[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2014111941A - Axial flow compressor - Google Patents

Axial flow compressor Download PDF

Info

Publication number
JP2014111941A
JP2014111941A JP2014049685A JP2014049685A JP2014111941A JP 2014111941 A JP2014111941 A JP 2014111941A JP 2014049685 A JP2014049685 A JP 2014049685A JP 2014049685 A JP2014049685 A JP 2014049685A JP 2014111941 A JP2014111941 A JP 2014111941A
Authority
JP
Japan
Prior art keywords
blade
axial
blade row
flow
downstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014049685A
Other languages
Japanese (ja)
Other versions
JP5813807B2 (en
Inventor
Yasuo Takahashi
康雄 高橋
Chihiro Meiren
千尋 明連
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2014049685A priority Critical patent/JP5813807B2/en
Publication of JP2014111941A publication Critical patent/JP2014111941A/en
Application granted granted Critical
Publication of JP5813807B2 publication Critical patent/JP5813807B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-performance compressor blade form capable of reducing a secondary loss or a cross flow and ensuring reliability.SOLUTION: In an axial flow compressor comprising a stator blade row and a rotor blade row in an annular flow passage formed between a rotor and a casing, a flow passage partitioned by a pressure surface and a suction surface of blades neighboring in a circumferential direction of the stator blade row or the rotor blade row is constituted in such a manner that, at least on a rotor-side or casing-side cross section which is a sidewall part, axial flow passage width distribution which is distribution of a flow passage width in a direction, vertical to a rotation axis, from a blade front edge to a blade rear edge of a blade partitioning the flow passage has a deflection point at a downstream side of a throat part where the flow passage width becomes minimum, and is monotonously increased toward the rear edge at the downstream side of the throat part.

Description

本発明は、ガスタービン用あるいは産業用の軸流圧縮機に係り、特に高性能な軸流圧縮機翼を有する軸流圧縮機に関するものである。   The present invention relates to a gas turbine or industrial axial compressor, and more particularly to an axial compressor having high-performance axial compressor blades.

従来、軸流圧縮機の下流に位置する亜音速翼には、非特許文献1(NACA,SP−36)に記述されているように、翼列風洞による系統的で広範囲な実験的研究により開発されたNACA65翼が適用されている。近年、軸流圧縮機では高圧力比化と段数削減による低コスト化を両立する高負荷化が要求されている。高負荷機の下流段における亜音速翼では側壁境界層の発達により二次流れが増加するため、翼面でコーナーストールが発生し、従来翼では損失が増大する可能性がある。従って、コーナーストールを抑制できる高性能な翼形を適用することが高負荷圧縮機の性能向上には重要な技術である。   Conventionally, subsonic blades located downstream of an axial compressor have been developed through systematic and extensive experimental research using cascade wind tunnels as described in Non-Patent Document 1 (NACA, SP-36). NACA65 wings are applied. In recent years, axial compressors are required to have a high load that achieves both high pressure ratio and low cost by reducing the number of stages. In the subsonic blade at the downstream stage of the high load machine, the secondary flow increases due to the development of the side wall boundary layer, so that the corner stall occurs on the blade surface, and the loss may increase in the conventional blade. Therefore, applying a high-performance airfoil that can suppress corner stall is an important technology for improving the performance of a high-load compressor.

特許文献1には、軸流圧縮機の二次流れを抑制する方法が開示されている。この方法は、二次流れが発生しやすい翼端部の翼形を腹側と背側の静圧勾配が小さくなるように、翼前縁位置を固定したまま、翼中心線の前縁よりと後縁よりの曲率半径を調整したものである。   Patent Document 1 discloses a method for suppressing the secondary flow of an axial compressor. In this method, the airfoil shape at the tip of the blade, where secondary flow is likely to occur, is fixed to the front edge of the blade center line while the blade leading edge position is fixed so that the static pressure gradient between the ventral side and the back side becomes small. The radius of curvature from the trailing edge is adjusted.

特開平8−135597号公報JP-A-8-135597

“Aerodynamic Design of Axial-Flow Compressors”,NATIONAL AERONAUTICS AND SPACE ADMINISTRATION, 1965.“Aerodynamic Design of Axial-Flow Compressors”, NATIONAL AERONAUTICS AND SPACE ADMINISTRATION, 1965.

特許文献1に記載されているような、側壁近傍で発生する二次流れ損失を低減するための従来技術では、側壁付近の翼取り付け角度や翼形状を改良することで側壁部の翼負荷を低減し、その結果として、二次流れ損失やコーナーストールを抑制するような方法が主流である。しかし、翼負荷が増加する側壁部以外では損失が増加するというような懸念がある。また、流れの乱れや剥離によるバフェッティングなどの非定常な流体振動によって、圧縮機の信頼性が低下する恐れがある。   In the conventional technology for reducing the secondary flow loss generated near the side wall as described in Patent Document 1, the blade load on the side wall is reduced by improving the blade mounting angle and the blade shape near the side wall. As a result, methods that suppress secondary flow loss and corner stall are the mainstream. However, there is a concern that the loss increases except for the side wall portion where the blade load increases. Further, unsteady fluid vibrations such as flow disturbance and buffeting due to separation may reduce the reliability of the compressor.

そこで本発明の目的は、損失の低減と信頼性の確保を達成した高性能な圧縮機翼形状を提供することにある。   Accordingly, an object of the present invention is to provide a high-performance compressor blade shape that achieves reduction of loss and securing of reliability.

上記目的を達成するために、本発明では、ロータとケーシングとの間に形成される環状流路に静翼列と動翼列とを有する軸流圧縮機において、前記静翼列または動翼列の周方向に隣接する翼の圧力面と負圧面とで区画される流路を、少なくとも側壁部である前記ロータ側または前記ケーシング側の断面において、該流路を区画する翼の翼前縁から翼後縁に沿った、回転軸に垂直な方向についての流路幅の分布である軸方向流路幅分布が、流路幅が最小となるスロート部より下流側に変曲点を有すると共に、前記スロート部より下流側で後縁に向かって単調に増加するように構成する。   To achieve the above object, according to the present invention, in an axial flow compressor having a stationary blade row and a moving blade row in an annular flow path formed between a rotor and a casing, the stationary blade row or the moving blade row is provided. The flow path defined by the pressure surface and the suction pressure surface of the blade adjacent to each other in the circumferential direction is at least from the blade leading edge of the blade defining the flow channel in the cross section on the rotor side or the casing side that is the side wall portion. The axial flow width distribution, which is the flow width distribution in the direction perpendicular to the rotation axis along the blade trailing edge, has an inflection point on the downstream side from the throat portion where the flow path width is minimum, It is configured to monotonously increase toward the rear edge on the downstream side of the throat portion.

