[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2014115203A - 距離計測装置 - Google Patents

距離計測装置 Download PDF

Info

Publication number
JP2014115203A
JP2014115203A JP2012269993A JP2012269993A JP2014115203A JP 2014115203 A JP2014115203 A JP 2014115203A JP 2012269993 A JP2012269993 A JP 2012269993A JP 2012269993 A JP2012269993 A JP 2012269993A JP 2014115203 A JP2014115203 A JP 2014115203A
Authority
JP
Japan
Prior art keywords
distance
unit
signal
wave
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012269993A
Other languages
English (en)
Inventor
Kazuma Haraguchi
一馬 原口
Yoshihiko Sugimoto
義彦 杉本
Toru Mugiuda
徹 麦生田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2012269993A priority Critical patent/JP2014115203A/ja
Publication of JP2014115203A publication Critical patent/JP2014115203A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

【課題】高精度に距離を測定できる距離計測装置において、回路構成を単純にすることを目的とする。
【解決手段】上記目的を達成するため本発明は、送波信号S1を生成する送波信号生成部1と送波信号S1に基づきエネルギー波を送波する送波部2と、エネルギー波の反射波を受波し、受波信号Ynを出力する受波部3と、受波信号を基準信号S2とミキシングして検波信号xnを出力する検波部4と、検波信号xnを用いて、エネルギー波が送波部2から送波された後受波部3で受波されるまでの時間を計測し、距離を算出する距離計測部5と、検波信号xnの位相を計測し、位相を用いて距離計測部5で算出した距離を補正する距離補正部6と、を備え、基準信号S2は、送波信号S1と異なる周波数であるものとした。これにより本発明は、高精度に距離を測定できる距離計測装置において、回路構成を単純にすることができる。
【選択図】図1

