JP2014190503A - 電力貯蔵装置におけるフライホイール構造 - Google Patents
電力貯蔵装置におけるフライホイール構造 Download PDFInfo
- Publication number
- JP2014190503A JP2014190503A JP2013068928A JP2013068928A JP2014190503A JP 2014190503 A JP2014190503 A JP 2014190503A JP 2013068928 A JP2013068928 A JP 2013068928A JP 2013068928 A JP2013068928 A JP 2013068928A JP 2014190503 A JP2014190503 A JP 2014190503A
- Authority
- JP
- Japan
- Prior art keywords
- flywheel
- power storage
- storage device
- peripheral portion
- superconducting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/16—Mechanical energy storage, e.g. flywheels or pressurised fluids
Landscapes
- Magnetic Bearings And Hydrostatic Bearings (AREA)
Abstract
【課題】本発明は、繊維強化プラスチック又は金属のそれぞれの利点を取り入れたハイブリッド型のフライホイールを形成することにより、容量の最適化とコスト削減を図ることができる電力貯蔵装置におけるフライホイール構造を提供する。
【解決手段】超電導磁気軸受を介して、極低温及び高真空下にあるフライホイール8を回転動作させることにより、電気エネルギーを運動エネルギーとして貯蔵する電力貯蔵装置において、前記フライホイール8の内周部20を破壊周速の小さい材料により形成し、該フライホイール8の外周部21を、前記内周部20より破壊周速の大きい材料により形成したことを特徴とする。
【選択図】図2
【解決手段】超電導磁気軸受を介して、極低温及び高真空下にあるフライホイール8を回転動作させることにより、電気エネルギーを運動エネルギーとして貯蔵する電力貯蔵装置において、前記フライホイール8の内周部20を破壊周速の小さい材料により形成し、該フライホイール8の外周部21を、前記内周部20より破壊周速の大きい材料により形成したことを特徴とする。
【選択図】図2
Description
本発明は、電気エネルギーを回転体の運動エネルギーとして貯蔵する電力貯蔵装置に係り、回転体となるフライホイールの構成材料を最適に選択することにより、小型化とコスト削減を図ることができる電力貯蔵装置におけるフライホイール構造に関する。
電気エネルギーを回転体の運動エネルギーとして貯蔵する電力貯蔵装置として、特許文献1に示される超電導フライホイール蓄電装置が知られている。
超電導フライホイール蓄電装置は、所定の質量及び半径を有するフライホイールと、このフライホイールの中心に固定される回転軸と、この回転軸に連結される非接触トルク伝達部品とで構成される回転体と、これらを収容する内槽と、この内槽周りの輻射シールド槽と、この輻射シールド槽周りの真空容器が配置される構成とされている。また、フライホイールの回転軸は、超電導体を有する磁気支持装置により非接触状態で回転自在に支持されている。
超電導フライホイール蓄電装置は、所定の質量及び半径を有するフライホイールと、このフライホイールの中心に固定される回転軸と、この回転軸に連結される非接触トルク伝達部品とで構成される回転体と、これらを収容する内槽と、この内槽周りの輻射シールド槽と、この輻射シールド槽周りの真空容器が配置される構成とされている。また、フライホイールの回転軸は、超電導体を有する磁気支持装置により非接触状態で回転自在に支持されている。
そして、上記超電導フライホイール蓄電装置では、ロータ及びステータに超電導体を使用した浮上式の磁気支持装置を用いることにより、磁気支持を安定かつ恒久的に行うことができる。
ところで、上記超電導フライホイール蓄電装置では、貯蔵エネルギーは回転体であるフライホイールの回転慣性に比例し、回転数の二乗に比例する。このために、フライホイールをどのような材料構成により形成すれば、効率的かつ経済的なエネルギー貯蔵が可能であるかの研究が進められている。
例えば、特許文献2に示される高速回転体では、内径及び外径を有する円盤状体であって、この円盤状体は繊維強化プラスチック(FRP)からなり、該強化繊維が、円筒座標系のR方向(径方向)、θ方向(周方向)、Z方向(厚さ方向)のそれぞれに配向される構成が示されている。
