(2)で表される特定ジヒドロキシ化合物に由来する構造単位全体に対して、下記式(2A)と(2B)で表される二重結合末端基の含有量が0.4mol%以下であることが好ましく、さらに0.3mol%以下であることが好ましい。下記式(2A)と(2B)で表される二重結合末端基は熱分解によって生成する構造であり、ポリカーボネート樹脂が受けた熱履歴を表す指標となる。この二重結合末端基量が上記上限よりも多いと、重合や成形加工の際に過剰な熱履歴がかかっており、樹脂の色調や耐候性が悪化しやすくなる。
以下に本発明のポリカーボネート樹脂の好ましい物性について説明する。
<特定ジヒドロキシ化合物に由来する二重結合末端基量>
本発明のポリカーボネート樹脂が前記式(2)で表される特定ジヒドロキシ化合物に由来する構造単位を含む場合、前記式(2)で表される特定ジヒドロキシ化合物に由来する構造単位全体に対して、下記式(2A)と(2B)で表される二重結合末端基の含有量が0.4mol%以下であることが好ましく、さらに0.3mol%以下であることが好ましい。下記式(2A)と(2B)で表される二重結合末端基は熱分解によって生成する構造であり、ポリカーボネート樹脂が受けた熱履歴を表す指標となる。この二重結合末端基量が上記上限よりも多いと、重合や成形加工の際に過剰な熱履歴がかかっており、樹脂の色調や耐候性が悪化しやすくなる。
<溶融粘度>
本発明のポリカーボネート樹脂の溶融粘度は400Pa・s以上、4000Pa・s以下が好ましく、さらには450Pa・s以上、3700Pa・s以下が好ましく、特に500Pa・s以上、3500Pa・s以下が好ましい。ポリカーボネート樹脂の溶融粘度が上記範囲より低いと、ポリカーボネート樹脂が脆くなり、十分な機械物性を有する材料とならない。一方、溶融粘度が上記範囲よりも高いと、成形加工時に流動性が不足し、成形品の外観が損なわれたり、寸法精度が悪化したりする。また、剪断発熱により樹脂温度が上昇して、樹脂が着色したり発泡したりする懸念がある。なお、本明細書において溶融粘度とは、キャピラリーレオメーター[東洋精機(株)製]を用いて、測定温度240℃、剪断速度91.2sec−1における溶融粘度を示す。
本発明のポリカーボネート樹脂の溶融粘度は400Pa・s以上、4000Pa・s以下が好ましく、さらには450Pa・s以上、3700Pa・s以下が好ましく、特に500Pa・s以上、3500Pa・s以下が好ましい。ポリカーボネート樹脂の溶融粘度が上記範囲より低いと、ポリカーボネート樹脂が脆くなり、十分な機械物性を有する材料とならない。一方、溶融粘度が上記範囲よりも高いと、成形加工時に流動性が不足し、成形品の外観が損なわれたり、寸法精度が悪化したりする。また、剪断発熱により樹脂温度が上昇して、樹脂が着色したり発泡したりする懸念がある。なお、本明細書において溶融粘度とは、キャピラリーレオメーター[東洋精機(株)製]を用いて、測定温度240℃、剪断速度91.2sec−1における溶融粘度を示す。
<ガラス転移温度>
本発明のポリカーボネート樹脂のガラス転移温度は80℃以上、180℃以下であることが好ましく、さらには90℃以上、160℃以下が好ましく、特に95℃以上、140℃以下が好ましい。ポリカーボネート樹脂のガラス転移温度が低すぎると、高温下や高湿下において成形品が変形するなどして、使用に耐えうる耐熱性を満足できない。一方、ポリカーボネート樹脂のガラス転移温度が過度に高いと、成形加工の際に温度を高くせざるを得ず、ポリカーボネート樹脂の分子量低下や着色などの熱劣化を招いたり、ガスの発生により成形品の外観を損ねるおそれがある。なお、ポリカーボネート樹脂のガラス転移温度は示差走査熱量計(DSC)を用いて測定される。
本発明のポリカーボネート樹脂のガラス転移温度は80℃以上、180℃以下であることが好ましく、さらには90℃以上、160℃以下が好ましく、特に95℃以上、140℃以下が好ましい。ポリカーボネート樹脂のガラス転移温度が低すぎると、高温下や高湿下において成形品が変形するなどして、使用に耐えうる耐熱性を満足できない。一方、ポリカーボネート樹脂のガラス転移温度が過度に高いと、成形加工の際に温度を高くせざるを得ず、ポリカーボネート樹脂の分子量低下や着色などの熱劣化を招いたり、ガスの発生により成形品の外観を損ねるおそれがある。なお、ポリカーボネート樹脂のガラス転移温度は示差走査熱量計(DSC)を用いて測定される。
<炭酸ジエステル残存量>
本発明のポリカーボネート樹脂は、通常、前述するとおり、ジヒドロキシ化合物と炭酸ジエステルと触媒とを溶融下に重縮合させて得られる。この時、得られたポリカーボネート樹脂中の炭酸ジエステルの残存量が多いと、成形時の装置の汚染や臭気の問題を招くため、本発明のポリカーボネート樹脂中の炭酸ジエステルの残存量は150重量ppm以下であり、さらに100重量ppm以下であることが好ましく、特に80重量ppm以下であることが好ましい。現実的にはポリカーボネート樹脂は未反応の炭酸ジエステルを含むことがあり、炭酸ジエステル含有量の下限値は通常1重量ppmである。
本発明のポリカーボネート樹脂は、通常、前述するとおり、ジヒドロキシ化合物と炭酸ジエステルと触媒とを溶融下に重縮合させて得られる。この時、得られたポリカーボネート樹脂中の炭酸ジエステルの残存量が多いと、成形時の装置の汚染や臭気の問題を招くため、本発明のポリカーボネート樹脂中の炭酸ジエステルの残存量は150重量ppm以下であり、さらに100重量ppm以下であることが好ましく、特に80重量ppm以下であることが好ましい。現実的にはポリカーボネート樹脂は未反応の炭酸ジエステルを含むことがあり、炭酸ジエステル含有量の下限値は通常1重量ppmである。
<モノヒドロキシ化合物残存量>
本発明のポリカーボネート樹脂は、通常、後述するとおり、ジヒドロキシ化合物と炭酸ジエステルと触媒とを溶融下に重縮合させて得られる。この重縮合反応において、炭酸ジエステルから脱離成分としてモノヒドロキシ化合物が生成する。例えば、炭酸ジエステルとしてジフェニルカーボネートを用いる場合は、生成するモノヒドロキシ化合物はフェノールである。この時、得られたポリカーボネート樹脂中のモノヒドロキシ化合物の残存量が多いと、成形時の装置の汚染や臭気の問題を生じることがある。本発明のポリカーボネ
ート樹脂中のモノヒドロキシ化合物の残存量は700重量ppm以下であり、さらに500重量ppm以下であることが好ましく、特には300重量ppm以下であることが好ましい。ポリカーボネート樹脂の製造時に、前述の触媒失活剤となる特定のリン系化合物を適量用い、さらに十分に脱揮処理を行うことで、ポリカーボネート樹脂中のモノヒドロキシ化合物の残存量を低減し、かつ加熱下での発生を抑制することができる。
本発明のポリカーボネート樹脂は、通常、後述するとおり、ジヒドロキシ化合物と炭酸ジエステルと触媒とを溶融下に重縮合させて得られる。この重縮合反応において、炭酸ジエステルから脱離成分としてモノヒドロキシ化合物が生成する。例えば、炭酸ジエステルとしてジフェニルカーボネートを用いる場合は、生成するモノヒドロキシ化合物はフェノールである。この時、得られたポリカーボネート樹脂中のモノヒドロキシ化合物の残存量が多いと、成形時の装置の汚染や臭気の問題を生じることがある。本発明のポリカーボネ
ート樹脂中のモノヒドロキシ化合物の残存量は700重量ppm以下であり、さらに500重量ppm以下であることが好ましく、特には300重量ppm以下であることが好ましい。ポリカーボネート樹脂の製造時に、前述の触媒失活剤となる特定のリン系化合物を適量用い、さらに十分に脱揮処理を行うことで、ポリカーボネート樹脂中のモノヒドロキシ化合物の残存量を低減し、かつ加熱下での発生を抑制することができる。
<モノヒドロキシ化合物増加量>
モノヒドロキシ化合物は重縮合反応中だけでなく、ポリカーボネート樹脂を加熱して成形や加工する時にも、重合反応や熱分解が進行して発生するため、重合後の加熱条件下においても発生を抑制する必要がある。260℃で60分間加熱した後のモノヒドロキシ化合物の増加量、即ち、260℃で60分間加熱することで発生するモノヒドロキシ化合物は700重量ppm以下であり、さらには400重量ppm以下であることが好ましく、特には200重量ppm以下であることが好ましい。
モノヒドロキシ化合物は重縮合反応中だけでなく、ポリカーボネート樹脂を加熱して成形や加工する時にも、重合反応や熱分解が進行して発生するため、重合後の加熱条件下においても発生を抑制する必要がある。260℃で60分間加熱した後のモノヒドロキシ化合物の増加量、即ち、260℃で60分間加熱することで発生するモノヒドロキシ化合物は700重量ppm以下であり、さらには400重量ppm以下であることが好ましく、特には200重量ppm以下であることが好ましい。
<色調>
以下に記載する二つの条件で射出成形されたプレートのイエローインデックス(YI)値の差が0.30以下であることが好ましく、0.20以下であることがより好ましく、0.10以下であることがさらに好ましい。YI値の差が大きくなると、射出成形や押出成形などの溶融加工をする際にポリカーボネート樹脂の着色が大きくなり、透明性や良好や色相を求められる用途への適用が難しくなる。
以下に記載する二つの条件で射出成形されたプレートのイエローインデックス(YI)値の差が0.30以下であることが好ましく、0.20以下であることがより好ましく、0.10以下であることがさらに好ましい。YI値の差が大きくなると、射出成形や押出成形などの溶融加工をする際にポリカーボネート樹脂の着色が大きくなり、透明性や良好や色相を求められる用途への適用が難しくなる。
本発明において、ポリカーボネート樹脂の色調は次のとおり評価する。射出成形機を用いて、シリンダー温度を250℃に設定し、樹脂がシリンダー内に滞留する時間を5分以下となるように射出サイクルを設定し、厚さ3mmのプレートを成形する。続けて、滞留時間を20分以上になるように設定して、同様に厚さ3mmのプレートを成形する。色差計を用いて、得られたプレートの透過光におけるイエローインデックス(YI)値を測定する。
<還元粘度保持率>
プレッシャークッカーを用いて、120℃、2気圧で24時間、スチーム処理した後の還元粘度の保持率が95%以上であることが好ましく、さらに96%以上であることがより好ましい。この保持率が低いと、サンシャインウェザーメーターなどの降雨条件を模した促進耐候性試験において、成形品の表面がひび割れしたり、成形品が変形するおそれがあり、耐候性や耐湿熱性が低下する原因となりうる。
ポリカーボネート樹脂の製造時に、前述の触媒失活剤となる特定のリン系化合物を適量用いて、ポリカーボネート樹脂中の塩基性成分を中和することで、還元粘度の保持率を向上させることが可能になる。
プレッシャークッカーを用いて、120℃、2気圧で24時間、スチーム処理した後の還元粘度の保持率が95%以上であることが好ましく、さらに96%以上であることがより好ましい。この保持率が低いと、サンシャインウェザーメーターなどの降雨条件を模した促進耐候性試験において、成形品の表面がひび割れしたり、成形品が変形するおそれがあり、耐候性や耐湿熱性が低下する原因となりうる。
ポリカーボネート樹脂の製造時に、前述の触媒失活剤となる特定のリン系化合物を適量用いて、ポリカーボネート樹脂中の塩基性成分を中和することで、還元粘度の保持率を向上させることが可能になる。
<1−2.蛍光体>
本発明に用いる熱可塑性樹脂組成物および波長変換部材は蛍光体を含む。熱可塑性樹脂組成物における蛍光体の含有量は、通常0.01重量%以上であり、さらに、0.2重量%以上、50重量%以下であることが好ましい。