Description

本発明は、対象物との距離を計測する距離計測装置に関する。
距離計測装置は、空間内に配置された対象物と距離計測装置との間の距離を測定できる。
距離計測装置は、送波信号を生成する送波信号生成部と、送波信号に基づき空間内に超音波を送波する送波部と、超音波の反射波を受波し、受波信号を出力する受波部と、超音波が送波部から送波されて受波部で受波されるまでの時間を計測し、この時間に基づいて距離を計測する距離計測部と、を備えている。
距離計測部では、次の(式1)を用いて距離を計測する。下記(式1)において、距離計測装置から対象物までの距離をLとし、送波から受波までの時間をΔtとし、音速をVとする。
Figure 2014115203
下記特許文献1は、上記従来技術に近似する例を挙げる。
特開平6−83528号公報
上記従来技術で計測した距離は、精度が低いという課題がある。
すなわち、従来技術では、受波信号が所定の閾値を超えた時刻から受波時刻を推定するため、受波信号の波形によって受波時刻が変動する。したがって、計測した距離に誤差が生じることがある。
誤差を補正する方法としては、受波信号を送波信号と同じ周波数で位相が90°異なる基準信号とミキシングして位相を計測し、この位相に基づいて計測した距離を補正する方法が考えられる。
この方法によれば、送波信号の半周期よりも短い単位で距離を補正できるが、一方で回路構成が複雑になるという課題が生じる。
すなわち位相の測定にいわゆる直交検波方式を用いる場合、少なくとも受波信号を二系統に分けてそれぞれ検波する回路が必要である。そしてその結果、回路構成が複雑になるのである。
そこで本発明は、高精度に距離を測定できる距離計測装置において、回路構成を単純にすることを目的とする。
この目的を達成するため本発明は、送波信号を生成する送波信号生成部と、送波信号に基づきエネルギー波を送波する送波部と、エネルギー波の反射波を受波し、受波信号を出力する受波部と、受波信号を基準信号とミキシングして検波信号を出力する検波部と、検波信号を用いて、エネルギー波が送波部から送波された後、受波部で受波されるまでの時間を計測し、この時間に基づいて距離を算出する距離計測部と、検波信号の位相を計測し、位相を用いて距離計測部で算出した距離を補正する距離補正部と、を備え、基準信号は、送波信号と異なる周波数であるものとした。
これにより本発明は、高精度な距離計測装置の回路構成を単純にできる。
その理由は、検波部で送波信号と異なる周波数の基準信号をミキシングするからである。これにより本発明は、検波信号を正弦波で表すことができ、一系統の回路構成で検波信号の位相を特定できる。したがって、この位相に基づき距離を補正でき、結果として高精度に距離を測定できる距離計測装置において、回路構成を単純にできる。
本発明の実施の形態1における距離計測装置の回路ブロック図 本発明の実施の形態1における検波信号の波形を模式的に示す図 本発明の実施の形態2における距離計測装置の回路ブロック図 本発明の実施の形態3における距離計測装置の回路ブロック図 (A)本発明の実施の形態3における対象物の移動速度と検波信号の波形を模式的に示す図、(B)本発明の実施の形態3における対象物の移動速度と検波信号の波形を模式的に示す図
(実施の形態1)
本実施の形態の距離計測装置は、例えば車両に搭載され、車両と障害物との距離を測定したり、あるいはテレビやパーソナルコンピュータ、照明器具等の電化製品に搭載され、電化製品と人間との距離を測定したりすることができる。
図1は、本実施の形態の距離測定装置の回路ブロック図である。本実施の形態の距離測定装置は、空間内の対象物と距離測定装置との間の距離Lを測定する。
初めに、本実施の形態の距離測定装置の構成について説明する。
距離測定装置は、送波信号S1を生成する送波信号生成部1と、送波信号S1に基づき空間内にエネルギー波を送波する送波部2と、エネルギー波の反射波を受波し、受波信号Ynを出力する受波部3と、受波信号Ynを基準信号S2とミキシングして検波信号xnを出力する検波部4と、検波信号xnを用いて、エネルギー波が送波部2から送波された後、受波部3で受波されるまでの時間を計測し、この時間に基づき距離を算出する距離計測部5と、検波信号xnの位相を計測し、位相を用いて距離計測部5で算出した距離を補正する距離補正部6と、を備えている。基準信号S2は、送波信号S1と異なる周波数である。距離測定装置は、メモリ部7を備えていても良い。メモリ部7では検波信号xnや検波信号xnに対応する信号が記憶される。
エネルギー波は、例えば超音波やその他の周波数帯域の電波である。送波部2は、例えば超音波マイクや電波アンテナ等である。受波部3も、例えば超音波マイクや電波アンテナ等である。受波部3は、受波した反射波を電気信号に変換し、受波信号Ynとして出力するものとした。本実施の形態では、送波部2と受波部3とを別部材としたが、いわゆる共用器であってもよい。