ところで、上記フライホイール式のエネルギー貯蔵装置では、回転慣性(慣性モーメントに質量を掛けたもの)を大きくすれば、同じ回転数で大きなエネルギーを貯蔵できることから、半径が大きくかつ質量が大きい材料を使えば、大きなエネルギー貯蔵が可能となる。
ところが、回転に伴って生じる遠心力により、たが張り応力(フープ応力)が大きくなり、破壊周速を越えてしまうと、最終的には回転体が裂けてしまうという問題がある。例えば、フライホイールの材料に破壊周速の小さい金属を使用した場合には、その小さい破壊周速のために回転数を上げることができない。一方、フライホイールの材料に、特許文献2に示される繊維強化プラスチックを使用した場合には、半径の増大が可能であるが、質量が小さいために大きなエネルギー貯蔵ができないという不具合がある。
また、その一方で、一般的には、高速回転型のフライホイールには繊維強化プラスチックが選択されることが多いので、小型化には適さず、また、低速回転型のフライホイールには鉄系金属が選択されることが多いので、大型化には適さないとの問題があり、これら双方の問題を解決した中間型の電力貯蔵装置の提供が望まれている。
ところが、回転に伴って生じる遠心力により、たが張り応力(フープ応力)が大きくなり、破壊周速を越えてしまうと、最終的には回転体が裂けてしまうという問題がある。例えば、フライホイールの材料に破壊周速の小さい金属を使用した場合には、その小さい破壊周速のために回転数を上げることができない。一方、フライホイールの材料に、特許文献2に示される繊維強化プラスチックを使用した場合には、半径の増大が可能であるが、質量が小さいために大きなエネルギー貯蔵ができないという不具合がある。
また、その一方で、一般的には、高速回転型のフライホイールには繊維強化プラスチックが選択されることが多いので、小型化には適さず、また、低速回転型のフライホイールには鉄系金属が選択されることが多いので、大型化には適さないとの問題があり、これら双方の問題を解決した中間型の電力貯蔵装置の提供が望まれている。
この発明は、上述した事情に鑑みてなされたものであって、繊維強化プラスチック又は金属のそれぞれの利点を取り入れたハイブリッド型のフライホイールを形成することにより、容量の最適化とコスト削減を図ることができる電力貯蔵装置におけるフライホイール構造を提供するものである。
上記課題を解決するために、この発明は以下の手段を提案している。
本発明は、超電導磁気軸受を介して、極低温及び高真空下にあるフライホイールを回転動作させることにより、電気エネルギーを運動エネルギーとして貯蔵する電力貯蔵装置において、前記フライホイールの外周部を、該フライホイールの内周部より破壊周速の大きい材料により形成したことを特徴とする。
本発明は、超電導磁気軸受を介して、極低温及び高真空下にあるフライホイールを回転動作させることにより、電気エネルギーを運動エネルギーとして貯蔵する電力貯蔵装置において、前記フライホイールの外周部を、該フライホイールの内周部より破壊周速の大きい材料により形成したことを特徴とする。
本発明によれば、フライホイールの外周部を、該フライホイールの内周部より破壊周速の大きい材料により形成した。例えば、フライホイールの内周部を金属により形成し、該フライホイールの外周部を、金属より破壊周速の大きい繊維強化プラスチック(FRP)で形成することにより、該フライホイール全体で一定の質量を確保することができる。また、該フライホイールの外周部を破壊周速が大きい繊維強化プラスチックにより形成することにより、該フライホイールを大径に形成することも可能となる。
これにより、繊維強化プラスチックをフライホイール材料に選択した高速回転型の電力貯蔵装置と、金属をフライホイール材料に選択した低速回転型の電力貯蔵装置がある現状において、一定の質量を確保しかつ破壊周速の向上を図った中間型の電力貯蔵装置を得ることができる。
その結果、需要に応じた大きさの最適かつ経済的なフライホィール式の電力貯蔵装置を実現することが可能となる。
これにより、繊維強化プラスチックをフライホイール材料に選択した高速回転型の電力貯蔵装置と、金属をフライホイール材料に選択した低速回転型の電力貯蔵装置がある現状において、一定の質量を確保しかつ破壊周速の向上を図った中間型の電力貯蔵装置を得ることができる。
その結果、需要に応じた大きさの最適かつ経済的なフライホィール式の電力貯蔵装置を実現することが可能となる。
本発明の実施形態について図1〜図3を参照して説明する。
図1は本発明が適用される電力貯蔵装置1であって、電気エネルギーを回転体の運動エネルギーとして貯蔵する機能を有する。
図1は本発明が適用される電力貯蔵装置1であって、電気エネルギーを回転体の運動エネルギーとして貯蔵する機能を有する。