本発明に用いる熱可塑性樹脂組成物および波長変換部材は蛍光体を含む。熱可塑性樹脂組成物における蛍光体の含有量は、通常0.01重量%以上であり、さらに、0.2重量%以上、50重量%以下であることが好ましい。
本願発明で用いられる蛍光体は、短残光蛍光体であることが好ましい。短残光蛍光体は、励起光に照射された時の蛍光体の発光量が10分の1に減少する残光時間が、短いことが好ましく、一般照明用途では、1秒以内であることが好ましくディスプレイ用途では、10分の1秒以内であることが好ましい。
本願発明で用いられる蛍光体の種類は適宜選択されるが、無機蛍光体であることが好ましく、赤色(橙色)、緑色、青色、黄色蛍光体については、代表的な蛍光体として下記のものが挙げられる。
本願発明で用いられる蛍光体の種類は適宜選択されるが、無機蛍光体であることが好ましく、赤色(橙色)、緑色、青色、黄色蛍光体については、代表的な蛍光体として下記のものが挙げられる。
このとき、蛍光体は1種類を単独で用いてもよく、2種類以上を組み合わせてもよい。2種類以上の蛍光体を用いることにより、色温度を低下させたり、演色性を向上させたりすることができる。
<1−2−1.赤色蛍光体>
赤色蛍光体の発光ピーク波長は、通常565nm以上、好ましくは575nm以上、より好ましくは580nm以上、また、通常780nm以下、好ましくは700nm以下、より好ましくは680nm以下の波長範囲にあることが好適である。
赤色蛍光体の発光ピークの半値幅は、通常1nm〜120nmの範囲である。また、外部量子効率は、通常60%以上、好ましくは70%以上であり、重量メディアン径は、通常0.1μm以上、好ましくは1.0μm以上、さらに好ましくは5.0μm以上であり、通常40μm以下、好ましくは30μm以下、さらに好ましくは20μm以下である。
赤色蛍光体の発光ピーク波長は、通常565nm以上、好ましくは575nm以上、より好ましくは580nm以上、また、通常780nm以下、好ましくは700nm以下、より好ましくは680nm以下の波長範囲にあることが好適である。
赤色蛍光体の発光ピークの半値幅は、通常1nm〜120nmの範囲である。また、外部量子効率は、通常60%以上、好ましくは70%以上であり、重量メディアン径は、通常0.1μm以上、好ましくは1.0μm以上、さらに好ましくは5.0μm以上であり、通常40μm以下、好ましくは30μm以下、さらに好ましくは20μm以下である。
このような赤色蛍光体として、例えば、例えば、特開2006−008721号公報に記載されているCaAlSiN3:Eu(本願明細書で「CASN」と記載することもある。)、特開2008−7751号公報に記載されている(Sr,Ca)AlSiN3:Eu、特開2007−231245号公報に記載されているCa1−xAl1−xSi1+xN3−xOx:Eu等のEu付活酸化物、窒化物又は酸窒化物蛍光体等や、特開2008―38081号公報(Sr,Ba,Ca)3SiO5:Eu(以下、「SBS蛍光体」と略称することがある。)を用いることも可能である。
そのほか、赤色蛍光体としては、(Mg,Ca,Sr,Ba)2Si5N8:Eu等のEu付活アルカリ土類シリコンナイトライド系蛍光体、(La,Y)2O2S:Eu等のEu付活酸硫化物蛍光体、(Y,La,Gd,Lu)2O2S:Eu等のEu付活希土類オキシカルコゲナイド系蛍光体、Y(V,P)O4:Eu、Y2O3:Eu等のEu付活酸化物蛍光体、(Ba,Mg)2SiO4:Eu,Mn、(Ba,Sr,Ca,Mg)2SiO4:Eu,Mn等のEu,Mn付活珪酸塩蛍光体、LiW2O8:Eu、LiW2O8:Eu,Sm、Eu2W2O9、Eu2W2O9:Nb、Eu2W2O9:Sm等のEu付活タングステン酸塩蛍光体、(Ca,Sr)S:Eu等のEu付活硫化物蛍光体、YAlO3:Eu等のEu付活アルミン酸塩蛍光体、Ca2Y8(SiO4)6O2:Eu、LiY9(SiO4)6O2:Eu等のEu付活珪酸塩蛍光体、(Y,Gd)3Al5O12:Ce、(Tb,Gd)3Al5O12:Ce等のCe付活アルミン酸塩蛍光体、(Mg,Ca,Sr,Ba)2Si5(N,O)8:Eu、(Mg,Ca,Sr,Ba)Si(N,O)2:Eu、(Mg,Ca,Sr,Ba)AlSi(N,O)3:Eu等のEu付活酸化物、窒化物又は酸窒化物蛍光体、(Sr,Ca,Ba,Mg)10(PO4)6Cl2:Eu,Mn等のEu,Mn付活ハロリン酸塩蛍光体、Ba3MgSi2O8:Eu,Mn、(Ba,Sr,Ca,Mg)3(Zn,Mg)Si2O8:Eu,Mn等のEu,Mn付活珪酸塩蛍光体、3.5MgO・0.5MgF2・GeO2:Mn等の
Mn付活ゲルマン酸塩蛍光体、Eu付活αサイアロン等のEu付活酸窒化物蛍光体、(Gd,Y,Lu,La)2O3:Eu,Bi等のEu,Bi付活酸化物蛍光体、(Gd,Y,Lu,La)2O2S:Eu,Bi等のEu,Bi付活酸硫化物蛍光体、(Gd,Y,Lu,La)VO4:Eu,Bi等のEu,Bi付活バナジン酸塩蛍光体、SrY2S4:Eu,Ce等のEu,Ce付活硫化物蛍光体、CaLa2S4:Ce等のCe付活硫化物蛍光体、(Ba,Sr,Ca)MgP2O7:Eu,Mn、(Sr,Ca,Ba,Mg,Zn)2P2O7:Eu,Mn等のEu,Mn付活リン酸塩蛍光体、(Y,Lu)2WO6:Eu,Mo等のEu,Mo付活タングステン酸塩蛍光体、(Ba,Sr,Ca)xSiyNz:Eu,Ce(但し、x、y、zは、1以上の整数を表わす。)等のEu,Ce付活窒化物蛍光体、(Ca,Sr,Ba,Mg)10(PO4)6(F,Cl,Br,OH):Eu,Mn等のEu,Mn付活ハロリン酸塩蛍光体、((Y,Lu,Gd,Tb
)1−x−yScxCey)2(Ca,Mg)1−r(Mg,Zn)2+rSiz−qGeqO12+δ等のCe付活珪酸塩蛍光体等を用いることもできる。
Mn付活ゲルマン酸塩蛍光体、Eu付活αサイアロン等のEu付活酸窒化物蛍光体、(Gd,Y,Lu,La)2O3:Eu,Bi等のEu,Bi付活酸化物蛍光体、(Gd,Y,Lu,La)2O2S:Eu,Bi等のEu,Bi付活酸硫化物蛍光体、(Gd,Y,Lu,La)VO4:Eu,Bi等のEu,Bi付活バナジン酸塩蛍光体、SrY2S4:Eu,Ce等のEu,Ce付活硫化物蛍光体、CaLa2S4:Ce等のCe付活硫化物蛍光体、(Ba,Sr,Ca)MgP2O7:Eu,Mn、(Sr,Ca,Ba,Mg,Zn)2P2O7:Eu,Mn等のEu,Mn付活リン酸塩蛍光体、(Y,Lu)2WO6:Eu,Mo等のEu,Mo付活タングステン酸塩蛍光体、(Ba,Sr,Ca)xSiyNz:Eu,Ce(但し、x、y、zは、1以上の整数を表わす。)等のEu,Ce付活窒化物蛍光体、(Ca,Sr,Ba,Mg)10(PO4)6(F,Cl,Br,OH):Eu,Mn等のEu,Mn付活ハロリン酸塩蛍光体、((Y,Lu,Gd,Tb
)1−x−yScxCey)2(Ca,Mg)1−r(Mg,Zn)2+rSiz−qGeqO12+δ等のCe付活珪酸塩蛍光体等を用いることもできる。
そのほか、半導体発光装置からの放射光の演色性を高めるため、あるいは、発光装置の発光効率を高めるため、赤色蛍光体として、赤色発光スペクトルの半値幅が20nm以下の赤色蛍光体(以下、「狭帯域赤色蛍光体」と呼ぶことがある。)を単独で用いることができるし又は他の赤色蛍光体、特に赤色発光スペクトルの半値幅が50nm以上の赤色蛍光体、と混合して用いることができる。そのような赤色蛍光体としては、A2+xMyMnzFn(AはNaおよび/またはK;MはSiおよびAl;−1≦x≦1かつ0.9≦y+z≦1.1かつ0.001≦z≦0.4かつ5≦n≦7)で表されるKSF、KSNAF、及びKSFとKSNAFの固溶体、(k−x)MgO・xAF2・GeO2:yMn4+(ただし、式中、kは2.8〜5の実数であり、xは0.1〜0.7の実数であり、yは0.005〜0.015の実数であり、Aはカルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)、亜鉛(Zn)、またはこれらの混合物である。)の化学式で示される、3.5MgO・0.5MgF2・GeO2:Mn等のマンガン活性の深赤色(600nm〜670nm)ジャーマネート蛍光体、(La1−x−y,Eux,Lny)2O2S(x及びyは、それぞれ0.02≦x≦0.50及び0≦y≦0.50を満たす数を表し、LnはY、Gd、Lu、Sc、Sm及びErの少なくとも1種の3価希土類元素を表す。)の化学式で示されるLOS蛍光体等が挙げられる。
また、国際公開WO2008−096300号公報に記載されているSrAlSi4N7や、米国特許7524437号公報に記載されているSr2Al2Si9O2N14:Euを用いることもできる。
以上の中でも、赤色蛍光体としては、CASN蛍光体、SCASN蛍光体、CASON蛍光体、SBS蛍光体が好ましい。
以上に例示した赤色蛍光体は、何れか一種のみを使用してもよく、二種以上を任意の組み合わせ及び比率で併用してもよい。
以上の中でも、赤色蛍光体としては、CASN蛍光体、SCASN蛍光体、CASON蛍光体、SBS蛍光体が好ましい。
以上に例示した赤色蛍光体は、何れか一種のみを使用してもよく、二種以上を任意の組み合わせ及び比率で併用してもよい。
<1−2−2.緑色蛍光体>
緑色蛍光体の発光ピーク波長は、通常500nmより大きく、中でも510nm以上、さらには515nm以上であることが好ましく、また、通常550nm以下、中でも540nm以下、さらには535nm以下の範囲であることが好ましい。この発光ピーク波長が短過ぎると青味を帯びる傾向がある一方で、長過ぎると黄味を帯びる傾向があり、何れも緑色光としての特性が低下する可能性がある。
緑色蛍光体の発光ピーク波長は、通常500nmより大きく、中でも510nm以上、さらには515nm以上であることが好ましく、また、通常550nm以下、中でも540nm以下、さらには535nm以下の範囲であることが好ましい。この発光ピーク波長が短過ぎると青味を帯びる傾向がある一方で、長過ぎると黄味を帯びる傾向があり、何れも緑色光としての特性が低下する可能性がある。
緑色蛍光体の発光ピークの半値幅は、通常1nm〜80nmの範囲である。また、外部量子効率は、通常60%以上、好ましくは70%以上であり、重量メディアン径は、通常0.1μm以上、好ましくは1.0μm以上、さらに好ましくは5.0μm以上であり、通常40μm以下、好ましくは30μm以下、さらに好ましくは20μm以下である。
このような緑色蛍光体として、例えば、国際公開WO2007−091687号公報に記載されている(Ba,Ca,Sr,Mg)2SiO4:Eu(以下、「BSS蛍光体」と略称することがある。)で表されるEu付活アルカリ土類シリケート系蛍光体等が挙げられる。
このような緑色蛍光体として、例えば、国際公開WO2007−091687号公報に記載されている(Ba,Ca,Sr,Mg)2SiO4:Eu(以下、「BSS蛍光体」と略称することがある。)で表されるEu付活アルカリ土類シリケート系蛍光体等が挙げられる。
また、そのほか、緑色蛍光体としては、例えば、特許第3921545号公報に記載されているSi6−zAlzN8−zOz:Eu(但し、0<z≦4.2である。以下、「β−SiAlON蛍光体」と略称することがある。)等のEu付活酸窒化物蛍光体や、国際公開WO2007−088966号公報に記載されているM3Si6O12N2:Eu(但し、Mはアルカリ土類金属元素を表す。以下、「BSON蛍光体」と略称することがある。)等のEu付活酸窒化物蛍光体や、特開2008−274254号公報に記載され
ているBaMgAl10O17:Eu,Mn付活アルミン酸塩蛍光体(以下、「GBAM蛍光体」と略称することがある。)を用いることも可能である。
