[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2014116474A - Magnetoresistive element - Google Patents

Magnetoresistive element Download PDF

Info

Publication number
JP2014116474A
JP2014116474A JP2012269845A JP2012269845A JP2014116474A JP 2014116474 A JP2014116474 A JP 2014116474A JP 2012269845 A JP2012269845 A JP 2012269845A JP 2012269845 A JP2012269845 A JP 2012269845A JP 2014116474 A JP2014116474 A JP 2014116474A
Authority
JP
Japan
Prior art keywords
layer
magnetization
ferromagnetic
magnetoresistive element
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012269845A
Other languages
Japanese (ja)
Inventor
Yoshiaki Sonobe
義明 園部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung R&D Institute Japan Co Ltd
Original Assignee
Samsung R&D Institute Japan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung R&D Institute Japan Co Ltd filed Critical Samsung R&D Institute Japan Co Ltd
Priority to JP2012269845A priority Critical patent/JP2014116474A/en
Publication of JP2014116474A publication Critical patent/JP2014116474A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mram Or Spin Memory Techniques (AREA)
  • Magnetic Heads (AREA)
  • Hall/Mr Elements (AREA)

Abstract

【課題】磁化反転電流を低減でき、低電力化が達成された磁気抵抗素子を提供する。
【解決手段】磁化方向が可変な記憶層14と、所定の磁化方向を維持する固定層12と、記憶層14と固定層12との間に設けられた絶縁体層13と、を有するMTJ層を備え、記憶層14は、強磁性層41と、垂直磁化保持層43と、強磁性層41と垂直磁化保持層43との間に設けられ、強磁性層41と垂直磁化保持層43との磁気結合を制御する磁気結合制御層42と、を備えてなる磁気抵抗素子である。
【選択図】図2
A magnetoresistive element capable of reducing a magnetization reversal current and achieving low power is provided.
An MTJ layer having a storage layer with a variable magnetization direction, a fixed layer that maintains a predetermined magnetization direction, and an insulator layer provided between the storage layer and the fixed layer. And the storage layer 14 is provided between the ferromagnetic layer 41, the perpendicular magnetization holding layer 43, and the ferromagnetic layer 41 and the perpendicular magnetization holding layer 43. And a magnetic coupling control layer 42 for controlling magnetic coupling.
[Selection] Figure 2

Description

本発明は、STT−MRAM(Spin Transfer Torque Magnetic Random Access Memory:磁気メモリ)、レーストラックメモリ(Racetrack-memory:磁気ベースの不揮発性メモリ)、HDDの読み出しヘッド等の垂直磁化強磁性体の磁気抵抗効果を用いた磁気抵抗素子に関する。   The present invention relates to magnetoresistance of perpendicularly magnetized ferromagnets such as STT-MRAM (Spin Transfer Torque Magnetic Random Access Memory), racetrack memory (Racetrack-memory: magnetic-based non-volatile memory), and HDD read heads. The present invention relates to a magnetoresistive element using an effect.

垂直磁化を有し磁気抵抗効果によって読み出しを行う磁気抵抗素子は、微細化に対する熱擾乱耐性が高く、次世代のメモリ等として期待されている。このような次世代メモリの基本構成材料として、高垂直磁気異方性を有し、高いスピン分極率を持つ強磁性材料が要求されているが、材料自体が垂直磁気異方性を持ち、理論的に高いスピン分極率を持っている材料は、Mn−Ga系等の材料しかなく、材料選択範囲が非常に狭いのが実状であり、高い垂直磁気異方性を持つ強磁性体薄膜を形成するのは困難である。   A magnetoresistive element that has perpendicular magnetization and performs reading by the magnetoresistive effect has high thermal disturbance resistance against miniaturization, and is expected as a next-generation memory or the like. Ferromagnetic materials with high perpendicular magnetic anisotropy and high spin polarizability are required as the basic constituent material of such next-generation memories, but the material itself has perpendicular magnetic anisotropy and is theoretically The only material with a high spin polarizability is Mn-Ga and other materials, and the material selection range is very narrow, forming a ferromagnetic thin film with high perpendicular magnetic anisotropy. It is difficult to do.