本願発明によれば、損失の低減と信頼性の確保を達成した高性能な圧縮機翼形状を提供することができる。   According to the present invention, it is possible to provide a high-performance compressor blade shape that achieves reduction of loss and securing of reliability.

本発明の実施形態の翼間の軸方向流路幅分布図。The axial direction flow path width distribution map between the wing | blade of embodiment of this invention. 本発明の実施形態の軸流圧縮機の子午面断面図。The meridian plane sectional view of the axial flow compressor of the embodiment of the present invention. 本発明の実施形態の一つである軸流圧縮機翼の二次元断面図。The two-dimensional sectional view of the axial flow compressor blade which is one of the embodiments of the present invention. 本発明の実施形態の一つである軸流圧縮機翼面の曲率分布図。The curvature distribution map of the axial flow compressor blade | wing surface which is one of the embodiments of this invention. 本発明の実施形態の一つである軸流圧縮機翼の二次元断面図。The two-dimensional sectional view of the axial flow compressor blade which is one of the embodiments of the present invention. 本発明の実施形態の一つである軸流圧縮機翼面の曲率分布図。The curvature distribution map of the axial flow compressor blade | wing surface which is one of the embodiments of this invention. 本発明の実施形態の作用を説明する翼間および翼面静圧分布図。The blade-to-blade and blade-surface static pressure distribution diagram for explaining the operation of the embodiment of the present invention. 本発明の実施形態における全圧損失分布の比較。The comparison of the total pressure loss distribution in embodiment of this invention. 本発明の実施形態における翼負圧面近傍の流線分布の比較。Comparison of streamline distributions near the blade suction surface in the embodiment of the present invention. 本発明の実施形態における翼面静圧分布の比較。Comparison of blade surface static pressure distribution in an embodiment of the present invention.

図2は、本発明の翼形が適用される多段軸流圧縮機の部分的な横断面図を示したものである。   FIG. 2 is a partial cross-sectional view of a multistage axial compressor to which the airfoil of the present invention is applied.

軸流圧縮機1は複数の動翼列4が取り付けられた回転するロータ2と、複数の静翼列5を取り付けたケーシング3から構成され、ロータ2とケーシング3により環状流路が形成される。動翼列4と静翼列5は軸方向に交互に配列されており、1つの動翼列と静翼列とで段を構成している。ロータ2は同一の回転軸6に設置されたモータやタービンなどの駆動源(図示しない)により駆動される。流入気流10は複数の静翼列と複数の動翼列を通過して減速されながら高温,高圧の流出気流11となる。   The axial compressor 1 includes a rotating rotor 2 to which a plurality of moving blade rows 4 are attached and a casing 3 to which a plurality of stationary blade rows 5 are attached. An annular flow path is formed by the rotor 2 and the casing 3. . The moving blade rows 4 and the stationary blade rows 5 are alternately arranged in the axial direction, and a single moving blade row and a stationary blade row constitute a stage. The rotor 2 is driven by a drive source (not shown) such as a motor or a turbine installed on the same rotary shaft 6. The inflow airflow 10 passes through the plurality of stationary blade rows and the plurality of rotor blade rows and becomes a high-temperature, high-pressure outflow airflow 11 while being decelerated.

軸流圧縮機では、動翼列で流入気流に運動エネルギーを与え、静翼列で流れを転向させ減速させることで運動エネルギーを圧力エネルギーに変換して昇圧させる。このような流れ場における環状流路の側壁では境界層が発達するため、軸流圧縮機の下流側に位置する亜音速翼列では二次流れ損失が増加する。また、軸流圧縮機の高圧力比化と段数削減による低コスト化を目的とした高負荷圧縮機では、この二次流れ損失の主要因となる翼面でのコーナーストールが拡大する。そのため、コーナーストールを抑制できる翼形状の生成が技術課題である。   In the axial flow compressor, kinetic energy is given to the inflow airflow by the moving blade row, and the kinetic energy is converted to pressure energy and boosted by turning and decelerating the flow by the stationary blade row. Since the boundary layer develops on the side wall of the annular flow path in such a flow field, the secondary flow loss increases in the subsonic cascade located downstream of the axial compressor. Further, in a high-load compressor aimed at reducing the cost by increasing the pressure ratio of the axial compressor and reducing the number of stages, the corner stall on the blade surface, which is the main factor of this secondary flow loss, is expanded. Therefore, the generation of a blade shape that can suppress corner stall is a technical problem.

しかしながら、以下に説明する本発明の実施形態によれば、隣接する2つの翼列間の流路において、翼圧力面から翼負圧面の静圧勾配が流れに垂直方向に対して均一化でき、翼列間の圧力面から負圧面へのクロスフローを抑制できる。このクロスフローの抑制により、翼負圧面側で発生するコーナーストールを低減できる。二次流れ損失の主要因であるコーナーストールを抑制できるため、翼列の損失を低減でき、軸流圧縮機全体の効率が向上できる。   However, according to the embodiment of the present invention described below, in the flow path between two adjacent blade cascades, the static pressure gradient from the blade pressure surface to the blade suction surface can be made uniform in the direction perpendicular to the flow, Cross flow from the pressure surface to the suction surface between the blade rows can be suppressed. By suppressing this cross flow, the corner stall generated on the blade suction surface side can be reduced. Since the corner stall that is the main factor of the secondary flow loss can be suppressed, the blade row loss can be reduced, and the efficiency of the entire axial flow compressor can be improved.

また、翼列のコーナーストールを抑制することで、流出角を改善でき、そのため、本発明を適用した翼列の下流側に位置する静翼列もしくは動翼列の流入角が改善される。そして、動翼と静翼からなる段落での損失低減と高性能化を達成することができる。さらに、翼面での剥離によるバフェッティングなど非定常な流体振動を回避することが可能であり、軸流圧縮機の信頼性を確保することができる。   Further, by suppressing the corner stall of the blade row, the outflow angle can be improved, and therefore, the inflow angle of the stationary blade row or the moving blade row located on the downstream side of the blade row to which the present invention is applied is improved. Loss reduction and high performance can be achieved in the paragraph consisting of the moving blade and the stationary blade. Furthermore, unsteady fluid vibration such as buffeting due to separation on the blade surface can be avoided, and the reliability of the axial flow compressor can be ensured.

