JP2014108101A - Method for culturing algae using peritoneal dialysis wastewater as culture medium - Google Patents
Method for culturing algae using peritoneal dialysis wastewater as culture medium Download PDFInfo
- Publication number
- JP2014108101A JP2014108101A JP2012265617A JP2012265617A JP2014108101A JP 2014108101 A JP2014108101 A JP 2014108101A JP 2012265617 A JP2012265617 A JP 2012265617A JP 2012265617 A JP2012265617 A JP 2012265617A JP 2014108101 A JP2014108101 A JP 2014108101A
- Authority
- JP
- Japan
- Prior art keywords
- algae
- dialysis
- culture
- drainage
- diluted
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000502 dialysis Methods 0.000 title claims abstract description 110
- 241000195493 Cryptophyta Species 0.000 title claims abstract description 86
- 239000002351 wastewater Substances 0.000 title claims abstract description 59
- 238000000034 method Methods 0.000 title claims abstract description 28
- 239000001963 growth medium Substances 0.000 title abstract description 21
- 238000012258 culturing Methods 0.000 title abstract description 11
- 239000002028 Biomass Substances 0.000 claims abstract description 36
- 229910052751 metal Inorganic materials 0.000 claims abstract description 26
- 239000002184 metal Substances 0.000 claims abstract description 26
- 238000004519 manufacturing process Methods 0.000 claims abstract description 22
- -1 PIV metals Chemical class 0.000 claims abstract description 11
- 229910019142 PO4 Inorganic materials 0.000 claims abstract description 5
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims abstract description 5
- 239000010452 phosphate Substances 0.000 claims abstract description 5
- FDJOLVPMNUYSCM-UVKKECPRSA-L cobalt(3+);[(2r,3s,4r,5s)-5-(5,6-dimethylbenzimidazol-1-yl)-4-hydroxy-2-(hydroxymethyl)oxolan-3-yl] [(2r)-1-[3-[(2r,3r,4z,7s,9z,12s,13s,14z,17s,18s,19r)-2,13,18-tris(2-amino-2-oxoethyl)-7,12,17-tris(3-amino-3-oxopropyl)-3,5,8,8,13,15,18,19-octamethyl-2,7, Chemical compound [Co+3].N#[C-].C1([C@H](CC(N)=O)[C@@]2(C)CCC(=O)NC[C@@H](C)OP([O-])(=O)O[C@H]3[C@H]([C@H](O[C@@H]3CO)N3C4=CC(C)=C(C)C=C4N=C3)O)[N-]\C2=C(C)/C([C@H](C\2(C)C)CCC(N)=O)=N/C/2=C\C([C@H]([C@@]/2(CC(N)=O)C)CCC(N)=O)=N\C\2=C(C)/C2=N[C@]1(C)[C@@](C)(CC(N)=O)[C@@H]2CCC(N)=O FDJOLVPMNUYSCM-UVKKECPRSA-L 0.000 claims description 22
- 238000000746 purification Methods 0.000 claims description 12
- 241000195620 Euglena Species 0.000 claims description 11
- 238000012136 culture method Methods 0.000 claims description 11
- 230000012010 growth Effects 0.000 abstract description 18
- 229930003231 vitamin Natural products 0.000 abstract description 4
- 235000013343 vitamin Nutrition 0.000 abstract description 4
- 239000011782 vitamin Substances 0.000 abstract description 4
- 229940088594 vitamin Drugs 0.000 abstract description 4
- 230000003247 decreasing effect Effects 0.000 abstract description 2
- 150000003722 vitamin derivatives Chemical class 0.000 abstract 3
- 230000001737 promoting effect Effects 0.000 abstract 1
- 239000002609 medium Substances 0.000 description 40
- 210000004027 cell Anatomy 0.000 description 14
- 238000002474 experimental method Methods 0.000 description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- 230000001954 sterilising effect Effects 0.000 description 10
- 238000004659 sterilization and disinfection Methods 0.000 description 10
- 241000195619 Euglena gracilis Species 0.000 description 9
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 9
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 5
- 238000001914 filtration Methods 0.000 description 5
- 239000011574 phosphorus Substances 0.000 description 5
- 229910052698 phosphorus Inorganic materials 0.000 description 5
- 230000003698 anagen phase Effects 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 238000004113 cell culture Methods 0.000 description 4
- 239000012153 distilled water Substances 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 150000004676 glycans Chemical class 0.000 description 4
- 229930195733 hydrocarbon Natural products 0.000 description 4
- 150000002430 hydrocarbons Chemical class 0.000 description 4
- 235000015097 nutrients Nutrition 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 229920001282 polysaccharide Polymers 0.000 description 4
- 239000005017 polysaccharide Substances 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 241000195628 Chlorophyta Species 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000004202 carbamide Substances 0.000 description 3
- 239000003085 diluting agent Substances 0.000 description 3
- 150000002632 lipids Chemical class 0.000 description 3
- 239000012046 mixed solvent Substances 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 229910021654 trace metal Inorganic materials 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- 240000002900 Arthrospira platensis Species 0.000 description 2
- 235000016425 Arthrospira platensis Nutrition 0.000 description 2
- 241000206761 Bacillariophyta Species 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 241000206751 Chrysophyceae Species 0.000 description 2
- 241000192700 Cyanobacteria Species 0.000 description 2
- 241000199914 Dinophyceae Species 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- 241000233866 Fungi Species 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 239000002551 biofuel Substances 0.000 description 2
- 229940041514 candida albicans extract Drugs 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000006143 cell culture medium Substances 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- DDRJAANPRJIHGJ-UHFFFAOYSA-N creatinine Chemical compound CN1CC(=O)NC1=N DDRJAANPRJIHGJ-UHFFFAOYSA-N 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 2
- 239000002798 polar solvent Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000035755 proliferation Effects 0.000 description 2
- 229940082787 spirulina Drugs 0.000 description 2
- 229960003495 thiamine Drugs 0.000 description 2
- DPJRMOMPQZCRJU-UHFFFAOYSA-M thiamine hydrochloride Chemical compound Cl.[Cl-].CC1=C(CCO)SC=[N+]1CC1=CN=C(C)N=C1N DPJRMOMPQZCRJU-UHFFFAOYSA-M 0.000 description 2
- DCXXMTOCNZCJGO-UHFFFAOYSA-N tristearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCCCCCCCC)COC(=O)CCCCCCCCCCCCCCCCC DCXXMTOCNZCJGO-UHFFFAOYSA-N 0.000 description 2
- 239000012138 yeast extract Substances 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 241000203069 Archaea Species 0.000 description 1
- 241001306132 Aurantiochytrium Species 0.000 description 1
- 241001536324 Botryococcus Species 0.000 description 1
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- SHZGCJCMOBCMKK-UHFFFAOYSA-N D-mannomethylose Natural products CC1OC(O)C(O)C(O)C1O SHZGCJCMOBCMKK-UHFFFAOYSA-N 0.000 description 1
- 241000206602 Eukaryota Species 0.000 description 1
- PNNNRSAQSRJVSB-SLPGGIOYSA-N Fucose Natural products C[C@H](O)[C@@H](O)[C@H](O)[C@H](O)C=O PNNNRSAQSRJVSB-SLPGGIOYSA-N 0.000 description 1
- 230000005526 G1 to G0 transition Effects 0.000 description 1
- SHZGCJCMOBCMKK-DHVFOXMCSA-N L-fucopyranose Chemical compound C[C@@H]1OC(O)[C@@H](O)[C@H](O)[C@@H]1O SHZGCJCMOBCMKK-DHVFOXMCSA-N 0.000 description 1
