[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2014192490A - Permanent current switch and superconducting device having the same - Google Patents

Permanent current switch and superconducting device having the same Download PDF

Info

Publication number
JP2014192490A
JP2014192490A JP2013069191A JP2013069191A JP2014192490A JP 2014192490 A JP2014192490 A JP 2014192490A JP 2013069191 A JP2013069191 A JP 2013069191A JP 2013069191 A JP2013069191 A JP 2013069191A JP 2014192490 A JP2014192490 A JP 2014192490A
Authority
JP
Japan
Prior art keywords
superconducting
permanent current
switch
current switch
superconducting wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013069191A
Other languages
Japanese (ja)
Inventor
Yasuaki Terao
泰昭 寺尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2013069191A priority Critical patent/JP2014192490A/en
Publication of JP2014192490A publication Critical patent/JP2014192490A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a permanent current switch capable of reducing a movement amount of heat generated by the electrification of a heater to a superconducting coil.SOLUTION: A permanent current switch includes: a spool 13 for winding a coil therearound; a heater wire 14 wound around the spool 13 in a coil shape; a superconducting wire wound around the spool 13 in the coil shape; and a lead wire connected to the superconducting wire and drawn from the spool 13. In the permanent current switch which disconnects a superconducting closed circuit, a switch part 11 around which the superconducting wire is wound so as to be overlapped on the heater wire 14, and a heat resistance part 12 which inhibits heat transfer from the switch part 11 to the lead wire by winding only the superconducting wire are provided in the spool 13.

Description

本発明は、超電導による永久電流が流れる閉回路を形成する永久電流スイッチ、及びその永久電流スイッチを備える超電導装置に関する。   The present invention relates to a permanent current switch that forms a closed circuit through which a permanent current caused by superconducting flows, and a superconducting device including the permanent current switch.

例えばMRI(磁気共鳴画像)装置やNMR(核磁気共鳴)装置など、静磁場を発生させる必要がある装置では、超電導磁石(超電導マグネット)を永久電流モードで運転することで静磁場を発生させる。永久電流モードとは、永久電流によって超電導磁石を励磁することを意味し、永久電流モードで超電導磁石を運転するには、超電導線で構成され、超電導磁石が組み込まれた閉回路に永久電流を流さなくてはならない。   For example, in an apparatus that needs to generate a static magnetic field, such as an MRI (magnetic resonance imaging) apparatus or an NMR (nuclear magnetic resonance) apparatus, a static magnetic field is generated by operating a superconducting magnet (superconducting magnet) in a permanent current mode. The permanent current mode means that the superconducting magnet is excited by the permanent current. In order to operate the superconducting magnet in the permanent current mode, the permanent current is passed through a closed circuit composed of superconducting wires and incorporating the superconducting magnet. Must-have.

超電導磁石が組み込まれた閉回路に永久電流を流すには、まず、切断された閉回路の外部の電源から超電導磁石に電流を供給し、超電導磁石に流れる電流値が定格に達した後に閉回路を接続して、供給された電流を超電導線で構成された閉回路に閉じ込める。この閉じ込められた電流が、永久電流として閉回路を流れるが、上記閉回路の切断及び接続は、閉回路において超電導磁石に接続された永久電流スイッチによって切り換えられる。この永久電流スイッチは、超電導磁石を含む閉回路を構成するのに必要な部材であり、永久電流スイッチとしては、熱式、磁気式、機械式などの方式が考案されているが、作製の容易さから「熱式の永久電流スイッチ」が主に採用されている。   To pass a permanent current through a closed circuit incorporating a superconducting magnet, first supply current to the superconducting magnet from a power supply outside the closed circuit, and then close the closed circuit after the current value flowing through the superconducting magnet reaches the rating. And the supplied current is confined in a closed circuit composed of superconducting wires. This confined current flows through the closed circuit as a permanent current, and the disconnection and connection of the closed circuit are switched by a permanent current switch connected to the superconducting magnet in the closed circuit. This permanent current switch is a member necessary for constructing a closed circuit including a superconducting magnet. As the permanent current switch, methods such as a thermal type, a magnetic type, and a mechanical type have been devised, but easy to manufacture. Therefore, “thermal permanent current switches” are mainly used.

具体的に、熱式の永久電流スイッチは、永久電流スイッチ自体の内部に組み込まれたヒータへの通電を制御することで、該永久電流スイッチを構成する超電導線を、超電導状態(スイッチON状態)又は常伝導状態(スイッチOFF状態)に切り換える。この切り換えによって超電導線を超電導状態(スイッチON状態)にすれば、超電導磁石が組み込まれた閉回路が形成されるので、外部の電源から供給された電流を閉回路に閉じ込めて超電導磁石を永久電流モードで励磁することができる。逆に、永久電流スイッチの超電導線を常伝導状態(スイッチOFF状態)にすれば、閉回路が切断されるので、永久電流モードは解消される。   Specifically, the thermal type permanent current switch controls the energization to the heater incorporated in the permanent current switch itself, so that the superconducting wire constituting the permanent current switch is in a superconducting state (switch ON state). Or it switches to a normal conduction state (switch OFF state). If the superconducting wire is brought into a superconducting state (switch ON state) by this switching, a closed circuit incorporating the superconducting magnet is formed. Therefore, the current supplied from an external power source is confined in the closed circuit, and the superconducting magnet is made a permanent current. Can be excited in mode. On the contrary, if the superconducting wire of the permanent current switch is set to the normal conduction state (switch OFF state), the closed circuit is disconnected, so that the permanent current mode is canceled.

このような永久電流スイッチはすでに周知であるが、その構成及び動作については、特許文献1,2に開示されるような様々な工夫がなされている。
特許文献1に開示の超電導コイル装置は、超電導コイルの永久電流スイッチを“金属系超電導体を動作材料とした永久電流スイッチ”とすると共に、当該永久電流スイッチと超電導コイルとの間に酸化物高温超電導体から成る電流リードを介在させたことを特徴とするものである。
Such a permanent current switch is already well known, but various devices as disclosed in Patent Documents 1 and 2 have been made for the configuration and operation thereof.
In the superconducting coil device disclosed in Patent Document 1, the permanent current switch of the superconducting coil is a “permanent current switch using a metallic superconductor as an operating material”, and an oxide high temperature is provided between the permanent current switch and the superconducting coil. It is characterized in that a current lead made of a superconductor is interposed.

また、特許文献2に開示の冷凍機冷却型超電導磁石は、磁場を発生する超電導コイルと、超電導材料の超電導臨界温度を利用して前記超電導コイルに外部電源から電流を供給しない永久電流モードと電流を供給する電流供給モードとを切り替える永久電流スイッチと、前記超電導コイルを冷却する第1極低温冷凍機と、前記永久電流スイッチを冷却する別の第2極低温冷凍機と、前記超電導コイルおよび前記永久電流スイッチおよび前記第1・第2極低温冷凍機の冷却ステージを真空状態で内部に格納する真空容器とを備える冷凍機冷却型超電導磁石であって、前記超電導コイルと前記永久電流スイッチとを連結する超電導線と、前記超電導線と並列に設置され長手方向に沿って電気的に結合される少なくとも1本の超電導バイパス線とを備え、前記超電導バイパス線の超電導臨界温度は、前記永久電流スイッチの超電導臨界温度よりも高いことを特徴とするものである。   Moreover, the refrigerator-cooled superconducting magnet disclosed in Patent Document 2 includes a superconducting coil that generates a magnetic field, a permanent current mode that does not supply current from an external power source to the superconducting coil by using the superconducting critical temperature of the superconducting material, and current. A permanent current switch that switches between a current supply mode for supplying the superconducting coil, a first cryogenic refrigerator that cools the superconducting coil, another second cryogenic refrigerator that cools the permanent current switch, the superconducting coil, and the A refrigerator-cooled superconducting magnet comprising a permanent current switch and a vacuum vessel for internally storing the cooling stage of the first and second cryogenic refrigerators in a vacuum state, the superconducting coil and the permanent current switch comprising: A superconducting wire to be connected; and at least one superconducting bypass wire that is installed in parallel with the superconducting wire and is electrically coupled along the longitudinal direction. , Superconducting critical temperature of the superconducting bypass line is for being greater than the superconducting critical temperature of the permanent current switch.

特開2003−151821号公報Japanese Patent Laid-Open No. 2003-151821 特開2010−283186号公報JP 2010-283186 A

ところで、例えば冷凍機によって伝導冷却するタイプの超電導磁石においては、冷凍機
の負荷を増大させる要因となるので、永久電流スイッチのヒータからの発熱量を最小限に抑えることが望ましい。
このような背景の下、特許文献1の超電導コイル装置では、永久電流スイッチから超電導コイルへ超電導線材を介して伝わる熱量を抑制すべく、永久電流スイッチと超電導コイルの間に酸化物高温超電導線材から成る電流リード線を付加している。
By the way, for example, in a superconducting magnet of the type that is conductively cooled by a refrigerator, it becomes a factor that increases the load on the refrigerator, so it is desirable to minimize the amount of heat generated from the heater of the permanent current switch.
Under such a background, in the superconducting coil device of Patent Document 1, in order to suppress the amount of heat transferred from the permanent current switch to the superconducting coil via the superconducting wire, an oxide high temperature superconducting wire is used between the permanent current switch and the superconducting coil. A current lead wire is added.