また本実施の形態では、図1の回路ブロック図に示すように、送波信号S1は増幅回路8で増幅されて送波部2に入力される。また受波信号Ynは増幅回路9を介して受波部3から出力される。受波信号Ynは増幅回路9で増幅されて検波部4に入力される。さらに検波部4では、ミキシングされた合成信号Xnがローパスフィルタ10に入力されて高周波成分が除去される。
本実施の形態では、距離計測部5および距離補正部6は、演算装置11に組み込まれる。本実施の形態の演算装置11は、マイクロコンピュータ13に搭載される。
なお、基準信号S2は基準信号生成部12で生成される。基準信号生成部12は距離計測装置の内部に組み込まれていてもよく、外付けであってもよい。基準信号S2の周波数を状況に応じて変える場合は、距離計測装置の内部に基準信号生成部12を備える方が、制御が容易である。
また基準信号生成部12および送波信号生成部1の少なくとも何れか一方は、マイクロコンピュータ13に搭載してもよい。マイクロコンピュータ13に一体化すれば、部品点数の低減や配線長の短縮等に寄与し、回路をより単純化できる。またマイクロコンピュータ13で送波信号S1、基準信号S2を生成することで、送波信号S1と基準信号S2の同期を容易に取る事ができ、送波信号S1と異なる周波数の基準信号S2を、より高精度に生成できる。また基準信号S2の周波数を状況に応じて変える場合は、基準信号生成部12をマイクロコンピュータ13に搭載することで、容易に周波数の変更ができる。
次に、本実施の形態の距離計測装置の動作について図1、図2を用いて説明する。図2は、本実施の形態の検波信号xnの波形を模式的に示したものである。
図1に示すように、距離計測装置は、送波信号生成部1で生成された送波信号S1を受けて、送波部2から空間内にsinωtで表されるエネルギー波が送波される。エネルギー波は空間内の対象物に照射され、反射して受波部3でエネルギー波が受波される。
受波部3では、反射したエネルギー波を受け、電気信号に変換される。この電気信号は増幅回路9で増幅され、受波信号Ynが出力される。受波信号Ynは、Aaを振幅、ωを角速度、tを時刻、φaを初期位相とすると、Yn=Aasin(ωt−φa)で表される。
検波部4では、受波信号Ynに基準信号S2が乗算される。基準信号S2は、送波信号S1と異なる周波数であるため、ω’を角速度、tを時刻とすると、sinω'tと表すことができる。基準信号S2の角速度ω’は、送波したエネルギー波の角速度ωと異なる角速度とした。検波部4で乗算された合成信号Xnは、下記の(式2)で表される。Δωは、送波したエネルギー波の角速度ωと基準信号S2の角速度ω’の差である。
Figure 2014115203
上記(式2)から高周波成分をローパスフィルタ10で除去すると、下記(式3)で示すような検波信号xnが出力される。
Figure 2014115203
以上のように、送波信号S1と異なる周波数の基準信号S2をミキシングすることで、図2に示すように、検波信号xnは正弦波で表すことができる。すなわち受波部3がエネルギー波を受波すると、検波信号xnはベース電圧V0から立ち上がり、波形で表される信号となる。
距離計測部5では、検波信号xnが入力されると、検波信号xnが所定の閾値Vthを超えた時刻T0を用いて、受波部3におけるエネルギー波の受波時刻を推定する。受波時刻は、時刻T0としてもよく、検波信号xnの波形を元に受波時刻を補正した時刻であってもよい。
そして送波から受波までの時間をΔtとし、上記の(式1)を用いて、距離Lを計測する。
ここで本実施の形態では、基準信号S2を送波信号S1と異なる周波数とした為、検波信号xnが正弦波で表され、位相φaが特定できる。なお送波信号S1と同じ周波数でミキシングすると、検波信号xnは定数Aa・cosφa/2となり、位相変化を計測することはできない。
そして距離補正部6では、前述の(式1)で計測した距離Lが補正される。
距離補正部6は、検波信号xnが所定の閾値Vthを超えると、位相φaの計測を開始する。
本実施の形態では、検波信号xnが、ベース電圧V0を通過する前であり、ベース電圧V0より低い電圧となる時刻T1を計測する。メモリ部7では、時刻T1において、検波信号xnがベース電圧V0より低い電圧であることを記憶する。その後、検波信号xnがベース電圧V0と同じ電圧となった時刻T2を計測する。これにより位相0度の時刻T2が測定でき、検波信号xnの位相φaが特定できる。
なお、検波信号xnの位相φaは上記方法だけでなく、種々の方法で特定できる。
例えば検波信号xnがベース電圧V0より高い電圧であることを計測し、その後検波信号xnがベース電圧V0と同じ値となる時刻を計測することで、位相180度の時刻T4を測定できる。そして位相180度の時刻T4から位相φaを特定してもよい。