ているBaMgAl10O17:Eu,Mn付活アルミン酸塩蛍光体(以下、「GBAM蛍光体」と略称することがある。)を用いることも可能である。
その他の緑色蛍光体としては、(Mg,Ca,Sr,Ba)Si2O2N2:Eu等のEu付活アルカリ土類シリコンオキシナイトライド系蛍光体、Sr4Al14O25:Eu、(Ba,Sr,Ca)Al2O4:Eu等のEu付活アルミン酸塩蛍光体、(Sr,Ba)Al2Si2O8:Eu、(Ba,Mg)2SiO4:Eu、(Ba,Sr,Ca)2(Mg,Zn)Si2O7:Eu、(Ba,Ca,Sr,Mg)9(Sc,Y,Lu,Gd)2(Si,Ge)6O24:Eu等のEu付活珪酸塩蛍光体、Y2SiO5:Ce,Tb等のCe,Tb付活珪酸塩蛍光体、Sr2P2O7−Sr2B2O5:Eu等のEu付活硼酸リン酸塩蛍光体、Sr2Si3O8−2SrCl2:Eu等のEu付活ハロ珪酸塩蛍光体、Zn2SiO4:Mn等のMn付活珪酸塩蛍光体、CeMgAl11O19:Tb、Y3Al5O12:Tb等のTb付活アルミン酸塩蛍光体、Ca2Y8(SiO4)6O2:Tb、La3Ga5SiO14:Tb等のTb付活珪酸塩蛍光体、(Sr,Ba,Ca)Ga2S4:Eu,Tb,Sm等のEu,Tb,Sm付活チオガレート蛍光体、Y3(Al,Ga)5O12:Ce、(Y,Ga,Tb,La,Sm,Pr,Lu)3(Al,Ga)5O12:Ce等のCe付活アルミン酸塩蛍光体、Ca3Sc2Si3O12:Ce、Ca3(Sc,Mg,Na,Li)2Si3O12:Ce等のCe付活珪酸塩蛍光体、CaSc2O4:Ce等のCe付活酸化物蛍光体、Eu付活βサイアロン等のEu付活酸窒化物蛍光体、SrAl2O4:Eu等のEu付活アルミン酸塩蛍光体、(La,Gd,Y)2O2S:Tb等のTb付活酸硫化物蛍光体、LaPO4:Ce,Tb等のCe,Tb付活リン酸塩蛍光体、ZnS:Cu,Al、ZnS:Cu,Au,Al等の硫化物蛍光体、(Y,Ga,Lu,Sc,La)BO3:Ce,Tb、Na2Gd2B2O7:Ce,Tb、(Ba,Sr)2(Ca,Mg,Zn)B2O6:K,Ce,Tb等のCe,Tb付活硼酸塩蛍光体、Ca8Mg(SiO4)4Cl2:Eu,Mn等のEu,Mn付活ハロ珪酸塩蛍光体、(Sr,Ca,Ba)(Al,Ga,In)2S4:Eu等のEu付活チオアルミネート蛍光体やチオガレート蛍光体、(Ca,Sr)8(Mg,Zn)(SiO4)4Cl2:Eu,Mn等のEu,Mn付活ハロ珪酸塩蛍光体、M3Si6O9N4:Eu等のEu付活酸窒化物蛍光体等を用いることもできる。
また、国際公開WO2009−072043号公報に記載されているSr5Al5Si21O2N35:Euや、国際公開WO2007−105631号公報に記載されているSr3Si13Al3N21O2:Euを用いることもできる。
以上の中でも、緑色蛍光体としては、BSS蛍光体、β−SiAlON蛍光体、BSON蛍光体が好ましい。
以上の中でも、緑色蛍光体としては、BSS蛍光体、β−SiAlON蛍光体、BSON蛍光体が好ましい。
以上に例示した緑色蛍光体は、何れか一種のみを使用してもよく、二種以上を任意の組み合わせ及び比率で併用してもよい。
そのほか、半導体発光装置からの放射光の演色性を高めるため、あるいは、発光装置の発光効率を高めるため、緑色蛍光体として、緑色発光スペクトルの半値幅が20nm以下の緑色蛍光体(以下、「狭帯域緑色蛍光体」と呼ぶことがある。)を単独で用いることができる。
そのほか、半導体発光装置からの放射光の演色性を高めるため、あるいは、発光装置の発光効率を高めるため、緑色蛍光体として、緑色発光スペクトルの半値幅が20nm以下の緑色蛍光体(以下、「狭帯域緑色蛍光体」と呼ぶことがある。)を単独で用いることができる。
<1−2−3.青色蛍光体>
青色蛍光体の発光ピーク波長は、通常420nm以上、好ましくは430nm以上、より好ましくは440nm以上で、通常は500nm未満、好ましくは490nm以下、より好ましくは480nm以下、更に好ましくは470nm以下、特に好ましくは460nm以下の波長範囲である。
青色蛍光体の発光ピーク波長は、通常420nm以上、好ましくは430nm以上、より好ましくは440nm以上で、通常は500nm未満、好ましくは490nm以下、より好ましくは480nm以下、更に好ましくは470nm以下、特に好ましくは460nm以下の波長範囲である。
青色蛍光体の発光ピークの半値幅は、通常10nm〜100nmの範囲である。また、
外部量子効率は、通常60%以上、好ましくは70%以上であり、重量メディアン径は、通常0.1μm以上、好ましくは1.0μm以上、さらに好ましくは5.0μm以上であり、通常40μm以下、好ましくは30μm以下、さらに好ましくは20μm以下である。
外部量子効率は、通常60%以上、好ましくは70%以上であり、重量メディアン径は、通常0.1μm以上、好ましくは1.0μm以上、さらに好ましくは5.0μm以上であり、通常40μm以下、好ましくは30μm以下、さらに好ましくは20μm以下である。
このような青色蛍光体として、例えば、(Ca,Sr,Ba)5(PO4)3Cl:Euで表されるユウロピウム付活ハロリン酸カルシウム系蛍光体、(Ca,Sr,Ba)2B5O9Cl:Euで表されるユウロピウム付活アルカリ土類クロロボレート系蛍光体、(Sr,Ca,Ba)Al2O4:Euまたは(Sr,Ca,Ba)4Al14O25:Euで表されるユウロピウム付活アルカリ土類アルミネート系蛍光体等が挙げられる。
また、そのほか、青色蛍光体としては、Sr2P2O7:Sn等のSn付活リン酸塩蛍光体、Sr4Al14O25:Eu、BaMgAl10O17:Eu、BaAl8O13:Eu等のEu付活アルミン酸塩蛍光体、SrGa2S4:Ce、CaGa2S4:Ce等のCe付活チオガレート蛍光体、(Ba,Sr,Ca)MgAl10O17:Eu、BaMgAl10O17:Eu,Tb,Sm等のEu,Tb,Sm付活アルミン酸塩蛍光体、(Ba,Sr,Ca)MgAl10O17:Eu,Mn等のEu,Mn付活アルミン酸塩蛍光体、(Sr,Ca,Ba,Mg)10(PO4)6Cl2:Eu、(Ba,Sr,Ca)5(PO4)3(Cl,F,Br,OH):Eu,Mn,Sb等のEu,Tb,Sm付活ハロリン酸塩蛍光体、BaAl2Si2O8:Eu、(Sr,Ba)3MgSi2O8:Eu等のEu付活珪酸塩蛍光体、Sr2P2O7:Eu等のEu付活リン酸塩蛍光体、ZnS:Ag、ZnS:Ag,Al等の硫化物蛍光体、Y2SiO5:Ce等のCe付活珪酸塩蛍光体、CaWO4等のタングステン酸塩蛍光体、(Ba,Sr,Ca)BPO5:Eu,Mn、(Sr,Ca)10(PO4)6・nB2O3:Eu、2SrO・0.84P2O5・0.16B2O3:Eu等のEu,Mn付活硼酸リン酸塩蛍光体、Sr2Si3O8・2SrCl2:Eu等のEu付活ハロ珪酸塩蛍光体等を用いることも可能である。
このうち、(Sr,Ca,Ba)10(PO4)6Cl2:Eu2+、BaMgAl10O17:Euを好ましく用いることができる。また、(Sr,Ca,Ba)10(PO4)6Cl2:Eu2+で示される蛍光体のうち、SraBabEux(PO4)cCld(c、d及びxは、2.7≦c≦3.3、0.9≦d≦1.1、0.3≦x≦1.2を満足する数であり、xは好ましくは0.3≦x≦1.0である。さらに、a及びbは、a+b=5−xかつ0.05≦b/(a+b)≦0.6の条件を満足するものであり、b/(a+b)は好ましくは0.1≦b/(a+b)≦0.6である。)で示される蛍光体を好ましく用いることができる。
そのほか、半導体発光装置からの放射光の演色性を高めるため、あるいは、発光装置の発光効率を高めるため、青色蛍光体として、青色発光スペクトルの半値幅が20nm以下の青色蛍光体(以下、「狭帯域青色蛍光体」と呼ぶことがある。)を単独で用いることができる。
<1−2−4.黄色蛍光体>
黄色蛍光体の発光ピーク波長は、通常は530nm以上、好ましくは540nm以上、より好ましくは550nm以上で、通常は620nm以下、好ましくは600nm以下、より好ましくは580nm以下の波長範囲である。 黄色蛍光体の発光ピークの半値幅は、通常80nm〜130nmの範囲である。また、外部量子効率は、通常60%以上、好ましくは70%以上であり、重量メディアン径は、通常0.1μm以上、好ましくは1.0μm以上、さらに好ましくは5.0μm以上であり、通常40μm以下、好ましくは30μm以下、さらに好ましくは20μm以下である。
黄色蛍光体の発光ピーク波長は、通常は530nm以上、好ましくは540nm以上、より好ましくは550nm以上で、通常は620nm以下、好ましくは600nm以下、より好ましくは580nm以下の波長範囲である。 黄色蛍光体の発光ピークの半値幅は、通常80nm〜130nmの範囲である。また、外部量子効率は、通常60%以上、好ましくは70%以上であり、重量メディアン径は、通常0.1μm以上、好ましくは1.0μm以上、さらに好ましくは5.0μm以上であり、通常40μm以下、好ましくは30μm以下、さらに好ましくは20μm以下である。
このような黄色蛍光体として、例えば、各種の酸化物系、窒化物系、酸窒化物系、硫化物系、酸硫化物系等の蛍光体が挙げられる。特に、RE3M5O12:Ce(ここで、REは、Y、Tb、Gd、Lu、及びSmからなる群から選ばれる少なくとも1種類の元素を表し、Mは、Al、Ga、及びScからなる群から選ばれる少なくとも1種類の元素を表す。)やMa3Mb2Mc3O12:Ce(ここで、Maは2価の金属元素、Mbは3価の金属元素、Mcは4価の金属元素を表す。)等で表されるガーネット構造を有するガーネット系蛍光体、AE2MdO4:Eu(ここで、AEは、Ba、Sr、Ca、Mg、及びZnからなる群から選ばれる少なくとも1種類の元素を表し、Mdは、Si、及び/又はGeを表す。)等で表されるオルソシリケート系蛍光体、これらの系の蛍光体の構成元素の酸素の一部を窒素で置換した酸窒化物系蛍光体、AEAlSiN3:Ce(ここで、AEは、Ba、Sr、Ca、Mg及びZnからなる群から選ばれる少なくとも1種類の元素を表す。)等のCaAlSiN3構造を有する窒化物系蛍光体をCeで付活した蛍光体が挙げられる。
これらの中で、ガーネット系蛍光体は好ましく用いられるが、その中でも特にY3Al5O12:Ce(本願明細書で「YAG」と記載することもある。)が好ましく用いられる。
また、その他、黄色蛍光体としては、CaGa2S4:Eu、(Ca,Sr)Ga2S4:Eu、(Ca,Sr)(Ga,Al)2S4:Eu等の硫化物系蛍光体、Cax(Si,Al)12(O,N)16:Eu等のSiAlON構造を有する酸窒化物系蛍光体等のEuで付活した蛍光体、(M1−A−BEuAMnB)2(BO3)1−P(PO4)PX(但し、Mは、Ca、Sr、及びBaからなる群より選ばれる1種以上の元素を表し、Xは、F、Cl、及びBrからなる群より選ばれる1種以上の元素を表す。A、B、及びPは、各々、0.001≦A≦0.3、0≦B≦0.3、0≦P≦0.2を満たす数を表す。)等のEu付活又はEu,Mn共付活ハロゲン化ホウ酸塩蛍光体、アルカリ土類金属元素を含有していてもよい、La3Si6N11構造を有するCe付活窒化物系蛍光体等を用いることも可能である。なお、前述のCe付活窒化物系蛍光体は、その一部がCaやOで一部置換されていてもよい。