以下、静翼列5のA−A断面について、複数の実施例を示して説明を行う。但し、本発明は静翼列に限られるものではなく、動翼列についても同様に適用可能である。   Hereinafter, the AA cross section of the stationary blade row 5 will be described by showing a plurality of examples. However, the present invention is not limited to the stationary blade row, and can be similarly applied to the moving blade row.

本発明の第1の実施例に係る軸流圧縮機の翼形を図3に示す。図3は図2の静翼列5のA−A断面について、周方向に隣接する2つの翼形についての円筒断面を図示している。翼形は翼負圧面21と翼圧力面22と前縁部23と後縁部24とから構成される。そして、隣接する2つの翼の負圧面21と圧力面22とによって区画され、前縁部23から後縁部24に沿った軸方向流路幅31を備えた流路が形成され、この翼間の流路を流入気流が流れる。   FIG. 3 shows an airfoil of the axial compressor according to the first embodiment of the present invention. FIG. 3 illustrates a cylindrical cross section of two airfoils adjacent in the circumferential direction with respect to the AA cross section of the stationary blade row 5 of FIG. The airfoil includes a blade suction surface 21, a blade pressure surface 22, a leading edge portion 23, and a trailing edge portion 24. Then, a flow path having an axial flow path width 31 extending from the front edge portion 23 to the rear edge portion 24 is formed by the suction surface 21 and the pressure surface 22 of the two adjacent blades. The inflow airflow flows through the flow path.

図1に、軸方向コード長に対する流路幅の分布を示す。図1では従来翼の流路幅分布41を点線で、本発明翼の流路幅分布42を実線で表わし比較している。従来翼では軸方向コード長30%付近で流路幅が最小となり、その下流側では後縁に向けて単調に増加する。しかし、本発明の実施例における流路幅分布42では、軸方向流路幅が最小となる位置(以下、スロート部)より下流側で変曲点42aを有するように構成されている。また、図1に示すように、軸方向流路幅分布は、スロート部より下流側で極大値も極小値も有することなく、後縁で最大となるように構成されている。即ち、スロート部より下流側の軸方向流路幅分布は、傾きが正の値を持った曲線となる。   FIG. 1 shows the distribution of the channel width with respect to the axial code length. In FIG. 1, the flow path width distribution 41 of the conventional blade is represented by a dotted line, and the flow path width distribution 42 of the blade of the present invention is represented by a solid line for comparison. In the conventional blade, the flow path width becomes the minimum in the vicinity of 30% of the axial cord length, and monotonously increases toward the trailing edge on the downstream side. However, the flow path width distribution 42 in the embodiment of the present invention is configured to have an inflection point 42a on the downstream side from the position where the axial flow path width is minimum (hereinafter, the throat portion). Further, as shown in FIG. 1, the axial flow path width distribution is configured to be maximum at the trailing edge without having a local maximum value or a local minimum value on the downstream side of the throat portion. That is, the axial flow path width distribution on the downstream side of the throat portion is a curve having a positive slope.

次に、図3の翼形状を図4の翼面曲率分布を用いて説明する。図4は、点線を従来翼の翼面曲率分布51、実線を本発明の第1の実施例の翼の翼面曲率分布52として比較したものであり、翼の負圧面の翼面曲率分布を図4(a)、圧力面の翼面曲率分布を図4(b)に示している。なお、図4(a)において曲率が最小となる位置が、最も流れが加速されるスロート部に相当している。本実施例の翼は、図4(b)に示す通り、圧力面では軸方向コード長のスロート部より下流側で、一旦極大値52aをもち、その後極小値52bをもつような曲率分布を有するように構成されている。この極大値52aは50%から70%コード長範囲内にあることが好ましい。また、本実施例では負圧面の曲率は従来翼と同一で、翼面曲率分布は単調増加している。   Next, the blade shape of FIG. 3 will be described using the blade surface curvature distribution of FIG. FIG. 4 is a comparison of the blade surface curvature distribution 51 of the conventional blade and the solid line the blade surface curvature distribution 52 of the blade of the first embodiment of the present invention. FIG. 4A shows a blade surface curvature distribution of the pressure surface in FIG. In FIG. 4A, the position where the curvature is minimum corresponds to the throat portion where the flow is accelerated most. As shown in FIG. 4B, the blade of the present embodiment has a curvature distribution that once has a maximum value 52a and then has a minimum value 52b on the downstream side of the throat portion of the axial cord length on the pressure surface. It is configured as follows. This maximum value 52a is preferably in the range of 50% to 70% code length. Further, in this embodiment, the curvature of the suction surface is the same as that of the conventional blade, and the blade surface curvature distribution monotonously increases.

本発明の第2の実施例に係る軸流圧縮機の翼形を図5に示す。図5は、図3と同様、図2の静翼列のA−A断面について、周方向に隣接する2つの翼形についての円筒断面を図示したものであり、翼形は翼負圧面21と翼圧力面22と前縁部23と後縁部24とから構成されている。図5に示す本実施例の翼と、図3に示した第1の実施例との違いは、図1に示す軸方向コード長のスロート部より下流側における流路幅分布を従来翼より増加する方法として、圧力面22の曲率ではなく、負圧面21においてスロート部より下流側での曲率を大きくした点である。   FIG. 5 shows an airfoil of an axial compressor according to the second embodiment of the present invention. FIG. 5 illustrates a cylindrical cross section of two airfoils adjacent in the circumferential direction with respect to the AA cross section of the stationary blade row of FIG. The blade pressure surface 22, the front edge portion 23, and the rear edge portion 24 are configured. The difference between the blade of this embodiment shown in FIG. 5 and the first embodiment shown in FIG. 3 is that the flow width distribution on the downstream side of the throat portion of the axial cord length shown in FIG. As a method of doing this, not the curvature of the pressure surface 22 but the curvature on the downstream side of the throat portion on the negative pressure surface 21 is increased.