しかし、特許文献1に開示の方法では、永久電流スイッチの金属系超電導線材と酸化物系超電導線材を接続することになる。しかし、超電導線材どうしの超電導接続が困難であることから、金属系超電導線材と酸化物系超電導線材の間に接続抵抗が発生し、この接続抵抗は、永久電流モードで動作させる場合に磁場減衰の大きな要因となるおそれがある。
また、特許文献2の冷凍機冷却型超電導磁石では、永久電流スイッチと超電導コイルを結ぶ超電導線に、更に臨界温度が高い超電導線(バイパス線)を抱き合わせることによって、永久電流スイッチから超電導コイルへ伝わる熱を抑制する方法を取っている。
However, in the method disclosed in Patent Document 1, the metallic superconducting wire of the permanent current switch and the oxide superconducting wire are connected. However, since superconducting connections between superconducting wires are difficult, a connection resistance is generated between the metal-based superconducting wire and the oxide-based superconducting wire, and this connection resistance is a magnetic field attenuation when operated in the permanent current mode. May be a major factor.
Further, in the refrigerator-cooled superconducting magnet of Patent Document 2, a superconducting wire that connects a permanent current switch and a superconducting coil is combined with a superconducting wire (bypass wire) having a higher critical temperature, so that the permanent current switch is switched to the superconducting coil. The method of suppressing the transmitted heat is taken.

しかし、実際には永久電流スイッチのヒータが発した熱のうち、超電導線を伝わる熱の多くは超電導線を構成する銅製の安定部材を通るので、超電導線を伝わる熱が半田等により接続された超電導バイパス線を流れることはあまり期待できず、超電導バイパス線を付加することで得られる効果は非常に低いと思われる。
そこで本発明は、ヒータの通電により発生した熱の超電導コイルへの移動を低減することができる永久電流スイッチを提供することを目的とする。
However, in reality, most of the heat generated by the heater of the permanent current switch passes through the copper stable member that constitutes the superconducting wire, so that the heat transmitted through the superconducting wire is connected by solder or the like. It cannot be expected to flow through the superconducting bypass line so much, and it seems that the effect obtained by adding the superconducting bypass line is very low.
Therefore, an object of the present invention is to provide a permanent current switch that can reduce the movement of heat generated by energization of a heater to a superconducting coil.

上述の目的を達成するため、本発明においては以下の技術的手段を講じた。
本発明に係る永久電流スイッチは、コイルを巻回するための巻枠と、前記巻枠にコイル状に巻回されたヒータ線と、前記巻枠にコイル状に巻回された超電導線と、前記超電導線に接続されて前記巻枠から引き出された引き出し線と、を備え、超電導回路を断続する永久電流スイッチであって、前記巻枠は、前記超電導線が前記ヒータ線に重なるように巻回されたスイッチ部と、前記超電導線のみを巻回することで、前記スイッチ部から引き出し線への伝熱を抑制する熱抵抗部と、を有することを特徴とする。
In order to achieve the above-described object, the present invention takes the following technical means.
A permanent current switch according to the present invention includes a winding frame for winding a coil, a heater wire wound in a coil shape on the winding frame, a superconducting wire wound in a coil shape on the winding frame, A permanent current switch for connecting and disconnecting the superconducting circuit, the winding frame being wound so that the superconducting wire overlaps the heater wire. It is characterized by having a turned switch part and a thermal resistance part for suppressing heat transfer from the switch part to the lead wire by winding only the superconducting wire.

ここで、前記スイッチ部は、無誘導巻された前記超電導線によって構成され、前記熱抵抗部は、無誘導巻された前記超電導線によって構成されるとよい。
また、前記巻枠には、前記スイッチ部と前記熱抵抗部を熱的に仕切る仕切壁が形成されているとよい。
さらに、前記スイッチ部で巻回された超電導線と前記熱抵抗部で巻回された超電導線は、電気的に直列に接続されているとよい。
Here, it is preferable that the switch part is constituted by the superconducting wire wound non-inductively, and the thermal resistance part is constituted by the superconducting wire wound non-inductively.
Moreover, it is good for the said winding frame to form the partition wall which partitions off the said switch part and the said heat resistance part thermally.
Furthermore, the superconducting wire wound around the switch part and the superconducting wire wound around the thermal resistance part may be electrically connected in series.

加えて、前記熱抵抗部で巻回された超電導線の最内径が、前記スイッチ部で巻回された超電導線又はヒータ線の最内径よりも大きいとよい。
ここで、前記スイッチ部における前記超電導線は、前記巻枠の径方向において複数の層を形成するように巻回されると共に、前記熱抵抗部における前記超電導線は、前記巻枠の径方向において少なくとも一層を形成するように巻回され、前記スイッチ部で巻回された超電導線の径方向に沿った最外径が、前記熱抵抗部で巻回された超電導線の最内層の外径と略同一であるとよい。
In addition, the innermost diameter of the superconducting wire wound around the thermal resistance portion may be larger than the innermost diameter of the superconducting wire or heater wire wound around the switch portion.
Here, the superconducting wire in the switch unit is wound so as to form a plurality of layers in the radial direction of the winding frame, and the superconducting wire in the thermal resistance unit is wound in the radial direction of the winding frame. The outermost diameter along the radial direction of the superconducting wire wound so as to form at least one layer and wound by the switch portion is the outer diameter of the innermost layer of the superconducting wire wound by the thermal resistance portion. It is good that it is substantially the same.

なお、前記スイッチ部及び前記熱抵抗部で巻回された超電導線に対して含浸処理が施されているとよい。
本発明に係る超電導装置は、上記いずれかの永久電流スイッチと、超電導線が巻回された超電導コイルと、前記超電導コイルを収納する収納容器と、前記超電導コイル及び前記収納容器の少なくとも一方を超電導点移転以下に冷却する冷凍機と、を有し、前記永久電流スイッチが、前記収納容器内で前記冷凍機に熱的に接続されていることを特徴とする。
In addition, it is good for the superconducting wire wound by the said switch part and the said heat resistance part to be impregnated.
A superconducting device according to the present invention includes any one of the above-described permanent current switches, a superconducting coil wound with a superconducting wire, a storage container for storing the superconducting coil, and at least one of the superconducting coil and the storage container. A refrigerator that cools below point transfer, and the permanent current switch is thermally connected to the refrigerator in the storage container.

また、本発明に係る超電導装置は、上記いずれかの永久電流スイッチを有し、前記永久電流スイッチが、液体の冷媒に浸漬されていることを特徴とする。   In addition, a superconducting device according to the present invention includes any one of the permanent current switches described above, and the permanent current switch is immersed in a liquid refrigerant.

本発明による永久電流スイッチによれば、ヒータの通電により発生した熱の超電導コイルへの移動を低減することができる。   The permanent current switch according to the present invention can reduce the movement of heat generated by energization of the heater to the superconducting coil.

本発明の実施形態による永久電流スイッチが設けられる超電導装置の概略構成を示す図である。It is a figure which shows schematic structure of the superconducting apparatus provided with the permanent current switch by embodiment of this invention. 本実施形態による永久電流スイッチの断面を示す図である。It is a figure which shows the cross section of the permanent current switch by this embodiment. 巻枠の構成を示す図であり、(a)は巻枠の全体を示し、(b)は巻枠の軸心を通る面で切断したときの断面を示す。It is a figure which shows the structure of a reel, (a) shows the whole reel, (b) shows the cross section when it cut | disconnects in the surface which passes along the axial center of a reel. ヒータ線が巻回された巻枠の構成を示す図であり、(a)は巻枠の全体を示し、(b)は巻枠の軸心を通る面で切断したときの断面を示す。It is a figure which shows the structure of the winding frame around which the heater wire was wound, (a) shows the whole winding frame, (b) shows the cross section when it cut | disconnects in the surface which passes along the axial center of a winding frame. スイッチ部が巻回された巻枠の構成を示す図であり、(a)は巻枠の全体を示し、(b)は巻枠の軸心を通る面で切断したときの断面を示す。It is a figure which shows the structure of the winding frame around which the switch part was wound, (a) shows the whole winding frame, (b) shows the cross section when it cut | disconnects in the surface which passes along the axial center of a winding frame. 熱抵抗部が巻回された本実施形態による永久電流スイッチの構成を示す図であり、(a)は永久電流スイッチの全体を示し、(b)は巻枠の軸心を通る面で切断したときの断面を示す。It is a figure which shows the structure of the permanent current switch by this embodiment by which the thermal resistance part was wound, (a) shows the whole permanent current switch, (b) cut | disconnected by the surface which passes along the axial center of a reel. A cross-section is shown. 熱抵抗部に層間絶縁材が挟み込まれた永久電流スイッチの全体を示す図である。It is a figure which shows the whole permanent current switch by which the interlayer insulation material was inserted | pinched between the thermal resistance parts.