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 239000001888 Peptone Substances 0.000 description 1
- 108010080698 Peptones Proteins 0.000 description 1
- 241000199919 Phaeophyceae Species 0.000 description 1
- NPYPAHLBTDXSSS-UHFFFAOYSA-N Potassium ion Chemical compound [K+] NPYPAHLBTDXSSS-UHFFFAOYSA-N 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 1
- 241000206572 Rhodophyta Species 0.000 description 1
- 241000233671 Schizochytrium Species 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 1
- LEHOTFFKMJEONL-UHFFFAOYSA-N Uric Acid Chemical compound N1C(=O)NC(=O)C2=C1NC(=O)N2 LEHOTFFKMJEONL-UHFFFAOYSA-N 0.000 description 1
- TVWHNULVHGKJHS-UHFFFAOYSA-N Uric acid Natural products N1C(=O)NC(=O)C2NC(=O)NC21 TVWHNULVHGKJHS-UHFFFAOYSA-N 0.000 description 1
- 229930003779 Vitamin B12 Natural products 0.000 description 1
- 239000004164 Wax ester Substances 0.000 description 1
- 241000206764 Xanthophyceae Species 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- HXHWSAZORRCQMX-UHFFFAOYSA-N albendazole Chemical compound CCCSC1=CC=C2NC(NC(=O)OC)=NC2=C1 HXHWSAZORRCQMX-UHFFFAOYSA-N 0.000 description 1
- 230000005791 algae growth Effects 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 235000021466 carotenoid Nutrition 0.000 description 1
- 150000001747 carotenoids Chemical class 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 208000020832 chronic kidney disease Diseases 0.000 description 1
- 208000022831 chronic renal failure syndrome Diseases 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- AGVAZMGAQJOSFJ-WZHZPDAFSA-M cobalt(2+);[(2r,3s,4r,5s)-5-(5,6-dimethylbenzimidazol-1-yl)-4-hydroxy-2-(hydroxymethyl)oxolan-3-yl] [(2r)-1-[3-[(1r,2r,3r,4z,7s,9z,12s,13s,14z,17s,18s,19r)-2,13,18-tris(2-amino-2-oxoethyl)-7,12,17-tris(3-amino-3-oxopropyl)-3,5,8,8,13,15,18,19-octamethyl-2 Chemical compound [Co+2].N#[C-].[N-]([C@@H]1[C@H](CC(N)=O)[C@@]2(C)CCC(=O)NC[C@@H](C)OP(O)(=O)O[C@H]3[C@H]([C@H](O[C@@H]3CO)N3C4=CC(C)=C(C)C=C4N=C3)O)\C2=C(C)/C([C@H](C\2(C)C)CCC(N)=O)=N/C/2=C\C([C@H]([C@@]/2(CC(N)=O)C)CCC(N)=O)=N\C\2=C(C)/C2=N[C@]1(C)[C@@](C)(CC(N)=O)[C@@H]2CCC(N)=O AGVAZMGAQJOSFJ-WZHZPDAFSA-M 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229940109239 creatinine Drugs 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 229960001031 glucose Drugs 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- BXFFHSIDQOFMLE-UHFFFAOYSA-N indoxyl sulfate Chemical compound C1=CC=C2C(OS(=O)(=O)O)=CNC2=C1 BXFFHSIDQOFMLE-UHFFFAOYSA-N 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910001425 magnesium ion Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000010979 pH adjustment Methods 0.000 description 1
- 235000019319 peptone Nutrition 0.000 description 1
- 230000029553 photosynthesis Effects 0.000 description 1
- 238000010672 photosynthesis Methods 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000001508 potassium citrate Substances 0.000 description 1
- 229960002635 potassium citrate Drugs 0.000 description 1
- QEEAPRPFLLJWCF-UHFFFAOYSA-K potassium citrate (anhydrous) Chemical compound [K+].[K+].[K+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O QEEAPRPFLLJWCF-UHFFFAOYSA-K 0.000 description 1
- 235000011082 potassium citrates Nutrition 0.000 description 1
- 229910001414 potassium ion Inorganic materials 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000013630 prepared media Substances 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- 150000005671 trienes Chemical class 0.000 description 1
- 150000003648 triterpenes Chemical class 0.000 description 1
- 229940045136 urea Drugs 0.000 description 1
- 229940116269 uric acid Drugs 0.000 description 1
- 239000011715 vitamin B12 Substances 0.000 description 1
- 235000019163 vitamin B12 Nutrition 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 235000019386 wax ester Nutrition 0.000 description 1
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
本発明は、透析排水を培地として使用する藻類、特にユーグレナ藻類の培養方法、透析排水を培地とした藻類によるバイオマス製造方法、さらには藻類を利用した透析排水の浄化方法、を提供する。 The present invention provides a method for culturing algae, particularly Euglena algae using dialysis wastewater as a medium, a method for producing biomass using algae using dialysis wastewater as a medium, and a method for purifying dialysis wastewater using algae.
生物細胞が産生する産物から得られるバイオマス、特にバイオ燃料は、近年、地球温暖化又は埋蔵資源の枯渇等の問題から注目を集めている。このバイオマスの中でも、微細藻類が産生する炭化水素やトリアシルグリセロール等オイル又は多糖類は、食料又と競合せず、大量培養が可能であることから、工業的利用の期待が高く、微細藻類からのバイオ燃料やその他の有用成分の獲得が有望視されている。しかしながら、工業的に藻類の大量培養を行うには、運転コストや培地に用いる大量の水資源および栄養塩の確保等の経済的な問題点を解決せねばならない。 In recent years, biomass obtained from products produced by biological cells, particularly biofuels, has attracted attention due to problems such as global warming or depletion of reserve resources. Among these biomasses, oils or polysaccharides such as hydrocarbons and triacylglycerol produced by microalgae do not compete with food and can be cultivated in large quantities. The acquisition of biofuels and other useful components is promising. However, in order to industrially cultivate a large amount of algae, it is necessary to solve economic problems such as operating costs and securing of a large amount of water resources and nutrient salts used in the culture medium.
一方で、人口増加や産業の発展に伴い年々排水排出量は増加しており、水不足が深刻化している今、これらの排水を資源として再利用しようと様々な取り組みが成されている。藻類は排水中に含まれる栄養塩を吸収して増殖することが可能であるため、藻類培養に排水を用いることで、低コスト、省エネルギー、そして二酸化炭素排出量の削減を実現した藻類バイオマス生産が可能と考えられる。 On the other hand, the amount of discharged wastewater has been increasing year by year due to population growth and industrial development, and now that water shortages have become serious, various efforts have been made to reuse these wastewater as resources. Since algae can absorb nutrients contained in wastewater and grow, algae biomass production that achieves low cost, energy saving, and reduction of carbon dioxide emissions can be achieved by using wastewater for algae culture. It seems possible.
排水の一つに、腹膜透析を行うことで発生する透析排水がある。腹膜透析は、慢性腎不全の患者が、家庭や職場で透析液交換することによって患者自身の手で処置することのできる簡便で拘束の少ない利点の多い治療方法である。腹膜透析の際に出る透析排水は大量であり、腹膜透析液交換は通常、1日に4〜6回行われ、1回当たりの排液量も1,500〜2,000mlと多いため、その廃棄処理は患者にとって深刻な問題ではあった。特に自動腹膜透析装置(APD)を使用するAPD療法を選択した場合、患者が一度に処理しなくてはならない排液量は、成人で8,000〜10,000mlとなる。
透析排水はグルコース、窒素、リン等藻類培養に必要な要素を豊富に含むが、これらは透析治療後にpH調整や有機物の分解処理を経て下水に放出されてしまい、その有効活用についてはあまり研究されていない。また、日本で2012年現在透析治療を受けている患者数は30万人を超えており、排出される透析排水も膨大な量となる。
One of the drains is dialysis drainage generated by peritoneal dialysis. Peritoneal dialysis is a convenient and less constrained treatment method that allows patients with chronic renal failure to be treated with their own hands by exchanging dialysate at home or at work. The amount of dialysis drainage discharged during peritoneal dialysis is large, and peritoneal dialysate exchange is usually performed 4 to 6 times a day, and the amount of drainage per time is as large as 1,500 to 2,000 ml. Disposal was a serious problem for patients. In particular, when APD therapy using an automatic peritoneal dialysis device (APD) is selected, the amount of drainage that a patient must process at one time is 8,000 to 10,000 ml for an adult.