但し、本実施例に示した翼形においても、隣接した翼によって形成される流路の流路幅分布は第1の実施例で示した翼形と同様、図1に示す流路幅分布となる。   However, also in the airfoil shown in the present embodiment, the flow path width distribution of the flow path formed by adjacent blades is the same as the airfoil shown in the first embodiment, as shown in FIG. Become.

図6に本実施例の翼(図5)の翼面曲率分布を示し、点線を従来翼の翼面曲率分布51、実線を本実施例の翼の翼面曲率分布52として比較している。なお、負圧面側の翼面曲率分布を示したものが図6(a)、圧力面側の翼面曲率分布を示したものが図6(b)である。本実施例の翼では、圧力面側の曲率は従来翼と同一としている。一方、本発明翼52の負圧面側の曲率は、軸方向コード長のスロート部より下流側で一旦極大値52aをもつような曲率分布を有するように構成され、極大値52aから後縁に向けて曲率が緩やかに減少するようにしている。この極大値52aは50%から70%コード長範囲内にあることが好ましい。   FIG. 6 shows the blade surface curvature distribution of the blade of this embodiment (FIG. 5), where the dotted line is the blade surface curvature distribution 51 of the conventional blade and the solid line is the blade surface curvature distribution 52 of the blade of this embodiment. FIG. 6 (a) shows the blade surface curvature distribution on the suction surface side, and FIG. 6 (b) shows the blade surface curvature distribution on the pressure surface side. In the blade of this embodiment, the curvature on the pressure surface side is the same as that of the conventional blade. On the other hand, the curvature on the suction surface side of the blade 52 of the present invention is configured to have a curvature distribution that once has a maximum value 52a downstream from the throat portion of the axial code length, and from the maximum value 52a toward the trailing edge. The curvature is gradually reduced. This maximum value 52a is preferably in the range of 50% to 70% code length.

なお、一般的な翼構造では圧力面側と負圧面側を滑らかに接続する。そのため、正確には、曲率分布は翼面位置の前縁部23および後縁部24の近傍で急激な変化を示す。但し、図中においては特にこのような接続部分については言及しないこととする。   In a general blade structure, the pressure surface side and the suction surface side are smoothly connected. Therefore, precisely, the curvature distribution shows a rapid change in the vicinity of the front edge portion 23 and the rear edge portion 24 of the blade surface position. However, in the figure, such a connection portion is not particularly mentioned.

第1の実施例及び第2の実施例では、それぞれ圧力面か負圧面のどちらか一方の曲率分布を変化させることで、図1に示す本発明翼の軸方向の流路幅分布42を満足させる場合について説明してきた。これらは組み合わせることも可能であり、第1の実施例で説明した圧力面の曲率分布と第2の実施例で説明した負圧面の曲率分布を同時に採用することでも、図1に示すような流路幅分布を満足させることが可能である。但し、その場合、軸方向コード長のスロート部より下流側の翼厚み分布を、翼の後縁厚みよりも大きくすることが、翼の強度,信頼性の観点から必要となる。   In the first embodiment and the second embodiment, the curvature distribution on either the pressure surface or the suction surface is changed to satisfy the axial flow width distribution 42 of the blade of the present invention shown in FIG. The case where it is made to have been explained. These can be combined, and the flow distribution as shown in FIG. 1 can be obtained by simultaneously adopting the curvature distribution of the pressure surface described in the first embodiment and the curvature distribution of the suction surface described in the second embodiment. It is possible to satisfy the road width distribution. However, in that case, it is necessary from the viewpoint of blade strength and reliability that the blade thickness distribution on the downstream side of the throat portion of the axial cord length is larger than the trailing edge thickness of the blade.

次に、実施例として説明した翼構造、即ち、流路幅が最小となるスロート部を軸方向コード長50%より上流側に設け、かつ、該流路を区画する翼の翼前縁から翼後縁に沿った軸方向流路幅分布が前記スロート部より下流側に変曲点を有するように構成した翼(以下、簡単のため発明翼と呼称する)を採用することによる流れ場への作用について説明する。   Next, the blade structure described as the embodiment, that is, the throat portion having the smallest flow path width is provided on the upstream side from the axial code length of 50%, and the blade is formed from the blade leading edge of the blade defining the flow path. By adopting a wing (hereinafter referred to as an invention wing for the sake of simplicity) that has an inflection point downstream of the throat portion in the axial flow path width distribution along the trailing edge. The operation will be described.

図7(a)に隣接する2つの翼間の静圧分布を示し、図7(b)に翼面の静圧分布の概念図を示す。図7(a)中の実線は翼間の等静圧線61を表し、一点鎖線は等静圧線の圧力面に沿った流れに垂直方向断面の圧力勾配62を示している。また、この等静圧線61と負圧面との交点64および圧力面との交点63から決まる軸方向距離65を図示している。この軸方向距離65は、図7(b)では等静圧線と同静圧値の負圧面と圧力面との軸方向位置の差で表わされる。   FIG. 7A shows the static pressure distribution between two adjacent blades, and FIG. 7B shows a conceptual diagram of the static pressure distribution on the blade surface. The solid line in FIG. 7A represents the isostatic pressure line 61 between the blades, and the alternate long and short dash line represents the pressure gradient 62 in a cross section perpendicular to the flow along the pressure surface of the isostatic line. Further, an axial distance 65 determined from the intersection 64 between the isostatic line 61 and the negative pressure surface and the intersection 63 with the pressure surface is illustrated. The axial distance 65 is represented by the difference in axial position between the negative pressure surface and the pressure surface having the same static pressure value as the isostatic pressure line in FIG. 7B.

上記したような発明翼を採用して、軸方向コード長のスロート部より下流側で流路幅分布が変曲点を有するように流路を拡大することで、図7(b)で示した軸方向距離を短縮させることができる。   By adopting the invention blade as described above and enlarging the flow path so that the flow path width distribution has an inflection point on the downstream side from the throat part of the axial code length, it is shown in FIG. The axial distance can be shortened.

このように等静圧線の軸方向距離65を短縮することで、図7(a)に示される等静圧線61と翼間の静圧の圧力勾配62とを平行に近づけることができ、翼間の流れに対して垂直な方向の圧力勾配を小さくすることができる。これにより翼間で発生するクロスフローを抑制でき、二次流れ損失の低減およびコーナーストールの軽減が可能となる。   Thus, by shortening the axial distance 65 of the isostatic line, the isostatic line 61 and the static pressure gradient 62 between the blades shown in FIG. The pressure gradient in the direction perpendicular to the flow between the blades can be reduced. Thereby, the cross flow generated between the blades can be suppressed, and the secondary flow loss can be reduced and the corner stall can be reduced.