また、その他、黄色蛍光体としては、CaGa2S4:Eu、(Ca,Sr)Ga2S4:Eu、(Ca,Sr)(Ga,Al)2S4:Eu等の硫化物系蛍光体、Cax(Si,Al)12(O,N)16:Eu等のSiAlON構造を有する酸窒化物系蛍光体等のEuで付活した蛍光体、(M1−A−BEuAMnB)2(BO3)1−P(PO4)PX(但し、Mは、Ca、Sr、及びBaからなる群より選ばれる1種以上の元素を表し、Xは、F、Cl、及びBrからなる群より選ばれる1種以上の元素を表す。A、B、及びPは、各々、0.001≦A≦0.3、0≦B≦0.3、0≦P≦0.2を満たす数を表す。)等のEu付活又はEu,Mn共付活ハロゲン化ホウ酸塩蛍光体、アルカリ土類金属元素を含有していてもよい、La3Si6N11構造を有するCe付活窒化物系蛍光体等を用いることも可能である。なお、前述のCe付活窒化物系蛍光体は、その一部がCaやOで一部置換されていてもよい。
本発明の熱可塑性樹脂組成物においては、熱可塑性樹脂組成物の合計重量を100重量%としたときの蛍光体含有量は、通常0.01重量%以上であるが、0.2重量%以上が好ましく、0.5重量%以上がより好ましく、1重量%以上が最も好ましい。一方、蛍光体含有量の上限は通常50重量%以下であるが、15重量%以下であることが好ましく、10重量%以下であることがより好ましい。この範囲とすることで、樹脂組成物を波長変換部材としたときの厚みが適切な範囲になり易く、波長変換部材の強度低下を抑制し得る。
また、蛍光体の平均粒径は、10μm以上であることが好ましく、15μm以上であることがより好ましい。この範囲とすることで、波長変換部材としたときの波長変換効率の低下を抑制し得る。
ここで、上記平均粒径とは、一次粒子の平均粒径であり、レーザ粒度計により測定された値である。
ここで、上記平均粒径とは、一次粒子の平均粒径であり、レーザ粒度計により測定された値である。
<1−3.熱可塑性樹脂組成物が含み得るその他の要素>
本発明の熱可塑性樹脂は、1−1.に記載のポリカーボネート樹脂の他に、例えば、芳香族ポリカーボネート樹脂、芳香族ポリエステル、脂肪族ポリエステル、ポリアミド、ポリスチレン、ポリオレフィン、アクリル、アモルファスポリオレフィン、ABS、ASなどの合成樹脂、ポリ乳酸、ポリブチレンスクシネートなどの生分解性樹脂、ゴムなどの1種又は2種以上と混練して、ポリマーアロイとしても用いることもできる。
本発明の熱可塑性樹脂は、1−1.に記載のポリカーボネート樹脂の他に、例えば、芳香族ポリカーボネート樹脂、芳香族ポリエステル、脂肪族ポリエステル、ポリアミド、ポリスチレン、ポリオレフィン、アクリル、アモルファスポリオレフィン、ABS、ASなどの合成樹脂、ポリ乳酸、ポリブチレンスクシネートなどの生分解性樹脂、ゴムなどの1種又は2種以上と混練して、ポリマーアロイとしても用いることもできる。
本実施形態における熱可塑性樹脂組成物は、拡散剤を含有することが好ましい。拡散剤を含有することで、上記熱可塑性樹脂組成物より作成した波長変換部材の全光線透過率の調整が可能である。
拡散剤は、無機系光拡散剤、有機系光拡散剤、又は気泡が挙げられる。
無機系光拡散剤としては、例えば、珪素、アルミニウム、チタン、ジルコニウム、カルシウム、マグネシウム、亜鉛及びバリウム等の元素を含有する無機系光拡散剤を用いることが可能であり、また、珪素、アルミニウム、チタン、及びジルコニウムからなる群の少なくとも1つの元素を含む無機系光拡散剤を用いることが好ましい。有機系光拡散剤としては、アクリル系、スチレン系、ポリアミド系若しくは元素として珪素もしくはフッ素を含む有機系光拡散剤を用いることが可能であり、中でも、アクリル系光拡散剤、又は元素として珪素を含む有機系光拡散剤を用いることが好ましい。
拡散剤は、無機系光拡散剤、有機系光拡散剤、又は気泡が挙げられる。
無機系光拡散剤としては、例えば、珪素、アルミニウム、チタン、ジルコニウム、カルシウム、マグネシウム、亜鉛及びバリウム等の元素を含有する無機系光拡散剤を用いることが可能であり、また、珪素、アルミニウム、チタン、及びジルコニウムからなる群の少なくとも1つの元素を含む無機系光拡散剤を用いることが好ましい。有機系光拡散剤としては、アクリル系、スチレン系、ポリアミド系若しくは元素として珪素もしくはフッ素を含む有機系光拡散剤を用いることが可能であり、中でも、アクリル系光拡散剤、又は元素として珪素を含む有機系光拡散剤を用いることが好ましい。
無機系光拡散剤の具体例としては、二酸化ケイ素(シリカ)、ホワイトカーボン、溶融シリカ、タルク、酸化マグネシウム、酸化亜鉛、酸化チタン、酸化アルミニウム、酸化ジルコニウム、酸化ホウ素、窒化ホウ素、窒化アルミニウム、窒化珪素、炭酸カルシウム、炭酸バリウム、炭酸マグネシウム、水酸化アルミニウム、水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム、硫酸バリウム、珪酸カルシウム、珪酸マグネシウム、珪酸アルミニウム、珪酸アルミ化ナトリウム、珪酸亜鉛、硫化亜鉛、ガラス粒子、ガラス繊維、ガラスフレーク、マイカ、ワラストナイト、ゼオライト、セピオライト、ベントナイト、モンモリロナイト、ハイドロタルサイト、カオリン、チタン酸カリウム等の材料が挙げられる。
これらの無機拡散剤は、シランカップリング剤、チタネートカップリング剤、メチルハイドロジェンポリシロキサン、脂肪酸含有炭化水素化合物等の各種表面処理剤で処理されたものであっても良く、表面を不活性な無機化合物で被覆されたものでもよい。
有機系光拡散剤としては、芳香族ポリカーボネート、ポリエチレンテレフタレートやポリブチレンテレフタレート等の芳香族ポリエステル、脂肪族ポリエステル、AS、ABS、SBS等のスチレン系(共)重合体、アクリル系(共)重合体、シロキサン系(共)重合体、ポリアミド系(共)重合体、SBR、MBS、MES等のゴム等の材料が挙げられる。これら、有機系拡散剤の分子の一部又は全部は、架橋していても架橋していなくてもよい。ここで、「(共)重合体」とは「重合体」及び「共重合体」の双方を意味する。
有機系光拡散剤としては、芳香族ポリカーボネート、ポリエチレンテレフタレートやポリブチレンテレフタレート等の芳香族ポリエステル、脂肪族ポリエステル、AS、ABS、SBS等のスチレン系(共)重合体、アクリル系(共)重合体、シロキサン系(共)重合体、ポリアミド系(共)重合体、SBR、MBS、MES等のゴム等の材料が挙げられる。これら、有機系拡散剤の分子の一部又は全部は、架橋していても架橋していなくてもよい。ここで、「(共)重合体」とは「重合体」及び「共重合体」の双方を意味する。
拡散剤としては、シリカ、ガラス、炭酸カルシウム、及びマイカからなる群から選択される少なくとも1種を含むことが好ましい。また、さらに平均粒子径が1μm以上であることが好ましく、30μm以下であることが好ましい。なお、平均粒子径は、積算重量百分率、粒度分布計等により測定した粒子径である。
また、拡散剤としては、モース硬度が8未満であることが好ましく、7未満であることが更に好ましい。このような硬度の拡散剤を用いることで、前記熱可塑性樹脂組成物より作成した波長変換部材の変色が抑えられ、また、容器を傷つけることなく不純物が混じらない。
また、拡散剤としては、モース硬度が8未満であることが好ましく、7未満であることが更に好ましい。このような硬度の拡散剤を用いることで、前記熱可塑性樹脂組成物より作成した波長変換部材の変色が抑えられ、また、容器を傷つけることなく不純物が混じらない。
また、拡散剤としては、その長径Lと短径Dとの比L/Dが200以下であることが好ましい。このような範囲の拡散剤を用いることで、前記熱可塑性樹脂組成物より作成した波長変換部材の変色が抑えられ、また、容器を傷つけることなく不純物が混じらない。
L/Dは50以下であることがより好ましい。
また拡散剤により前記熱可塑性樹脂組成物より作成した波長変換部材の透過率を調整する際には、例えば、平均粒子径が小さい拡散剤を添加する、熱可塑性樹脂組成物との屈折率差が大きい拡散剤を添加する、あるいは、拡散剤の添加量を増やすことにより波長変換部材の透過率を下げることにより調整ができる。
L/Dは50以下であることがより好ましい。
また拡散剤により前記熱可塑性樹脂組成物より作成した波長変換部材の透過率を調整する際には、例えば、平均粒子径が小さい拡散剤を添加する、熱可塑性樹脂組成物との屈折率差が大きい拡散剤を添加する、あるいは、拡散剤の添加量を増やすことにより波長変換部材の透過率を下げることにより調整ができる。
拡散剤は、前記熱可塑性樹脂組成物より作成した波長変換部材の全光線透過率を調整することができるが、場合によっては熱可塑性樹脂組成物が変色することがあり得る。そのため、拡散剤を含有させて成形してなる1mm厚熱可塑性樹脂組成物の色相と、拡散剤を含有させずに成形してなる1mm厚熱可塑性樹脂組成物の色相との差ΔEが10以下であるものを用いることが好ましい。ΔEは8以下であることがより好ましく、6以下であることが更に好ましい。このように波長変換部材とした際の変色が少ない拡散剤を選択することで、発光効率が向上する。
なお、色相の測定は、例えば日本電色工業(株)製 測色色差計を使用して行うことができる。
本実施態様において拡散剤を用いる場合、熱可塑性樹脂組成物中に、通常0.1重量%以上、好ましくは0.3重量%以上含有する。また、通常40重量%以下、好ましくは30重量%以下含有する。
本実施態様において拡散剤を用いる場合、熱可塑性樹脂組成物中に、通常0.1重量%以上、好ましくは0.3重量%以上含有する。また、通常40重量%以下、好ましくは30重量%以下含有する。
拡散剤は、成形後の波長変換部材に対しては、通常0.1重量%以上、好ましくは0.3重量%以上含有する。また、通常40重量%以下、好ましくは30重量%以下含有する。
その他の添加剤として本実施態様に係る波長変換部材もしくは熱可塑性樹脂組成物には、樹脂に通常使用可能な添加剤を有効量使用することができる。具体的には、他の熱可塑性樹脂、酸化防止剤、アンチブロッキング剤、紫外線吸収剤、光安定剤、可塑剤、熱安定剤、着色剤、難燃剤、離型剤、帯電防止剤、防曇剤、表面ぬれ改善剤、焼却補助剤、滑剤、難燃剤、架橋剤、分散助剤や各種界面活性剤、スリップ剤、加水分解防止剤、中和剤、強化材、熱伝導材等が挙げられる。これらは1種を単独で用いてもよく、2種以上を混合して使用してもよい。
その他の添加剤として本実施態様に係る波長変換部材もしくは熱可塑性樹脂組成物には、樹脂に通常使用可能な添加剤を有効量使用することができる。具体的には、他の熱可塑性樹脂、酸化防止剤、アンチブロッキング剤、紫外線吸収剤、光安定剤、可塑剤、熱安定剤、着色剤、難燃剤、離型剤、帯電防止剤、防曇剤、表面ぬれ改善剤、焼却補助剤、滑剤、難燃剤、架橋剤、分散助剤や各種界面活性剤、スリップ剤、加水分解防止剤、中和剤、強化材、熱伝導材等が挙げられる。これらは1種を単独で用いてもよく、2種以上を混合して使用してもよい。
酸化防止剤の具体例としては、2,6−ジ−t−ブチル−4−ヒドロキシトルエン、2,2’−メチレンビス(4−メチル−6−t−ブチルフェノール)、ペンタエリスリトールテトラキス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、3,3’,3”,5,5’,5”−ヘキサ−tert−ブチル−a,a’,a”−(メシチレン−2,4,6−トリイル)トリ−p−クレゾール、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、1,3,5−トリス[(4−tert−ブチル−3−ヒドロキシ−2,6−キシリル)メチル]−1,3,5−トリアジン−2,4,6(1H、3H,5H)−トリオン、1,3,5−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)−1,3,5−トリアジン−2,4,6(1H、3H,5H)−トリオン、カルシウムジエチルビス[[3,5−ビス(1,1−ジメチルエチル)−4−ヒドロキシフェニル]メチル]ホスホネート、ビス(2,2’−ジヒドロキシ−3,3’−ジ−tert−ブチル−5,5’−ジメチルフェニル)エタン、N,N’−ヘキサン−1,6−ジイルビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニルプロピオンアミド等のヒンダードフェノール系酸化防止剤、トリデシルホスファイト、ジフェニルデシルホスファイト、テトラキス(2,4−ジ−tert−ブチルフェニル)[1,1−ビフェニル]−4,4’―ジイルビスホスフォナイト、ビス[2,4−ビス(1,1−ジメチルエチル)−6−メチルフェニル]エチルエステル亜りん酸、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジファスファイト等のリン系酸化防止剤、3−ヒドロキシ−5,7−ジ−tert−ブチル−フラン−2−オンとキシレンの反応生成物等のラクトン系酸化防止剤、ジラウリルチオジプロピオネート、ジステアリルチオジプロピオネート等の硫黄系酸化防止剤などが挙げられる。これらの酸化防止剤は、1種を単独で用いてもよく、2種以上を任意の組み合わせおよび比率で併用してもよい。