電力貯蔵装置1は、充電時には余剰電力をフライホイール8の運動エネルギーに変換して貯蔵するとともに、放電時にはこのフライホイール8に蓄積されている運動エネルギーを電気エネルギーに変換する。電力貯蔵装置1は、例えば、超電導体を使用した磁気支持装置によって回転体を支持し、電力を回転体の運動エネルギーとして蓄積する超電導フライホイール蓄電装置である。
電力貯蔵装置1は、電動発電機2と、架台3と、継手4は、連結軸5と、磁気クラッチ6と、回転軸7と、フライホイール8と、超電導磁気軸受9、10と、内槽11と、冷却装置12と、外槽13と、真空排気装置14A、14Bと、制振構造15などを備えている。
電力貯蔵装置1は、電動発電機2と、架台3と、継手4は、連結軸5と、磁気クラッチ6と、回転軸7と、フライホイール8と、超電導磁気軸受9、10と、内槽11と、冷却装置12と、外槽13と、真空排気装置14A、14Bと、制振構造15などを備えている。
電動発電機2は、電動機と発電機とが可逆であり兼用される装置である。電動発電機2は、電気エネルギーによって電動機を回転させてフライホイール8を回転させるとともに、このフライホイール8の運動エネルギーによって発電機を回転させて電力を発生する。電動発電機2は、回転軸2aなどを備えている。架台3は、電力貯蔵装置1の主要部分を支持する部材である。架台3は、外槽13の外側に配置されているフレーム状の部材であり、
電動発電機2、圧縮機12b、外槽13及び真空ポンプ14a、14cなどを支持している。継手4は、電動発電機2側の回転軸2aと磁気クラッチ6側の連結軸5とを接続する装置である。継手4は、例えば、電動発電機2と磁気クラッチ6との間で動力を伝達する軸継手などである。連結軸5は、継手4と磁気クラッチ6とを連結する部材である。連結軸5は、継手4及び磁気クラッチ6と一体となって回転するように、一方の端部が継手4に固定されており、他方の端部が磁気クラッチ6のクラッチ片6aに固定されている。
電動発電機2、圧縮機12b、外槽13及び真空ポンプ14a、14cなどを支持している。継手4は、電動発電機2側の回転軸2aと磁気クラッチ6側の連結軸5とを接続する装置である。継手4は、例えば、電動発電機2と磁気クラッチ6との間で動力を伝達する軸継手などである。連結軸5は、継手4と磁気クラッチ6とを連結する部材である。連結軸5は、継手4及び磁気クラッチ6と一体となって回転するように、一方の端部が継手4に固定されており、他方の端部が磁気クラッチ6のクラッチ片6aに固定されている。
磁気クラッチ6は、電動発電機2と回転軸7との間で動力を伝達する装置である。磁気クラッチ6は、例えば、非接触で動力を断続させる非接触式磁気クラッチのような磁気力トルク伝達部品である。磁気クラッチ6は、永久磁石又はコイル(例えば銅線)のクラッチ片6aと、このクラッチ片6aとの間に磁力を発生する永久磁石のクラッチ片6bとを備えている。磁気クラッチ6は、クラッチ片6aとクラッチ片6bとの間に間隙部を形成するようにクラッチ片6aとクラッチ片6bとが対向しており、外槽13の外側にクラッチ片6aが配置され、内槽11の内側にクラッチ片6bが配置されている。
回転軸7は、フライホイール8と一体となって回転する部材である。回転軸7は、上端部が磁気クラッチ6のクラッチ片6bに固定されている。フライホイール8は、電気エネルギーを運動エネルギーとして保存するための部材である。フライホイール8は、このフライホイール8の中心が回転軸7の中心軸と一致するように、この回転軸7に固定されている。フライホイール8は、回転軸7とともに内槽11内に浮揚状態で収容されており、電力貯蔵用の超電導フライホイールとして機能する。
超電導磁気軸受9、10は、回転軸7を回転自在に支持する装置である。超電導磁気軸受9は、フライホイール8の上方に配置されており、回転軸7の上端那個を非接触で支持している。超電導磁気軸受10は、フライホイール8の下方に配置されており、回転軸7の下端部側を非接触で支持している。超電導磁気軸受9、10は、超電導物質のマイスナー効果による磁気浮上を利用して回転軸7を回転自在に支持するスラスト軸受として機能する。超電導磁気軸受9、10は、超電導バルク体(回転子)9a、10aと超電導コイル(固定子)9b、10bなどを備えており、回転体側の超電導バルク体9a、10aと固定体側の超電導コイル9b、10bとの間に磁場を発生させる。超電導磁気軸受9、10は、超電導バルク体9a、10aと超電導コイル9b、10bとを対向させてこれらの間に磁気反発力を発生させて、超電導バルク体9a、10aと超電導コイル9b、10bとの間に所定の間隔が保持させるように回転軸7をガイドする。超電導磁気軸受9、10は、回転軸7及びフライホイール8を浮揚状態で支持することによって、エネルギー損失の大部分を占める軸受部分の摩擦抵抗を低減している。
超電導バルク体9a、10aは、単結晶と同等の超電導特性を有する高温超電導材料の固まりである。超電導バルク体9a、10aは、例えば、Y系超電導材料などを溶解させてから結晶成長させた溶融成長体であり、冷却することによって超電導特性を発揮する。
内槽11は、内部が極低温/高真空下の容器である。内槽11は、超電導磁気軸受9、10の超電導コイル9b、10bを支持した状態でこの超電導磁気軸受9、10を収容する。また、この内槽11は、超電導磁気軸受9、10の超電導コイル9b、10bを臨界温度以下にするために内部が極低温下に維持されているとともに、フライホイール8の風損を低減するために内部が高真空下に維持されている。
冷却装置12は、内槽1上の内部を冷却する装置である。冷却装置12は、例えば、内槽11内の超電導磁気軸受9、10の超電導コイル9b、10bを液体窒素によって臨界温度以下に冷却する極低混用冷凍機のような熱伝導型冷却装置である。この冷却装置12は、ヘリウムガスの圧縮と膨張とを繰り返して冷却するGM(Gifford-McMahon)冷凍機のような冷凍機12aと、この冷凍機12aに冷媒ガスを供給する圧縮機12bと、冷凍機12aと圧縮機12bとの間で冷媒ガスが流れる可撓性を有する柔軟な管路12cなどを備えている。冷却装置12は、冷凍機12aが内槽11の内側に配置されており、圧縮機12bが外槽13の外側に配置されている。
外槽13は、内部が高真空下の容器である。外槽13は、内槽11を高真空下で収容する真空断熱容器である。外槽13は、内槽11との問に真空断熱層(空間)を形成しており、内槽11とは異なり極低温下ではないが、この内槽11と同様に高真空下でこの内槽11を収容している。
真空排気装置14Aは、内槽11の内部を真空状態にする装置であり、真空排気装置14Bは、外槽13の内部を真空状態にする装置である。真空排気装置14Aは、超電導バルク体9a、10aへの伝熱(超電導コイル9b、10bからの冷熱で超電導バルク体9a、10aを冷却)のために、内槽11の内部を数〜100Pa程度の真空状態に調整する。真空排気装置14Aは、内槽11の内部を真空排気する真空ポンプ14aと、この真空ポンプ14aと内槽11とを接続する可撓性を有する柔軟な管路14bなどを備えている。同様に、真空排気装置14Bは、外槽13の内部を真空排気する真空ポンプ14cと、この真空ポンプ14cと外槽13とを接続する可撓性を有する柔軟な管路14dなどを備えている。
次に、この実施形態に係る電力貯蔵装置1の作用を説明する。
電力貯蔵装置1に電力を貯蔵するときには、フライホイール8の運動エネルギーに電気エネルギーを変換して貯蔵する。磁気クラッチ6を通電状態にしてクラッチ片6aとクラッチ片6bとの間に電磁力を発生させて、電動発電機2の回転軸2aと回転軸7と接続する。
次に、電動発電機2を電動機として機能させて、余剰電力によって電動発電機2が回転軸7を回転し、この回転軸7と一体となってフライホイール8が回転し、電気エネルギーが運動エネルギーとして蓄積される。このとき、超電導磁気軸受9、10の超電導バルク体9a、10aと超電導コイル9b、10bとの間に磁気反発力が作用しているため、回転軸7及びフライホイール8が浮揚状態となって回転し、摩擦抵抗によって運動エネルギーが損失するのを超電導磁気軸受9、10が防ぐ。
電力貯蔵装置1に電力を貯蔵するときには、フライホイール8の運動エネルギーに電気エネルギーを変換して貯蔵する。磁気クラッチ6を通電状態にしてクラッチ片6aとクラッチ片6bとの間に電磁力を発生させて、電動発電機2の回転軸2aと回転軸7と接続する。
次に、電動発電機2を電動機として機能させて、余剰電力によって電動発電機2が回転軸7を回転し、この回転軸7と一体となってフライホイール8が回転し、電気エネルギーが運動エネルギーとして蓄積される。このとき、超電導磁気軸受9、10の超電導バルク体9a、10aと超電導コイル9b、10bとの間に磁気反発力が作用しているため、回転軸7及びフライホイール8が浮揚状態となって回転し、摩擦抵抗によって運動エネルギーが損失するのを超電導磁気軸受9、10が防ぐ。
電力貯蔵装置1から電力を取り出すときには、フライホイール8の運動エネルギーを電気エネルギーに変換して取り出す。
電動発電機2を発電機として機能させて、フライホイール8の回転エネルギーによって電動発電機2の回転軸2aを回転させると、電動発電機2が電力を発生して運動エネルギーが電気エネルギーとして取り出される。このように、余剰電力をフライホイール8の運動エネルギーに変換して電力貯蔵装置1が貯蔵するとともに、フライホイール8に貯蔵されている運動エネルギーを必要時に電力貯蔵装置1が電気エネルギーに変換しこの電気エネルギーが取り出される。
電動発電機2を発電機として機能させて、フライホイール8の回転エネルギーによって電動発電機2の回転軸2aを回転させると、電動発電機2が電力を発生して運動エネルギーが電気エネルギーとして取り出される。このように、余剰電力をフライホイール8の運動エネルギーに変換して電力貯蔵装置1が貯蔵するとともに、フライホイール8に貯蔵されている運動エネルギーを必要時に電力貯蔵装置1が電気エネルギーに変換しこの電気エネルギーが取り出される。
次に、電力貯蔵装置1内に設置されたフライホイール8及び該フライホール8に貯蔵される蓄電エネルギーについて説明する。
フライホイール8の蓄電エネルギー量(電力貯蔵装置1で出し入れできるエネルギー量)ΔEは、以下の数式で示される。
上記数式において、Iは回転慣性、mはフライホイールの質量、rはフライホイールの半径(routは外径、rinは回転軸周囲の内径)、ω1は最大角速度、ω2は最小角速度(つまり、角速度ω1〜ω2は、通常の運転で示される角速度の範囲)である。
そして、上記の式に示されるように、電力貯蔵装置1内に設置されたフライホイールの蓄電エネルギー量ΔEは、角速度の二乗、あるいはフライホイール半径の二乗に比例して大きくなるが、該フライホイールを形成している材料の破壊周速(周速は角速度、半径に比例)に達すると、当該フライホールは破壊してしまう。
そして、上記の式に示されるように、電力貯蔵装置1内に設置されたフライホイールの蓄電エネルギー量ΔEは、角速度の二乗、あるいはフライホイール半径の二乗に比例して大きくなるが、該フライホイールを形成している材料の破壊周速(周速は角速度、半径に比例)に達すると、当該フライホールは破壊してしまう。
一方、フライホイールの蓄積エネルギー量は、上記式からも明らかなように、フライホイールの質量に比例する。そこで、破壊周速が小さくかつ密度が大きい材料を、フライホールの内周部に配置し、破壊周速が大きくかつ密度が小さい材料を該フライホールの外周部側に配置することにより、効率的に回転慣性Iを上げ、コンパクトでエネルギー密度の高いハイブリッド型フライホールを実現しようと言うのが、本発明の電力貯蔵装置におけるフライホイール構造の主旨である。
本実施形態の電力貯蔵装置1におけるフライホイール構造について、図2及び図3を参照して詳細に説明する。
図2はフライホール8の平面図、図3の図2のIII−III線に沿う断面図である。これらの図を参照して分かるように、フライホイール8は、回転軸7の周囲に設けられた円形状の内周部20と、該内周部20の外側に接合されたリング状の外周部21とから構成されている。
図2はフライホール8の平面図、図3の図2のIII−III線に沿う断面図である。これらの図を参照して分かるように、フライホイール8は、回転軸7の周囲に設けられた円形状の内周部20と、該内周部20の外側に接合されたリング状の外周部21とから構成されている。
そして、このような構成のフライホイール8において、内周部20を破壊周速の小さい材料により形成し、該フライホイール8の外周部21を、前記内周部20より破壊周速の大きい材料により形成している。
具体的には、フライホイール8の内周部20を金属により形成し、該フライホイール8の外周部21を繊維強化プラスチック(FRP)により形成している。このような構成により、フライホイール8全体で一定の質量を確保することができる。
また、該フライホイール8の外周部21を破壊周速が大きい繊維強化プラスチックにより形成することにより、該フライホイール8を大径に形成することも可能となる。その結果、繊維強化プラスチックをフライホイール材料に選択した高速回転型の電力貯蔵装置と、金属をフライホイール材料に選択した低速回転型の電力貯蔵装置がある現状において、一定の質量を確保しかつ破壊周速の向上を図った中間型の電力貯蔵装置を得ることが可能となる。
具体的には、フライホイール8の内周部20を金属により形成し、該フライホイール8の外周部21を繊維強化プラスチック(FRP)により形成している。このような構成により、フライホイール8全体で一定の質量を確保することができる。
また、該フライホイール8の外周部21を破壊周速が大きい繊維強化プラスチックにより形成することにより、該フライホイール8を大径に形成することも可能となる。その結果、繊維強化プラスチックをフライホイール材料に選択した高速回転型の電力貯蔵装置と、金属をフライホイール材料に選択した低速回転型の電力貯蔵装置がある現状において、一定の質量を確保しかつ破壊周速の向上を図った中間型の電力貯蔵装置を得ることが可能となる。
なお、上記金属材料としては、ジュラルミン、ステンレス鋼といった合金又は鉄系の材料が使用される。また、繊維強化プラスチックとして、ガラス繊維強化プラスチック、炭素繊維強化プラスチックなどが使用される。
また、これに限定されず、内周部20及び外周部21を共に金属、又は共に繊維強化プラスチックで形成しても良い。このときも同様に、1つのフライホイール8において、内周部20を破壊周速の小さい材料により形成し、外周部21を、内周部20より破壊周速の大きい材料により形成するものとする。
また、内周部20及び外周部21の材料の組み合わせとしては、例えば、ステンレス鋼と炭素繊維強化プラスチックとの組み合わせが適当とされる。
また、これに限定されず、内周部20及び外周部21を共に金属、又は共に繊維強化プラスチックで形成しても良い。このときも同様に、1つのフライホイール8において、内周部20を破壊周速の小さい材料により形成し、外周部21を、内周部20より破壊周速の大きい材料により形成するものとする。
また、内周部20及び外周部21の材料の組み合わせとしては、例えば、ステンレス鋼と炭素繊維強化プラスチックとの組み合わせが適当とされる。
また、図2及び図3に示されるように、フライホイール8は、回転軸7の周囲に設けられた円形状の内周部20と、該内周部20の外側に接合されたリング状の外周部21とから構成されており、このため、該フライホイール8の外周部21は、周方向に複数に分割した分割片22を接合して一体化した構造とされている。
また、フライホイール8の内周部20に対して、外周部21はボルト23の締結により一体化されている。外周部21の分割片22は、内周部20との間の凹凸状の接合部24を介して互いに結合されている。
また、
また、フライホイール8の内周部20に対して、外周部21はボルト23の締結により一体化されている。外周部21の分割片22は、内周部20との間の凹凸状の接合部24を介して互いに結合されている。
また、
以上詳細に説明したように本実施形態に示される電力貯蔵装置1におけるフライホイール構造では、フライホイール8の内周部20を破壊周速の小さい材料により形成し、該フライホイール8の外周部21を、前記内周部20より破壊周速の大きい材料により形成した。例えば、フライホイール8の内周部20を金属により形成し、前記フライホイール8の外周部21を、金属より破壊周速の大きい繊維強化プラスチックで形成することにより、該フライホイール8全体で一定の質量を確保することができる。また、該フライホイール8の外周部21を破壊周速が大きい繊維強化プラスチックにより形成することにより、該フライホイール8を大径に形成することも可能となる。
これにより、繊維強化プラスチックをフライホイール材料に選択した高速回転型の電力貯蔵装置と、金属をフライホイール材料に選択した低速回転型の電力貯蔵装置がある現状において、一定の質量を確保しかつ破壊周速の向上を図った中間型の電力貯蔵装置を得ることができる。
その結果、需要に応じた大きさの最適かつ経済的なフライホイール式の電力貯蔵装置を実現することが可能となる。
これにより、繊維強化プラスチックをフライホイール材料に選択した高速回転型の電力貯蔵装置と、金属をフライホイール材料に選択した低速回転型の電力貯蔵装置がある現状において、一定の質量を確保しかつ破壊周速の向上を図った中間型の電力貯蔵装置を得ることができる。
その結果、需要に応じた大きさの最適かつ経済的なフライホイール式の電力貯蔵装置を実現することが可能となる。
フライホイール8の外周部21は、周方向に複数に分割した分割片22を接合して一体化した構造とすることで、内周部20の外側に外周部21を保持することができる。
なお、本実施形態では、フライホイール8の外周部21を分割構造としたが、これに限定されず、一体構造に形成しても良い。そして、外周部21を一体構造とした場合には、内周部20を冷しばめで収縮されることにより、該内周部20を外周部21のリング体内に嵌合するようにしても良い。
以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。
本発明は、電気エネルギーを回転体の運動エネルギーとして貯蔵する電力貯蔵装置に係り、回転体となるフライホイールの構成材料を最適に選択することにより、小型化とコスト削減を図ることができる電力貯蔵装置におけるフライホイール構造に関する。
1 電力貯蔵装置
8 フライホイール
20 内周部
21 外周部
22 分割片
23 ボルト
8 フライホイール
20 内周部
21 外周部
22 分割片
23 ボルト
Claims (6)
- 超電導磁気軸受を介して、極低温及び高真空下にあるフライホイールを回転動作させることにより、電気エネルギーを運動エネルギーとして貯蔵する電力貯蔵装置において、
前記フライホイールの外周部を、該フライホイールの内周部より破壊周速の大きい材料により形成したことを特徴とする電力貯蔵装置におけるフライホイール構造。 - 前記フライホイールの内周部を金属により形成し、前記フライホイールの外周部を繊維強化プラスチックにより形成したことを特徴とする電力貯蔵装置におけるフライホイール構造。
- 前記フライホイールの外周部は、周方向に複数に分割した分割片を接合して一体化した構造とされることを特徴とする請求項1又は2のいずれか1項に記載の電力貯蔵装置におけるフライホイール構造。
- 前記フライホイールの外周部はガラス繊維強化プラスチックにより形成されることを特徴とする請求項1又は2のいずれか1項に記載の電力貯蔵装置におけるフライホイール構造。
- 前記フライホイールの外周部は炭素繊維強化プラスチックにより形成されることを特徴とする請求項1又は2のいずれか1項に記載の電力貯蔵装置におけるフライホイール構造。
- 前記フライホイールの内周部は鉄系材料により形成されることを特徴とする請求項1又は2のいずれか1項に記載の電力貯蔵装置におけるフライホイール構造。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013068928A JP2014190503A (ja) | 2013-03-28 | 2013-03-28 | 電力貯蔵装置におけるフライホイール構造 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013068928A JP2014190503A (ja) | 2013-03-28 | 2013-03-28 | 電力貯蔵装置におけるフライホイール構造 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014190503A true JP2014190503A (ja) | 2014-10-06 |
Family
ID=51836950
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013068928A Pending JP2014190503A (ja) | 2013-03-28 | 2013-03-28 | 電力貯蔵装置におけるフライホイール構造 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2014190503A (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021070749A1 (ja) * | 2019-10-10 | 2021-04-15 | 福島SiC応用技研株式会社 | フライホイール、フライホイールの設計方法、及び、フライホイール蓄電システム |
US12142915B2 (en) | 2020-10-02 | 2024-11-12 | NexFi Technology Inc. | Flywheel, flywheel designing method, and flywheel power storage system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08111946A (ja) * | 1994-10-07 | 1996-04-30 | Nippon Seiko Kk | 超電導フライホイール装置 |
JPH08251862A (ja) * | 1995-03-07 | 1996-09-27 | Takashi Nosaka | フライホイール装置とその電動機及びその発電装置 |
JP2002010533A (ja) * | 2000-06-21 | 2002-01-11 | Mitsubishi Rayon Co Ltd | 繊維強化プラスチック製ロータ並びにフライホイールバッテリー装置およびその使用方法 |
JP2010159773A (ja) * | 2009-01-06 | 2010-07-22 | Japan Aerospace Exploration Agency | 高速回転体 |
JP2010239796A (ja) * | 2009-03-31 | 2010-10-21 | Railway Technical Res Inst | 超電導フライホイール蓄電装置 |
-
2013
- 2013-03-28 JP JP2013068928A patent/JP2014190503A/ja active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08111946A (ja) * | 1994-10-07 | 1996-04-30 | Nippon Seiko Kk | 超電導フライホイール装置 |
JPH08251862A (ja) * | 1995-03-07 | 1996-09-27 | Takashi Nosaka | フライホイール装置とその電動機及びその発電装置 |
JP2002010533A (ja) * | 2000-06-21 | 2002-01-11 | Mitsubishi Rayon Co Ltd | 繊維強化プラスチック製ロータ並びにフライホイールバッテリー装置およびその使用方法 |
JP2010159773A (ja) * | 2009-01-06 | 2010-07-22 | Japan Aerospace Exploration Agency | 高速回転体 |
JP2010239796A (ja) * | 2009-03-31 | 2010-10-21 | Railway Technical Res Inst | 超電導フライホイール蓄電装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021070749A1 (ja) * | 2019-10-10 | 2021-04-15 | 福島SiC応用技研株式会社 | フライホイール、フライホイールの設計方法、及び、フライホイール蓄電システム |
US12142915B2 (en) | 2020-10-02 | 2024-11-12 | NexFi Technology Inc. | Flywheel, flywheel designing method, and flywheel power storage system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7093758B2 (ja) | フライホイールアセンブリのエネルギーを貯蔵および放出するための方法 | |
JP6281922B2 (ja) | 可撓性磁石の方向性のある剛化方法 | |
Miyagawa et al. | A 0.5 kWh flywheel energy storage system using a high-T/sub c/superconducting magnetic bearing | |
JP6466537B2 (ja) | 開心形フライホイール構成体 | |
CN103441648B (zh) | 一种高温超导磁悬浮电机 | |
Werfel et al. | A compact HTS 5 kWh/250 kW flywheel energy storage system | |
US9148037B2 (en) | Electromechanical flywheel | |
JP2000513200A (ja) | フライホイール・エネルギアキュムレータ | |
EP2761729B1 (en) | Electromechanical flywheels | |
JP2003219581A (ja) | 超電導フライホイ−ル電力貯蔵装置 | |
JP2008086095A (ja) | 電力貯蔵用超電導フライホイール装置 | |
Werfel et al. | Towards high-capacity HTS flywheel systems | |
JP5504532B2 (ja) | 高速回転装置 | |
US5841211A (en) | Superconducting generator and system therefor | |
CN106678276A (zh) | 用于存储和释放能量的装置 | |
JP2014190503A (ja) | 電力貯蔵装置におけるフライホイール構造 | |
JP6236723B2 (ja) | 振動減衰装置及び振動減衰装置を備えた電力貯蔵装置 | |
JP2001099156A (ja) | 高温超電導磁気軸受装置及び高温超電導フライホイール装置 | |
JPH08200368A (ja) | 超電導磁気軸受装置 | |
JP2014147163A (ja) | 電力貯蔵装置におけるバランス調整装置及びバランス調整方法 | |
WO2006028065A1 (ja) | エネルギー貯蔵装置に使用する回転体、回転体の製造方法及びエネルギー貯蔵装置 | |
JP2001343020A (ja) | 超電導磁気軸受及び超電導フライホイール装置 | |
JP2013150499A (ja) | 電力貯蔵装置の制振構造 | |
JP3632101B2 (ja) | 電力貯蔵装置 | |
JP3677320B2 (ja) | 回転機器の超電導軸受け及びそれを用いた電力貯蔵用フライホイール |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150717 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160519 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160524 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20161129 |