一方、上記解決策として、MTJ(Magnetic Tunnel Junction:磁気トンネル接合)層に垂直磁化保持層を結合させる方法が提案されている。このような従来の磁気抵抗素子として、例えば、スピンモーメントが膜面に垂直な方向に向いて前記スピンモーメントの方向が固定された磁性膜を有する磁化固着層と、スピンモーメントが膜面に垂直な方向に向く磁気記録層と、前記磁化固着層と前記磁気記録層との間に設けられる非磁性層と、前記磁化固着層の少なくとも側面に設けられた反強磁性膜と、を備えたものがある。(例えば、特許文献1参照)。   On the other hand, as a solution, a method of coupling a perpendicular magnetization holding layer to an MTJ (Magnetic Tunnel Junction) layer has been proposed. As such a conventional magnetoresistive element, for example, a magnetization pinned layer having a magnetic film in which the direction of the spin moment is fixed in a direction perpendicular to the film surface, and the spin moment is perpendicular to the film surface. A magnetic recording layer oriented in a direction, a nonmagnetic layer provided between the magnetization fixed layer and the magnetic recording layer, and an antiferromagnetic film provided on at least a side surface of the magnetization fixed layer. is there. (For example, refer to Patent Document 1).

また、第1の強磁性層/トンネル障壁層/第2の強磁性層の3層構造を含む強磁性トンネル接合を有し、前記第1の強磁性層は前記第2の強磁性層よりも保磁力が大きく、前記2つの強磁性層の磁化の相対的角度によりトンネルコンダクタンスが変化する磁気抵抗効果素子であり、前記第2の強磁性層の端部の磁化が前記第2の強磁性層の磁化容易軸方向と直交する成分を持つ方向に固着されている磁気抵抗素子も紹介されている。(例えば、特許文献2参照)。   And a ferromagnetic tunnel junction including a three-layer structure of a first ferromagnetic layer / tunnel barrier layer / second ferromagnetic layer, wherein the first ferromagnetic layer is more than the second ferromagnetic layer. A magnetoresistive element having a large coercive force and a tunnel conductance that changes depending on a relative angle between the magnetizations of the two ferromagnetic layers, wherein the magnetization of the end of the second ferromagnetic layer is the second ferromagnetic layer; A magnetoresistive element fixed in a direction having a component orthogonal to the direction of the easy axis of magnetization is also introduced. (For example, refer to Patent Document 2).

そしてまた、膜面垂直方向に磁化容易軸を有する磁化方向が可変の第1磁性層と、膜面垂直方向に磁化容易軸を有する磁化方向が不変の第2磁性層と、前記第1磁性層と前記第2磁性層との間に設けられる第1非磁性層とを有し、前記第1磁性層は、CoとPd、又は、CoとPtが原子稠密面に対して交互に積層されるCoPd合金、又は、CoPt合金を有し、c軸が膜面垂直方向を向く強磁性体から構成され、前記第1磁性層の磁化方向は、前記第1磁性層、前記第1非磁性層及び前記第2磁性層を貫く双方向電流により変化する磁気抵抗素子も紹介されている。(例えば、特許文献3参照)。   The first magnetic layer having a variable magnetization direction having an easy axis in the direction perpendicular to the film surface, the second magnetic layer having an invariable magnetization direction having the easy axis in the direction perpendicular to the film surface, and the first magnetic layer. And a first nonmagnetic layer provided between the first magnetic layer and the second magnetic layer, wherein the first magnetic layer is formed by alternately stacking Co and Pd or Co and Pt on an atomically dense surface. It has a CoPd alloy or a CoPt alloy and is made of a ferromagnetic material whose c-axis is oriented in the direction perpendicular to the film surface, and the magnetization direction of the first magnetic layer includes the first magnetic layer, the first nonmagnetic layer, and A magnetoresistive element that is changed by a bidirectional current passing through the second magnetic layer is also introduced. (For example, refer to Patent Document 3).

特開2005−32878号公報JP 2005-32878 A 特開2005−150303号公報JP 2005-150303 A 特開2011−71352号公報JP 2011-71352 A

MTJ層に垂直磁化保持層を結合させる方法により、高いスピン分極率を有する材料範囲が、ハーフメタル系、ホイスラー系等に拡大され選択範囲が拡大したが、素子の膜厚が大きくなるため磁化反転電流が増大し、低電力化することが困難である。   By combining the MTJ layer with the perpendicular magnetization holding layer, the range of materials with high spin polarizability has been expanded to half-metal systems, Heusler systems, etc., but the range of selection has been expanded. Current increases and it is difficult to reduce power consumption.

本発明は、このような事情に鑑みなされたものであり、磁化反転電流を低減でき、低電力化が達成された磁気抵抗素子を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a magnetoresistive element that can reduce magnetization reversal current and achieve low power.