酸化防止剤の使用量は、本発明の効果を著しく損なわない限り任意であるが、樹脂に対して、通常100重量ppm以上、50000重量ppm以下である。この範囲の下限を下回ると酸化防止剤の効果が小さくなるおそれがあり、上限を上回ると、酸化防止剤がブリードアウトしたり、かえって着色を起こすおそれがある。
光安定剤としては、デカンニ酸ビス(2,2,6,6−テトラメチル−1(オクチルオキシ)−4−ピペリジニル)エステル、1,1−ジメチルエチルヒドロペルオキシドとオクタンの反応生成物、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)[[3,5−ビス(1,1−ジメチルエチル)−4−ヒドロキシフェニル]メチル]ブチルマロネート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)セバケート、メチル1,2,2,6,6−ペンタメチル−4−ピペリジルセバケート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート、1−[2−[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ]エチル]−4−[3−(3,5−ジ−tert−ブチル−4−ヒドトキシフェニル)プロピオニルオキシ]−2,2,6,6−テトラメチルピペリジン、ポリ[[6−(1,1,3,3−テトラメチルブチル)アミノ−1,3,5−トリアジン−2,4−ジイル][(2,2,6,6−テトラメチル−4−ピペリジル)イミノ]ヘキサメチレン{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}]等のヒンダードアミン系安定剤が挙げられる。
光安定剤としては、デカンニ酸ビス(2,2,6,6−テトラメチル−1(オクチルオキシ)−4−ピペリジニル)エステル、1,1−ジメチルエチルヒドロペルオキシドとオクタンの反応生成物、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)[[3,5−ビス(1,1−ジメチルエチル)−4−ヒドロキシフェニル]メチル]ブチルマロネート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)セバケート、メチル1,2,2,6,6−ペンタメチル−4−ピペリジルセバケート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート、1−[2−[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ]エチル]−4−[3−(3,5−ジ−tert−ブチル−4−ヒドトキシフェニル)プロピオニルオキシ]−2,2,6,6−テトラメチルピペリジン、ポリ[[6−(1,1,3,3−テトラメチルブチル)アミノ−1,3,5−トリアジン−2,4−ジイル][(2,2,6,6−テトラメチル−4−ピペリジル)イミノ]ヘキサメチレン{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}]等のヒンダードアミン系安定剤が挙げられる。
光安定剤は、1種を単独で用いてもよく、2種以上を任意の組み合わせおよび比率で併用してもよい。
更に、光安定剤の使用量は樹脂100質量部に対して、通常0.1質量部以上以上、5質量部以下である。
紫外線吸収剤としては、酸化セリウム、酸化亜鉛などの無機紫外線吸収剤の他、ベンゾトリアゾール化合物、ベンゾフェノン化合物、トリアジン化合物などの有機紫外線吸収剤が挙げられる。これらの中で、ベンゾトリアゾール化合物、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−[(ヘキシル)オキシ]−フェノール、2−[4,6−ビス(2,4−ジメチルフェニル)−1,3,5−トリアジン−2−イル]−5−(オクチロキシ)フェノール、2,2’−(1,4−フェニレン)ビス[4H−3,1−ベンゾキサジン−4−オン]、[(4−メトキシフェニル)−メチレン]−プロパンジオイックアシッド−ジメチルエステルの群から選ばれる少なくとも1種が好ましい。
更に、光安定剤の使用量は樹脂100質量部に対して、通常0.1質量部以上以上、5質量部以下である。
紫外線吸収剤としては、酸化セリウム、酸化亜鉛などの無機紫外線吸収剤の他、ベンゾトリアゾール化合物、ベンゾフェノン化合物、トリアジン化合物などの有機紫外線吸収剤が挙げられる。これらの中で、ベンゾトリアゾール化合物、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−[(ヘキシル)オキシ]−フェノール、2−[4,6−ビス(2,4−ジメチルフェニル)−1,3,5−トリアジン−2−イル]−5−(オクチロキシ)フェノール、2,2’−(1,4−フェニレン)ビス[4H−3,1−ベンゾキサジン−4−オン]、[(4−メトキシフェニル)−メチレン]−プロパンジオイックアシッド−ジメチルエステルの群から選ばれる少なくとも1種が好ましい。
ベンゾトリアゾール化合物の具体例としては、メチル−3−〔3−tert−ブチル−5−(2H−ベンゾトリアゾール−2−イル)−4−ヒドロキシフェニル〕プロピオネート−ポリエチレングリコールとの縮合物が挙げられる。また、その他のベンゾトリアゾール化合物の具体例としては、2−ビス(5−メチル−2−ヒドロキシフェニル)ベンゾトリアゾール、2−(3,5−ジ−tert−ブチル−2−ヒドロキシフェニル)ベンゾトリアゾール、2−(3’,5’−ジ−tert−ブチル−2’−ヒドロキシフェニル)−5−クロロベンゾトリアゾール、2−(3−tert−ブチル−5−メチル−2−ヒドロキシフェニル)−5−クロロベンゾトリアゾール、2−(2’−ヒドロキシ−5’−tert−オクチルフェニル)ベンゾトリアゾール、2−(3,5−ジ−tert−アミル−2−ヒドロキシフェニル)ベンゾトリアゾール、2−[2−ヒドロキシ−3,5−ビス(α,α−ジメチルベンジル)フェニル]−2H−ベンゾトリアゾール、2,2’−メチレン−ビス〔4−(1,1,3,3−テトラメチルブチル)−6−(2N−ベンゾトリアゾール2−イル)フェノール〕[メチル−3−〔3−tert−ブチル−5−(2H−ベンゾトリアゾール−2−イル)−4−ヒドロキシフェニル〕プロピオネート−ポリエチレングリコール]縮合物などが挙げられる。
紫外線吸収剤は、1種を単独で用いてもよく、2種以上を任意の組み合わせおよび比率で併用してもよい。
また、紫外線吸収剤の使用量は、通常100ppm以上、5質量%以下である。
難燃剤としては、例えば、有機ハロゲン化合物、アンチモン化合物、リン化合物、窒素化合物等の有機難燃剤及び無機難燃剤が挙げられる。有機ハロゲン化合物としては、例えば、臭素化ポリカーボネート、臭素化エポキシ樹脂、臭素化フェノキシ樹脂、臭素化ポリフェニレンエーテル樹脂、臭素化ポリスチレン樹脂、臭素化ビスフェノールA、ペンタブロモベンジルポリアクリレート等が挙げられる。アンチモン化合物としては、例えば、三酸化アンチモン、五酸化アンチモン、アンチモン酸ナトリウム等が挙げられる。リン化合物としては、例えば、リン酸エステル、ポリリン酸、ポリリン酸アンモニウム、赤リンや、リン原子と窒素原子の結合を主鎖に有するフェノキシホスファゼン、アミノホスファゼン等のホスファゼン化合物等が挙げられる。窒素系化合物としては、例えば、メラミン、シアヌル酸、シアヌル酸メラミン等が挙げられる。無機難燃剤としては、例えば、水酸化アルミニウム、水酸化マグネシウム、ケイ素化合物、ホウ素化合物等が挙げられる。
また、紫外線吸収剤の使用量は、通常100ppm以上、5質量%以下である。
難燃剤としては、例えば、有機ハロゲン化合物、アンチモン化合物、リン化合物、窒素化合物等の有機難燃剤及び無機難燃剤が挙げられる。有機ハロゲン化合物としては、例えば、臭素化ポリカーボネート、臭素化エポキシ樹脂、臭素化フェノキシ樹脂、臭素化ポリフェニレンエーテル樹脂、臭素化ポリスチレン樹脂、臭素化ビスフェノールA、ペンタブロモベンジルポリアクリレート等が挙げられる。アンチモン化合物としては、例えば、三酸化アンチモン、五酸化アンチモン、アンチモン酸ナトリウム等が挙げられる。リン化合物としては、例えば、リン酸エステル、ポリリン酸、ポリリン酸アンモニウム、赤リンや、リン原子と窒素原子の結合を主鎖に有するフェノキシホスファゼン、アミノホスファゼン等のホスファゼン化合物等が挙げられる。窒素系化合物としては、例えば、メラミン、シアヌル酸、シアヌル酸メラミン等が挙げられる。無機難燃剤としては、例えば、水酸化アルミニウム、水酸化マグネシウム、ケイ素化合物、ホウ素化合物等が挙げられる。
リン酸エステル系難燃剤の具体例としては、トリフェニルホスフェ−ト、レゾルシノールビス(ジキシレニルホスフェ−ト)、ハイドロキノンビス(ジキシレニルホスフェ−ト)、4,4’−ビフェノールビス(ジキシレニルホスフェ−ト)、ビスフェノールAビス(ジキシレニルホスフェ−ト)、レゾルシノールビス(ジフェニルホスフェ−ト)、ハイドロキノンビス(ジフェニルホスフェ−ト)、4,4’−ビフェノールビス(ジフェニルホスフェ−ト)、ビスフェノールAビス(ジフェニルホスフェ−ト)等が挙げられる。難燃剤の含有量は、樹脂100重量部に対し、通常1〜30重量部である。
<2.波長変換部材>
本発明の第二の態様は、入射光の少なくとも一部を波長変換して、前記入射光とは異なる波長の出射光を放出する波長変換部材であって、該波長変換部材は、前記入射光の少なくとも一部を吸収して前記入射光とは異なる波長の出射光を放出する蛍光体と、該蛍光体を保持する熱可塑性樹脂を含む、面状構造を有するものであって、該熱可塑性樹脂が、特定ジヒドロキシ化合物に由来する構造単位を少なくとも有するポリカーボネート樹脂を含有し、該面状構造の少なくとも一部は、全光線透過率が30%以上、70%以下である波長変換部材に関する。
本発明の第二の態様は、入射光の少なくとも一部を波長変換して、前記入射光とは異なる波長の出射光を放出する波長変換部材であって、該波長変換部材は、前記入射光の少なくとも一部を吸収して前記入射光とは異なる波長の出射光を放出する蛍光体と、該蛍光体を保持する熱可塑性樹脂を含む、面状構造を有するものであって、該熱可塑性樹脂が、特定ジヒドロキシ化合物に由来する構造単位を少なくとも有するポリカーボネート樹脂を含有し、該面状構造の少なくとも一部は、全光線透過率が30%以上、70%以下である波長変換部材に関する。