更に、本発明翼は、軸方向コード長のスロート部より下流側の翼間流路幅分布が変曲点を有するように構成されている。このスロート部は、翼間の流路幅が最小となり、流れが最大に加速される。そして、その下流側で流れが減速されて静圧が回復(上昇)する。従って、流れが減速され静圧が上昇する領域では翼面の乱流境界層が発達して流れが剥離しやすくなるため、その領域の翼間の静圧の圧力勾配62を均一化させることが二次流れ損失の低減およびコーナーストールを軽減するには有効となる。   Further, the blade according to the present invention is configured such that the inter-blade channel width distribution downstream of the throat portion of the axial code length has an inflection point. The throat portion has the smallest flow path width between the blades, and the flow is accelerated to the maximum. Then, the flow is decelerated on the downstream side, and the static pressure is recovered (increased). Therefore, in the region where the flow is decelerated and the static pressure rises, the turbulent boundary layer on the blade surface develops and the flow is easily separated, so that the static pressure gradient 62 between the blades in that region can be made uniform. This is effective in reducing secondary flow loss and corner stall.

上記したような発明翼を翼高さ方向に複数断面配置し、それらを翼の重心位置を合せて積み重ねることで三次元の翼を設計することができる。例えば、図2に示す静翼列5に対して、ケーシング側の0%断面71,平均径の50%断面,ロータ側の100%断面72の形状を設計し、その他の断面を内挿により求めて、その各翼形の重心位置を積み重ねて三次元の翼を設計することも可能である。また、側壁部である0%断面71と100%断面72にだけ各実施例に示す翼を適用し、その他の断面には従来翼を適用することで、二次流れ損失だけ低減する三次元の翼を設計することも可能である。   A three-dimensional blade can be designed by arranging a plurality of the inventive blades as described above in the blade height direction and stacking them in accordance with the center of gravity of the blade. For example, for the stationary blade row 5 shown in FIG. 2, the shapes of the 0% cross section 71 on the casing side, the 50% cross section of the average diameter, and the 100% cross section 72 on the rotor side are designed, and the other cross sections are obtained by interpolation. It is also possible to design a three-dimensional wing by stacking the center of gravity of each airfoil. Further, by applying the blades shown in the embodiments only to the 0% cross section 71 and the 100% cross section 72 which are the side wall portions, and applying the conventional blades to the other cross sections, a three-dimensional flow that reduces only the secondary flow loss is achieved. It is also possible to design a wing.

以上のように設計した本発明翼の三次元的な流れ場への効果について説明する。図8は発明翼の流入角に対する全圧損失係数82を実線で表わし、点線で表わす従来翼の流入角に対する全圧損失係数81と対比している。図中に、一点鎖線で設計流入角83を示す。発明翼では設計流入角において、コーナーストールを抑制しているため、従来翼に比べて全圧損失を低減することが確認できる。また、流入角が大きい失速側でも、発明翼の全圧損失係数は従来翼と比較して、損失の増加が抑制されているため、広い作動範囲を有し、高性能化が図れることが分かる。   The effect of the blade of the present invention designed as described above on the three-dimensional flow field will be described. FIG. 8 represents the total pressure loss coefficient 82 with respect to the inflow angle of the inventive blade by a solid line, and compares it with the total pressure loss coefficient 81 with respect to the inflow angle of the conventional blade, which is represented by a dotted line. In the figure, a design inflow angle 83 is indicated by a one-dot chain line. With the inventive blade, corner stall is suppressed at the design inflow angle, so it can be confirmed that the total pressure loss is reduced as compared with the conventional blade. In addition, even on the stall side where the inflow angle is large, the total pressure loss coefficient of the inventive wing is suppressed compared to the conventional wing, so it can be seen that it has a wide operating range and high performance can be achieved. .

図9に発明翼85と従来翼84の負圧面近傍の流線の比較を示す。図9(a)の従来翼の流れ場では後縁の両側壁近傍で流れが剥離したコーナーストール86が発生していることが確認できる。一方、発明翼では、そのコーナーストールが抑制されている。特に、外周側である0%断面71で剥離領域が縮小していることが顕著に確認できる。   FIG. 9 shows a comparison of streamlines near the suction surface of the inventive blade 85 and the conventional blade 84. In the flow field of the conventional blade in FIG. 9A, it can be confirmed that a corner stall 86 is generated in which the flow is separated in the vicinity of both side walls of the trailing edge. On the other hand, in the invention wing, the corner stall is suppressed. In particular, it can be remarkably confirmed that the peeling region is reduced in the 0% cross section 71 on the outer peripheral side.

図9の一点鎖線に示す断面87における翼面静圧分布を図10に示す。この断面は、図9で示されるように、従来翼の側壁近傍におけるコーナーストール影響が小さく、かつケーシング側の断面を代表として選定している。図10には前縁から後縁までの軸方向コード長に対する翼面の静圧分布を示す。点線が従来翼の静圧分布91で実線が発明翼の静圧分布92を表わす。発明翼では負圧面の静圧を50%コード長より下流側で静圧が極端に大きくなっている。これは、負圧面の曲率を大きくすること等に相当する。さらに、負圧面の70%コード長より下流側で静圧の変化を緩やかにしており、これは負圧面の曲率を小さくすること等により達成できる。本発明翼の30%コード長付近に位置する翼間流路のスロート部より下流側では、従来翼に比べて等静圧線と圧力面及び負圧面との交点間の
軸方向距離65が短縮されていることが確認できる。このような翼面静圧分布を達成することで、翼間の静圧勾配を流れに対して垂直方向断面で均一化させ、クロスフローを抑制できる。
FIG. 10 shows the blade surface static pressure distribution in the cross section 87 shown by the one-dot chain line in FIG. As shown in FIG. 9, this section has a small effect of corner stall in the vicinity of the side wall of the conventional blade, and the section on the casing side is selected as a representative. FIG. 10 shows the static pressure distribution on the blade surface with respect to the axial cord length from the leading edge to the trailing edge. The dotted line represents the static pressure distribution 91 of the conventional blade, and the solid line represents the static pressure distribution 92 of the inventive blade. In the invention blade, the static pressure on the suction surface is extremely large on the downstream side of the cord length of 50%. This is equivalent to increasing the curvature of the suction surface. Furthermore, the change in static pressure is moderated downstream from the 70% cord length of the suction surface, which can be achieved by reducing the curvature of the suction surface. The axial distance 65 between the intersections of the isostatic line, the pressure surface, and the suction surface is reduced on the downstream side of the throat portion of the inter-blade channel located near the 30% cord length of the blade of the present invention, compared to the conventional blade. Can be confirmed. By achieving such blade surface static pressure distribution, the static pressure gradient between the blades can be made uniform in a cross section perpendicular to the flow, and crossflow can be suppressed.