Dialysis wastewater contains abundant elements necessary for algae culture such as glucose, nitrogen, phosphorus, etc., but these are released into sewage after dialysis treatment through pH adjustment and organic substance decomposition treatment, and their effective use has been studied little. Not. In addition, the number of patients receiving dialysis treatment in 2012 is over 300,000 in Japan, and the dialysis drainage discharged is huge.
透析排水を藻類培養への適用に関する研究は今までに行われていない。透析排水を廃棄せず、藻類培養に有効活用できれば、排水の問題も藻類バイオマス生産の効率化も図れる。従って、本研究では透析排水を用いた藻類培養の有効性評価を目的とし、増殖試験による透析排水培地条件の最適化、培養後の培地の水質分析、回収後の藻類に含まれるオイル含量の定量を行った。 There has been no research on the application of dialysis wastewater to algae culture. If the dialysis wastewater can be effectively used for algae culture without being discarded, the wastewater problem and the efficiency of algal biomass production can be improved. Therefore, in this study, for the purpose of evaluating the effectiveness of algae culture using dialysis drainage, optimization of dialysis drainage medium conditions by growth test, water quality analysis of the culture medium after culturing, and quantification of oil content in algae after recovery Went.
詳しくは、本研究では腹膜透析排水(Peritoneal Dialysis Wastewater: PWD)を用い、藻類の培養を行った。腹膜透析排水を蒸留水で希釈した培地では増殖があまり見られなかったため、AF-6合成培地を希釈液に用い、腹膜透析排水の濃度を変えた培地をそれぞれろ過滅菌とオートクレーブ滅菌したもので増殖試験を行った。その結果、オートクレーブ滅菌を施した培地ではろ過滅菌を施したものよりも増殖が良く、また排水濃度は25%程度のものが最適であった。この結果より、藻類培養に必要な成分でAF-6培地に含まれているものが、腹膜透析排水では不足していることが分かった。次にAF-6培地から各成分を除いたものを排水濃度25%の希釈液として用いたところ、ビタミン B12、PIV 金属(微量金属)を除いたものでは増殖が見られなかった。この結果から、腹膜透析排水に不足している、ビタミン B12と微量金属成分を添加することで、AF-6合成培地を添加したものと同様の増殖が得られることが示唆され、実際に培養実験により確認された。また、水質分析の結果、透析排液にビタミン B12、PIV 金属を添加した培地に含まれるリンと窒素は、培養後2週間でほぼ除去されることが明らかとなった。 Specifically, in this study, algae was cultured using peritoneal dialysis wastewater (PWD). Since the growth of peritoneal dialysis effluent diluted with distilled water was not so high, AF-6 synthetic medium was used as the diluent, and media with different concentrations of peritoneal dialysis effluent were filtered and autoclaved. A test was conducted. As a result, the medium subjected to autoclave sterilization grew better than the one subjected to filter sterilization, and a wastewater concentration of about 25% was optimal. From these results, it was found that the components required for algae culture contained in AF-6 medium are insufficient in peritoneal dialysis drainage. Next, after removing each component from AF-6 medium as a dilute solution with a drainage concentration of 25%, no growth was seen with vitamin B 12 and PIV metal (trace metal) removed. This result, missing the peritoneal dialysis effluent, the addition of vitamin B 12 and trace metal components, it is suggested that similar growth to that added AF-6 synthetic medium is obtained, actually culture Confirmed by experiment. In addition, as a result of water quality analysis, it was revealed that phosphorus and nitrogen contained in the medium in which vitamin B 12 and PIV metal were added to the dialysis effluent were almost removed in two weeks after the culture.
以上の結果から、腹膜透析排水を用いた藻類の培養においては、ビタミンB12、PIV 金属を添加したものが細胞の増殖および栄養塩除去の点で最適な培地であることが明らかとなった。本研究により、透析排水を用いた藻類培養の可能性が示唆された。 From the above results, it was clarified that in the culture of algae using peritoneal dialysis drainage, the addition of vitamin B 12 and PIV metal is the optimum medium in terms of cell growth and nutrient removal. This study suggested the possibility of algae culture using dialysis wastewater.
従って、本願は以下の発明を提供する。
(1)ビタミンB12及びPIV 金属の添加された透析排水を培地として使用する、藻類の培養方法。
(2)前記透析排水が加熱処理されている、(1)の培養方法。
(3)前記透析排水が5〜50%に希釈されている、(1)又は(2)の培養方法。
(4)前記透析排水が10〜40%に希釈されている、(3)の培養方法。
(5)前記透析排水が20〜30%に希釈されている、(4)の培養方法。
(6)前記藻類がユーグレナ藻類である、(1)〜(5)のいずれかの培養方法。
(7)ビタミンB12及びPIV 金属の添加された透析排水を培地とした藻類によるバイオマス製造方法。
(8)前記透析排水が加熱処理されている、(7)のバイオマス製造方法。
(9)前記透析排水が5〜50%に希釈されている、(7)又は(8)のバイオマス製造方法。
(10)前記透析排水が10〜40%に希釈されている、(9)のバイオマス製造方法。
(11)前記透析排水が20〜30%に希釈されている、(10)のバイオマス製造方法。
(12)前記藻類がユーグレナ藻類である、(7)〜(11)のいずれかのバイオマス製造方法。
(13)藻類を利用した透析排水の浄化方法であって、透析排水にビタミンB12及びPIV 金属を添加して藻類を増殖させることにより透析排水のリン酸濃度を低下させることを特徴とする、透析排水の浄化方法。
(14)前記透析排水が加熱処理されている、(13)の透析排水の浄化方法。
(15)前記透析排水が5〜50%に希釈されている、(13)又は(14)の透析排水の浄化方法。
(16)前記透析排水が10〜40%に希釈されている、(15)の透析排水の浄化方法。
(17)前記透析排水が20〜30%に希釈されている、(16)の透析排水の浄化方法。
(18)前記藻類がユーグレナ藻類である、(13)〜(17)のいずれかの透析排水の浄化方法。
Accordingly, the present application provides the following inventions.
(1) A method for culturing algae using dialysis wastewater added with vitamin B 12 and PIV metal as a medium.
(2) The culture method according to (1), wherein the dialysis waste water is heat-treated.
(3) The culture method according to (1) or (2), wherein the dialysis waste water is diluted to 5 to 50%.
(4) The culture method according to (3), wherein the dialysis waste water is diluted to 10 to 40%.
(5) The culture method according to (4), wherein the dialysis waste water is diluted to 20 to 30%.
(6) The culture method according to any one of (1) to (5), wherein the algae is Euglena algae.
(7) A method for producing biomass from algae using dialysis wastewater to which vitamin B 12 and PIV metal are added as a medium.
(8) The biomass production method according to (7), wherein the dialysis waste water is heat-treated.
(9) The method for producing biomass according to (7) or (8), wherein the dialysis waste water is diluted to 5 to 50%.
(10) The method for producing biomass according to (9), wherein the dialysis waste water is diluted to 10 to 40%.
(11) The biomass production method according to (10), wherein the dialysis waste water is diluted to 20 to 30%.