本実施態様に係る波長変換部材を製造する方法は、特段限定されず、定法に従い製造すればよい。例えば、本発明第一の態様の熱可塑性樹脂組成物を用いることが好ましく、熱可塑性樹脂と蛍光体、好ましくは拡散剤及び必要に応じて配合される他の添加剤を配合した組成物を製造するために、1軸又は2軸押し出し機を混練機として使用することができる。熱可塑性樹脂と蛍光体、拡散剤を含む他の添加剤は、一ヶ所から一括して供給してもよいし、熱可塑性樹脂を供給後、蛍光体等の他の配合剤を順次供給してもよい。また、各成分から選ばれた2種以上の成分を予め混合、混練しておいてもよい。特に、蛍光体は他の粉末成分と混合後供給することが好ましい。なお、押し出し機は揮発成分を脱揮できるベント口を備えたものであってもよい。混練後、プレス成形や射出成形、中空成形、押出成形、などの方法により溶融成形することで、波長変換部材は製造される。
波長変換部材は、白色LED発光装置中の白色光発光面となり得る面状構造を有する形状であればどの様な形状であっても良いが、一般的には面状構造の厚さは0.3mm〜5mmが一般的である。また、本発明の波長変換部材は、全光線透過率が30〜70%の範囲内であれば単層構造であっても、2層以上の多層積層構造であっても良い。また、表面は、鏡面であってもシボ等の微細構造があっていても良く、外表面にハードコート、印刷等を施す事もできる。
<2−1.波長変換部材の全光線透過率>
本実施態様に係る波長変換部材は、前述のとおり、面状構造の少なくとも一部は、全光線透過率が30%以上70%以下であることを特徴とする。このような範囲とすることで
、発光装置に適用した際に、低色温度で全光束を向上させることが可能となる。
上記全光線透過率は、35%以上であることが好ましく、40%以上であることがより好ましく、45%以上であることが更に好ましい。一方65%以下であることが好ましく、60%以下であることがより好ましく、55%以下であることが更に好ましい。
本実施態様に係る波長変換部材は、前述のとおり、面状構造の少なくとも一部は、全光線透過率が30%以上70%以下であることを特徴とする。このような範囲とすることで
、発光装置に適用した際に、低色温度で全光束を向上させることが可能となる。
上記全光線透過率は、35%以上であることが好ましく、40%以上であることがより好ましく、45%以上であることが更に好ましい。一方65%以下であることが好ましく、60%以下であることがより好ましく、55%以下であることが更に好ましい。
全光線透過率は、JIS K7361に従い測定することができるが、蛍光体を含有するため、着色した透明性の低い波長変換部材となるので、入り口開口が20mmΦ、光源としてハロゲンランプを使用した装置で測定を行う必要がある。
波長変換部材の全光透過率の調整は、例えば後述する拡散剤(光拡散剤)を含有させることで可能である。また、熱可塑性樹脂をアロイ化することでも、全光透過率の調整を行うことができる。
波長変換部材の全光透過率の調整は、例えば後述する拡散剤(光拡散剤)を含有させることで可能である。また、熱可塑性樹脂をアロイ化することでも、全光透過率の調整を行うことができる。
ここで、本実施態様に係る波長変換部材は面状構造を有する。面状構造とは、発光装置において発光面となる部分を意図しており、例えば波長変換部材が波長変換部材として発光装置に備えられた際、その端部などにみられる他の部材との結合部・接合部・噛合部ではなく、波長変換部材中央近傍に位置する、主として励起光を受光して外部へ光を出射し得る箇所をいう。
図1を用いて説明すると、図1中の波長変換部材3における一点鎖線部はいずれも面状構造部分である。一方、波長変換部材3における配線基板2近傍部分については、面状構造ではない。
本実施形態では、波長変換部材の面状構造の少なくとも一部が上記全光線透過率の範囲を満たしていればよく、波長変換部材の面状構造の全部が上記全光線透過率の範囲を満たしていることがより好ましい。少なくとも一部とは、通常10%以上、好ましくは30%、より好ましくは50%であり得る。
本実施形態では、波長変換部材の面状構造の少なくとも一部が上記全光線透過率の範囲を満たしていればよく、波長変換部材の面状構造の全部が上記全光線透過率の範囲を満たしていることがより好ましい。少なくとも一部とは、通常10%以上、好ましくは30%、より好ましくは50%であり得る。
面状構造の厚みは、0.3mm以上であることが好ましく、0.5mm以上であることがより好ましく、0.7mm以上であることが更に好ましい。また、5mm以下であることが好ましく、3mm以下であることがより好ましく、2.5mm以下であることが更に好ましい。 なお、本発明の第一の実施態様の熱可塑性樹脂組成物においては、1.0mm厚のプレートを作成して上記測定方法と同様にして、熱可塑性樹脂組成物の全光線透過率を評価することができる。
<3.発光装置>
本発明の第三の実施態様は、半導体発光素子、および第二の実施態様に係る波長変換部材を備える発光装置である。
本実施形態に係る発光装置は、少なくとも青色半導体発光素子と、青色光の波長を変換する波長変換部材である本発明の第二の実施態様に係る波長変換部材を含有するものである。青色半導体発光素子と本発明の第二の実施態様に係る波長変換部材とは密着していても、離間していてもよく、その間に透明樹脂を備えていてもよく、空間を有していてもよい。図1に模式図として示す様に発光素子と該波長変換部材との間に空間を有する構造であることが好ましい。
本発明の第三の実施態様は、半導体発光素子、および第二の実施態様に係る波長変換部材を備える発光装置である。
本実施形態に係る発光装置は、少なくとも青色半導体発光素子と、青色光の波長を変換する波長変換部材である本発明の第二の実施態様に係る波長変換部材を含有するものである。青色半導体発光素子と本発明の第二の実施態様に係る波長変換部材とは密着していても、離間していてもよく、その間に透明樹脂を備えていてもよく、空間を有していてもよい。図1に模式図として示す様に発光素子と該波長変換部材との間に空間を有する構造であることが好ましい。
以下、その構成を図1及び図2を用いて説明する。
図1は、本発明の第三の実施形態に係る発光装置の模式図である。
発光装置10は、その構成部材として、少なくとも青色半導体発光素子1と波長変換部材3を有する。青色半導体発光素子1は、波長変換部材3に含有される蛍光体を励起するための励起光を発する。
図1は、本発明の第三の実施形態に係る発光装置の模式図である。
発光装置10は、その構成部材として、少なくとも青色半導体発光素子1と波長変換部材3を有する。青色半導体発光素子1は、波長変換部材3に含有される蛍光体を励起するための励起光を発する。
青色半導体発光素子1は、通常ピーク波長が425nm〜475nmの励起光を発し、
好ましくはピーク波長が430nm〜470nmの励起光を発する。青色半導体発光素子1の数は、装置が必要とする励起光の強さにより適宜設定することが可能である。
一方青色半導体発光素子1の代わりに、紫色半導体発光素子を用いることができる。紫色半導体発光素子は、通常ピーク波長が390nm〜425nmの励起光を発し、好ましくはピーク波長が395〜415nmの励起光を発する。
好ましくはピーク波長が430nm〜470nmの励起光を発する。青色半導体発光素子1の数は、装置が必要とする励起光の強さにより適宜設定することが可能である。
一方青色半導体発光素子1の代わりに、紫色半導体発光素子を用いることができる。紫色半導体発光素子は、通常ピーク波長が390nm〜425nmの励起光を発し、好ましくはピーク波長が395〜415nmの励起光を発する。
青色半導体発光素子1は、配線基板2のチップ実装面2aに実装される。配線基板2には、これら青色半導体発光素子1に電極を供給するための配線パターン(図示せず)が形成され、電気回路を構成する。図1中、配線基板2に波長変換部材3が載っているように表示されているがこの限りではなく、配線基板2と波長変換部材3が他の部材を介して配置されていてもよい。
例えば図2では、配線基板2と波長変換部材3が、枠体4を介して配置される。枠体4は、光に指向性を持たせるために、テーパ状になっていてもよい。また、枠体4は反射材であってもよい。
例えば図2では、配線基板2と波長変換部材3が、枠体4を介して配置される。枠体4は、光に指向性を持たせるために、テーパ状になっていてもよい。また、枠体4は反射材であってもよい。
配線基板2は、電気絶縁性に優れて良好な放熱性を有し、かつ、反射率が高いことが好ましいが、配線基板2のチップ実装面上で青色半導体発光素子1の存在しない面上、もしくは配線基板2と波長変換部材3を接続する他の部材の内面の少なくとも一部に反射率の高い反射板を設ける事もできる。このような配線基板もしくは反射板の反射率としては、80%以上であることが好ましい。このような配線基板としては、アルミナ系セラミック、樹脂、ガラスエポキシ、樹脂中にフィラーを含有した複合樹脂などを用いることができる。また、配線基板2のチップ実装面2a上に設置する反射板としては、アルミナ粉末、シリカ粉末、酸化マグネシウム、酸化チタン、酸化ジルコニウム、酸化亜鉛、硫化亜鉛などの白色顔料を含む樹脂を用いることができる。好ましい樹脂としては、シリコーン樹脂、ポリカーボネート樹脂、ポリブチレンテレフタレート樹脂、ポリフェニレンスルフィド樹脂、フッ素系樹脂等をあげることができる。
波長変換部材3は、青色半導体発光素子1が発する入射光の一部を波長変換し、入射光とは異なる波長の出射光を放射する。波長変換部材3は、樹脂と蛍光体を含有する。蛍光体(図示せず)の種類は特段限定されず、発光装置が白色発光装置であれば、半導体発光素子の励起光の種類に合わせて、白色光を発するように蛍光体の種類を適宜調整すればよい。
半導体発光素子が青色半導体発光素子である場合、黄色蛍光体を用いるか、緑色蛍光体及び赤色蛍光体を用いることで、白色光を発する発光装置とすることができる。
半導体発光素子が紫色半導体発光素子である場合、青色蛍光体、緑色蛍光体及び赤色蛍光体を用いることで、白色光を発する発光装置とすることができる。
また、波長変換部材3中には、蛍光体とともに、少量の透過率調整剤を含有させることが好ましい。透過率調整剤としては、無機系光透過率調整剤、有機系光透過率調整剤又は気泡が挙げられる。透過率調整剤としては、シリカ、ガラス、炭酸カルシウム、酸化チタン、シルセスキオキサン、及びマイカからなる群から選択される1種以上を含むことが好ましい。
半導体発光素子が紫色半導体発光素子である場合、青色蛍光体、緑色蛍光体及び赤色蛍光体を用いることで、白色光を発する発光装置とすることができる。
また、波長変換部材3中には、蛍光体とともに、少量の透過率調整剤を含有させることが好ましい。透過率調整剤としては、無機系光透過率調整剤、有機系光透過率調整剤又は気泡が挙げられる。透過率調整剤としては、シリカ、ガラス、炭酸カルシウム、酸化チタン、シルセスキオキサン、及びマイカからなる群から選択される1種以上を含むことが好ましい。
また、波長変換部材3は、青色半導体発光素子1との間に距離を有する。波長変換部材3と青色半導体発光素子1との間は、空間であってもよく、透明樹脂が備えられていてもよい。このように、波長変換部材3と青色半導体発光素子1との間に距離を有する態様により、青色半導体発光素子1が発する熱によって波長変換部材3及び波長変換部材に含まれる蛍光体の劣化を抑制することができる。青色半導体発光素子1と波長変換部材3との間の距離は、10μm以上が好ましく、100μm以上がさらに好ましく、1.0mm以上が特に好ましい、一方1.0m以下が好ましく、500mm以下がさらに好ましく、1
00mm以下が特に好ましい。
00mm以下が特に好ましい。