この目的を達成するため本発明は、磁化方向が可変な記憶層と、所定の磁化方向を維持する固定層と、前記記憶層と固定層との間に設けられた絶縁体層と、を有するMTJ層を備えた磁気抵抗素子であって、前記記憶層は、第1強磁性層と、第1垂直磁化保持層と、前記第1強磁性層と第1垂直磁化保持層との間に設けられ、当該第1強磁性層と第1垂直磁化保持層との磁気結合を制御する磁気結合制御層と、を備えてなる磁気抵抗素子を提供するものである。   To achieve this object, the present invention includes a storage layer having a variable magnetization direction, a fixed layer that maintains a predetermined magnetization direction, and an insulator layer provided between the storage layer and the fixed layer. A magnetoresistive element including an MTJ layer, wherein the storage layer is provided between a first ferromagnetic layer, a first perpendicular magnetization holding layer, and the first ferromagnetic layer and the first perpendicular magnetization holding layer. And a magnetic coupling control layer for controlling magnetic coupling between the first ferromagnetic layer and the first perpendicular magnetization holding layer.

この構成を備えた磁気抵抗素子は、記憶層の第1強磁性層と第1垂直磁化保持層との間に設けられた磁気結合制御層の厚さを適宜変更することで、抵抗変化率、熱安定性、記録電流、磁化反転スピード等の各種パラメータを最適化することができる。したがって、磁化反転電流を低減でき、低電力化を達成することができる。   In the magnetoresistive element having this configuration, by changing the thickness of the magnetic coupling control layer provided between the first ferromagnetic layer and the first perpendicular magnetization holding layer of the storage layer as appropriate, the resistance change rate, Various parameters such as thermal stability, recording current, and magnetization reversal speed can be optimized. Therefore, the magnetization reversal current can be reduced, and low power can be achieved.

また、本発明に係る磁気抵抗素子は、前記固定層が第2強磁性層と、第2垂直磁化保持層とを備えることができる。この構成の場合、前記第1及び第2垂直磁化保持層(即ち、MTJ層の垂直磁化保持層)の垂直磁気異方性定数が、前記第1及び第2強磁性層(即ち、MTJ層の強磁性層)の垂直磁気異方性定数より大きくなるよう設定することで、磁化反転電流をさらに効率よく低減することができ、さらに低電力である磁気抵抗素子を提供することができる。   In the magnetoresistive element according to the present invention, the fixed layer may include a second ferromagnetic layer and a second perpendicular magnetization holding layer. In this configuration, the perpendicular magnetic anisotropy constant of the first and second perpendicular magnetization holding layers (ie, the perpendicular magnetization holding layer of the MTJ layer) is the same as that of the first and second ferromagnetic layers (ie, the MTJ layer). By setting the magnetic layer to be larger than the perpendicular magnetic anisotropy constant of the (ferromagnetic layer), the magnetization reversal current can be reduced more efficiently, and a magnetoresistive element with lower power can be provided.

そしてまた、前記MTJ層の強磁性層の垂直磁気異方性定数は、0または負の値を有するように設定することもできる。このようにすることで、磁化反転電流を一層効率よく低減することができ、より低電力である磁気抵抗素子を提供することができる。   In addition, the perpendicular magnetic anisotropy constant of the ferromagnetic layer of the MTJ layer may be set to have 0 or a negative value. By doing in this way, a magnetization reversal current can be reduced more efficiently and the magnetoresistive element which is lower power can be provided.

また、前記MTJ層の強磁性層は、分極率が大きなハーフメタルまたはホイスラー材料から形成することができる。   The ferromagnetic layer of the MTJ layer can be formed from a half metal or Heusler material having a high polarizability.

本発明によれば、磁化反転電流が低減され、低電力化が達成された磁気抵抗素子を提供することができる。   According to the present invention, it is possible to provide a magnetoresistive element in which the magnetization reversal current is reduced and low power is achieved.

本発明の実施形態に係る磁気抵抗素子の主要部を模式的に示す断面図である。It is sectional drawing which shows typically the principal part of the magnetoresistive element which concerns on embodiment of this invention. 図1に示す磁気抵抗素子の記憶層を模式的に拡大して示す断面図である。It is sectional drawing which expands and shows typically the memory | storage layer of the magnetoresistive element shown in FIG. 本発明の実施形態に係る磁気抵抗素子及び従来の磁気抵抗素子における電流密度と反転確率との関係を示す図である。It is a figure which shows the relationship between the current density and inversion probability in the magnetoresistive element which concerns on embodiment of this invention, and the conventional magnetoresistive element. 本発明の実施形態に係る磁気抵抗素子及び従来の磁気抵抗素子における異方性と反転電流密度との関係を示す図である。It is a figure which shows the relationship between the anisotropy and inversion current density in the magnetoresistive element which concerns on embodiment of this invention, and the conventional magnetoresistive element.