(12) The biomass production method according to any one of (7) to (11), wherein the algae is Euglena algae.
(13) A method for purifying dialysis wastewater using algae, characterized in that the phosphate concentration of dialysis wastewater is reduced by adding vitamin B 12 and PIV metal to the dialysis wastewater to grow algae, Dialysis wastewater purification method.
(14) The dialysis drainage purification method according to (13), wherein the dialysis drainage is heat-treated.
(15) The dialysis drainage purification method according to (13) or (14), wherein the dialysis drainage is diluted to 5 to 50%.
(16) The dialysis drainage purification method according to (15), wherein the dialysis drainage is diluted to 10 to 40%.
(17) The dialysis drainage purification method according to (16), wherein the dialysis drainage is diluted to 20 to 30%.
(18) The method for purifying dialysis waste water according to any one of (13) to (17), wherein the algae is Euglena algae.
本発明により、透析排水の有効利用が図れるとともに、藻類の増殖速度を増大させることで藻類バイオマス製造の効率化をも図ることができる。しかも、透析排水の効率的な浄化も達成される。 According to the present invention, the dialysis waste water can be effectively used, and the algal biomass production efficiency can be improved by increasing the growth rate of the algae. In addition, efficient purification of dialysis wastewater is also achieved.
本発明において、透析排水とは、腹膜透析により発生した排水をいう。腹膜透析排水の成分には、例えば以下の表に示すように、グルコース、尿素、クレアチニン、尿酸、ナトリウムイオン、カリウムイオン、カルシウムイオン、マグネシウムイオン、リン、アンモニウムイオン、3−インドキシル硫酸などが挙げられるが、それらに限定されるものではない。
本発明において、透析排水は希釈せずに使用してもよいが、好ましくは希釈して使用する。透析排水の希釈のためには水、例えば蒸留水、イオン交換水、滅菌水、又は細胞の培養に適する様々な細胞培養培地を選択できる。例えば藻類の培地としては、淡水産藻類用の培地(例えば、AF6培地、C培地、URO培地、VT培地等)、又は海産藻類用培地(ESM培地、f/2培地、IMR培地、MNK培地等)がある。本発明では透析排水を水又は適当な細胞培養培地で5〜50 v/v %、好ましくは10〜40 v/v %、より好ましくは20〜30v/v%、最も好ましく25v/v%になるように希釈する。 In the present invention, the dialysis waste water may be used without being diluted, but is preferably used after being diluted. For dilution of the dialysis waste water, water such as distilled water, ion exchange water, sterilized water, or various cell culture media suitable for cell culture can be selected. For example, the algae culture medium includes a freshwater algae culture medium (for example, AF6 culture medium, C culture medium, URO culture medium, VT culture medium, etc.), or a marine algae culture medium (ESM culture medium, f / 2 culture medium, IMR culture medium, MNK culture medium, etc.) ) In the present invention, the dialysis drainage is 5 to 50 v / v%, preferably 10 to 40 v / v%, more preferably 20 to 30 v / v%, most preferably 25 v / v% in water or a suitable cell culture medium. Dilute as follows.
透析排水は、好ましくは無菌濾過、又は加熱滅菌、例えばオートクレーブにより加熱・加圧滅菌してから藻類の培養などに使用する。特に理論に拘束されるわけではないが、オートクレーブ滅菌が好ましく、その理由は透析排水に含まれる尿素が熱分解され、その結果アンモニア態窒素量が増加し、藻類の増殖が促進されるからと考えられる。 The dialysis waste water is preferably sterile filtered or heat sterilized, for example, heated and autoclaved by an autoclave and then used for culturing algae. Although not particularly bound by theory, autoclave sterilization is preferred because the urea contained in the dialysis effluent is thermally decomposed, resulting in an increase in the amount of ammonia nitrogen and promotion of algal growth. It is done.
本発明における藻類の培養は、ビタミンB12及びPIV 金属(微量金属)の添加された透析排水を培地として使用する。好ましくは、ビタミンB12の濃度は透析排水100mlあたり0.01〜10μg、好ましくは0.01〜1μgであろう。PIV 金属は好ましくは以下の表2の組成からなる。
好ましくは、PIV金属の各成分は上記表に示されている数値の1%〜500%の範囲内、好ましくは1%〜500%の範囲内、より好ましくは1%〜100%の範囲内になるように設定する。 Preferably, each component of the PIV metal is within the range of 1% to 500% of the values shown in the table above, preferably within the range of 1% to 500%, more preferably within the range of 1% to 100%. Set as follows.
本明細書で使用される藻類細胞には、真正細菌又は古細菌等の原核生物、及び藻類、原生動物、植物、菌又は動物等の真核生物の全ての細胞が含まれる。当該細胞は、好ましくは藻類、植物、菌の細胞であり、特に藻類の細胞である。本明細書で使用される「藻類」には、藍藻類、原核緑藻類、紅藻類、灰色藻類、クリプト藻類、渦鞭毛藻類、黄金色藻類、珪藻類、褐藻類、ラビンリンチュラ類、黄緑藻類、ハプト藻類、ラフィド藻類、真正眼点藻類、クロララクニオン藻類、ユーグレナ藻類、プラシノ藻類、緑藻類、車軸藻類などがあり、好ましくは、微細藻類とよばれる、藍藻類、珪藻類、ラビンチュラ類、真正眼点藻類、クリプト藻類、渦鞭毛藻類、黄金色藻類、ハプト藻類、ラフィド藻類、ユーグレナ藻類、プラシノ藻類や緑藻類がある。本発明に適する藻類としては、好ましくは、ユーグレナ、ボトリオコッカス、スピルリナ、ミクロキスティス・エルギノーサ、スピルリナ、オーランチオキトリウム、シゾキトリウムがある。特に好ましいのはユーグレナ属の藻類であり、より好ましいのはユーグレナ・グラシリス、最も好ましいのはユーグレナ・グラシリスNIES-48株である。 As used herein, algal cells include prokaryotes such as eubacteria or archaea and all cells of eukaryotes such as algae, protozoa, plants, fungi or animals. The cells are preferably algae, plants, fungi cells, and in particular algal cells. As used herein, `` algae '' includes cyanobacteria, prokaryotic green algae, red algae, gray algae, crypto algae, dinoflagellates, golden algae, diatoms, brown algae, rabin linchula, yellow green algae, There are haptoalgae, rafidoalgae, true-eyed point algae, chloralachnion algae, euglena algae, plastinolgae, green algae, axle algae, etc., preferably called microalgae, cyanobacteria, diatoms, rabinchuras, true eyes There are point algae, crypt algae, dinoflagellates, golden algae, hapto algae, rafido algae, euglena algae, plasino algae and green algae. The algae suitable for the present invention are preferably Euglena, Botryococcus, Spirulina, Microkistis aeruginosa, Spirulina, Aurantiochytrium and Schizochytrium. Particularly preferred are Euglena algae, more preferred is Euglena gracilis, and most preferred is Euglena gracilis strain NIES-48.