本発明の第三の実施態様に係る発光装置は、白色光を放射する発光装置であることが好ましい。白色光を放射する発光装置は、発光装置から放射される光が、光色の黒体輻射軌跡からの偏差duvが−0.0200〜0.0200であり、かつ色温度が1800K以上、7000K以下であることが好ましい。
第三の実施態様に係る発光装置は、低色温度の光を発する場合であっても、高い光束を達成することができる。よって、色温度が5500K以下、5000K以下、4500K以下、などの低色温度の光を発する場合に、特に好適である。
このように白色光を出射する発光装置は、照明装置に好適に備えられる。
第三の実施態様に係る発光装置は、低色温度の光を発する場合であっても、高い光束を達成することができる。よって、色温度が5500K以下、5000K以下、4500K以下、などの低色温度の光を発する場合に、特に好適である。
このように白色光を出射する発光装置は、照明装置に好適に備えられる。
<4.LED照明器具>
本発明の第四の実施態様は、第三の実施態様に係る発光装置を備える照明器具である。上記のように、第三の実施態様に係る発光装置からは、高い全光束が出射されており、
また、全光束が低下しやすい低色温度の白色光を出射する発光装置であっても高い全光束が達成されるため、全光束の高い照明器具を得ることが出来る。照明器具は、消灯時に波長変換部材の色が目立たないように、発光装置中の波長変換部材を覆う拡散部材を配置することが好ましい。拡散部材としては、ヘイズが40%以上、全光線透過率が60%以上であれば特に制限は無く、波長変換部材の外側に配置されていれば、照明器具として配置されても、発光装置中に組み込まれていてもかまわない。拡散部材と波長変換部材を共に含む空間内の他部材の少なくとも一部は反射率の高い反射板となっていることが好ましい。
本発明の第四の実施態様は、第三の実施態様に係る発光装置を備える照明器具である。上記のように、第三の実施態様に係る発光装置からは、高い全光束が出射されており、
また、全光束が低下しやすい低色温度の白色光を出射する発光装置であっても高い全光束が達成されるため、全光束の高い照明器具を得ることが出来る。照明器具は、消灯時に波長変換部材の色が目立たないように、発光装置中の波長変換部材を覆う拡散部材を配置することが好ましい。拡散部材としては、ヘイズが40%以上、全光線透過率が60%以上であれば特に制限は無く、波長変換部材の外側に配置されていれば、照明器具として配置されても、発光装置中に組み込まれていてもかまわない。拡散部材と波長変換部材を共に含む空間内の他部材の少なくとも一部は反射率の高い反射板となっていることが好ましい。
以下、実施例により、本発明をより詳細に説明するが、本発明は、以下の実施態様にのみ限られないことはいうまでもない。
<原料>
以下に示す樹脂、蛍光体、拡散剤を準備した。また、拡散剤の物性を表1に示す。
(熱可塑性樹脂)
PC1 ポリカーボネート樹脂
PC2 ポリカーボネート樹脂 三菱エンジニアリングプラスチックス(株)製 ユーピ
ロンS-3000RN
PMMA PMMA樹脂 三菱レイヨン(株)製 アクリヘ゜ットVH001
<原料>
以下に示す樹脂、蛍光体、拡散剤を準備した。また、拡散剤の物性を表1に示す。
(熱可塑性樹脂)
PC1 ポリカーボネート樹脂
PC2 ポリカーボネート樹脂 三菱エンジニアリングプラスチックス(株)製 ユーピ
ロンS-3000RN
PMMA PMMA樹脂 三菱レイヨン(株)製 アクリヘ゜ットVH001
(蛍光体)
蛍光体1 三菱化学(株)製 YAG 商品名 BY102D のシリコーンオイル処理品
蛍光体2 三菱化学(株)製 CASN 商品名BR101A
(透過率調整剤)
透過率調整剤1 ガンツ化成(株) ガンツパール SI-020 材質:シリコーン
粒子径=2μm
透過率調整剤2 石原産業(株)酸化チタン CR60
蛍光体1 三菱化学(株)製 YAG 商品名 BY102D のシリコーンオイル処理品
蛍光体2 三菱化学(株)製 CASN 商品名BR101A
(透過率調整剤)
透過率調整剤1 ガンツ化成(株) ガンツパール SI-020 材質:シリコーン
粒子径=2μm
透過率調整剤2 石原産業(株)酸化チタン CR60
[ポリカーボネート樹脂PC1の製造例]
竪型攪拌反応器3器と横型攪拌反応器1器、並びに二軸押出機からなる連続重合設備を用いて、ポリカーボネート樹脂の重合を行った。ISBとCHDMとDPCをそれぞれタンクで溶融させ、ISBを25.6kg/hr、CHDMを25.3kg/hr、DPCを75.5kg/hr(モル比でISB/CHDM/DPC=0.500/0.500/1.005)の流量で第1竪型攪拌反応器に連続的に供給した。同時に、触媒として酢酸カルシウム1水和物の水溶液を全ジヒドロキシ化合物1molに対して1.5μmolとなるように第1竪型攪拌反応器に供給した。第1竪型攪拌反応器での平均滞留時間が90
分となるように、反応器底部の移送配管に設けられたバルブの開度を制御しつつ、液面レベルを一定に保った。反応器底部より排出された反応液は、引き続き第2竪型攪拌反応器、第3竪型攪拌反応器、第4横型攪拌反応器[(株)日立プラントテクノロジー社製2軸メガネ翼]に逐次連続供給された。第1竪型攪拌反応器と第2竪型攪拌反応器は還流冷却器を具備しており、還流比を調節することで、未反応のジヒドロキシ化合物とDPCの留出を抑制した。
竪型攪拌反応器3器と横型攪拌反応器1器、並びに二軸押出機からなる連続重合設備を用いて、ポリカーボネート樹脂の重合を行った。ISBとCHDMとDPCをそれぞれタンクで溶融させ、ISBを25.6kg/hr、CHDMを25.3kg/hr、DPCを75.5kg/hr(モル比でISB/CHDM/DPC=0.500/0.500/1.005)の流量で第1竪型攪拌反応器に連続的に供給した。同時に、触媒として酢酸カルシウム1水和物の水溶液を全ジヒドロキシ化合物1molに対して1.5μmolとなるように第1竪型攪拌反応器に供給した。第1竪型攪拌反応器での平均滞留時間が90
分となるように、反応器底部の移送配管に設けられたバルブの開度を制御しつつ、液面レベルを一定に保った。反応器底部より排出された反応液は、引き続き第2竪型攪拌反応器、第3竪型攪拌反応器、第4横型攪拌反応器[(株)日立プラントテクノロジー社製2軸メガネ翼]に逐次連続供給された。第1竪型攪拌反応器と第2竪型攪拌反応器は還流冷却器を具備しており、還流比を調節することで、未反応のジヒドロキシ化合物とDPCの留出を抑制した。
各反応器の反応温度、内圧、滞留時間はそれぞれ、第1竪型攪拌反応器:190℃、25kPa、90分、第2竪型攪拌反応器:195℃、10kPa、45分、第3竪型攪拌反応器:210℃、3kPa、45分、第4横型攪拌反応器:225℃、0.5kPa、90分とした。得られるポリカーボネート樹脂の還元粘度が0.61dL/gから0.64dL/gとなるように、第4横型攪拌反応器の内圧を微調整しながら運転を行った。
第4横型攪拌反応器より60kg/hrの量でポリカーボネート樹脂を抜き出し、続いて樹脂を溶融状態のまま二軸押出機[(株)日本製鋼所製TEX30α]に供給した。押出機は3つの真空ベント口を有しており、樹脂中の残存低分子成分を脱揮除去した。第2ベントの手前で水を樹脂に対して2000重量ppm加えて、注水脱揮を行った。押出機はシリンダー温度を220℃、スクリュー回転数を230rpmに設定した。押出機出口での樹脂温度は262℃であった。
押出機を通過したポリカーボネート樹脂は、引き続き溶融状態のままフィルターを通して異物を濾過した後、ダイからストランド状に排出させ、水冷、固化させた後、回転式カッターでペレット化し、ISB/CHDM=50/50mol%のポリカーボネート樹脂PC1を得た。
得られたポリカーボネート樹脂PC1の溶融粘度は1640Pa・sであり、ガラス転移温度は100℃であった。樹脂中のナトリウム、カリウム及びセシウムの合計の含有量は0.1重量ppmであった。ISB由来の二重結合末端基の量はISBに由来する構造単位全体に対して0.25mol%であった。
得られたポリカーボネート樹脂PC1の溶融粘度は1640Pa・sであり、ガラス転移温度は100℃であった。樹脂中のナトリウム、カリウム及びセシウムの合計の含有量は0.1重量ppmであった。ISB由来の二重結合末端基の量はISBに由来する構造単位全体に対して0.25mol%であった。
<実施例1〜5、比較例1〜3>
各樹脂は80〜120℃で4時間乾燥を行った後、表1の配合組成、加工条件で、混練した。ここで、混練条件は(株)東洋精機製作所製 ラボプラストミルを使用し、スクリュー回転数80rpm、240〜280℃で混練を行った。
混練後、プレス成形により、厚みが1mm、45mmΦの円板を成形した。
各樹脂は80〜120℃で4時間乾燥を行った後、表1の配合組成、加工条件で、混練した。ここで、混練条件は(株)東洋精機製作所製 ラボプラストミルを使用し、スクリュー回転数80rpm、240〜280℃で混練を行った。
混練後、プレス成形により、厚みが1mm、45mmΦの円板を成形した。
得られた成形体について、全光線透過率測定、初期特性(発光特性測定、xy色度座標、色温度)、耐候性試験後の特性(発光特性測定、xy色度座標、相対色温度(CCT))を以下に示す方法で実施した。なお、発光特性測定の結果(光束)は、実施例1の光束を100とした相対的な値である。
<全光線透過率測定>
日本電色工業(株)製 濁度計 NDH2000を使用して、JIS K7361に準
拠して測定を行った。本装置の入り口開口は20mmΦであり、光源はハロゲンランプであった。
日本電色工業(株)製 濁度計 NDH2000を使用して、JIS K7361に準
拠して測定を行った。本装置の入り口開口は20mmΦであり、光源はハロゲンランプであった。
<発光特性測定>
450nmで発光するLED発光素子上に成形品を保持し、成形品を透過して波長変換された光の特性として光強度(Lumen)とCIE色度座標(x、y)、色温度を測定した。光強度は実施例各表の左端の材料の光強度を基準として、強度比を%で表記した。
450nmで発光するLED発光素子上に成形品を保持し、成形品を透過して波長変換された光の特性として光強度(Lumen)とCIE色度座標(x、y)、色温度を測定した。光強度は実施例各表の左端の材料の光強度を基準として、強度比を%で表記した。
<耐候性試験条件>
試験機:メタルウェザーメーター(ダイプラ社製:KU-R5N-W)
試料面放射照度:900W/m2(波長範囲:300-400nm)
ブラックパネル温度:63℃
湿度:50%
運転条件:連続照射(100hr)
放射露光量:300MJ/m2
耐候試験後の発光特性を上記方法で測定後、耐候試験前の値との比較を行い、Lumen保持率、色度差Δx、Δy、色温度差(ΔCCT)を測定した。
試験機:メタルウェザーメーター(ダイプラ社製:KU-R5N-W)
試料面放射照度:900W/m2(波長範囲:300-400nm)
ブラックパネル温度:63℃
湿度:50%
運転条件:連続照射(100hr)
放射露光量:300MJ/m2
耐候試験後の発光特性を上記方法で測定後、耐候試験前の値との比較を行い、Lumen保持率、色度差Δx、Δy、色温度差(ΔCCT)を測定した。
10 発光装置
1 半導体発光素子
2 配線基板
2a チップ実装面
3 波長変換部材
4 枠体
1 半導体発光素子
2 配線基板
2a チップ実装面
3 波長変換部材
4 枠体
Claims (13)
- 前記熱可塑性樹脂組成物における蛍光体の含有量が、0.2重量%以上、50重量%以下であることを特徴とする請求項1に記載の熱可塑性樹脂組成物。
- 前記熱可塑性樹脂組成物に含有される熱可塑性樹脂の合計量に対する前記ポリカーボネート樹脂の含有量が、50重量%以上、100重量%以下であることを特徴とする請求項1又は2に記載の熱可塑性樹脂組成物。