次に、本発明の実施形態に係る磁気抵抗素子について図面を参照して説明する。なお、以下に記載される実施形態は、本発明を説明するための例示であり、本発明をこれらの実施形態にのみ限定するものではない。したがって、本発明は、その要旨を逸脱しない限り、様々な形態で実施することができる。   Next, a magnetoresistive element according to an embodiment of the present invention will be described with reference to the drawings. In addition, embodiment described below is the illustration for demonstrating this invention, and this invention is not limited only to these embodiment. Therefore, the present invention can be implemented in various forms without departing from the gist thereof.

図1は、本発明の実施形態に係る磁気抵抗素子の主要部を模式的に示す断面図、図2は、図1に示す磁気抵抗素子の記憶層を模式的に拡大して示す断面図である。なお、前記各図では、説明を判り易くするため、各部材の厚さやサイズ、拡大・縮小率等は、実際のものとは一致させずに記載した。   FIG. 1 is a cross-sectional view schematically showing a main part of a magnetoresistive element according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view schematically showing a memory layer of the magnetoresistive element shown in FIG. is there. In the drawings, for easy understanding, the thickness, size, enlargement / reduction ratio, etc. of each member are not matched with the actual ones.

図1に示すように、本実施形態に係る磁気抵抗素子は、ベース電極11上に形成された固定層12と、固定層12上に形成された絶縁体層13と、絶縁体層13上に形成された記憶層14と、記憶層14上に形成されたキャップ層15と、を有しており、ベース電極11には、トランジスタ16が接続されている。この磁気抵抗素子は、固定層12、絶縁体層13、記憶層14によりMTJ層(磁気トンネル接合層)を構成している。   As shown in FIG. 1, the magnetoresistive element according to this embodiment includes a fixed layer 12 formed on a base electrode 11, an insulator layer 13 formed on the fixed layer 12, and an insulator layer 13. A memory layer 14 formed and a cap layer 15 formed on the memory layer 14 are included, and a transistor 16 is connected to the base electrode 11. In this magnetoresistive element, the fixed layer 12, the insulator layer 13, and the memory layer 14 constitute an MTJ layer (magnetic tunnel junction layer).

また、この磁気抵抗素子は、スピン注入磁化反転方式によって書き込みを行う。即ち、磁気抵抗素子は、スピン注入書込み方式に用いる磁気抵抗素子である。即ち、書き込みの際は、固定層12から記憶層14へ、または、記憶層14から固定層12へ、膜面垂直方向に電流を流すことによって、スピン情報を蓄積される電子が固定層12から記憶層14に注入される。そして、この注入される電子のスピン角運動量が、スピン角運動量の保存則にしたがって記憶層14の電子に移動されることによって、記憶層14の磁化が反転することになる。言い換えれば、各層に対し膜面垂直方向に流すスピン偏極電流の方向に応じて、固定層12と記憶層14の磁化の相対角を平行、反平行状態(即ち、抵抗の極小、極大)に変化させ、二進情報の“0”または“1”に対応づけることにより、情報を記憶する。   The magnetoresistive element performs writing by a spin injection magnetization reversal method. That is, the magnetoresistive element is a magnetoresistive element used for the spin injection writing method. That is, at the time of writing, by passing a current in the direction perpendicular to the film surface from the fixed layer 12 to the storage layer 14 or from the storage layer 14 to the fixed layer 12, electrons that accumulate spin information are transferred from the fixed layer 12. It is injected into the storage layer 14. Then, the spin angular momentum of the injected electrons is transferred to the electrons in the storage layer 14 according to the conservation law of the spin angular momentum, so that the magnetization of the storage layer 14 is reversed. In other words, the relative angles of magnetization of the fixed layer 12 and the storage layer 14 are made parallel or anti-parallel (that is, the resistance is minimum or maximum) according to the direction of the spin-polarized current that flows in the direction perpendicular to the film surface with respect to each layer. Information is stored by changing and associating with binary information “0” or “1”.

固定層12は、膜面に垂直な方向に磁化容易軸を有し、記憶層14に対し磁化方向(図1に示す固定層12に記載する矢印参考)が固定されている。なお、図1では、固定層12の磁化方向は、典型例としてベース電極11に対し上を向いているが、下(ベース電極11側)を向いていてもよい。この固定層12は、特に図示しないが、強磁性層と垂直磁化保持層を有している。なお、固定層12は、磁化固定層、参照層、磁化参照層、ピン層、基準層、磁化基準層等と称されることもある。   The fixed layer 12 has an easy magnetization axis in a direction perpendicular to the film surface, and the magnetization direction (see the arrow described in the fixed layer 12 shown in FIG. 1) is fixed to the storage layer 14. In FIG. 1, the magnetization direction of the fixed layer 12 is typically upward with respect to the base electrode 11, but may be downward (base electrode 11 side). The pinned layer 12 has a ferromagnetic layer and a perpendicular magnetization holding layer, although not particularly shown. Note that the fixed layer 12 may be referred to as a magnetization fixed layer, a reference layer, a magnetization reference layer, a pinned layer, a reference layer, a magnetization reference layer, or the like.