以下、図面を参照しながら、本発明の実施形態について説明する。なお、以下に説明する実施形態は、本発明を具体化した一例であって、その具体例をもって本発明の構成を限定するものではない。従って、本発明の技術的範囲は、本実施形態に開示内容に限定されるものではない。また、以下に説明する各実施形態において、同一の構成部材には、同一の符号及び同一の名称を付すこととする。従って、同一の符号及び同一の名称が付された構成部材については、同じ説明を繰り返さない。   Embodiments of the present invention will be described below with reference to the drawings. In addition, embodiment described below is an example which actualized this invention, Comprising: The structure of this invention is not limited with the specific example. Therefore, the technical scope of the present invention is not limited to the contents disclosed in the present embodiment. Moreover, in each embodiment demonstrated below, suppose that the same code | symbol and the same name are attached | subjected to the same structural member. Therefore, the same description will not be repeated for the components having the same reference numerals and the same names.

図1〜図6を参照して、本発明の実施形態による永久電流スイッチ10について説明する。図1は、MRI(磁気共鳴画像)装置やNMR(核磁気共鳴)装置などに用いられる磁場発生装置である超電導装置1の概略構成を示す図である。本実施形態による永久電流スイッチ10は、図1に示すような超電導装置1に設けられる。
まず、図1を参照して、永久電流スイッチ10が設けられる超電導装置1の構成を説明する。
A permanent current switch 10 according to an embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a diagram showing a schematic configuration of a superconducting apparatus 1 which is a magnetic field generating apparatus used in an MRI (magnetic resonance imaging) apparatus, an NMR (nuclear magnetic resonance) apparatus, or the like. The permanent current switch 10 according to the present embodiment is provided in a superconducting device 1 as shown in FIG.
First, the configuration of the superconducting device 1 in which the permanent current switch 10 is provided will be described with reference to FIG.

超電導装置1は、収納容器2と、収納容器2に収納された超電導コイル3と、収納容器2の外表面が室温の大気と触れないように収納容器2を内部に保持する真空容器4と、超電導コイル3を超電導転移温度以下に冷却する冷却手段5とを有する。
収納容器2は、例えば薄肉のステンレス鋼など、機械強度及び耐腐食性に優れた材料で形成された中空の容器である。収納容器2は、後に詳述する超電導コイル3を収納すると共に冷却手段5も収納し、これによって、収納容器2内の超電導コイル3が超電導転移温度以下にまで冷却される。
The superconducting device 1 includes a storage container 2, a superconducting coil 3 stored in the storage container 2, a vacuum container 4 that holds the storage container 2 inside so that the outer surface of the storage container 2 does not come into contact with the air at room temperature, And a cooling means 5 for cooling the superconducting coil 3 to a superconducting transition temperature or lower.
The storage container 2 is a hollow container formed of a material having excellent mechanical strength and corrosion resistance, such as thin stainless steel. The storage container 2 stores a superconducting coil 3 that will be described in detail later, and also stores a cooling means 5, whereby the superconducting coil 3 in the storage container 2 is cooled to a superconducting transition temperature or lower.

超電導転移温度とは、熱力学温度にして数K(ケルビン)といった極低温である。従って、ステンレス鋼など熱伝導性の高い材料で形成された収納容器2を室温に置いた場合、室温から収納容器2内へ熱が侵入するので、収納容器2の内部を超電導転移温度以下に保つのは困難である。そこで収納容器2は、外表面が室温の大気と触れないように、内部が真空となった後述する真空容器4内に保持される。   The superconducting transition temperature is a cryogenic temperature of several K (Kelvin) as a thermodynamic temperature. Therefore, when the storage container 2 formed of a material having high thermal conductivity such as stainless steel is placed at room temperature, heat enters the storage container 2 from room temperature, so the inside of the storage container 2 is kept below the superconducting transition temperature. It is difficult. Therefore, the storage container 2 is held in a later-described vacuum container 4 whose inside is evacuated so that the outer surface does not come into contact with air at room temperature.

超電導コイル3は、超電導体(超電導物質)からなる線材を巻回して得られるコイルであり、収納容器2内に収容される。超電導転移温度以下で超電導コイル3に電流が供給されると、供給された電流は、いわゆる永久電流として電気抵抗がほぼゼロ0となった超電導コイル3を流れ続ける。超電導コイル3は、この永久電流が引き起こす電磁誘導によって磁場を発生する。   The superconducting coil 3 is a coil obtained by winding a wire made of a superconductor (superconducting substance), and is accommodated in the storage container 2. When a current is supplied to the superconducting coil 3 at a temperature lower than the superconducting transition temperature, the supplied current continues to flow through the superconducting coil 3 whose electric resistance is substantially zero 0 as a so-called permanent current. The superconducting coil 3 generates a magnetic field by electromagnetic induction caused by this permanent current.

また、超電導コイル3には、該超伝導コイル3に電流を供給する電源部(外部の電源)が接続可能となっており、また、永久電流を流す閉回路(超電導回路)を形成するために、後述する永久電流スイッチ10が超電導コイル3に接続されている。永久電流スイッチ10のON(接続)とOFF(切断)を切り替えることで、永久電流を流す閉回路の形成と解消を切り替える(閉回路を断続する)ことができ、永久電流スイッチ10をON(接
続)にすれば閉回路が形成され、OFF(切断)にすれば閉回路が解消される。このとき、閉回路を形成するケーブルは、超電導コイル3と同様に超電導体から形成される。
The superconducting coil 3 can be connected to a power supply unit (external power supply) that supplies current to the superconducting coil 3 and is used to form a closed circuit (superconducting circuit) through which a permanent current flows. A permanent current switch 10 to be described later is connected to the superconducting coil 3. By switching the permanent current switch 10 between ON (connection) and OFF (disconnection), it is possible to switch between the formation and cancellation of a closed circuit through which a permanent current flows (interconnection of the closed circuit), and the permanent current switch 10 is turned ON (connection). ) To form a closed circuit, and to OFF (disconnect) to cancel the closed circuit. At this time, the cable forming the closed circuit is formed of a superconductor in the same manner as the superconducting coil 3.

真空容器4は、収納容器2と同様に、例えばステンレス鋼など、機械強度及び耐腐食性に優れた材料で形成された中空の容器であり、超電導コイル3を収納する収納容器2を内部に保持する。真空容器4は、内部が超電導転移温度以下といった極低温となる収納容器2の外表面が室温の大気と触れないように、真空に保った内部に収納容器2を保持する。言い換えれば、真空容器4は、真空の空間を隔てて収納容器2を保持している。つまり、収納容器2と真空容器4は、いわゆる魔法瓶の構造を形成しており、収納容器2と室温とは真空容器4による真空の空間を隔てて断熱される。   The vacuum container 4 is a hollow container formed of a material having excellent mechanical strength and corrosion resistance, such as stainless steel, and holds the storage container 2 for storing the superconducting coil 3 in the same manner as the storage container 2. To do. The vacuum container 4 holds the storage container 2 inside a vacuum so that the outer surface of the storage container 2 whose inside is extremely low, such as a superconducting transition temperature or less, does not come into contact with the air at room temperature. In other words, the vacuum container 4 holds the storage container 2 across a vacuum space. That is, the storage container 2 and the vacuum container 4 form a so-called thermos structure, and the storage container 2 and the room temperature are insulated from each other with a vacuum space formed by the vacuum container 4 therebetween.

冷却手段5は、例えば、GM(ギフォード・マクマホン)冷凍機などの極低温冷凍機である。冷却手段5である冷凍機(以下、冷凍機5という)は、棒状かつ長尺であって、一端側に圧縮機等を含む駆動部50が設けられ、さらに、駆動部50から他端に向かう中途部に熱交換を行う第1段ステージ51を有し、他端側に第2段ステージ52を有する2段構成となっている。第1段ステージ51は、例えば30K程度にまで冷却可能な熱交換部であり、第2段ステージ52は、4K程度にまで冷却可能な熱交換部である。   The cooling means 5 is, for example, a cryogenic refrigerator such as a GM (Gifford McMahon) refrigerator. The refrigerator (hereinafter referred to as the refrigerator 5) serving as the cooling means 5 is rod-shaped and long, and is provided with a drive unit 50 including a compressor or the like on one end side, and further toward the other end from the drive unit 50. It has a first stage 51 for heat exchange in the middle, and a second stage having a second stage 52 on the other end. The first stage 51 is a heat exchanging part that can be cooled to about 30K, for example, and the second stage 52 is a heat exchanging part that can be cooled to about 4K.

図1に示すように、冷凍機5は、真空容器4の外部から真空容器4と収納容器2を貫通して、第2段ステージ52を収納容器2の内部で保持している。冷凍機5の駆動部50は真空容器4の貫通孔の周囲で気密に保持され、第1段ステージ51は収納容器2に密に接続され、第2段ステージ52は収納容器2の内部で、熱抵抗の低い板状の冷却部材6(例えば銅製の部材)を介して超電導コイル3に接続されている。このように、超電導コイル3が第2段ステージ52に接続されることで、例えば4Kといった超電導転移温度以下にまで超電導コイル3を冷却することができる。   As shown in FIG. 1, the refrigerator 5 passes through the vacuum container 4 and the storage container 2 from the outside of the vacuum container 4, and holds the second stage 52 inside the storage container 2. The drive unit 50 of the refrigerator 5 is hermetically held around the through hole of the vacuum vessel 4, the first stage 51 is tightly connected to the storage container 2, and the second stage 52 is inside the storage container 2, It is connected to the superconducting coil 3 via a plate-like cooling member 6 (for example, a copper member) having a low thermal resistance. Thus, by connecting the superconducting coil 3 to the second stage 52, the superconducting coil 3 can be cooled to a superconducting transition temperature of 4K or lower, for example.