以上より、本発明翼のような構造にすることで、二次流れ損失を低減でき、軸流圧縮機の高効率化を達成することができる。また、本発明翼ではコーナーストールを抑制できるので、従来翼と比べて流出角をより設計値に近づけることが可能となり、下流側に位置する動静翼に対して、翼列マッチングを改善できる。従って、多段翼でも高性能化させることができる。さらに、翼面でのコーナーストールなどの流れの乱れによるバフェッティングなどの非定常な流体振動を回避することができ、翼の信頼性も向上することができる。   From the above, by using the structure of the blade according to the present invention, it is possible to reduce the secondary flow loss and achieve high efficiency of the axial flow compressor. In addition, since the corner stall can be suppressed in the blade of the present invention, the outflow angle can be made closer to the design value compared to the conventional blade, and the blade row matching can be improved for the moving and stationary blades positioned on the downstream side. Therefore, high performance can be achieved even with multistage blades. Further, unsteady fluid vibration such as buffeting due to flow disturbance such as corner stall on the blade surface can be avoided, and the reliability of the blade can be improved.

なお、従来翼の高性能化で、二次流れ損失を低減するための一般的な方法として、例えば、静翼列の側壁部の翼取り付け角度を大きくすることで、側壁部の翼負荷を低減し、コーナーストールを抑制する手段がある。静翼列をケーシングに配設するためには、静翼の側壁にはシュラウド部があり、静翼の側壁はフィレットを設けてシュラウド部に完全に乗るようにする必要がある。上記したように、側壁部の翼取り付け角度を大きくした場合、シュラウド部から翼形状がはみ出す可能性や、フィレット部が部分的に除外される可能性がある。しかし、本発明翼では側壁部の翼取り付け角度は従来翼とほぼ同一のため、シュラウド部を共用することが可能となり、翼の信頼性を確保することができる。   In addition, as a general method for reducing secondary flow loss by improving the performance of conventional blades, for example, by increasing the blade mounting angle on the side wall of the stationary blade row, the blade load on the side wall is reduced. There is a means to suppress corner stall. In order to dispose the stationary blade row in the casing, it is necessary to provide a shroud portion on the side wall of the stationary blade, and to provide a fillet on the side wall of the stationary blade so as to completely ride on the shroud portion. As described above, when the blade attachment angle of the side wall portion is increased, the blade shape may protrude from the shroud portion or the fillet portion may be partially excluded. However, in the blade according to the present invention, the blade attachment angle of the side wall portion is almost the same as that of the conventional blade, so that the shroud portion can be shared and the reliability of the blade can be ensured.

次に、本発明翼の翼形状生成方法について説明する。二次元翼断面形状を生成する場合に、一般的には、翼負圧面の最大マッハ数や負圧面の形状係数を評価して、最大マッハ数や形状係数が最小化できるように翼形状を生成する。なお、形状係数とは、翼面境界層における排除厚さと運動量厚さの比率で表わされ、境界層の剥離の目安となる指標である。一般的に乱流境界層では形状係数1.8〜2.4以上で流れが剥離すると知られている。   Next, a method for generating the blade shape of the blade according to the present invention will be described. When generating a two-dimensional blade cross-sectional shape, generally, the maximum Mach number of the blade suction surface and the shape factor of the suction surface are evaluated, and the blade shape is generated so that the maximum Mach number and shape factor can be minimized. To do. The shape factor is expressed as a ratio of the excluded thickness and the momentum thickness in the blade boundary layer, and is an index serving as a standard for boundary layer separation. It is generally known that in the turbulent boundary layer, the flow is separated at a shape factor of 1.8 to 2.4 or more.

本発明翼では二次元翼断面形状を生成するときに、三次元的な流れ場を考慮した指標である等静圧線の軸方向距離を付け加えている(図7)。本発明翼を生成するための目的関数Fを式(1)で示す。ここで、F1は形状係数、F2は最大マッハ数、F3は等静圧線の軸方向距離を表し、それぞれの基準値との比率で無次元化した指標である。また、α,β,γは重み付け係数である。式(1)で示す目的関数Fを最小化することで、二次元翼断面形状生成で、翼形状損失と二次流れ損失を同時に考慮した高性能な翼形状を生成することができる。   In the blade of the present invention, when generating a two-dimensional blade cross-sectional shape, an axial distance of an isostatic line, which is an index considering a three-dimensional flow field, is added (FIG. 7). An objective function F for generating the wing of the present invention is represented by Expression (1). Here, F1 is the shape factor, F2 is the maximum Mach number, F3 is the axial distance of the isostatic line, and is an index that is made dimensionless by the ratio to each reference value. Α, β, and γ are weighting coefficients. By minimizing the objective function F shown in Equation (1), a high-performance blade shape that simultaneously considers blade shape loss and secondary flow loss can be generated in two-dimensional blade cross-sectional shape generation.

Figure 2014111941
Figure 2014111941

本発明の実施例では、軸流圧縮機の下流側に位置する亜音速段の静翼を対象に、その作用効果について説明しているが、式(1)で重み付け係数を変更することで、圧縮機の上流側に位置する遷音速翼もしくは、中間段に位置する高亜音速翼の設計にも適用することが可能である。また、静翼だけに限らず、動翼に本発明を適用しても同様の作用効果を示すことは明らかである。   In the embodiment of the present invention, the function and effect are described for the subsonic stage stationary vane positioned downstream of the axial compressor, but by changing the weighting coefficient in Equation (1), The present invention can also be applied to the design of transonic blades located on the upstream side of the compressor or high subsonic blades located in the intermediate stage. Further, it is obvious that the same effect can be obtained even if the present invention is applied not only to the stationary blade but also to the moving blade.