あるいは、ベース電圧V0を基準に、ベース電圧V0を通過する前の、ベース電圧V0より低い電圧となった時刻T1と、ベース電圧V0を通過した後の、ベース電圧V0より高い電圧となった時刻T3を計測し、T1とT3の二点を結ぶ直線とベース電圧V0の交点を求める。これにより位相0度の時刻T2が推定でき、検波信号xnの位相φaを推定できる。この場合は、時刻T1とT3と、夫々の時刻T1、T3における電圧値をメモリ部7で記憶する。データ取得時刻T1とT3での電圧値を用いることで、サンプリングの間隔よりも細かい単位で位相0度の時刻T2を推定できる。
さらに検波信号xnの周期は既知の一定値となるため、位相0度と180度の間隔の平均値を用い、位相φaを推定してもよい。平均値を用いる事でノイズの影響を減らし、更に精度を上げることができる。或いは位相φaを特定する区間d1を決定し、区間d1内で特定した位相φaの平均値を用いてもよい。この場合は、メモリ部7で区間d1の検波信号xnを記憶し、複数点で位相φaを求めればよい。2点だけでなく複数点で位相φaを算出することで計測誤差に対してロバストになる。
以上のような方法で位相φaが特定できれば、位相φaの計測を終了する。
そして距離計測部5で(式1)を用いて距離Lを計測した時の検波信号xnの位相と、距離補正部6で計測した検波信号xnの位相φaとの位相差を求める。そしてこの位相差に基づく距離差ΔLを計測する。この距離差ΔLを、距離計測部5で算出した距離Lから差し引き、距離Lを補正する。
距離補正部6で補正した距離は、演算装置11から出力される。
以下、本実施の形態の効果を説明する。
本実施の形態では、対象物との距離を検波信号xnの半周期に相当する距離で補正できる。すなわち対象物との距離を送波信号S1の半波長より短い距離で補正することができ、高精度な距離計測装置を実現できる。また本実施の形態では、基準信号S2は一つでよいため、一系統で距離の計測と補正とを実現でき、距離計測装置の回路構成を単純にできる。
(実施の形態2)
本実施の形態と実施の形態1との主な違いは、図3に示すように、距離補正部6が周期計測部14を備える点である。周期計測部14は、受波信号Ynを検波した検波信号xnの周期を計測する。
図2に示すように、検波信号xnの位相0度となる時刻T1と位相180度となる時刻T2との差が検波信号xnの半周期に相当し、これにより周期を計測できる。
ここで対象物が移動する場合は、ドップラー効果により検波信号xnの周期が変わる。したがって本実施の形態では、検波信号xnの周期も計測する。この周期は(式3)のΔωに相当するため、周期を特定すれば位相φaを求めることができる。そして距離計測部5で(式1)を用いて距離Lを計測した時の検波信号xnの位相と、距離補正部6で計測した位相φaとの位相差を求め、位相差に基づき距離Lを補正する。
これにより本実施の形態では、対象物が移動する場合も高精度に距離を測定できる。なお本実施の形態では、特に対象物が等速運動もしくは等速運動と近似できる運動をする場合に特に高精度に測定ができる。
その他実施の形態1と同様の構成および効果については説明を省略する。
(実施の形態3)
本実施の形態と実施の形態1との主な違いは、図4に示すように、距離計測装置が選択部15を備えている点である。ユーザは基準信号S2の周波数を、選択部15によって予め設定された複数種類の周波数の信号のうちいずれか一つから選択でき、基準信号S2は選択部15で選択された周波数に設定される。
図5(A)は対象物が比較的速く移動する場合、図5(B)は対象物が比較的ゆっくりと移動する場合の検波信号xnの波形を模式的に示した図である。
図5(A)に示すように、対象物が速い速度で移動している場合、図5(B)に示すようにゆっくりと移動する場合と比べて位相の計測に必要な区間は短い。これに対し、基準信号S2が低周波であると、検波部4でミキシングしてもサンプリングの間隔が検波信号xnの周期の半周期以上となり、位相を正しく計測することが出来ない場合がある。
これに対し本実施の形態では、予めユーザが基準信号S2の周波数を選択部15で選択できるようにしている。すなわち例えば速い速度で異動する対象物との距離を測定する場合は、ユーザは基準信号S2を高周波に設定できる。これにより本実施の形態では、種々の対象物に対応した距離計測装置を実現できる。
なお、選択部15を用いて、基準信号S2を予め設定した複数種類の周波数から選択して設定してもよいが、距離補正部6に基準信号決定部16を設け、過去に計測した検波信号xnの周波数を元に、送波信号S1の周波数と所定の差となる基準信号S2の周波数を決定してもよい。この場合は、基準信号S2の周波数を予め設定していなくても、検波信号xnを複数点でサンプリングした後、検波信号xnの位相計測に必要な区間をおおよそ予測し、基準信号S2の周波数を設定することができる。この場合も種々の対象物により対応した距離計測装置を実現できる。
本発明は、高精度かつ回路構成の容易な距離算出装置に有用である。
1 送波信号生成部
2 送波部
3 受波部
4 検波部
5 距離計測部
6 距離補正部
7 メモリ部
8 増幅回路
9 増幅回路
10 ローパスフィルタ
11 演算装置
12 基準信号生成部
13 マイクロコンピュータ
14 周期計測部
15 選択部
16 基準信号決定部