上述の構成を有する超電導装置1は、さらに、永久電流スイッチ10を有する。以下、図2〜図6を参照して、永久電流スイッチ10の構成について説明する。
まず、本願の発明者が従来からの永久電流スイッチにおいて認識している課題について説明する。
従来から、永久電流スイッチを構成する超電導線の安定化部材として、CuNi材(CuNi安定化材)を用いたCuNi/NbTi材を使用することはよく知られている。このCuNi材はCu材に比べて熱伝導率が2桁ほど小さい。具体的には、4.2K下でのCu安定化材(OFHC)の熱伝導率が約180W/m・Kであるのに対して、CuNi安定化材(Cu-10wt%Ni)の熱伝導率は1.2W/m・Kである。
The superconducting device 1 having the above-described configuration further includes a permanent current switch 10. Hereinafter, the configuration of the permanent current switch 10 will be described with reference to FIGS.
First, the problems recognized by the inventors of the present application in conventional permanent current switches will be described.
Conventionally, it is well known that a CuNi / NbTi material using a CuNi material (CuNi stabilizing material) is used as a stabilizing member for a superconducting wire constituting a permanent current switch. This CuNi material has a thermal conductivity about two orders of magnitude smaller than that of the Cu material. Specifically, while the thermal conductivity of Cu stabilizing material (OFHC) under 4.2K is about 180 W / m · K, the thermal conductivity of CuNi stabilizing material (Cu-10wt% Ni). The rate is 1.2 W / m · K.

このCuNi/NbTi材からなる超電導線(CuNi/NbTi線)を超電導コイルと永久電流スイッチ間のリード線として使用すれば、永久電流スイッチから超電導コイルへの熱の流れを抑制することが可能となる。ここで、CuNi/NbTi線は、スイッチOFF状態(ヒータに通電して超電導線を常伝導状態にすることで永久電流スイッチを切断(OFF)した場合)には熱抵抗部としての効果を発揮し、永久電流スイッチから超電導コイルへの熱伝導を抑えることが出来る。   If the superconducting wire (CuNi / NbTi wire) made of this CuNi / NbTi material is used as a lead wire between the superconducting coil and the permanent current switch, it becomes possible to suppress the flow of heat from the permanent current switch to the superconducting coil. . Here, the CuNi / NbTi wire exhibits an effect as a thermal resistance part in the switch OFF state (when the permanent current switch is cut off (OFF) by energizing the heater to bring the superconducting wire into the normal conduction state). The heat conduction from the permanent current switch to the superconducting coil can be suppressed.

しかしその反面、CuNi/NbTi線は、Cu安定化のNbTi線(Cu/NbTi線)に比べて安定性が低いため、スイッチON状態(ヒータへの通電を止めて超電導線を超電導状態にすることで永久電流スイッチを接続(ON)した場合)は、超電導線のクエンチのリスクが高くなる。特に、より高磁場やコンパクト化が求められるNMRやMRIのマグネットでは、高い電流密度が求められるので、局所的に非常に高い電磁力が超電導のリード線材に印加されることでクエンチの原因となってしまうことがある。そのため、本願の発明者は、クエンチのリスクが高いCuNi/NbTi線をリード線に用いることを極力回避することと、ヒータ線の発熱の超電導コイルへの伝導を抑制することができる永久電流スイッチを発明し、永久電流スイッチ10として例示する。   However, the CuNi / NbTi wire is less stable than the Cu-stabilized NbTi wire (Cu / NbTi wire), so the switch is turned on (the heater is de-energized and the superconducting wire is put into the superconducting state). When the permanent current switch is connected (ON), the risk of quenching the superconducting wire increases. In particular, an NMR or MRI magnet that requires a higher magnetic field or a smaller size requires a higher current density. This causes quenching by applying a very high electromagnetic force to a superconducting lead wire locally. May end up. Therefore, the inventor of the present application avoids the use of a CuNi / NbTi wire, which has a high risk of quenching, as a lead wire as much as possible, and a permanent current switch that can suppress conduction of heat generated by the heater wire to the superconducting coil. Invented and illustrated as a permanent current switch 10.

そこで、図2に示すように、本実施形態による永久電流スイッチ10は、超電導線(CuNi/NbTi線)が巻回されたスイッチ部(PCS部)11とは別に、永久電流スイッチ10の引き出し線側に熱伝導率が小さいCuNi/NbTi線のみを巻回した熱抵抗部12を設けた。
この永久電流スイッチ10は、永久電流を流す閉回路を形成するために、超電導コイル3と導線(ケーブル)によって接続されるものであり、巻枠13、ヒータ線14、スイッチ部11、及び熱抵抗部12を含んで構成される。以下、順に説明する。
Therefore, as shown in FIG. 2, the permanent current switch 10 according to the present embodiment is different from the switch portion (PCS portion) 11 around which the superconducting wire (CuNi / NbTi wire) is wound. On the side, a thermal resistance portion 12 in which only a CuNi / NbTi wire having a low thermal conductivity was wound was provided.
The permanent current switch 10 is connected to the superconducting coil 3 by a conductive wire (cable) to form a closed circuit for flowing a permanent current, and includes a winding frame 13, a heater wire 14, a switch unit 11, and a thermal resistance. The unit 12 is configured. Hereinafter, it demonstrates in order.

図3を参照して、巻枠13の構成を説明する。図3は、巻枠13を示す図であり、図3(a)は巻枠13の全体を示す図、図3(b)は巻枠13の軸心を通る面で切断したときの断面図である。巻枠13は、円柱形状の胴部13A、胴部13Aより大きい径を有し胴部13Aに隣り合う円柱形状の胴部13B、胴部13Aと胴部13Bの間に設けられた仕切壁13C、胴部13Aの端部に設けられた円板状の平板(フランジ)13D、及び胴部13Bの端部に設けられた円板状の平板(フランジ)13Eを有している。なお、巻枠13を構成する胴部13A,13B、仕切壁13C、フランジ13D,13Eは、後述するヒータ線14による発熱の伝熱を抑制するために、例えばGFRP(ガラス繊維強化プラスチック)などの熱抵抗の高い材料で構成されている。   The configuration of the reel 13 will be described with reference to FIG. 3A and 3B are diagrams showing the reel 13, FIG. 3A is a diagram showing the entire reel 13, and FIG. 3B is a cross-sectional view taken along a plane passing through the axis of the reel 13. It is. The reel 13 has a cylindrical body portion 13A, a cylindrical body portion 13B having a larger diameter than the body portion 13A and adjacent to the body portion 13A, and a partition wall 13C provided between the body portion 13A and the body portion 13B. And a disc-shaped flat plate (flange) 13D provided at the end of the trunk portion 13A, and a disc-shaped flat plate (flange) 13E provided at the end of the trunk portion 13B. The body portions 13A and 13B, the partition walls 13C, and the flanges 13D and 13E constituting the winding frame 13 are made of, for example, GFRP (glass fiber reinforced plastic) or the like in order to suppress heat transfer of heat generated by the heater wire 14 to be described later. Consists of materials with high thermal resistance.

胴部13Aは、例えば、外観が外径約30mmの円柱形状の部材であって、例えば、該円柱形状の軸心方向に沿った長さ(円柱の高さ)が、該軸心に直交する直径(円柱の直径)の数倍となるように形成されている。
胴部13Bは、胴部13Aと同じく外観が外径約37mmの円柱形状の部材であるが、胴部13Aに対して、該円柱形状の軸心方向に沿った長さ(円柱の高さ)は短く、該軸心に直交する直径(円柱の直径)は大きくなるように形成されている。
The body portion 13A is, for example, a cylindrical member having an outer diameter of about 30 mm, and the length (the height of the cylinder) along the axial direction of the cylindrical shape is orthogonal to the axial center, for example. It is formed to be several times the diameter (diameter of the cylinder).
The trunk portion 13B is a cylindrical member having an outer diameter of about 37 mm as in the trunk portion 13A. However, the trunk portion 13B has a length along the axial direction of the columnar shape (the height of the cylinder) with respect to the trunk portion 13A. Is short, and the diameter perpendicular to the axis (the diameter of the cylinder) is formed to be large.