本発明における藻類の培養又は透析排水の浄化は、当該株を本発明でいうビタミンB12及びPIV 金属の添加された透析排水に播種し、定法にしたがって培養することにより行われる。培地としては、さらに適宜炭素源や窒素源、適宜ビタミン類や、プロテアーゼペプトン、酵母抽出物等を含ませることもできる。透析排水は、調製後、必要であれば適当な酸又は塩基を加えることにより適宜pHを調整できる。培地の好適なpHは培養する藻類の種類に依存するであろう。培養条件も培養する藻類の種類に依存し、温度は5〜40℃、好ましくは10〜35℃、より好ましくは10〜30℃にて、通常1〜10日間、好ましくは3〜7日間培養を行い、通気又は嫌気攪拌培養、振とう培養又は静置培養で行うことができる。 Purification of culture or dialysis drainage algae in the present invention, were seeded in addition dialysis drainage of vitamin B 12 and PIV metals refers to the strain in the present invention is carried out by culturing in accordance with a conventional method. The medium can further contain a carbon source or nitrogen source, vitamins, protease peptone, yeast extract and the like as appropriate. After preparation, the dialysis wastewater can be appropriately adjusted in pH by adding an appropriate acid or base if necessary. The preferred pH of the medium will depend on the type of algae being cultured. The culture conditions also depend on the type of algae to be cultured, and the temperature is 5 to 40 ° C., preferably 10 to 35 ° C., more preferably 10 to 30 ° C., usually 1 to 10 days, preferably 3 to 7 days. It can be performed by aeration or anaerobic stirring culture, shaking culture or stationary culture.
本発明に使用する藻類培養は適当な細胞培養手段を有する培養装置で培養してよい。「細胞培養手段」とは、細胞を培養するためのあらゆる機能を有する手段を意味し、例えば、培養槽であり、当該培養槽は、攪拌装置、振動装置、温度制御装置、pH調節装置、濁度測定装置、光制御装置、CO2等の特定気体濃度測定装置及び圧力測定装置から選択される1又は複数の装置を有してもよい。当該培養槽は濃縮・分離槽と同一の槽であっても、濃縮・分離槽とは別の槽であってもよい。濃縮・分離槽と別の槽である場合、適切な手段、例えば流路等により連結されていてもよい。 The algal culture used in the present invention may be cultured in a culture apparatus having a suitable cell culture means. “Cell culture means” means means having all functions for culturing cells, for example, a culture tank, which comprises a stirrer, a vibration device, a temperature control device, a pH control device, a turbidity device. One or more devices selected from a degree measuring device, a light control device, a specific gas concentration measuring device such as CO 2 , and a pressure measuring device may be included. The culture tank may be the same tank as the concentration / separation tank or may be a tank different from the concentration / separation tank. When the tank is separate from the concentration / separation tank, it may be connected by an appropriate means, for example, a flow path.
一般的に細胞の培養工程には、細胞数が時間に対して対数的に増殖する対数増殖期と、対数増殖期後の定常期がある。例えば藻類の場合、光合成及び増殖用培地の栄養素により対数的に増殖する増殖期と、バイオマスを産生するバイオマス産生期に分けることができる。好ましくは増殖期とバイオマス産生期で培地を交換することが望ましい。 In general, a cell culture process includes a logarithmic growth phase in which the number of cells grows logarithmically with respect to time and a stationary phase after the logarithmic growth phase. For example, in the case of algae, it can be divided into a growth phase in which logarithmic growth is caused by nutrients in the photosynthesis and growth medium and a biomass production phase in which biomass is produced. Preferably, the medium is exchanged between the growth phase and the biomass production phase.
本発明はさらに透析排水を培地とした藻類によるバイオマス製造方法を提供する。本発明のバイオマス製造方法は、ビタミンB12及びPIV 金属の添加された透析排水を培地として藻類を培養し、藻類にバイオマスを産生させることを特徴とする。 The present invention further provides a method for producing biomass using algae using dialysis wastewater as a culture medium. The biomass production method of the present invention is characterized by culturing algae using a dialysis wastewater to which vitamin B 12 and PIV metal are added as a medium, and causing the algae to produce biomass.
本明細でいう「バイオマス」とは、細胞が産生するあらゆるバイオマスのことを言い、具体的には、例えば、燃料、食料、医療品、及びその他の工業用品又は生活用品として必要なバイオマスやその原料のことを言う。当該バイオマスには、樹脂、燃料又は界面活性剤糖のもととなる炭化水素、糖類、タンパク質、アミノ酸等がある。例えば藻類の産生するバイオマスとしては、有機炭素源を利用して産生した炭化水素などのオイルや多糖類がある。具体的には、オイルとして、アルカン、エポキシアルカン、アルカデイエン、アルカトリエン、トリテルペノイド、テトレテルペノイドなどの炭化水素、グリセリン1分子の脂肪酸3分子が結合したトリアシルグリセロールなどがあり、より具体的には藻類がユーグレナ・グラシリスNIES-48の場合、トリアシルグリセロールなどの脂質や嫌気的条件下で産生されるワックスエステル等がある。多糖類としては、フコースを含む多糖類等があり、また天然色素としてカロチノイドがある。 As used herein, “biomass” refers to any biomass produced by cells, and specifically, for example, biomass and raw materials required for fuel, food, medical supplies, and other industrial or daily necessities. Say that. The biomass includes hydrocarbons, saccharides, proteins, amino acids, and the like that are the basis of resins, fuels, or surfactant sugars. For example, as biomass produced by algae, there are oils and polysaccharides such as hydrocarbons produced using organic carbon sources. Specific examples of the oil include hydrocarbons such as alkanes, epoxyalkanes, alkadienes, alkatrienes, triterpenoids, and tetreterpenoids, and triacylglycerols in which three fatty acid molecules of one glycerin are bonded. When the algae is Euglena gracilis NIES-48, there are lipids such as triacylglycerol and wax esters produced under anaerobic conditions. Examples of polysaccharides include polysaccharides containing fucose, and carotenoids as natural pigments.
本発明の藻類が産生するバイオマスは、当業者に既知の方法で抽出及び分析することができる。例えば、上記の通り培養して増殖させ、得られた培養液から遠心分離又は濾過等により回収した湿藻体を、凍結乾燥又は加温による乾燥等により乾燥させる。または、培養後の培地をそのままバイオマスの抽出ステップに用いてもよい。 Biomass produced by the algae of the present invention can be extracted and analyzed by methods known to those skilled in the art. For example, the wet alga bodies cultured and grown as described above and collected from the obtained culture solution by centrifugation or filtration are dried by freeze drying or drying by heating. Alternatively, the cultured medium may be used as it is in the biomass extraction step.
得られた細胞乾燥物、又は培養後の細胞を含有する培地から、有機溶媒を用いて脂質たるバイオマスを抽出できる。抽出は、異なる有機溶媒を用いて2度以上行ってもよい。有機溶媒としては、バイオマスの種類に応じるであろうが、例えばクロロホルム・メタノール混合溶媒(例えば、1:1、1:2)、又はエタノール・ジエチルエーテル混合溶媒等の極性溶媒と弱極性溶媒の混合液を用いることができる。上記抽出後に、例えば窒素気流下で濃縮乾固したサンプルから、n−ヘキサンを用いて抽出する。得られた抽出液を、当業者に既知の方法で精製する。例えば、シリカゲルや酸性白土を用い、極性脂質を吸着させて精製することができる。また、精製したバイオマスをNMR,IR、ガスクロマトグラフィー、GC/MS等により分析する。 Biomass, which is a lipid, can be extracted from the obtained cell dry product or a medium containing cultured cells using an organic solvent. The extraction may be performed twice or more using different organic solvents. The organic solvent will depend on the type of biomass. For example, a mixed solvent of a polar solvent such as chloroform / methanol mixed solvent (for example, 1: 1, 1: 2) or ethanol / diethyl ether mixed solvent and a weakly polar solvent. A liquid can be used. After the extraction, for example, extraction is performed using n-hexane from a sample concentrated and dried under a nitrogen stream. The resulting extract is purified by methods known to those skilled in the art. For example, it can be purified by adsorbing polar lipids using silica gel or acidic clay. The purified biomass is analyzed by NMR, IR, gas chromatography, GC / MS and the like.