固定層12としては、記憶層14に対し、容易に磁化方向が変化しない材料を選択することが好ましい。即ち、実効的な磁気異方性Kueff及び飽和磁化Msが大きく、また磁気緩和定数αが大きい材料を選択することが好ましい。しかしながら、固定層12を構成する材料は、特に限定されるものではなく、諸条件により任意の材料から選択することができる。   As the fixed layer 12, it is preferable to select a material whose magnetization direction does not easily change with respect to the storage layer 14. That is, it is preferable to select a material having a large effective magnetic anisotropy Kueff and saturation magnetization Ms and a large magnetic relaxation constant α. However, the material constituting the fixed layer 12 is not particularly limited, and can be selected from any material depending on various conditions.

絶縁体層13は、トンネルバリア層であり、MgO等の絶縁膜から構成されている。なお、絶縁体層13を構成する材料としては、NaCl構造を有する酸化物が好ましく、前述したMgOの他、CaO、SrO、TiO、VO、NbO等が挙げられるが、絶縁体層13としての機能に支障をきたさない限り、特に限定されるものではない。   The insulator layer 13 is a tunnel barrier layer and is made of an insulating film such as MgO. In addition, as a material which comprises the insulator layer 13, the oxide which has a NaCl structure is preferable, CaO, SrO, TiO, VO, NbO etc. other than MgO mentioned above are mentioned, The function as the insulator layer 13 is mentioned. There is no particular limitation as long as it does not hinder.

記憶層14は、膜面に垂直な方向に磁化容易軸を有し、膜面と交わる面に沿って回転する。この記憶層14は、図2に示すように、強磁性層41と、強磁性層41上に形成された磁気結合制御層42と、磁気結合制御層42上に形成された垂直磁化保持層43を有している。即ち、記憶層14は、強磁性層41と垂直磁化保持層43との間に、強磁性層41と垂直磁化保持層43との磁気結合を制御する磁気結合制御層42が設けられた構成を有している。なお、記憶層14は、自由層、磁化自由層、磁化可変層等と称されることもある。   The memory layer 14 has an easy axis of magnetization in a direction perpendicular to the film surface, and rotates along a surface that intersects the film surface. As shown in FIG. 2, the storage layer 14 includes a ferromagnetic layer 41, a magnetic coupling control layer 42 formed on the ferromagnetic layer 41, and a perpendicular magnetization holding layer 43 formed on the magnetic coupling control layer 42. have. That is, the memory layer 14 has a configuration in which a magnetic coupling control layer 42 that controls the magnetic coupling between the ferromagnetic layer 41 and the perpendicular magnetization holding layer 43 is provided between the ferromagnetic layer 41 and the perpendicular magnetization holding layer 43. Have. The storage layer 14 may be referred to as a free layer, a magnetization free layer, a magnetization variable layer, or the like.

強磁性層41は、例えば、ハーフメタルまたはホイスラー材料からを選択することが好ましい。   The ferromagnetic layer 41 is preferably selected from, for example, half metal or Heusler material.

磁気結合制御層42は、例えば、Pd、Pt、Ru、MgO等から構成することができる。また、磁気的な結合の大きさは、磁気結合制御層42の厚さ(膜厚)が2nm以下となるように適宜変化させることで、抵抗変化率、熱安定性、記録電流、磁化反転スピード等のパラメータを最適化することができる。   The magnetic coupling control layer 42 can be made of, for example, Pd, Pt, Ru, MgO, or the like. The magnitude of the magnetic coupling is appropriately changed so that the thickness (film thickness) of the magnetic coupling control layer 42 is 2 nm or less, so that the rate of change in resistance, thermal stability, recording current, and magnetization reversal speed can be obtained. Etc. can be optimized.

垂直磁化保持層43は、L1型のFePdまたはFePtから構成された高垂直磁気異方性材料から構成することができる。 Perpendicular magnetization holding layer 43 may be composed of high perpendicular magnetic anisotropy material composed of L1 0 type FePd or FePt.

キャップ層15は、記憶層14の酸化防止等、主として保護層として機能するものである。   The cap layer 15 functions mainly as a protective layer, such as for preventing the storage layer 14 from being oxidized.