また、式(1)で示すような指標を設計システムに取り入れることで、圧縮機の上流側から下流側まで任意の翼形状の設計が可能となり、設計時間の短縮にも効果がある。また、翼形状の高性能化において設計者に依存しないで一意的に翼形状を設計することが可能となる。   In addition, by incorporating an index as shown in Expression (1) into the design system, it is possible to design an arbitrary blade shape from the upstream side to the downstream side of the compressor, which is effective in shortening the design time. In addition, it is possible to uniquely design the blade shape without depending on the designer in improving the blade shape.

ガスタービン用軸流圧縮機以外に、産業用の軸流圧縮機においても適用可能である。   In addition to the gas turbine axial compressor, the present invention can also be applied to industrial axial compressors.

1 軸流圧縮機
2 ロータ
3 ケーシング
4 動翼列
5 静翼列
21 負圧面
22 圧力面
23 前縁部
24 後縁部
31 軸方向流路幅
41 従来翼の流路幅分布
42 本発明翼の流路幅分布
42a 変曲点
52a 極大値
52b 極小値
61 等静圧線
62 圧力勾配
63 等静圧線と圧力面との交点
64 等静圧線と負圧面との交点
65 等静圧線の軸方向距離
81,82 流入角に対する全圧損失係数
83 設計流入角
86 コーナーストール
71 0%断面
72 100%断面
91,92 翼面静圧
DESCRIPTION OF SYMBOLS 1 Axial compressor 2 Rotor 3 Casing 4 Rotor blade row 5 Stator blade row 21 Negative pressure surface 22 Pressure surface 23 Front edge portion 24 Rear edge portion 31 Axial flow passage width 41 Flow passage width distribution 42 of conventional blade Channel width distribution 42a Inflection point 52a Maximum value 52b Minimum value 61 Isostatic pressure line 62 Pressure gradient 63 Intersection point of isostatic line and pressure surface 64 Intersection point of isostatic line and negative pressure surface 65 Isostatic pressure line Axial distance 81, 82 Total pressure loss coefficient for inflow angle 83 Design inflow angle 86 Corner stall 7 10% section 72 100% section 91, 92 Blade surface static pressure

Claims (6)

ロータとケーシングとの間に形成される環状流路に静翼列と動翼列とを有する軸流圧縮機において、
前記静翼列または動翼列の周方向に隣接する翼の圧力面と負圧面とで区画される流路を、少なくとも側壁部である前記ロータ側または前記ケーシング側の断面において、
該流路を区画する翼の翼前縁から翼後縁に沿った、回転軸に垂直な方向についての流路幅の分布である軸方向流路幅分布が、流路幅が最小となるスロート部より下流側に変曲点を有すると共に、前記スロート部より下流側で後縁に向かって単調に増加するように構成したことを特徴とする軸流圧縮機。
In the axial flow compressor having a stationary blade row and a moving blade row in an annular flow path formed between the rotor and the casing,
The flow path defined by the pressure surface and the suction surface of the blades adjacent to each other in the circumferential direction of the stationary blade row or the moving blade row, at least in the cross section on the rotor side or the casing side that is a side wall portion
The axial throat width distribution, which is the distribution of the passage width in the direction perpendicular to the rotation axis, from the leading edge of the blade that divides the passage to the trailing edge of the blade, is the throat with the smallest passage width. An axial flow compressor characterized by having an inflection point on the downstream side of the part and monotonously increasing toward the trailing edge on the downstream side of the throat part.
請求項1に記載の軸流圧縮機において、
流路幅が最小となるスロート部を軸方向コード長50%より上流側に有するように構成したことを特徴とする軸流圧縮機。
The axial compressor according to claim 1, wherein
An axial compressor characterized by having a throat portion with a minimum flow path width on the upstream side of the axial cord length of 50%.
請求項1に記載の軸流圧縮機において、
前記静翼列または前記動翼列の負圧面の曲率が前記スロート部から下流側で単調増加であり、圧力面の曲率が前記スロート部より下流側で極大値と極小値を有するように構成したことを特徴とする軸流圧縮機。
The axial compressor according to claim 1, wherein
The curvature of the suction surface of the stationary blade row or the moving blade row is monotonously increased downstream from the throat portion, and the curvature of the pressure surface has a maximum value and a minimum value downstream from the throat portion. An axial flow compressor characterized by that.
請求項1に記載の軸流圧縮機において、
前記静翼列または前記動翼列の圧力面の曲率が単調増加であり、負圧面の曲率が前記スロート部より下流側で極大値を有するように構成したことを特徴とする軸流圧縮機。
The axial compressor according to claim 1, wherein
An axial flow compressor characterized in that the curvature of the pressure surface of the stationary blade row or the moving blade row monotonously increases, and the curvature of the suction surface has a maximum value downstream of the throat portion.
請求項1に記載の軸流圧縮機において、
前記静翼列または動翼列の負圧面の曲率が前記スロート部より下流側で極大値を有するように構成し、かつ、圧力面の曲率が前記スロート部より下流側で極大値と極小値を有するように構成したことを特徴とする軸流圧縮機。
The axial compressor according to claim 1, wherein
The curvature of the suction surface of the stationary blade row or the moving blade row is configured to have a maximum value downstream of the throat portion, and the curvature of the pressure surface has a maximum value and a minimum value downstream of the throat portion. An axial flow compressor characterized in that it has a configuration.
ロータとケーシングとの間に形成される環状流路に配置されて静翼列または動翼列を構成し、周方向に隣接する翼の圧力面と負圧面とで翼間流路を形成する翼の設計方法であって、
少なくとも側壁部である前記ロータ側または前記ケーシング側の断面を、
前記翼間流路の回転軸に垂直な方向についての流路幅が最小となるスロート部より下流側において、
等静圧線が圧力面と負圧面と交差する2点間の軸方向距離を設計の指標に含んだ目的関数を用いて翼形状を生成する設計方法であって、該軸方向距離の指標は前記等圧線が圧力面に沿った流れに垂直な方向に近づくほど好適な値を示す指標であって、前記スロート部より下流側で後縁に向かって単調に増加する範囲で前記軸方向距離を短くして前記等静圧線が圧力面に沿った流れに垂直な方向に近づくように設計することを特徴とする翼の設計方法。
A blade that is arranged in an annular flow path formed between the rotor and the casing to form a stationary blade row or a moving blade row, and that forms a flow passage between the pressure surfaces and suction surfaces of the blades adjacent in the circumferential direction. Design method,
At least a section on the rotor side or the casing side which is a side wall portion,
On the downstream side of the throat portion where the flow path width in the direction perpendicular to the rotation axis of the flow path between the blades is minimized,
A design method for generating a blade shape using an objective function including an axial distance between two points where an isostatic line intersects a pressure surface and a suction surface as a design index, wherein the index of the axial distance is An index indicating a more suitable value as the isobar is closer to a direction perpendicular to the flow along the pressure surface, and the axial distance is shortened within a range that monotonously increases toward the trailing edge downstream of the throat portion. Then, the blade is designed so that the isostatic line approaches a direction perpendicular to the flow along the pressure surface.
JP2014049685A 2014-03-13 2014-03-13 Axial flow compressor Active JP5813807B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014049685A JP5813807B2 (en) 2014-03-13 2014-03-13 Axial flow compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014049685A JP5813807B2 (en) 2014-03-13 2014-03-13 Axial flow compressor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010231085A Division JP5502695B2 (en) 2010-10-14 2010-10-14 Axial flow compressor