前記藻類は、その乾燥重量当たり、当該バイオマスを、少なくとも10%、少なくとも30%、好ましくは少なくとも50%、より好ましくは少なくとも70%、さらにより好ましくは少なくとも80%産生することができる。 The algae can produce at least 10%, at least 30%, preferably at least 50%, more preferably at least 70%, and even more preferably at least 80% of the biomass per dry weight.
本発明はさらに藻類を利用した透析排水の浄化方法を提供する。この方法は、透析排水にビタミンB12及びPIV 金属を添加して藻類を上記のとおりに増殖させることにより透析排水のリン酸濃度を低下させることを特徴とする。リン酸は、場合により培養2週間で85〜95%、あるいはそれ以上を除去することが可能である。 The present invention further provides a method for purifying dialysis wastewater using algae. This method is characterized by decreasing the phosphate concentration of the dialysis effluent by growing by adding vitamin B 12 and PIV metal dialysis drainage algae as described above. Phosphoric acid can optionally be removed by 85-95% or more in 2 weeks of culture.
以下に、本発明を実施例により具体的に説明する。ただし、本発明はこれらの実施例によりその技術的範囲が限定されるものではない。 Hereinafter, the present invention will be specifically described by way of examples. However, the technical scope of the present invention is not limited by these examples.
実験に用いた藻類と透析排水
本実験では微細藻類の対象にユーグレナ・グラシリス(Euglena gracilis)NIES-48株(strain Z)を用いた。透析排水は腹膜透析排水(Peritoneal Dialysis Wastewater :PDW)を用いた。成分組成を表1に記載する。
実験1 透析排水培地を用いたEuglena gracilisの増殖試験について
本実験では、PDWの濃度を5, 10, 25%(v/v)に設定して、AF-6合成培地(NaNO3 0.14g/L、NH4NO3 0.022mg/L、MgSO4・7H2O 0.03mg/L、CaCl2・2H2O 0.01mg/L、Fe-citrate 2mg/L、 Citric acid 2mg/L、KH2PO4 0.01mg/L、K2HPO4 5mg/L、Biotin 2μg/L Thiamine HCl 0.01mg/L、Vitamin B12 1μg/L、PIV metals(FeCl3・6H2O 0.98mg/L、MnCl2・4H2O 0.18mg/L、ZnSO4・7H2O 0.11mg/L、CoCl2・6H2O 0.02mg/L、Na2MoO4・2H2O 0.0125mg/L、Na2EDTA・2H2O 0.05g/L)、MES 0.04g/L、pH 6.6)により希釈したものを用いた。300mL容量の三角フラスコに150mLの培地を入れ、各培地にろ過滅菌とオートクレーブ滅菌の2通りの滅菌方法を分けて行い、計6種類の培地を用意した。なお、コントロールとしてはAF-6合成培地を用いた。
Experiment 1 Growth test of Euglena gracilis using dialysis drainage medium In this experiment, the concentration of PDW was set to 5, 10, 25% (v / v) and AF-6 synthetic medium (NaNO 3 0.14 g / L , NH 4 NO 3 0.022mg / L, MgSO 4・ 7H 2 O 0.03mg / L, CaCl 2・ 2H 2 O 0.01mg / L, Fe-citrate 2mg / L, Citric acid 2mg / L, KH 2 PO 4 0.01 mg / L, K 2 HPO 4 5 mg / L, Biotin 2 μg / L Thiamine HCl 0.01 mg / L, Vitamin B 12 1 μg / L, PIV metals (FeCl 3 · 6H 2 O 0.98 mg / L, MnCl 2 · 4H 2 O 0.18mg / L, ZnSO 4 · 7H 2 O 0.11mg / L, CoCl 2 · 6H 2 O 0.02mg / L, Na 2 MoO 4 · 2H 2 O 0.0125mg / L, Na 2 EDTA · 2H 2 O 0.05g / L), diluted with MES 0.04 g / L, pH 6.6) were used. 150 mL of medium was placed in a 300 mL Erlenmeyer flask, and each medium was divided into two sterilization methods, filtration sterilization and autoclave sterilization, to prepare a total of six types of medium. As a control, AF-6 synthetic medium was used.
前培養にはHUT培地を用い、KH2PO4 0.02g/L、MgSO4・7H2O 0.025g/L、Sodium acetate 0.4g/L、Potassium citrate 0.04mg/L、Polypeptone 0.6g/L、Yeast extract 0.4g/L、Vitamin B12 0.5μg/L、Thiamine HCl 0.4mg/L、(pH6.4)をオートクレーブ滅菌することにより調製した。調製した培地150mLを300mL容量の三角フラスコに入れ、培養温度25℃、光照射強度120 μmol m-2 s-1(24時間連続照射)に設定し、130rpmで振とう培養を行った。72時間培養した後、1500rpmで15分間遠心分離を行った。その後滅菌水で洗浄を行い、コントロールを含めた上記7種類の培地にE. gracilisを接種した。培養条件は前培養と同様、25℃、光照射強度120 μmol m-2 s-1(24時間連続照射)とし、130rpmで振とう培養を行った上、増殖の変化を観察した HUT medium is used for pre-culture, KH 2 PO 4 0.02 g / L, MgSO 4 7H 2 O 0.025 g / L, Sodium acetate 0.4 g / L, Potassium citrate 0.04 mg / L, Polypeptone 0.6 g / L, Yeast Extract 0.4 g / L, Vitamin B 12 0.5 μg / L, Thiamine HCl 0.4 mg / L, (pH 6.4) were prepared by autoclaving. 150 mL of the prepared medium was placed in a 300 mL Erlenmeyer flask, set to a culture temperature of 25 ° C., a light irradiation intensity of 120 μmol m −2 s −1 (24 hours continuous irradiation), and cultured with shaking at 130 rpm. After culturing for 72 hours, centrifugation was performed at 1500 rpm for 15 minutes. Thereafter, the cells were washed with sterilized water, and E. gracilis was inoculated into the above seven types of media including controls. The culture conditions were the same as in the pre-culture, 25 ° C, light irradiation intensity 120 μmol m -2 s -1 (24 hours continuous irradiation), shaking culture at 130 rpm, and observed changes in growth
培養期間中24時間ごとに細胞を回収し細胞数を計測することによって増殖の経時変化の測定を行った。細胞数計測にはフックスローゼンタール血球計算盤(サンリード硝子有限会社)を用いた。 The time course of proliferation was measured by collecting cells every 24 hours during the culture period and counting the number of cells. For the cell count, a hook slow Zental hemocytometer (Sunlead Glass Co., Ltd.) was used.
以上の結果を図1に示す。AF-6合成培地を希釈液に用い、腹膜透析排水の濃度を変えた培地をそれぞれろ過滅菌とオートクレーブ滅菌したもので増殖試験を行ったところ、オートクレーブ滅菌を施した培地ではろ過滅菌を施したものよりも増殖が良く、また排水濃度は25%程度のものが最適であった。濾過滅菌よりもオートクレーブ滅菌した透析排水を使用した方が増殖は促進されたのは、おそらくは透析排水中の尿素の熱分解によりアンモニア態窒素が増加したからと考えられる。 The above results are shown in FIG. A growth test was carried out using AF-6 synthetic medium as the diluent and medium with different concentrations of peritoneal dialysis drainage sterilized by filtration and autoclaving. The medium subjected to autoclave sterilization was subjected to filtration sterilization. The optimal growth rate was about 25%. The growth was promoted by using dialysis effluent sterilized by autoclave rather than filtration sterilization, probably because ammonia nitrogen increased due to thermal decomposition of urea in the dialysis effluent.
なお、腹膜透析排水を蒸留水で希釈した培地では増殖があまり見られなかったため(結果は示していない)、藻類培養に必要な成分でAF-6培地に含まれているものが、腹膜透析排水では不足していることが分かった。 The peritoneal dialysis drainage was diluted with distilled water, and the growth was not observed so much (results are not shown), so the components required for algae culture contained in the AF-6 medium are the peritoneal dialysis drainage. Then it turned out that it was insufficient.