Claims (6)

  1. 送波信号を生成する送波信号生成部と、
    前記送波信号に基づきエネルギー波を送波する送波部と、
    前記エネルギー波の反射波を受波し、受波信号を出力する受波部と、
    前記受波信号を基準信号とミキシングして検波信号を出力する検波部と、
    前記検波信号を用いて、前記エネルギー波が前記送波部から送波された後前記受波部で受波されるまでの時間を計測し、前記時間に基づいて距離を算出する距離計測部と、
    前記検波信号の位相を計測し、前記位相を用いて前記距離計測部で算出した前記距離を補正する距離補正部と、を備え、
    前記基準信号は、前記送波信号と異なる周波数である、距離計測装置。
  2. 前記距離計測装置は、
    前記基準信号を生成する基準信号生成部を備える、請求項1に記載の距離計測装置。
  3. 前記距離計測装置は、マイクロコンピュータを備え、
    前記マイクロコンピュータは、前記基準信号および前記送波信号の少なくとも一方を生成する、請求項1に記載の距離計測装置。
  4. 前記距離補正部は、前記受波信号の周期を計測する周期計測部を備える、請求項1に記載の距離計測装置。
  5. 前記距離計測装置は、選択部を備え、
    前記基準信号は、あらかじめ設定された複数種類の周波数の信号のうち前記選択部で選択される一つである、請求項1に記載の距離計測装置。
  6. 前記距離補正部は、
    過去に計測した前記検波信号の周波数を元に前記送波信号の周波数と所定の差となる前記基準信号の周波数を決定する基準信号決定部を備えた請求項1に記載の距離計測装置。
JP2012269993A 2012-12-11 2012-12-11 距離計測装置 Pending JP2014115203A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012269993A JP2014115203A (ja) 2012-12-11 2012-12-11 距離計測装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012269993A JP2014115203A (ja) 2012-12-11 2012-12-11 距離計測装置

Publications (1)

Publication Number Publication Date
JP2014115203A true JP2014115203A (ja) 2014-06-26

Family

ID=51171355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012269993A Pending JP2014115203A (ja) 2012-12-11 2012-12-11 距離計測装置

Country Status (1)

Country Link
JP (1) JP2014115203A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107193008A (zh) * 2017-07-25 2017-09-22 安徽大学 一种超声波测距装置及方法
RU2642430C1 (ru) * 2017-01-09 2018-01-25 Федеральное государственное бюджетное военное образовательное учреждение высшего образования "Военно-космическая академия имени А.Ф. Можайского" Министерства обороны Российской Федерации Способ измерения дальности

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2642430C1 (ru) * 2017-01-09 2018-01-25 Федеральное государственное бюджетное военное образовательное учреждение высшего образования "Военно-космическая академия имени А.Ф. Можайского" Министерства обороны Российской Федерации Способ измерения дальности
CN107193008A (zh) * 2017-07-25 2017-09-22 安徽大学 一种超声波测距装置及方法

Similar Documents

Publication Publication Date Title
US11747181B2 (en) Extended range ADC flow meter
JP4464416B2 (ja) 光波測距方式及び測距装置
KR101156233B1 (ko) 거리 측정 장치 및 거리 측정 방법
US20110231137A1 (en) Method and device for calibrating measuring transducers of ultrasonic flow meters
JP6436616B2 (ja) 計測装置、計測方法、および処理装置
WO2009125843A1 (ja) 超音波伝搬時間測定システム
JP2007024671A (ja) 距離測定装置、距離測定方法および距離測定プログラム
KR20150091975A (ko) 도플러 레이더 테스트 시스템
JP6749523B2 (ja) レーダ装置
JP2022516864A (ja) ドップラーシフトがある場合の超音波エコー処理
JP2009222445A (ja) 超音波距離センサシステム及びこれを用いた超音波距離センサ
US20130307562A1 (en) Systems and methods for fft-based microwave distance sensing for a plumbing fixture
KR101454827B1 (ko) 초음파 신호의 위상천이 검출에 의한 정밀 거리측정방법
JP6164918B2 (ja) レーダ装置
JP2014115203A (ja) 距離計測装置
JP6455873B2 (ja) 振動測定方法及び振動検出装置及び振動測定プログラム
RU97830U1 (ru) Устройство определения места повреждения изоляции кабеля
JP5925264B2 (ja) レーダ装置
KR100739506B1 (ko) 정합필터의 간략한 계산을 사용한 초음파 거리 정밀측정방법
KR20180112387A (ko) 레이저 거리 측정 장치 및 방법
JP6354631B2 (ja) 目付量測定方法
JP2007212246A (ja) レーダ装置の校正装置及び方法
JP4924980B2 (ja) 距離測定装置
JP5654253B2 (ja) 障害物検知装置
KR20160002030A (ko) 도플러 센서를 이용한 대상체 감지 방법 및 장치