Publications (2)

Publication Number Publication Date
JP2014111941A true JP2014111941A (en) 2014-06-19
JP5813807B2 JP5813807B2 (en) 2015-11-17

Family

ID=51169201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014049685A Active JP5813807B2 (en) 2014-03-13 2014-03-13 Axial flow compressor

Country Status (1)

Country Link
JP (1) JP5813807B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015198622A1 (en) * 2014-06-26 2015-12-30 三菱重工業株式会社 Turbine rotor blade cascade, turbine stage and axial flow turbine
WO2018216255A1 (en) * 2017-05-24 2018-11-29 株式会社Ihi Blade for fan and compressor
CN109460573A (en) * 2018-09-17 2019-03-12 中国人民解放军空军工程大学 A kind of excitation layout optimization method improving plasma excitation flowing controlled efficiency
US10480532B2 (en) 2014-08-12 2019-11-19 Ihi Corporation Compressor stator vane, axial flow compressor, and gas turbine
CN112594009A (en) * 2020-12-30 2021-04-02 西安陕鼓动力股份有限公司 Three-stage gas turbine, stationary blade and movable blade
CN113309737A (en) * 2021-06-22 2021-08-27 西北工业大学 Three-section adjustable tandem blade of gas compressor
CN115186401A (en) * 2022-06-15 2022-10-14 中国船舶重工集团公司第七0三研究所 Method for determining subsonic cascade modeling key angle parameters of axial flow compressor

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015198622A1 (en) * 2014-06-26 2015-12-30 三菱重工業株式会社 Turbine rotor blade cascade, turbine stage and axial flow turbine
US11220909B2 (en) 2014-06-26 2022-01-11 Mitsubishi Heavy Industries, Ltd. Turbine rotor blade row, turbine stage, and axial-flow turbine
US10480532B2 (en) 2014-08-12 2019-11-19 Ihi Corporation Compressor stator vane, axial flow compressor, and gas turbine
WO2018216255A1 (en) * 2017-05-24 2018-11-29 株式会社Ihi Blade for fan and compressor
US11125085B2 (en) 2017-05-24 2021-09-21 Ihi Corporation Blade of fan or compressor
CN109460573A (en) * 2018-09-17 2019-03-12 中国人民解放军空军工程大学 A kind of excitation layout optimization method improving plasma excitation flowing controlled efficiency
CN109460573B (en) * 2018-09-17 2022-09-20 中国人民解放军空军工程大学 Excitation layout optimization method for improving plasma excitation flow control efficiency
CN112594009A (en) * 2020-12-30 2021-04-02 西安陕鼓动力股份有限公司 Three-stage gas turbine, stationary blade and movable blade
CN113309737A (en) * 2021-06-22 2021-08-27 西北工业大学 Three-section adjustable tandem blade of gas compressor
CN113309737B (en) * 2021-06-22 2023-08-11 西北工业大学 Three-section type adjustable serial blade of air compressor
CN115186401A (en) * 2022-06-15 2022-10-14 中国船舶重工集团公司第七0三研究所 Method for determining subsonic cascade modeling key angle parameters of axial flow compressor
CN115186401B (en) * 2022-06-15 2024-05-17 中国船舶重工集团公司第七0三研究所 Method for determining key angle parameters of subsonic cascade modeling of axial flow compressor

Also Published As

Publication number Publication date
JP5813807B2 (en) 2015-11-17

Similar Documents

Publication Publication Date Title
JP5502695B2 (en) Axial flow compressor
JP5813807B2 (en) Axial flow compressor
JP6421091B2 (en) Axial flow compressor, gas turbine including the same, and stationary blade of axial flow compressor
US9074483B2 (en) High camber stator vane
JP6060145B2 (en) High camber compressor rotor blade
US8684698B2 (en) Compressor airfoil with tip dihedral
US10519980B2 (en) Turbomachine component or collection of components and associated turbomachine
CN106574509B (en) Compressor airfoil
JP2008121670A (en) Swept turbomachine blade
KR20140005145A (en) Radial diffuser vane for centrifugal compressors
US9441636B2 (en) Rotor for a compressor of a gas turbine
JP2004257380A (en) Sweepback blade for turbojet
CN111219362A (en) Axial compressor blade, axial compressor and gas turbine
Cui et al. Effect of Geometric Variation of Root Fillet on the Flow Characteristic of a Transonic Compressor Rotor
EP2644830B1 (en) Noise reduction in a turbomachine, and a related method thereof
Chen et al. Flow performance of highly loaded axial fan with bowed rotor blades
KR101346085B1 (en) Transonic Compressor Rotor Design Method, And Transonic Compressor Rotor
US10935041B2 (en) Pressure recovery axial-compressor blading
JP2019070338A (en) Centrifugal compressor impeller
Wadia et al. Inner workings of shrouded and un-shrouded transonic fan blades

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140313

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20140828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150916

R150 Certificate of patent or registration of utility model

Ref document number: 5813807

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250