胴部13Aと胴部13Bは、互いの一端を対向させて各々の軸心がほぼ一直線に連続するように配置されている。
仕切壁13Cは、所定の厚みを有する円板形状に形成された部材であって、胴部13A及び胴部13Bの直径よりも大きな直径を有し、その厚みは胴部13A及び胴部13Bの軸心方向に沿った長さよりも短くなるように形成されている。また、仕切壁13Cは、該円板形状の軸心が胴部13A及び胴部13Bの軸心とほぼ一直線に連続するように、胴部13Aと胴部13Bの互いに対向する端部に接続される。さらに、この仕切壁13Cは、外周部に、胴部13A側と胴部13B側を連通する切欠き13Fを形成している。
The trunk portion 13A and the trunk portion 13B are disposed so that their respective ends are opposed to each other and the respective axial centers are arranged substantially in a straight line.
13 C of partition walls are the members formed in the disk shape which has predetermined | prescribed thickness, Comprising: The diameter larger than the diameter of trunk | drum 13A and trunk | drum 13B, The thickness is the trunk | drum 13A and trunk | drum 13B. It is formed to be shorter than the length along the axial direction. Further, the partition wall 13C is connected to the end portions of the body portion 13A and the body portion 13B facing each other so that the disc-shaped shaft center is substantially aligned with the shaft centers of the body portion 13A and the body portion 13B. The Further, the partition wall 13C is formed with a notch 13F in the outer peripheral portion for communicating the trunk portion 13A side and the trunk portion 13B side.

フランジ13D,13Eは、仕切壁13Cとほぼ同様の形状を有する部材であって、仕切壁13Cとほぼ同じ直径を有し所定の厚みを有する円板形状に形成されている。フランジ13Dは、当該円板形状の軸心が胴部13Aの軸心とほぼ一直線に連続するように、仕切壁13Cに接続された胴部13Aの端部に設けられる。また、フランジ13Eは、当該円板形状の軸心が胴部13Bの軸心とほぼ一直線に連続するように、仕切壁13Cに接続された胴部13Bの端部に設けられる。   The flanges 13D and 13E are members having substantially the same shape as the partition wall 13C, and are formed in a disk shape having a diameter substantially the same as that of the partition wall 13C and having a predetermined thickness. The flange 13D is provided at the end portion of the trunk portion 13A connected to the partition wall 13C so that the disc-shaped axis is continuous with the axial center of the trunk portion 13A. Further, the flange 13E is provided at the end of the trunk portion 13B connected to the partition wall 13C so that the disc-shaped axis is continuous with the axis of the trunk portion 13B.

さらに、フランジ13D,13Eは共に、外周部に、一方の端面と他方の端面を連通する溝状の切欠き13G,13Hを形成している。フランジ13Dにおいて、2本の溝状の切欠き13Gがほぼ平行に形成されることで、2本の切欠き13Gの間に突起13Iが形成されている。フランジ13Eにおいても、2本の溝状の切欠き13Hがほぼ平行に形成されることで、2本の切欠き13Hの間に突起13Jが形成されている。   Further, both the flanges 13D and 13E are formed with groove-shaped notches 13G and 13H communicating the one end face and the other end face on the outer peripheral portion. In the flange 13D, two groove-shaped notches 13G are formed substantially in parallel, so that a protrusion 13I is formed between the two notches 13G. Also in the flange 13E, two groove-shaped notches 13H are formed substantially in parallel, so that a protrusion 13J is formed between the two notches 13H.

図3に示すように、フランジ13D,13Eの切欠き13G,13Hは、外周面上において、仕切壁13Cに形成された切欠き13Fの位置に対応する位置、つまり、仕切壁13Cの切欠き13Fに対する回転角がほぼゼロ0°となる位置に形成されている。しかし、フランジ13Eの切欠き13Hは、仕切壁13Cの切欠き13Fに対する回転角が180°となる位置に形成されていてもよい。この理由は、後に説明する。   As shown in FIG. 3, the notches 13G and 13H of the flanges 13D and 13E are located on the outer peripheral surface at positions corresponding to the positions of the notches 13F formed in the partition wall 13C, that is, the notches 13F of the partition wall 13C. Is formed at a position where the rotation angle with respect to is substantially zero 0 °. However, the notch 13H of the flange 13E may be formed at a position where the rotation angle with respect to the notch 13F of the partition wall 13C is 180 °. The reason for this will be described later.

巻枠13は、上述のように構成された胴部13A,13B、仕切壁13C、フランジ13D,13Eを有するように構成されているが、この巻枠13は、一本の円柱から削り出された部材のように、胴部13A,13B、仕切壁13C、フランジ13D,13Eを一体に形成したものである。
図4を参照して、ヒータ線14について説明する。図4は、ヒータ線14が巻回された巻枠13を示す図であり、図4(a)は巻枠13の全体を示す図、図4(b)は巻枠13の軸心を通る面で切断したときの断面図である。
The reel 13 is configured to have the body portions 13A and 13B, the partition wall 13C, and the flanges 13D and 13E configured as described above. However, the reel 13 is cut out from a single cylinder. Like the other members, the body portions 13A and 13B, the partition wall 13C, and the flanges 13D and 13E are integrally formed.
The heater wire 14 will be described with reference to FIG. 4A and 4B are views showing the reel 13 around which the heater wire 14 is wound. FIG. 4A shows the entire reel 13 and FIG. 4B passes through the axis of the reel 13. It is sectional drawing when cut | disconnecting by a surface.

ヒータ線14は、コンスタンタン線など、通電により発熱する導電性の部材であり、例
えば外径30mmの胴部13Aに巻幅200mm程度で100Ωに相当する長さが無誘導巻でコイル状に巻き付けられる。図4では、胴部13Aの径方向において重なり合わず一層となるように、ヒータ線が胴部13Aの長手方向に沿って巻回されている。なお、ヒータ線14は、フランジ13Dを通して胴部13Aに導入されて巻回され、フランジ13Dを通して胴部13Aから引き出される。
The heater wire 14 is a conductive member that generates heat when energized, such as a constantan wire, and is wound around the body portion 13A having an outer diameter of 30 mm in a coil shape with a non-inductive winding length of about 200 mm and a length corresponding to 100Ω. . In FIG. 4, the heater wire is wound along the longitudinal direction of the trunk portion 13A so as not to overlap in the radial direction of the trunk portion 13A. The heater wire 14 is introduced and wound around the body 13A through the flange 13D, and is drawn from the body 13A through the flange 13D.

図5を参照して、スイッチ部11について説明する。図5は、スイッチ部11が巻回された巻枠13を示す図であり、図5(a)は巻枠13の全体を示す図、図5(b)は巻枠13の軸心を通る面で切断したときの断面図である。
スイッチ部11は、胴部13Aにおいてコイル状に巻回された超電導線であり、胴部13Aに巻回されたヒータ線14の上に無誘導巻でコイル状に巻き付けられたものである。スイッチ部11として巻回される超電導線は、例えば、径Φが1.0mmのCu10Ni/NbTi線(例えば、断面比1.3のCu-10wt%Ni/NbTi線)である。
The switch unit 11 will be described with reference to FIG. 5A and 5B are diagrams illustrating the reel 13 around which the switch unit 11 is wound. FIG. 5A is a diagram illustrating the entire reel 13, and FIG. 5B passes through the axis of the reel 13. It is sectional drawing when cut | disconnecting by a surface.
The switch portion 11 is a superconducting wire wound in a coil shape in the trunk portion 13A, and is wound in a coil shape by non-inductive winding on the heater wire 14 wound in the trunk portion 13A. The superconducting wire wound as the switch unit 11 is, for example, a Cu10Ni / NbTi wire having a diameter Φ of 1.0 mm (for example, a Cu-10 wt% Ni / NbTi wire having a cross-sectional ratio of 1.3).

この超電導線をU字状に折り返して折り返し部11Aを形成し、形成した折り返し部11Aを挟んだ一方側の超電導線と他方側の超電導線の2本の超電導線を隣接させ対にする。こうすることで、折り返し部11Aを挟んだ一方側の超電導線から他方側の超電導線へ直流電流を流したときに、一方側の電流の向きと他方側の電流の向きが常に正反対となる。このように対にして束ねられた超電導線の折り返し部11Aをフランジ13Dの突起13Iに引っかけて、折り返し部11Aに近い超電導線から順に、対となった2本の超電導線の一方側と他方側が胴部13Aの径方向において重なり合わず、胴部13Aの長手方向に沿って交互に並ぶように胴部13Aに巻回する。これによって、スイッチ部11の無誘導巻が実現する。   The superconducting wire is folded into a U-shape to form a folded portion 11A, and two superconducting wires, one superconducting wire and the other superconducting wire sandwiching the formed folded portion 11A, are adjacent to each other to form a pair. In this way, when a direct current is passed from the superconducting wire on one side across the folded portion 11A to the superconducting wire on the other side, the direction of the current on the one side is always opposite to the direction of the current on the other side. The folded portion 11A of the superconducting wires bundled in this way is hooked on the protrusion 13I of the flange 13D, and the one side and the other side of the two superconducting wires paired in order from the superconducting wire close to the folded portion 11A It winds around 13 A of trunk | drums so that it may not overlap in the radial direction of 13 A of trunk | drums, but may line up along the longitudinal direction of 13 A of trunk | drums. Thereby, non-inductive winding of the switch unit 11 is realized.

図5(b)の断面図に示すように、本実施形態では、例えば室温時の両端抵抗が60Ωとなる長さの超電導線を複数の層(例えば、7層)に重ねて巻回している。複数の層に重ねて巻回するときは、各層において、対となった2本の超電導線のうちどちらかを1回だけ多く巻回し、胴部13Aの径方向に隣接する超電導線に対しても電流の流れる方向が正反対となるように超電導線を巻回する。   As shown in the cross-sectional view of FIG. 5B, in the present embodiment, for example, a superconducting wire having a length at which both-end resistance at room temperature is 60Ω is wound around a plurality of layers (for example, seven layers). . When winding on a plurality of layers, in each layer, either one of the two superconducting wires paired is wound only once, and the superconducting wire adjacent to the radial direction of the trunk portion 13A is wound. However, the superconducting wire is wound so that the direction of current flow is opposite.