- 前記ポリカーボネート樹脂が、さらに脂肪族ジヒドロキシ化合物及び脂環式ジヒドロキシ化合物からなる群より選ばれた少なくとも1種の化合物に由来する構造単位を含むことを特徴とする請求項1〜4のいずれか1項に記載の熱可塑性樹脂組成物。
- 前記ポリカーボネート樹脂が、該ポリカーボネート樹脂を構成する全ジヒドロキシ化合物に由来する構造単位に対して、特定ジヒドロキシ化合物に由来する構造単位を、90mol%以下含有することを特徴とする請求項1〜5のいずれか1項に記載の熱可塑性樹脂組成物。
- 前記蛍光体が、無機化合物である事を特徴とする請求項1〜6のいずれか1項に記載の熱可塑性樹脂組成物。
- 前記蛍光体が短残光蛍光体であることを特徴とする請求項1〜7のいずれか1項に記載の熱可塑性樹脂組成物。
- さらに、透過率調整剤を配合する事を特徴とする請求項1〜8のいずれか1項に記載の熱可塑性樹脂組成物。
- 前記熱可塑性樹脂組成物の1.0mm厚プレートの全光線透過率が30〜70%であることを特徴とする請求項1〜9のいずれか1項に記載の熱可塑性樹脂組成物。
- 入射光の少なくとも一部を波長変換して、前記入射光とは異なる波長の出射光を放出する波長変換部材であって、
該波長変換部材は、前記入射光の少なくとも一部を吸収して前記入射光とは異なる波長の出射光を放出する蛍光体と、該蛍光体を保持する熱可塑性樹脂を含む、面状構造を有するものであって、
該熱可塑性樹脂が、前記特定ジヒドロキシ化合物に由来する構造単位を少なくとも有するポリカーボネート樹脂を含有し、
該面状構造の少なくとも一部は、全光線透過率が30%以上、70%以下
であることを特徴とする波長変換部材。 - 請求項11に記載の波長変換部材と、半導体発光素子とを備えている発光装置。
- 請求項12記載の発光装置を有するLED照明器具。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012284922A JP2014125597A (ja) | 2012-12-27 | 2012-12-27 | 熱可塑性樹脂組成物、波長変換部材、発光装置、及びled照明器具 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012284922A JP2014125597A (ja) | 2012-12-27 | 2012-12-27 | 熱可塑性樹脂組成物、波長変換部材、発光装置、及びled照明器具 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014125597A true JP2014125597A (ja) | 2014-07-07 |
Family
ID=51405361
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012284922A Pending JP2014125597A (ja) | 2012-12-27 | 2012-12-27 | 熱可塑性樹脂組成物、波長変換部材、発光装置、及びled照明器具 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2014125597A (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017088700A (ja) * | 2015-11-06 | 2017-05-25 | 三菱エンジニアリングプラスチックス株式会社 | 難燃性ポリカーボネート樹脂組成物及び成形品 |
JP2017088699A (ja) * | 2015-11-06 | 2017-05-25 | 三菱エンジニアリングプラスチックス株式会社 | 難燃性ポリカーボネート樹脂組成物及び成形品 |
JP2017088698A (ja) * | 2015-11-06 | 2017-05-25 | 三菱エンジニアリングプラスチックス株式会社 | 難燃性ポリカーボネート樹脂組成物及び成形品 |
WO2018116607A1 (ja) * | 2016-12-19 | 2018-06-28 | 三菱エンジニアリングプラスチックス株式会社 | ポリカーボネート樹脂組成物及び成形品 |
JP2019147960A (ja) * | 2019-04-16 | 2019-09-05 | 三菱ケミカル株式会社 | ポリカーボネート樹脂組成物及びそれよりなる成形品 |
CN114790328A (zh) * | 2022-05-10 | 2022-07-26 | 华东理工大学 | 一种脂环族聚碳酸酯组合物 |
KR20220159325A (ko) * | 2017-09-25 | 2022-12-02 | 엘지이노텍 주식회사 | 조명 모듈 및 이를 구비한 조명 장치 |
US11757068B2 (en) | 2017-09-25 | 2023-09-12 | Lg Innotek Co., Ltd. | Lighting module and lighting apparatus having thereof |
-
2012
- 2012-12-27 JP JP2012284922A patent/JP2014125597A/ja active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017088700A (ja) * | 2015-11-06 | 2017-05-25 | 三菱エンジニアリングプラスチックス株式会社 | 難燃性ポリカーボネート樹脂組成物及び成形品 |
JP2017088699A (ja) * | 2015-11-06 | 2017-05-25 | 三菱エンジニアリングプラスチックス株式会社 | 難燃性ポリカーボネート樹脂組成物及び成形品 |
JP2017088698A (ja) * | 2015-11-06 | 2017-05-25 | 三菱エンジニアリングプラスチックス株式会社 | 難燃性ポリカーボネート樹脂組成物及び成形品 |
WO2018116607A1 (ja) * | 2016-12-19 | 2018-06-28 | 三菱エンジニアリングプラスチックス株式会社 | ポリカーボネート樹脂組成物及び成形品 |
JPWO2018116607A1 (ja) * | 2016-12-19 | 2019-06-27 | 三菱エンジニアリングプラスチックス株式会社 | ポリカーボネート樹脂組成物及び成形品 |
US10975239B2 (en) | 2016-12-19 | 2021-04-13 | Mitsubishi Engineering-Plastics Corporation | Polycarbonate resin composition and molded article |
KR20220159325A (ko) * | 2017-09-25 | 2022-12-02 | 엘지이노텍 주식회사 | 조명 모듈 및 이를 구비한 조명 장치 |
US11757068B2 (en) | 2017-09-25 | 2023-09-12 | Lg Innotek Co., Ltd. | Lighting module and lighting apparatus having thereof |
KR102638665B1 (ko) * | 2017-09-25 | 2024-02-21 | 엘지이노텍 주식회사 | 조명 모듈 및 이를 구비한 조명 장치 |
JP2019147960A (ja) * | 2019-04-16 | 2019-09-05 | 三菱ケミカル株式会社 | ポリカーボネート樹脂組成物及びそれよりなる成形品 |
CN114790328A (zh) * | 2022-05-10 | 2022-07-26 | 华东理工大学 | 一种脂环族聚碳酸酯组合物 |
CN114790328B (zh) * | 2022-05-10 | 2024-03-22 | 华东理工大学 | 一种脂环族聚碳酸酯组合物 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2014125597A (ja) | 熱可塑性樹脂組成物、波長変換部材、発光装置、及びled照明器具 | |
CN104918992B (zh) | 发光二极管装置、制造方法、其应用 | |
CN105206732B (zh) | 塑料模制器件和发光器件 | |
US9771452B2 (en) | Plastic composition comprising a polycarbonate made from low sulfur bisphenol A, and articles made therefrom | |
KR20150035742A (ko) | 발광 장치, 파장 변환 부재, 형광체 조성물 및 형광체 혼합물 | |
WO2013129477A1 (ja) | 波長変換部材及びこれを用いた半導体発光装置 | |
WO2013116697A1 (en) | Light emitting diode device and method for production thereof containing conversion material chemistry | |
JP2013211250A (ja) | 波長変換部材及びこれを用いた半導体発光装置 | |
JP2014145012A (ja) | 樹脂組成物、波長変換部材、発光装置、led照明器具、及び光学部材 | |
WO2017086334A1 (ja) | Led反射板用ポリエステル組成物、led反射板、該反射板を備える発光装置 | |
JP2005082647A (ja) | ポリカーボネート樹脂組成物 | |
WO2014014079A1 (ja) | 発光装置、波長変換部材、蛍光体組成物、及び蛍光体混合物 | |
JP6204839B2 (ja) | 発光装置、及び波長変換部材 | |
KR20190020768A (ko) | 폴리카보네이트의 원격 형광체 광학 특성을 개선하는 방법 | |
JP5598593B2 (ja) | 発光装置、波長変換部材、蛍光体組成物、及び蛍光体混合物 | |
JP2014079905A (ja) | 波長変換部材の製造方法、及び発光装置の製造方法 | |
WO2013129509A1 (ja) | 波長変換部材およびその製造方法、該波長変換部材を含む発光装置および照明器具、並びに樹脂組成物 | |
JP2014080467A (ja) | 蛍光体樹脂組成物、及びその製造方法、蛍光体樹脂成形体、及びその製造方法、並びに半導体発光装置 | |
JP2014175322A (ja) | 発光装置、該発光装置を有する照明装置、及び画像表示装置、並びに蛍光体組成物、及び該蛍光体組成物を成形してなる波長変換部材 | |
JP2014112630A (ja) | 波長変換部材およびその製造方法、該波長変換部材を含む発光装置および照明器具、並びに樹脂組成物 | |
JP2014192251A (ja) | 波長変換部材およびこれを用いた半導体発光装置 | |
TWI830991B (zh) | 聚碳酸酯樹脂組成物 | |
JP2014170895A (ja) | 波長変換部材及びこれを用いた発光装置 | |
JP2014125497A (ja) | 蛍光体樹脂組成物及びその製造方法、該蛍光体樹脂組成物を成形してなる波長変換部材、並びに該波長変換部材を備える半導体発光装置 | |
JP2015048446A (ja) | 波長変換部材、発光装置、照明器具、及び、ディスプレイ |