次に、本実施形態に係る磁気抵抗素子において、固定層12、絶縁体層13、記憶層14から構成されるMTJ層の強磁性層の垂直磁気異方性定数(Ku)と、当該MTJ層の垂直磁化保持層の垂直磁気異方性定数(Ku)が、図3に示す値(Ku<Ku)となるように構成したサンプルについて電流密度と反転確率との関係を測定した。この結果を図3に示す。 Next, in the magnetoresistive element according to the present embodiment, the perpendicular magnetic anisotropy constant (Ku 1 ) of the ferromagnetic layer of the MTJ layer composed of the fixed layer 12, the insulator layer 13, and the storage layer 14, and the MTJ The perpendicular magnetic anisotropy constant (Ku 2 ) of the perpendicular magnetization retention layer of the layer was measured for the relationship between the current density and the inversion probability for the sample configured to have the value shown in FIG. 3 (Ku 1 <Ku 2 ). . The result is shown in FIG.

なお、MTJ層の強磁性層とは、固定層12及び記憶層14の強磁性層のことであり、MTJ層の垂直磁化保持層とは、固定層12及び記憶層14の垂直磁化保持層のことである。   The ferromagnetic layer of the MTJ layer is a ferromagnetic layer of the fixed layer 12 and the storage layer 14, and the perpendicular magnetization holding layer of the MTJ layer is the perpendicular magnetization holding layer of the fixed layer 12 and the storage layer 14. That is.

また、比較として、記憶層に磁気結合制御層が形成されていない単層膜(SL)を有する従来のMTJ層について電流密度と反転確率との関係を測定した。この結果を図3に示す。なお、この従来のMTJ層の場合、強磁性層の垂直磁気異方性定数(Ku)と垂直磁化保持層の垂直磁気異方性定数(Ku)は同じである。 For comparison, the relationship between current density and inversion probability was measured for a conventional MTJ layer having a single layer film (SL) in which a magnetic coupling control layer was not formed in the memory layer. The result is shown in FIG. In the case of the conventional MTJ layer, perpendicular magnetic anisotropy constant of the ferromagnetic layers (Ku 1) and perpendicular magnetic anisotropy constant of perpendicular magnetization holding layer (Ku 2) are the same.

図3から、反転電流密度は、強磁性層の垂直磁気異方性定数(Ku)の減少とともに低下していることが分かる。また、の垂直磁気異方性定数(Ku)が負であると、単層膜よりも反転電流密度が低下したことが分かる。 FIG. 3 shows that the reversal current density decreases as the perpendicular magnetic anisotropy constant (Ku 1 ) of the ferromagnetic layer decreases. It can also be seen that when the perpendicular magnetic anisotropy constant (Ku 1 ) is negative, the reversal current density is lower than that of the single layer film.

なお、最小反転電流密度は、Kuが−10.0Merg/cmのときであり、7.94GA/mであった。また、単層膜(SL)を有する従来のMTJ層の反転電流密度と比較すると、約8%減少していた。 The minimum reversal current density was 7.94 GA / m 2 when Ku 1 was −10.0 Merg / cm 3 . Moreover, it was reduced by about 8% compared with the reversal current density of the conventional MTJ layer having a single layer film (SL).

次に、図4に示すように、5種類のAILを示すサンプルと単層膜(SL)を有する従来のMTJ層について、強磁性層の垂直磁気異方性定数(Ku)と反転電流密度との関係を測定した。この結果を図4に示す。なお、図4において、AIL=1.00μerg/cmのとき、磁気結合制御層42の膜厚は最薄(ほぼ0)であり、AIL=0.03μerg/cmのとき、磁気結合制御層42の膜厚は最厚である。即ち、磁気結合制御層42の膜厚は、AILが小さくなるほど厚くなっている。 Next, as shown in FIG. 4, the perpendicular magnetic anisotropy constant (Ku 1 ) of the ferromagnetic layer and the reversal current are obtained for a conventional MTJ layer having a sample showing five types of A IL and a single layer film (SL). The relationship with density was measured. The result is shown in FIG. In FIG. 4, when A IL = 1.00 μerg / cm, the thickness of the magnetic coupling control layer 42 is the thinnest (almost 0), and when A IL = 0.03 μerg / cm, the magnetic coupling control layer The film thickness of 42 is the thickest. That is, the thickness of the magnetic coupling control layer 42 is thicker A IL decreases.