図5(b)を参照して、上述のように超電導線を巻回することで、巻回された超電導線に流れる電流の向きは、隣接する超電導線に流れる電流の向きとは反対方向となり、各々の超電導線が発する電磁力は、隣接する超電導線が発する正反対方向の電磁力と打ち消し合うことによって解消(キャンセル)される。
このように超電導線が巻回されたスイッチ部11は、超電導転移点以下に冷却されれば、電気抵抗がほぼゼロ0となるのでON(接続)状態となり、ヒータ線14の発熱によって超電導転移点を超えれば、電気抵抗が発生するのでOFF(切断)状態となる。
With reference to FIG. 5B, by winding the superconducting wire as described above, the direction of the current flowing through the wound superconducting wire is opposite to the direction of the current flowing through the adjacent superconducting wire. The electromagnetic force generated by each superconducting wire is canceled (canceled) by canceling out the electromagnetic force in the opposite direction generated by the adjacent superconducting wire.
When the switch unit 11 wound with the superconducting wire is cooled below the superconducting transition point, the electrical resistance becomes almost zero 0, so that it is turned on (connected), and the heat generation of the heater wire 14 causes the superconducting transition point. If it exceeds, an electric resistance is generated, so that it is turned off (disconnected).

図6を参照して、熱抵抗部12について説明する。図6は、熱抵抗部12が巻回された巻枠13を示す図であり、図6(a)は巻枠13の全体を示す図、図6(b)は巻枠13の軸心を通る面で切断したときの断面図である。
まず、胴部13Aに超電導線を巻回してスイッチ部11を形成した後、スイッチ部11として巻回した超電導線の対を仕切壁13Cの切欠き13Fに掛け渡して、胴部13B側に引き出す。
The thermal resistance unit 12 will be described with reference to FIG. 6A and 6B are diagrams showing the reel 13 around which the thermal resistance portion 12 is wound. FIG. 6A is a diagram showing the entire reel 13, and FIG. 6B is the axis of the reel 13. It is sectional drawing when cut | disconnecting in the surface which passes.
First, after the superconducting wire is wound around the trunk portion 13A to form the switch portion 11, the pair of superconducting wires wound as the switch portion 11 is stretched over the notch 13F of the partition wall 13C and pulled out to the trunk portion 13B side. .

熱抵抗部12は、この胴部13B側に引き出された超電導線を、例えば外径37mmの胴部13Bに巻幅80mm程度で複数の層(例えば、3層)に重ねて巻回することで構成され、超電導線は、フランジ13Eの切欠き(スイッチ口出し部)13Hからリード線(引き出し線)として引き出される。このように、熱抵抗部12は、スイッチ部12と同一の超電導線で連続してコイル状に巻回されており、スイッチ部11と電気的に直列に接続される。   The thermal resistance portion 12 is obtained by winding the superconducting wire drawn out toward the body portion 13B on a plurality of layers (for example, 3 layers) with a winding width of about 80 mm around the body portion 13B having an outer diameter of 37 mm. The superconducting wire is configured to be drawn out as a lead wire (leading wire) from a notch (switch opening portion) 13H of the flange 13E. As described above, the thermal resistance portion 12 is continuously wound in a coil shape with the same superconducting wire as the switch portion 12 and is electrically connected in series with the switch portion 11.

フランジ13Eから引き出されたリード線は、引き出された直後にCu安定化のNbTi線(Cu/NbTi線)に超電導接続され、超電導コイル3と電気的に接続される。
このとき、超電導線は、胴部13Bにおいてもスイッチ部11と同様の方法で無誘導巻によって巻回されて、各々の超電導線が発する電磁力は、隣接する超電導線が発する正反対方向の電磁力と打ち消し合うことによって解消(キャンセル)される。
The lead wire drawn out from the flange 13E is superconductively connected to a Cu-stabilized NbTi wire (Cu / NbTi wire) immediately after being drawn out, and is electrically connected to the superconducting coil 3.
At this time, the superconducting wire is wound by non-inductive winding in the body portion 13B in the same manner as the switch portion 11, and the electromagnetic force generated by each superconducting wire is the electromagnetic force in the opposite direction generated by the adjacent superconducting wire. Are canceled (cancelled) by canceling each other.

上述したとおり、熱抵抗部12は、永久電流スイッチ10から外部へ伝わる熱を抑制するために設けられたものである。具体的には、熱抵抗部12は、ヒータ線14で発生した熱が永久電流スイッチ10から引き出されるリード線(引き出し線)を伝わって永久電流スイッチ10の外部へ出ないように、つまり、永久電流スイッチ10の外部へ伝わる熱量が最小限となるように抑制することを目的とするものである。   As described above, the thermal resistance section 12 is provided to suppress heat transmitted from the permanent current switch 10 to the outside. Specifically, the thermal resistance section 12 prevents the heat generated in the heater wire 14 from being transmitted to the outside of the permanent current switch 10 through the lead wire (leading wire) drawn from the permanent current switch 10, that is, permanently. The object is to suppress the amount of heat transmitted to the outside of the current switch 10 to a minimum.

この目的のためには、図2及び図6に示すように、熱抵抗部12で巻回された超電導線の最も胴部13B寄りの内径(最内径)が、スイッチ部11で巻回された超電導線又はヒータ線14の最も胴部13A寄りの内径(最内径)よりも大きいと好ましい。一例として、スイッチ部11で巻回された超電導線の最も胴13Aから離れた層の外径(超電導線の径方向に沿った最外径)が、熱抵抗部12で巻回された超電導線の最も胴部13B寄りの層(最内層)の外径と略同一であるとよい。   For this purpose, as shown in FIGS. 2 and 6, the inner diameter (most inner diameter) of the superconducting wire wound around the thermal resistance portion 12 is wound around the switch portion 11. It is preferable that the superconducting wire or the heater wire 14 is larger than the inner diameter (the innermost diameter) closest to the trunk portion 13A. As an example, the superconducting wire wound around the thermal resistance portion 12 has an outer diameter (the outermost diameter along the radial direction of the superconducting wire) of the superconducting wire wound around the switch portion 11 that is farthest from the body 13A. The outer diameter of the layer (innermost layer) closest to the body portion 13B may be substantially the same.

これによって、超電導線が胴部13Aから引き出される位置から、胴部13Bから引き出される位置(切欠き13Hの位置)までの距離を大きく取ることができるので、永久電流スイッチ10の外部へ伝わる熱量を抑制することができる。また、仕切壁13Cの切欠き13Fに対する回転角が180°となる位置に切欠き13Hを形成すると、超電導線が胴部13Aから引き出される位置から、切欠き13Hの位置までの距離をさらに大きく取ることができるので、永久電流スイッチ10の外部へ伝わる熱量をさらに抑制することができる。   As a result, the distance from the position where the superconducting wire is pulled out from the trunk portion 13A to the position where the superconducting wire is pulled out from the trunk portion 13B (the position of the notch 13H) can be increased, so the amount of heat transmitted to the outside of the permanent current switch 10 can be reduced. Can be suppressed. In addition, when the notch 13H is formed at a position where the rotation angle of the partition wall 13C with respect to the notch 13F is 180 °, the distance from the position where the superconducting wire is drawn out from the trunk portion 13A to the position of the notch 13H is further increased. Therefore, the amount of heat transmitted to the outside of the permanent current switch 10 can be further suppressed.

上述のようにスイッチ部11及び熱抵抗部12が形成された巻枠13をエポキシ樹脂であるEPON(登録商標)などに含浸することで、巻枠13に対してスイッチ部11及び熱抵抗部12を固定すれば、本実施形態による永久電流スイッチ10が得られる。
本実施形態による永久電流スイッチ10は、スイッチ部11及び熱抵抗部12で巻回された超電導線に対して、エポキシ樹脂などに含浸して固定するといった含浸処理を施すことで、超電導線が振動することによるクエンチを抑制することができる。
By impregnating EPON (registered trademark), which is an epoxy resin, with the winding frame 13 in which the switch unit 11 and the thermal resistance unit 12 are formed as described above, the switching unit 11 and the thermal resistance unit 12 are placed on the winding frame 13. Is fixed, the permanent current switch 10 according to the present embodiment is obtained.
In the permanent current switch 10 according to the present embodiment, the superconducting wire is vibrated by subjecting the superconducting wire wound around the switch portion 11 and the thermal resistance portion 12 to impregnation with an epoxy resin and fixing. Quenching by doing can be suppressed.

本実施形態による永久電流スイッチ10の特徴をまとめると、以下のとおりである。ヒータ線14が通電によって発熱すると、スイッチ部11の超電導線は常伝導転移をする。しかし、ヒータ線14が発する熱は、熱抵抗の高い熱抵抗部12の超電導線(CuNi/NbTi線)によって、永久電流スイッチ10の外部のリード線に伝わる熱移動は小さくなる。   The characteristics of the permanent current switch 10 according to the present embodiment are summarized as follows. When the heater wire 14 generates heat by energization, the superconducting wire of the switch unit 11 undergoes normal conduction transition. However, the heat generated by the heater wire 14 is less transferred by the superconducting wire (CuNi / NbTi wire) of the heat resistance portion 12 having a high thermal resistance, which is transferred to the lead wire outside the permanent current switch 10.

次に、ヒータ線14への通電を停めて、スイッチ部11を超電導転移させた後は、スイッチ部11及び熱抵抗部12に超電導コイル3の定格運転電流が通電されるが、スイッチ部11及び熱抵抗部12ともに無誘導巻線によって内部の電磁力は殆ど打ち消しあっている。加えてスイッチ部11及び熱抵抗部12とも含浸処理によって固定されているため、超電導線の振動などによるクエンチのリスクは非常に小さくなる。   Next, after the energization of the heater wire 14 is stopped and the switch unit 11 is superconductively transferred, the rated operating current of the superconducting coil 3 is supplied to the switch unit 11 and the thermal resistance unit 12. The internal electromagnetic force almost cancels out due to the non-inductive winding in both of the thermal resistance portions 12. In addition, since both the switch part 11 and the thermal resistance part 12 are fixed by the impregnation treatment, the risk of quenching due to vibration of the superconducting wire is very small.

ここで、図1に戻って、超電導装置1内における永久電流スイッチ10の配置について説明する。永久電流スイッチ10は、超電導コイル3が発する磁場の影響が少ない位置で、熱抵抗の低い板状の冷却部材(例えば銅製の部材)7に物理的に接触することで支持され、この冷却部材7が冷凍機5の第2段ステージ52と物理的に接続される。このようにして、永久電流スイッチ10は、冷凍機5の第2段ステージ52と熱的に接続されるので、スイッチ部11の超電導転移点である4.2K付近にまで冷却される。   Here, returning to FIG. 1, the arrangement of the permanent current switch 10 in the superconducting device 1 will be described. The permanent current switch 10 is supported by physically contacting a plate-like cooling member (for example, a copper member) 7 having a low thermal resistance at a position where the influence of the magnetic field generated by the superconducting coil 3 is small. Are physically connected to the second stage 52 of the refrigerator 5. In this way, the permanent current switch 10 is thermally connected to the second stage 52 of the refrigerator 5, so that it is cooled to around 4.2 K, which is the superconducting transition point of the switch unit 11.

また、超電導装置1において超電導コイル3を液体ヘリウムなどの液体冷媒で冷却する場合は、永久電流スイッチ11を超電導コイル3を冷却する液体冷媒に浸漬するように配置し、超電導転移点以下に冷却しても構わない。
上述のように配置された永久電流スイッチ10の動作について説明する。
本実施形態による永久電流スイッチ10を、図1に示すような超電導装置1における冷凍機伝導冷却型の1.5T(テスラ)MRIマグネット(超電導コイル3)内の0.5T磁場環境下に設置し、動作試験を実施した。
When the superconducting coil 3 is cooled with a liquid refrigerant such as liquid helium in the superconducting device 1, the permanent current switch 11 is disposed so as to be immersed in the liquid refrigerant that cools the superconducting coil 3, and is cooled below the superconducting transition point. It doesn't matter.
The operation of the permanent current switch 10 arranged as described above will be described.
The permanent current switch 10 according to the present embodiment is installed in a 0.5T magnetic field environment in a refrigerator conduction cooling type 1.5T (Tesla) MRI magnet (superconducting coil 3) in the superconducting apparatus 1 as shown in FIG. An operation test was conducted.

まず、ヒータ線14に約50mWの電流を通電して発熱させ、スイッチ部11を常伝導転移させた。このとき、スイッチ部11の温度が約10Kまで上昇したが、スイッチ口出し部13Hの温度は4.2K付近であり、ヒータ線14の発熱はスイッチ口出し部13H
以降のリード線部まで伝わっていなかった。
次に、ヒータ部14の通電を止めてスイッチ部11を超電導転移させ、超電導コイル3を永久電流モードでの運転へ移行した。このとき、スイッチ部11および熱抵抗部12には約400Aの電流が流れていたが、ヒータ部14及びスイッチ部11はクエンチすることなく、永久電流スイッチ10は安定して動作した。
First, a current of about 50 mW was applied to the heater wire 14 to generate heat, and the switch unit 11 was transferred to normal conduction. At this time, although the temperature of the switch part 11 rose to about 10K, the temperature of the switch outlet part 13H is around 4.2K, and the heat generation of the heater wire 14 is caused by the switch outlet part 13H.
It was not transmitted to the subsequent lead wires.
Next, the energization of the heater unit 14 was stopped to switch the switch unit 11 to the superconducting state, and the superconducting coil 3 was shifted to the operation in the permanent current mode. At this time, a current of about 400 A was flowing through the switch section 11 and the thermal resistance section 12, but the heater section 14 and the switch section 11 were not quenched, and the permanent current switch 10 operated stably.

最後に、図7を参照して、本実施形態による永久電流スイッチ10の変形例を説明する。図7は、熱抵抗部12に層間絶縁材21が挿入された永久電流スイッチ20の全体を示す図である。
熱抵抗部12において超電導線を複数の層に重ねて巻回する際に、層と層の間(層間)に断熱材(層間絶縁材21)を挟み込みながら巻回する。この層間絶縁材21によって層間での熱の移動が抑制されるので、超電導線が胴部13Aから引き出される位置から、より上の層へ、つまり熱抵抗部12の内周側から外周側への熱の移動を抑制することができ、より確実に永久電流スイッチ20の外部へ伝わる熱量を抑制することができる。
Finally, a modification of the permanent current switch 10 according to the present embodiment will be described with reference to FIG. FIG. 7 is a diagram illustrating the entire permanent current switch 20 in which the interlayer insulating material 21 is inserted into the thermal resistance portion 12.
When the superconducting wire is wound on a plurality of layers in the thermal resistance portion 12, it is wound while sandwiching a heat insulating material (interlayer insulating material 21) between the layers (interlayer). Since heat transfer between the layers is suppressed by the interlayer insulating material 21, from the position where the superconducting wire is drawn out from the body portion 13A to the upper layer, that is, from the inner peripheral side to the outer peripheral side of the thermal resistance portion 12. The movement of heat can be suppressed, and the amount of heat transmitted to the outside of the permanent current switch 20 can be suppressed more reliably.

ところで、今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。特に、今回開示された実施形態において、明示的に開示されていない事項、例えば、動作条件や測定条件、各種パラメータ、構成物の寸法、重量、体積などは、当業者が通常実施する範囲を逸脱するものではなく、通常の当業者であれば、容易に想定することが可能な値を採用している。   By the way, it should be thought that embodiment disclosed this time is an illustration and restrictive at no points. In particular, in the embodiment disclosed this time, matters that are not explicitly disclosed, such as operating conditions and measurement conditions, various parameters, dimensions, weights, volumes, and the like of a component deviate from a range that is normally implemented by those skilled in the art. Instead, values that can be easily assumed by those skilled in the art are employed.

なお、スイッチ部及び熱抵抗部において無誘導巻を実現する方法は、上述の方法に限らない。スイッチ部及び熱抵抗部における電磁力を解消(キャンセル)することができれば、既知の方法を用いて無誘導巻を実現してもよい。   In addition, the method of implement | achieving non-inductive winding in a switch part and a thermal resistance part is not restricted to the above-mentioned method. If the electromagnetic force in the switch part and the thermal resistance part can be eliminated (cancelled), non-inductive winding may be realized using a known method.

1 超電導装置
2 収納容器
3 超電導コイル
4 真空容器
5 冷凍機
6,7 冷却部材
10,20 永久電流スイッチ
11 スイッチ部
11A 折り返し部
12 熱抵抗部
13 巻枠
13A,13B 胴部
13C 仕切壁
13D,13E フランジ
13F,13G 切欠き
13H 切欠き(スイッチ口出し部)
14 ヒータ線
21 層間絶縁材
DESCRIPTION OF SYMBOLS 1 Superconducting device 2 Storage container 3 Superconducting coil 4 Vacuum container 5 Refrigerator 6,7 Cooling member 10,20 Permanent current switch 11 Switch part 11A Folding part 12 Heat resistance part 13 Winding frame 13A, 13B Trunk part 13C Partition wall 13D, 13E Flange 13F, 13G Notch 13H Notch (Switch outlet)
14 Heater wire 21 Interlayer insulation material

Claims (9)

コイルを巻回するための巻枠と、前記巻枠にコイル状に巻回されたヒータ線と、前記巻枠にコイル状に巻回された超電導線と、前記超電導線に接続されて前記巻枠から引き出された引き出し線と、を備え、超電導回路を断続する永久電流スイッチであって、
前記巻枠は、
前記超電導線が前記ヒータ線に重なるように巻回されたスイッチ部と、
前記超電導線のみを巻回することで、前記スイッチ部から引き出し線への伝熱を抑制する熱抵抗部と、
を有することを特徴とする永久電流スイッチ。
A winding frame for winding a coil, a heater wire wound in a coil shape on the winding frame, a superconducting wire wound in a coil shape on the winding frame, and the superconducting wire connected to the winding A permanent current switch for interrupting the superconducting circuit, comprising a lead wire drawn out from the frame,
The reel is
A switch unit wound so that the superconducting wire overlaps the heater wire;
By winding only the superconducting wire, a heat resistance portion that suppresses heat transfer from the switch portion to the lead wire, and
A permanent current switch comprising:
前記スイッチ部は、無誘導巻された前記超電導線によって構成され、
前記熱抵抗部は、無誘導巻された前記超電導線によって構成されることを特徴とする請求項1に記載の永久電流スイッチ。
The switch part is constituted by the superconducting wire wound non-inductively,
2. The permanent current switch according to claim 1, wherein the thermal resistance portion is constituted by the superconducting wire wound in a non-inductive manner.
前記巻枠には、
前記スイッチ部と前記熱抵抗部を熱的に仕切る仕切壁が形成されていることを特徴とする請求項1又は2に記載の永久電流スイッチ。
In the reel,
The permanent current switch according to claim 1, wherein a partition wall that thermally partitions the switch portion and the thermal resistance portion is formed.
前記スイッチ部で巻回された超電導線と前記熱抵抗部で巻回された超電導線は、電気的に直列に接続されていることを特徴とする請求項1〜3のいずれかに記載の永久電流スイッチ。   The superconducting wire wound by the said switch part and the superconducting wire wound by the said thermal resistance part are electrically connected in series, The permanent in any one of Claims 1-3 characterized by the above-mentioned. Current switch. 前記熱抵抗部で巻回された超電導線の最内径が、前記スイッチ部で巻回された超電導線又はヒータ線の最内径よりも大きいことを特徴とする請求項1〜4のいずれかに記載の永久電流スイッチ。   5. The inner diameter of a superconducting wire wound around the thermal resistance portion is larger than the innermost diameter of a superconducting wire or heater wire wound around the switch portion. Of permanent current switch. 前記スイッチ部における前記超電導線は、前記巻枠の径方向において複数の層を形成するように巻回されると共に、前記熱抵抗部における前記超電導線は、前記巻枠の径方向において少なくとも一層を形成するように巻回され、
前記スイッチ部で巻回された超電導線の径方向に沿った最外径が、前記熱抵抗部で巻回された超電導線の最内層の外径と略同一であることを特徴とする請求項5に記載の永久電流スイッチ。
The superconducting wire in the switch portion is wound so as to form a plurality of layers in the radial direction of the reel, and the superconducting wire in the thermal resistance portion is at least one layer in the radial direction of the reel. Wound to form,
The outermost diameter along the radial direction of the superconducting wire wound by the switch part is substantially the same as the outer diameter of the innermost layer of the superconducting wire wound by the thermal resistance part. 5. The permanent current switch according to 5.
前記スイッチ部及び前記熱抵抗部で巻回された超電導線に対して含浸処理が施されていることを特徴とする請求項1〜6のいずれかに記載の永久電流スイッチ。   The permanent current switch according to any one of claims 1 to 6, wherein an impregnation treatment is applied to a superconducting wire wound around the switch section and the thermal resistance section. 請求項1〜7のいずれかに記載の永久電流スイッチと、超電導線が巻回された超電導コイルと、前記超電導コイルを収納する収納容器と、前記超電導コイル及び前記収納容器の少なくとも一方を超電導点移転以下に冷却する冷凍機と、を有し、
前記永久電流スイッチが、前記収納容器内で前記冷凍機に熱的に接続されていること特徴とする超電導装置。
A permanent current switch according to any one of claims 1 to 7, a superconducting coil around which a superconducting wire is wound, a housing container for housing the superconducting coil, and at least one of the superconducting coil and the housing container is a superconducting point. A refrigerator that cools below the relocation,
The superconducting device, wherein the permanent current switch is thermally connected to the refrigerator in the storage container.
請求項1〜7のいずれかに記載の永久電流スイッチを有し、
前記永久電流スイッチが、液体の冷媒に浸漬されていることを特徴とする超電導装置。
The permanent current switch according to any one of claims 1 to 7,
The superconducting device, wherein the permanent current switch is immersed in a liquid refrigerant.
JP2013069191A 2013-03-28 2013-03-28 Permanent current switch and superconducting device having the same Pending JP2014192490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013069191A JP2014192490A (en) 2013-03-28 2013-03-28 Permanent current switch and superconducting device having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013069191A JP2014192490A (en) 2013-03-28 2013-03-28 Permanent current switch and superconducting device having the same

Publications (1)

Publication Number Publication Date
JP2014192490A true JP2014192490A (en) 2014-10-06

Family

ID=51838448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013069191A Pending JP2014192490A (en) 2013-03-28 2013-03-28 Permanent current switch and superconducting device having the same

Country Status (1)

Country Link
JP (1) JP2014192490A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104579280A (en) * 2014-11-18 2015-04-29 中国科学院电工研究所 Superconductive switch for conducting cooling superconductive magnet
JP2020202240A (en) * 2019-06-07 2020-12-17 株式会社東芝 Permanent current switch, superconducting magnet device, and method for operating superconducting magnet device
JP2021118186A (en) * 2020-01-22 2021-08-10 株式会社東芝 Superconducting electromagnet

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05327044A (en) * 1992-05-25 1993-12-10 Mitsubishi Electric Corp Persistent current switch
JPH08125242A (en) * 1994-10-20 1996-05-17 Hitachi Ltd Permanent current switch
JPH08162318A (en) * 1994-12-05 1996-06-21 Hitachi Ltd Permanent current switch
JPH10294213A (en) * 1997-04-22 1998-11-04 Hitachi Ltd Manufacture for oxide based superconducting magnet system and oxide based superconducting magnet system and superconducting magnetic field generation apparatus
JP2010283186A (en) * 2009-06-05 2010-12-16 Hitachi Ltd Refrigerator-cooled superconducting magnet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05327044A (en) * 1992-05-25 1993-12-10 Mitsubishi Electric Corp Persistent current switch
JPH08125242A (en) * 1994-10-20 1996-05-17 Hitachi Ltd Permanent current switch
JPH08162318A (en) * 1994-12-05 1996-06-21 Hitachi Ltd Permanent current switch
JPH10294213A (en) * 1997-04-22 1998-11-04 Hitachi Ltd Manufacture for oxide based superconducting magnet system and oxide based superconducting magnet system and superconducting magnetic field generation apparatus
JP2010283186A (en) * 2009-06-05 2010-12-16 Hitachi Ltd Refrigerator-cooled superconducting magnet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104579280A (en) * 2014-11-18 2015-04-29 中国科学院电工研究所 Superconductive switch for conducting cooling superconductive magnet
JP2020202240A (en) * 2019-06-07 2020-12-17 株式会社東芝 Permanent current switch, superconducting magnet device, and method for operating superconducting magnet device
JP7346091B2 (en) 2019-06-07 2023-09-19 株式会社東芝 Persistent current switch, superconducting magnet device, and operating method of superconducting magnet device
JP2021118186A (en) * 2020-01-22 2021-08-10 株式会社東芝 Superconducting electromagnet
JP7242580B2 (en) 2020-01-22 2023-03-20 株式会社東芝 superconducting electromagnet

Similar Documents

Publication Publication Date Title
WO2010140398A1 (en) Refrigerator cooling-type superconducting magnet
JP5386550B2 (en) Superconducting switch, superconducting magnet, and MRI
CN108878053B (en) Superconducting lead assembly, cryogenic system, and method of mounting superconducting lead assembly in cryogenic system
JP2014192490A (en) Permanent current switch and superconducting device having the same
US8275429B1 (en) High magnetic field gradient strength superconducting coil system
JP7419208B2 (en) Superconducting current lead and superconducting magnet device
JP6668350B2 (en) Superconducting wire, superconducting coil, MRI and NMR
JP2010272745A (en) Superconducting coil and superconducting magnet device
KR101996388B1 (en) Superconducting switch of superconducting magnet for magnetic levitation
JP2001126916A (en) High-temperature superconducting coil and high- temperature superconducting magnet using the same
JP6021791B2 (en) Permanent current switch and superconducting device equipped with it
JP2006203154A (en) Superconducting pulse coil, and superconducting device and superconducting power storage using same
JPH06174349A (en) Super conductive magnet device
JP2013507753A (en) Method and apparatus for electrical, mechanical and thermal isolation of superconducting magnets
JP2021048154A (en) Conduction-cooled superconducting coil
WO2021014959A1 (en) Conduction-cooling-type superconducting magnet
JP7370307B2 (en) Superconducting magnet device
JP2001110626A (en) Superconducting magnet
KR20120023201A (en) Superconducting magnetic energy storage and design method thereof
WO2023105974A1 (en) Superconducting coil apparatus
JP2014068772A (en) Superconducting magnet apparatus and magnetic resonance imaging apparatus
JP7477959B2 (en) Superconducting coil device and current lead structure for superconducting coil
JP2000133513A (en) Superconducting magnet apparatus
WO2019239650A1 (en) Superconducting electromagnet device
JP4562947B2 (en) Superconducting magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161019

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170307