実験2 培地条件決定のための補足成分の特定
本実験では、全ての培地のPDWを25%(v/v)に設定し、希釈にはAF-6から以下に定める成分を除いた改変培地を用いた。なお、コントロールにはAF-6合成培地でPDWを同濃度に希釈した培地を用いた。AF-6より各成分を除いた3種類の各改変培地(AF-6から1)クエン酸, Fe-クエン酸塩、2)クエン酸, Fe-クエン酸塩, PIV 金属、3)ビタミン B12を除いたもの)を用いて希釈した培地及びコントロール、以上の4種類の培地を100mL容量の試験管に70mL分注し(n=3)、オートクレーブ滅菌を施した。その後前培養開始後72時間経過したE. gracilisを接種した(前培養条件は実験1と同様)。本培養条件は培養温度25℃、光照射強度120 μmol m-2 s-1(24時間連続照射)、エアフィルター(ADVANTEC)を介して通気培養を行った。増殖の経時変化は実験1同様、血球計算盤を用いて測定した。
Experiment 2 Identification of supplementary components for determining medium conditions In this experiment, the PDW of all mediums was set to 25% (v / v), and dilution was performed using a modified medium excluding the following components from AF-6. Using. As a control, a medium in which PDW was diluted to the same concentration with an AF-6 synthetic medium was used. 3 types of modified media excluding each component from AF-6 (AF-6 to 1) citric acid, Fe-citrate, 2) citric acid, Fe-citrate, PIV metal, 3) vitamin B 12 70 ml of the above four types of culture medium diluted with the control medium and the control diluted (n = 3) were subjected to autoclave sterilization. Thereafter, E. gracilis was inoculated 72 hours after the start of preculture (preculture conditions were the same as in Experiment 1). The main culture conditions were culture temperature of 25 ° C., light irradiation intensity of 120 μmol m −2 s −1 (24 hours continuous irradiation), and air culture through an air filter (ADVANTEC). The time course of proliferation was measured using a hemocytometer as in Experiment 1.
以上の結果を図2〜3に示す。この結果から、腹膜透析排水に不足している、ビタミン B12と微量金属成分(PIV金属)を添加することで、AF-6合成培地を添加したものと同様の増殖が得られることが示唆され、実際に培養実験により確認された。 The above results are shown in FIGS. This result, missing the peritoneal dialysis effluent, the addition of vitamin B 12 and trace metal component (PIV metal), it is suggested that similar growth to that added AF-6 synthetic medium is obtained Actually, it was confirmed by a culture experiment.
実験3 実験2の結果による追加培養と詳細分析
本実験では蒸留水にビタミン B12 1μg/L、PIV metals(FeCl3・6H2O 0.98mg/L、MnCl2・4H2O 0.18mg/L、ZnSO4・7H2O 0.11mg/L、CoCl2・6H2O 0.02mg/L、Na2MoO4・2H2O 0.0125mg/L、Na2EDTA・2H2O 0.05g/L)を添加した希釈液でPDWを25%に希釈した培地、AF-6を用いてPDWを25%又は50%(v/v)の濃度に希釈した培地、コントロールとして蒸留水でPDWを希釈した培地の計4種類の培地を調製した。各培地は300mL容量三角フラスコに150mL分注してオートクレーブ滅菌を施した。本培養条件は培養温度25℃、光照射強度120 μmol m-2 s-1(24時間連続照射)とし、130rpmで振とう培養した(E. gracilisの前培養条件は実験1と同様)。
Experiment 3 Additional culture and detailed analysis based on the results of Experiment 2 In this experiment, vitamin B 12 1 μg / L, PIV metals (FeCl 3 · 6H 2 O 0.98 mg / L, MnCl 2 · 4H 2 O 0.18 mg / L, ZnSO 4 · 7H 2 O 0.11mg / L, CoCl 2 · 6H 2 O 0.02mg / L, Na 2 MoO 4 · 2H 2 O 0.0125mg / L, Na 2 EDTA · 2H 2 O 0.05g / L) A total of 4 mediums diluted with PDW to 25% with diluent, medium diluted with PD-6 to 25% or 50% (v / v) using AF-6, and medium with PDW diluted with distilled water as a control Different types of media were prepared. 150 mL of each medium was dispensed into a 300 mL Erlenmeyer flask and autoclaved. The main culture conditions were a culture temperature of 25 ° C., a light irradiation intensity of 120 μmol m −2 s −1 (24 hours continuous irradiation), and shaking culture at 130 rpm (the preculture conditions for E. gracilis were the same as in Experiment 1).
経時的に培養液5mLを採取し、ろ過(GF/Cフィルター:Whatman)した後、ろ液中の窒素濃度、リン濃度を工業排水試験法によって測定してE. gracilisによる除去能を判定した。培養終了時の培養液をGF/Cフィルターを用いてろ過し、60℃で24時間乾燥させた後に乾燥重量の測定を行った。 After 5 mL of the culture solution was collected over time and filtered (GF / C filter: Whatman), the nitrogen concentration and phosphorus concentration in the filtrate were measured by an industrial drainage test method to determine the removal ability by E. gracilis . The culture solution at the end of the culture was filtered using a GF / C filter, dried at 60 ° C. for 24 hours, and then the dry weight was measured.
以上の結果を図4に示す。水質分析の結果、透析排液にビタミン B12、PIV 金属を添加した培地に含まれるリンと窒素は、培養後2週間でほぼ除去されることが明らかとなり、透析排水の浄化に有効であることがわかった。 The above results are shown in FIG. As a result of water quality analysis, it is clear that phosphorus and nitrogen contained in the medium with vitamin B 12 and PIV metal added to the dialysis drainage are almost removed in two weeks after culturing. I understood.