図4から、AILの値によって、反転電流密度が最小となる強磁性層の垂直磁気異方性定数(Ku)が変化することが分かる。AILが0.05μerg/cm、0.03μerg/cmでは、Kuが2Merg/cm付近で反転電流密度が急激に増加したことが分かる。また、AILが0.03μerg/cmでは、Kuが負である場合、Kuが減少するほど反転電流密度が増加することが分かる。 FIG. 4 shows that the perpendicular magnetic anisotropy constant (Ku 1 ) of the ferromagnetic layer at which the reversal current density is minimized changes depending on the value of A IL . It can be seen that when the A IL is 0.05 μerg / cm and 0.03 μerg / cm, the reversal current density rapidly increases when Ku 1 is around 2 Merg / cm 3 . Also, the A IL is 0.03μerg / cm, when Ku 1 is negative, it can be seen that the switching current density higher Ku 1 decreases increases.

以上から、記憶層14に磁気結合制御層42を設けることにより、反転記録電流を小さくでき、低電力化が可能になることが立証された。   From the above, it was proved that by providing the magnetic coupling control layer 42 in the storage layer 14, the reversal recording current can be reduced and the power can be reduced.

11 ベース電極
12 固定層
13 絶縁体層
14 記憶層
15 キャップ層
16 トランジスタ
41 強磁性層
42 磁気結合制御層
43 垂直磁化保持層
DESCRIPTION OF SYMBOLS 11 Base electrode 12 Fixed layer 13 Insulator layer 14 Memory layer 15 Cap layer 16 Transistor 41 Ferromagnetic layer 42 Magnetic coupling control layer 43 Perpendicular magnetization retention layer

Claims (4)

磁化方向が可変な記憶層と、所定の磁化方向を維持する固定層と、前記記憶層と固定層との間に設けられた絶縁体層と、を有する磁気トンネル接合層を備えた磁気抵抗素子であって、
前記記憶層は、
第1強磁性層と、
第1垂直磁化保持層と、
前記第1強磁性層と第1垂直磁化保持層との間に設けられ、当該第1強磁性層と第1垂直磁化保持層との磁気結合を制御する磁気結合制御層と、
を備えてなる磁気抵抗素子。
A magnetoresistive element comprising a magnetic tunnel junction layer having a storage layer having a variable magnetization direction, a fixed layer that maintains a predetermined magnetization direction, and an insulator layer provided between the storage layer and the fixed layer Because
The storage layer is
A first ferromagnetic layer;
A first perpendicular magnetization retention layer;
A magnetic coupling control layer that is provided between the first ferromagnetic layer and the first perpendicular magnetization holding layer and controls magnetic coupling between the first ferromagnetic layer and the first perpendicular magnetization holding layer;
A magnetoresistive element comprising:
前記固定層は、第2強磁性層と、第2垂直磁化保持層と、を備えてなり、
前記第1及び第2垂直磁化保持層の垂直磁気異方性定数が、前記第1及び第2強磁性層の垂直磁気異方性定数より大きい請求項1記載の磁気抵抗素子。
The pinned layer includes a second ferromagnetic layer and a second perpendicular magnetization holding layer,
The magnetoresistive element according to claim 1, wherein perpendicular magnetic anisotropy constants of the first and second perpendicular magnetization holding layers are larger than perpendicular magnetic anisotropy constants of the first and second ferromagnetic layers.
前記第1及び第2強磁性層の垂直磁気異方性定数が、0または負の値を有する請求項1または請求項2記載の磁気抵抗素子。   3. The magnetoresistive element according to claim 1, wherein perpendicular magnetic anisotropy constants of the first and second ferromagnetic layers have 0 or a negative value. 4. 前記第1及び第2強磁性層が、ハーフメタルまたはホイスラー材料からなる請求項1ないし請求項3のいずれか一項に記載の磁気抵抗素子。

The magnetoresistive element according to any one of claims 1 to 3, wherein the first and second ferromagnetic layers are made of a half metal or a Heusler material.

JP2012269845A 2012-12-10 2012-12-10 Magnetoresistive element Pending JP2014116474A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012269845A JP2014116474A (en) 2012-12-10 2012-12-10 Magnetoresistive element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012269845A JP2014116474A (en) 2012-12-10 2012-12-10 Magnetoresistive element

Publications (1)

Publication Number Publication Date
JP2014116474A true JP2014116474A (en) 2014-06-26

Family

ID=51172170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012269845A Pending JP2014116474A (en) 2012-12-10 2012-12-10 Magnetoresistive element

Country Status (1)

Country Link
JP (1) JP2014116474A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9715915B2 (en) 2014-10-30 2017-07-25 Samsung Electronics Co., Ltd. Magneto-resistive devices including a free layer having different magnetic properties during operations
US10431279B2 (en) 2017-02-07 2019-10-01 Samsung Electronics Co., Ltd. Magnetoresistive memory device
US10566042B2 (en) 2017-11-27 2020-02-18 Samsung Electronics Co., Ltd. Magnetic tunnel junction devices and magnetoresistive memory devices
US10840435B2 (en) 2018-11-02 2020-11-17 Samsung Electronics Co., Ltd. Magnetic tunnel junction device and magnetic resistance memory device
KR20220054146A (en) 2020-10-23 2022-05-02 삼성전자주식회사 Magnetic tunnel junction element and magnetoresistive memory device
KR102440814B1 (en) * 2021-07-01 2022-09-07 한국과학기술연구원 Nano spin device using spin current of ferromagnetic material and heavy metal channel
US12004355B2 (en) 2020-10-23 2024-06-04 Samsung Electronics Co., Ltd. Magnetic tunnel junction element and magnetoresistive memory device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010219177A (en) * 2009-03-16 2010-09-30 Nec Corp Magnetic tunnel junction device, and magnetic random access memory
JP2011129933A (en) * 2009-12-21 2011-06-30 Samsung Electronics Co Ltd Perpendicular magnetic tunnel junction structure and magnetic element including the same, and method of manufacturing the same
JP2012104825A (en) * 2010-11-05 2012-05-31 Grandis Inc Method and system for providing hybrid magnetic tunneling junction element with improved switching

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010219177A (en) * 2009-03-16 2010-09-30 Nec Corp Magnetic tunnel junction device, and magnetic random access memory
JP2011129933A (en) * 2009-12-21 2011-06-30 Samsung Electronics Co Ltd Perpendicular magnetic tunnel junction structure and magnetic element including the same, and method of manufacturing the same
JP2012104825A (en) * 2010-11-05 2012-05-31 Grandis Inc Method and system for providing hybrid magnetic tunneling junction element with improved switching

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9715915B2 (en) 2014-10-30 2017-07-25 Samsung Electronics Co., Ltd. Magneto-resistive devices including a free layer having different magnetic properties during operations
US10431279B2 (en) 2017-02-07 2019-10-01 Samsung Electronics Co., Ltd. Magnetoresistive memory device
US10679686B2 (en) 2017-02-07 2020-06-09 Samsung Electronics Co., Ltd. Apparatus including magnetoresistive memory device
US10566042B2 (en) 2017-11-27 2020-02-18 Samsung Electronics Co., Ltd. Magnetic tunnel junction devices and magnetoresistive memory devices
US10840435B2 (en) 2018-11-02 2020-11-17 Samsung Electronics Co., Ltd. Magnetic tunnel junction device and magnetic resistance memory device
KR20220054146A (en) 2020-10-23 2022-05-02 삼성전자주식회사 Magnetic tunnel junction element and magnetoresistive memory device
US12004355B2 (en) 2020-10-23 2024-06-04 Samsung Electronics Co., Ltd. Magnetic tunnel junction element and magnetoresistive memory device
KR102440814B1 (en) * 2021-07-01 2022-09-07 한국과학기술연구원 Nano spin device using spin current of ferromagnetic material and heavy metal channel

Similar Documents

Publication Publication Date Title
KR101683440B1 (en) Magnetic memory device
US8758909B2 (en) Scalable magnetoresistive element
CN106887247B (en) Information storage element and storage device
US9818932B2 (en) Storage element, storage device, and magnetic head
US10439133B2 (en) Method and system for providing a magnetic junction having a low damping hybrid free layer
JP6244617B2 (en) Storage element, storage device, magnetic head
US9099642B2 (en) Memory element and memory device
JP2014116474A (en) Magnetoresistive element
JP5987613B2 (en) Storage element, storage device, magnetic head
CN103151455A (en) Memory element and memory apparatus
JP6434103B1 (en) Magnetic memory
KR20160134598A (en) Magnetic memory device
CN102779939A (en) Storage element and storage device
US8848435B2 (en) Magnetic resistance memory apparatus having multi levels and method of driving the same
JP6483403B2 (en) Magnetoresistive element and STT-MRAM
JP6553857B2 (en) Magnetic tunnel junction device and magnetic random access memory
JP6346047B2 (en) Magnetic tunnel junction device and magnetic random access memory
WO2016139879A1 (en) Storage element, production method therefor, and storage device
JP2018014376A (en) Bipolar voltage write type magnetic memory element
CN105679358B (en) Vertical-type spin-transfer torque magnetic RAM mnemon
JP2022063895A (en) Magnetic memory element and magnetic memory device
WO2010125641A1 (en) Tunneling magnetic resistance effect element, and magnetic memory cell and random access memory using the element
JP2007027197A (en) Storage element
WO2013080437A1 (en) Storage element, and storage device
JP2007027196A (en) Storage element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151126

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160517

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170606