Claims (18)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012265617A JP6128510B6 (en) | 2012-12-04 | Algal culture method using dialysis wastewater as culture medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012265617A JP6128510B6 (en) | 2012-12-04 | Algal culture method using dialysis wastewater as culture medium |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2014108101A true JP2014108101A (en) | 2014-06-12 |
JP6128510B2 JP6128510B2 (en) | 2017-05-17 |
JP6128510B6 JP6128510B6 (en) | 2017-08-02 |
Family
ID=
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016010149A1 (en) * | 2014-07-18 | 2016-01-21 | 国立大学法人筑波大学 | Method of acclimating algae belonging to aurantiochytrium sp. to low-salt conditions |
JP2016030248A (en) * | 2014-07-30 | 2016-03-07 | 富士電機株式会社 | Exhaust gas treatment method, and exhaust gas treatment equipment |
JP2017039078A (en) * | 2015-08-19 | 2017-02-23 | 太平洋セメント株式会社 | Wastewater treatment method |
WO2017122368A1 (en) * | 2016-01-15 | 2017-07-20 | 三島光産株式会社 | Growth promotion method for oxygen-generating photosynthetic organism |
WO2022250165A1 (en) * | 2021-05-28 | 2022-12-01 | 学校法人東京女子医科大学 | Composition for culturing algae and algae culturing method |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5714533A (en) * | 1980-06-29 | 1982-01-25 | Koutaku Hayashi | Preparation for immunochemical therapy, prevention of drug resistance and anticancer |
JPS5851888A (en) * | 1981-06-18 | 1983-03-26 | リンステイチユ−ト・ナシヨナル・デ・ラ・リサ−チ・サイエンテイフイツク | Method and apparatus for dialytically culturing algaes and non-photosynthetic microorganisms |
JPS60895A (en) * | 1983-05-17 | 1985-01-05 | Ichigoro Sekine | Process and apparatus for metabolizing organic waste water using growth liquid slurry containing clay, sludge, sulfur bacteria, purple sulfur bacteria, and mixed strain of euglena |
JPH03240484A (en) * | 1990-02-16 | 1991-10-25 | Baiotsukusu:Kk | Culture of chlorella |
JPH05301097A (en) * | 1992-04-24 | 1993-11-16 | Agency Of Ind Science & Technol | Method for purification of treated sewage using microalgae and for simultaneous production of hydrocarbon |
JPH09313895A (en) * | 1996-05-30 | 1997-12-09 | Daisen Menburen Syst Kk | Regenerating device for waste water |
JPH11137672A (en) * | 1997-11-05 | 1999-05-25 | Asa Sangyo Kk | Method for recovering and regenerating peritoneal dialyzane and apparatus therefor |
JP2001300582A (en) * | 2000-04-28 | 2001-10-30 | Yoshitomi Fine Chemicals Ltd | Water bloom preventing and removing method |
JP2008155116A (en) * | 2006-12-22 | 2008-07-10 | Daicen Membrane Systems Ltd | Method for treating dialysis waste water |
JP2008161753A (en) * | 2006-12-27 | 2008-07-17 | Daicel Chem Ind Ltd | Method for treating dialysis waste water |
JP2008207154A (en) * | 2007-02-28 | 2008-09-11 | Livestock Industry's Environmental Improvement Organization | Digestion liquid processing method and its device |
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5714533A (en) * | 1980-06-29 | 1982-01-25 | Koutaku Hayashi | Preparation for immunochemical therapy, prevention of drug resistance and anticancer |
JPS5851888A (en) * | 1981-06-18 | 1983-03-26 | リンステイチユ−ト・ナシヨナル・デ・ラ・リサ−チ・サイエンテイフイツク | Method and apparatus for dialytically culturing algaes and non-photosynthetic microorganisms |
JPS60895A (en) * | 1983-05-17 | 1985-01-05 | Ichigoro Sekine | Process and apparatus for metabolizing organic waste water using growth liquid slurry containing clay, sludge, sulfur bacteria, purple sulfur bacteria, and mixed strain of euglena |
JPH03240484A (en) * | 1990-02-16 | 1991-10-25 | Baiotsukusu:Kk | Culture of chlorella |
JPH05301097A (en) * | 1992-04-24 | 1993-11-16 | Agency Of Ind Science & Technol | Method for purification of treated sewage using microalgae and for simultaneous production of hydrocarbon |
JPH09313895A (en) * | 1996-05-30 | 1997-12-09 | Daisen Menburen Syst Kk | Regenerating device for waste water |
JPH11137672A (en) * | 1997-11-05 | 1999-05-25 | Asa Sangyo Kk | Method for recovering and regenerating peritoneal dialyzane and apparatus therefor |
JP2001300582A (en) * | 2000-04-28 | 2001-10-30 | Yoshitomi Fine Chemicals Ltd | Water bloom preventing and removing method |
JP2008155116A (en) * | 2006-12-22 | 2008-07-10 | Daicen Membrane Systems Ltd | Method for treating dialysis waste water |
JP2008161753A (en) * | 2006-12-27 | 2008-07-17 | Daicel Chem Ind Ltd | Method for treating dialysis waste water |
JP2008207154A (en) * | 2007-02-28 | 2008-09-11 | Livestock Industry's Environmental Improvement Organization | Digestion liquid processing method and its device |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016010149A1 (en) * | 2014-07-18 | 2016-01-21 | 国立大学法人筑波大学 | Method of acclimating algae belonging to aurantiochytrium sp. to low-salt conditions |
JPWO2016010149A1 (en) * | 2014-07-18 | 2017-04-27 | 国立大学法人 筑波大学 | Method for acclimatizing low salinity conditions of Aurantiochytrium algae |
JP2016030248A (en) * | 2014-07-30 | 2016-03-07 | 富士電機株式会社 | Exhaust gas treatment method, and exhaust gas treatment equipment |
JP2017039078A (en) * | 2015-08-19 | 2017-02-23 | 太平洋セメント株式会社 | Wastewater treatment method |
WO2017122368A1 (en) * | 2016-01-15 | 2017-07-20 | 三島光産株式会社 | Growth promotion method for oxygen-generating photosynthetic organism |
WO2022250165A1 (en) * | 2021-05-28 | 2022-12-01 | 学校法人東京女子医科大学 | Composition for culturing algae and algae culturing method |
JPWO2022250165A1 (en) * | 2021-05-28 | 2022-12-01 | ||
JP7288725B2 (en) | 2021-05-28 | 2023-06-08 | 学校法人東京女子医科大学 | Compositions and methods for culturing algae |
Also Published As
Publication number | Publication date |
---|---|
JP6128510B2 (en) | 2017-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Aravantinou et al. | Selection of microalgae for wastewater treatment and potential lipids production | |
Hu et al. | Influence of exogenous CO 2 on biomass and lipid accumulation of microalgae Auxenochlorella protothecoides cultivated in concentrated municipal wastewater | |
Ma et al. | Effect of wastewater-borne bacteria on algal growth and nutrients removal in wastewater-based algae cultivation system | |
Pittman et al. | The potential of sustainable algal biofuel production using wastewater resources | |
Kong et al. | Culture of microalgae Chlamydomonas reinhardtii in wastewater for biomass feedstock production | |
CN102093955B (en) | Chlorella strain and application thereof | |
Qin et al. | Cultivation of Chlorella vulgaris in dairy wastewater pretreated by UV irradiation and sodium hypochlorite | |
Koreivienė et al. | Testing of Chlorella/Scenedesmus microalgae consortia for remediation of wastewater, CO2 mitigation and algae biomass feasibility for lipid production | |
Wu et al. | A novel algal biofilm photobioreactor for efficient hog manure wastewater utilization and treatment | |
WO2012011421A1 (en) | Process for production of euglena containing wax ester at high content, and process for production of wax ester | |
US11434466B2 (en) | Process of cultivating microalgae and a joint method of same with a denitration process | |
JP6265407B2 (en) | Method for culturing squalene-producing algae using shochu wastewater as culture medium | |
US20120028338A1 (en) | Mixotrophic algae for the production of algae biofuel feedstock on wastewater | |
Feng et al. | Biomass and lipid production of Chlorella protothecoides under heterotrophic cultivation on a mixed waste substrate of brewer fermentation and crude glycerol | |
Wang et al. | Optimization of microalgal bead preparation with Scenedesmus obliquus for both nutrient removal and lipid production | |
Ahmad et al. | Uptake of nutrients from municipal wastewater and biodiesel production by mixed algae culture | |
Pang et al. | Enhanced aquaculture effluent polishing by once and repetitive nutrients deprived seawater Chlorella sp. | |
JP6128510B6 (en) | Algal culture method using dialysis wastewater as culture medium | |
JP6128510B2 (en) | Algal culture method using dialysis wastewater as culture medium | |
CN108456700A (en) | A method of improving grease in microalgae using give up mash and magnesium ion of molasses | |
CN104232559B (en) | The method of cultivating microalgae and the method for producing grease | |
CN105400697A (en) | Method for purifying undiluted anaerobic fermentation tail liquid by growing microalgae in carbon dioxide environment | |
CN105087427A (en) | Vibrio natriegens for producing agarase and application of vibrio natriegens | |
CN108588143B (en) | Method for efficiently producing extracellular polysaccharide of long thread moss | |
CN108033564A (en) | A kind of optimization method using microdisk electrode purification tofu wastewater |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20151204 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151214 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20160328 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20160329 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20160328 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20160329 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20161018 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161101 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161227 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170307 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170404 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6128510 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |