JP2014189802A - LOW Ni AUSTENITIC STAINLESS STEEL SHEET EXCELLENT IN AGE HARDENING PROPERTY AND METHOD OF PRODUCING THE SAME - Google Patents
LOW Ni AUSTENITIC STAINLESS STEEL SHEET EXCELLENT IN AGE HARDENING PROPERTY AND METHOD OF PRODUCING THE SAME Download PDFInfo
- Publication number
- JP2014189802A JP2014189802A JP2013063421A JP2013063421A JP2014189802A JP 2014189802 A JP2014189802 A JP 2014189802A JP 2013063421 A JP2013063421 A JP 2013063421A JP 2013063421 A JP2013063421 A JP 2013063421A JP 2014189802 A JP2014189802 A JP 2014189802A
- Authority
- JP
- Japan
- Prior art keywords
- less
- stainless steel
- austenitic stainless
- steel sheet
- low
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000963 austenitic stainless steel Inorganic materials 0.000 title claims abstract description 18
- 238000003483 aging Methods 0.000 title claims abstract description 16
- 238000000034 method Methods 0.000 title claims description 5
- 229910000734 martensite Inorganic materials 0.000 claims abstract description 20
- 239000013078 crystal Substances 0.000 claims abstract description 10
- 238000002441 X-ray diffraction Methods 0.000 claims abstract description 6
- 239000012535 impurity Substances 0.000 claims abstract description 5
- 229910000831 Steel Inorganic materials 0.000 claims description 30
- 239000010959 steel Substances 0.000 claims description 30
- 230000032683 aging Effects 0.000 claims description 22
- 239000000463 material Substances 0.000 claims description 19
- 238000005097 cold rolling Methods 0.000 claims description 13
- 229910001220 stainless steel Inorganic materials 0.000 abstract description 12
- 239000010935 stainless steel Substances 0.000 abstract description 11
- 229910052799 carbon Inorganic materials 0.000 abstract description 6
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 6
- 229910052748 manganese Inorganic materials 0.000 abstract description 4
- 229910052759 nickel Inorganic materials 0.000 abstract description 4
- 229910052698 phosphorus Inorganic materials 0.000 abstract description 3
- 229910052804 chromium Inorganic materials 0.000 abstract description 2
- 229910052802 copper Inorganic materials 0.000 abstract description 2
- 229910052718 tin Inorganic materials 0.000 abstract description 2
- 238000005096 rolling process Methods 0.000 description 11
- 238000000137 annealing Methods 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 238000005098 hot rolling Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 4
- 238000005482 strain hardening Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 238000005728 strengthening Methods 0.000 description 3
- 229910000859 α-Fe Inorganic materials 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- IUVCFHHAEHNCFT-INIZCTEOSA-N 2-[(1s)-1-[4-amino-3-(3-fluoro-4-propan-2-yloxyphenyl)pyrazolo[3,4-d]pyrimidin-1-yl]ethyl]-6-fluoro-3-(3-fluorophenyl)chromen-4-one Chemical compound C1=C(F)C(OC(C)C)=CC=C1C(C1=C(N)N=CN=C11)=NN1[C@@H](C)C1=C(C=2C=C(F)C=CC=2)C(=O)C2=CC(F)=CC=C2O1 IUVCFHHAEHNCFT-INIZCTEOSA-N 0.000 description 1
- 229910017755 Cu-Sn Inorganic materials 0.000 description 1
- 229910017927 Cu—Sn Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000010960 cold rolled steel Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000002431 foraging effect Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- YXJYBPXSEKMEEJ-UHFFFAOYSA-N phosphoric acid;sulfuric acid Chemical compound OP(O)(O)=O.OS(O)(=O)=O YXJYBPXSEKMEEJ-UHFFFAOYSA-N 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000004881 precipitation hardening Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
Images
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
本発明は、NiおよびMnを必要最小限の含有量に抑制しつつ、高強度用300系ステンレス鋼が適用される用途に使用可能な時効硬化能が高い低Niオーステナイト系ステンレス鋼板に関する。 The present invention relates to a low Ni austenitic stainless steel sheet having high age-hardening ability that can be used in applications where high-strength 300 series stainless steel is applied while suppressing Ni and Mn to the necessary minimum contents.
従来、高強度が求められる用途には加工硬化型や析出硬化型高強度ステンレス鋼があり、加工硬化型高強度ステンレス鋼としては、SUS301の調質圧延材等が使用されている。その後成形加工され強度上昇のため時効処理が施される。また、最近では以下の特許文献1〜3に記されるようなNiに代わるオーステナイト形成元素として5%以上のMnを含有させた200系ステンレス鋼が300系ステンレス鋼の代替材として提供されつつある。また、特許文献4のように多量のMnを含有しないNiを節減したオーステナイト系ステンレス鋼の技術も提示されている。それらSUS301およびSUS304に代表される加工硬化型の準安定オーステナイト系ステンレス鋼は、冷間加工により高強度が得られ高強度ステンレスばね用素材として多用されている。
Conventionally, there are work hardening type and precipitation hardening type high strength stainless steel in applications requiring high strength, and SUS301 temper rolled material or the like is used as work hardening type high strength stainless steel. Thereafter, it is molded and subjected to an aging treatment to increase the strength. Recently, 200 series stainless steel containing 5% or more of Mn as an austenite forming element instead of Ni as described in the following Patent Documents 1 to 3 is being provided as an alternative to 300 series stainless steel. . In addition, a technique of austenitic stainless steel in which Ni that does not contain a large amount of Mn as in
特許文献1〜3のような多量のMnを含有する技術では、鋼板の表面品質が低下し、焼鈍酸洗性や光輝焼鈍などの生産性を損ない、Niを低減したにも関わらずこれらの生産性低下によりその効果が総コスト面で相殺されてしまうという問題がある。また、特許文献4は多量のMnを含有しないが、時効硬化能が不足している鋼もあるという問題がある。
In the technology containing a large amount of Mn as in Patent Documents 1 to 3, the surface quality of the steel sheet is deteriorated, productivity such as annealing pickling property and bright annealing is impaired, and these are produced despite the reduction of Ni. There is a problem that the effect is offset in terms of the total cost due to the decrease in performance. Further,
これまでに、Niを節減した高強度オーステナイト系ステンレス鋼の用途例として、特許文献5〜7に示す技術が提示されている。特許文献5ではリサイクル性、表面品質に起因する生産性、および素材特性面では耐食性と加工性に優れるステンレス鋼、特許文献6は優れた曲げ加工性を発現し、高強度ステンレス製ばねとして必須とされる耐へたり性および耐食性をも兼備するばね用ステンレス鋼を、特許文献7は優れた深絞り性、張出し性を発現し、トラックをはじめとする自動車の車体、構造部材や補強材などが開示されている。
しかし、これらの技術はいずれも時効硬化能が不足している鋼もあるという問題がある。
Until now, the technique shown to patent documents 5-7 is shown as an example of a use of the high intensity | strength austenitic stainless steel which saved Ni. In
However, both of these techniques have the problem that some steels lack age hardenability.
本発明は、上記特許文献記載の鋼材では解決し得なかった、低Niオーステナイト系ステンレス鋼の時効硬化能を高めることを課題とするものである。 This invention makes it a subject to improve the age hardening ability of the low Ni austenitic stainless steel which was not able to be solved with the steel materials of the said patent document description.
本発明者らは、種々の成分範囲の鋼を素材として調質圧延後に時効処理が施される要件について種々検討した結果、成分規定範囲に加えて材料の圧延率を調整し、時効処理条件を制御することにより時効硬化能が高い低Niオーステナイト系ステンレス鋼板が提供できることを見出した。 As a result of various studies on requirements for aging treatment after temper rolling using steels of various component ranges as raw materials, the present inventors adjusted the rolling rate of the material in addition to the component specification range, and set the aging treatment conditions. It has been found that a low Ni austenitic stainless steel sheet with high age-hardening ability can be provided by controlling.
上記課題は、質量%で、C:0.03〜0.30%以下、Si:1.50%以下、Mn:2.0〜5.0%、P:0.06%以下、S:0.005%以下、Ni:1.0〜4.0%、Cr:15.0〜19.0%、Cu:1.0〜3.5%、N:0.03〜0.30%、Sn:0.02%以下、B:0.001〜0.010%を含み、残部が実質的にFeおよび不可避的不純物からなり、任意の部位の表面硬さが400HV以上で、加工誘起マルテンサイト量が10%以上であり、ターゲットCoにて40kV,200mAでX線解析をした場合、加工誘起マルテンサイト相の結晶方位(211)での半価幅が1.5°以上であることを特徴とするあるいは、400℃以上60分の範囲で時効処理を施した時の時効処理前後の硬さの差が50HV以上であることを特徴とする低Niオーステナイト系ステンレス鋼板あるいは、焼鈍材を冷間圧延率40%以上で圧延し、その後400℃以上60分の範囲で時効処理を施すことを特徴とする低Niオーステナイト系ステンレス鋼板の製造方法により達成される。 The above-mentioned problems are in mass%, C: 0.03 to 0.30% or less, Si: 1.50% or less, Mn: 2.0 to 5.0%, P: 0.06% or less, S: 0 0.005% or less, Ni: 1.0 to 4.0%, Cr: 15.0 to 19.0%, Cu: 1.0 to 3.5%, N: 0.03 to 0.30%, Sn : 0.02% or less, B: 0.001 to 0.010% included, the balance being substantially composed of Fe and inevitable impurities, the surface hardness of any part is 400HV or more, processing induced martensite amount Is 10% or more, and when the X-ray analysis is performed at 40 kV and 200 mA with the target Co, the half width in the crystal orientation (211) of the processing induced martensite phase is 1.5 ° or more. Or, the difference in hardness before and after the aging treatment when the aging treatment is performed in the range of 400 ° C. or more and 60 minutes is 50 HV A low Ni austenitic stainless steel sheet or an annealed material characterized by the above being rolled at a cold rolling rate of 40% or more and then subjected to an aging treatment in the range of 400 ° C. or more and 60 minutes. This is achieved by a method for producing an austenitic stainless steel sheet.
本発明によれば、Ni含有量を節減しつつもMn含有量の多量添加を回避し、時効硬化特性に優れた低Niオーステナイト系ステンレス鋼板が提供される。この鋼板を用いて製造加工される製品は、素材が300系ステンレス鋼である高強度用途に使用できる。 According to the present invention, there is provided a low Ni austenitic stainless steel sheet that is excellent in age hardening characteristics while avoiding the addition of a large amount of Mn content while reducing the Ni content. Products manufactured and processed using this steel plate can be used for high-strength applications in which the material is 300 series stainless steel.
本発明者らは、時効処理前後のΔHVと材料の半価幅が密接に関連しており、成分範囲と材料の圧延率を調整することにより半価幅を増加させ、ΔHVを増大できることを見出した。 The present inventors have found that ΔHV before and after the aging treatment and the half width of the material are closely related, and that the half width can be increased and ΔHV can be increased by adjusting the component range and the rolling ratio of the material. It was.
図1に半価幅と時効処理前後のΔHVの関係を示す。ΔHVとは、時効処理前後の硬度差を示したものである。半価幅は、ターゲットCoにて40kV,200mAでX線解析をし、加工誘起マルテンサイト相の結晶方位(211)で測定し、強度の半分における幅値を測定した。ΔHVは、半価幅の増加にともない増加し、半価幅1.5°以上でΔHV50以上得られることがわかる。 FIG. 1 shows the relationship between the half width and ΔHV before and after aging treatment. ΔHV indicates the hardness difference before and after the aging treatment. The half width was measured by X-ray analysis at 40 kV and 200 mA with the target Co, measured with the crystal orientation (211) of the work-induced martensite phase, and the width value at half the intensity was measured. It can be seen that ΔHV increases with an increase in the half width, and that an ΔHV of 50 or more can be obtained at a half width of 1.5 ° or more.
半価幅1.5°以上を得るには、成分範囲と冷間圧延率を制御する必要がある。図2に冷間圧延率40%の圧延材におけるMn含有量と加工誘起マルテンサイト相の結晶方位(211)の半価幅の関係を示す。Mn含有量の増加にともない半価幅が増加し、Mn含有量2.0質量%以上で半価幅が、1.5°以上得られることがわかる。Mnが半価幅を増大させる要因については不明であるが、MnによるN固溶量の増大あるいは、積層欠陥エネルギーの低下が寄与しているものと考えられる。 In order to obtain a half width of 1.5 ° or more, it is necessary to control the component range and the cold rolling rate. FIG. 2 shows the relationship between the Mn content in the rolled material with a cold rolling rate of 40% and the half width of the crystal orientation (211) of the work-induced martensite phase. It can be seen that the full width at half maximum increases as the Mn content increases, and that the full width at half maximum is 1.5 ° C. or more when the Mn content is 2.0 mass% or more. The reason why Mn increases the half width is unknown, but it is considered that the increase in the amount of N dissolved by Mn or the decrease in stacking fault energy contributes.
図3に冷間圧延率と半価幅の関係を示す。本発明鋼の実施例A1で、冷間圧延率40%以上でマルテンサイト相の結晶方位(211)での半価幅が1.5°以上得られた。一方、比較鋼の実施例B5では、冷間圧延率40%以上でもマルテンサイト相の結晶方位(211)での半価幅が1.5°以上得られない。 FIG. 3 shows the relationship between the cold rolling rate and the half width. In Example A1 of the steel of the present invention, a half width in the crystal orientation (211) of the martensite phase was 1.5 ° or more at a cold rolling rate of 40% or more. On the other hand, in Example B5 of the comparative steel, the half width in the crystal orientation (211) of the martensite phase cannot be obtained 1.5 ° or more even when the cold rolling rate is 40% or more.
以下、本発明鋼に含まれる合金成分ならびに含有範囲限定理由について説明する。
C、Nは、オーステナイト生成元素であり、加工誘起マルテンサイト相を固溶強化するためまた、時効硬化能を発現するために有用な元素である。これらの元素の含有量が少なすぎるとδフェライト相の生成量が増大し、熱間加工性が低下する。C、Nとも0.03質量%を越える含有量を確保することが強度を得るために重要である。一方、C、Nの含有量が多くなりすぎると過度に硬質化し、加工性を阻害する要因となるため、C、N含有量は上限を0.30質量%に規定した。
Hereinafter, the alloy components contained in the steel of the present invention and the reasons for limiting the content range will be described.
C and N are austenite-forming elements, and are useful elements for strengthening the work-induced martensite phase by solid solution strengthening and for expressing age-hardening ability. If the content of these elements is too small, the amount of δ ferrite phase produced increases and hot workability decreases. In order to obtain strength, it is important to secure a content exceeding 0.03% by mass for both C and N. On the other hand, if the contents of C and N are too large, the contents become excessively hard and the workability is hindered. Therefore, the upper limit of the contents of C and N is set to 0.30% by mass.
Siは、製鋼での脱酸に有用な元素であるとともに、固溶強化に寄与する元素である。1.5質量%を越えて過剰に含有させると鋼が硬質化し加工性を損なう要因となる。また、Siはフェライト生成元素であるため、過剰添加は高温域でのδフェライト相の多量生成を招き、熱間加工性を阻害する。したがって、Si含有量は1.5質量%以下に規定した。 Si is an element useful for deoxidation in steelmaking and an element contributing to solid solution strengthening. If the content exceeds 1.5% by mass, the steel becomes hard and the workability is impaired. Further, since Si is a ferrite-forming element, excessive addition causes a large amount of δ-ferrite phase to be generated at a high temperature range, thereby impairing hot workability. Therefore, the Si content is specified to be 1.5% by mass or less.
MnはNiに比べて安価で、Niの機能を代替できる有用なオーステナイト形成元素である。また、Nの固溶量を増加させ、時効硬化能を発現させるためにも有能な元素である。上述したように圧延材の加工誘起マルテンサイト相の半価幅を増加させ、時効硬化能を向上させるために2.0%以上のMn含有量を確保する必要がある。一方、Mn含有量が過剰となると、表面性状に起因する生産性の低下ならびにMnSなどの介在物生成に起因する加工性低下や耐食性低下を引き起こす要因となる。このため、Mn含有量は上限を5.0質量%に規定した。 Mn is a useful austenite-forming element that is less expensive than Ni and can substitute for the function of Ni. It is also an effective element for increasing the solid solution amount of N and expressing age-hardening ability. As described above, it is necessary to secure a Mn content of 2.0% or more in order to increase the half width of the work-induced martensite phase of the rolled material and improve the age hardening ability. On the other hand, when the Mn content is excessive, it causes a decrease in productivity due to surface properties and a decrease in workability and corrosion resistance due to the formation of inclusions such as MnS. For this reason, the upper limit of the Mn content is regulated to 5.0% by mass.
PおよびSは不可避的不純物として混入するが、その含有量は低いほど望ましく、加工性その他の材料特性や製造性に多大な悪影響を与えない範囲として、Pについては0.06質量%以下、Sは0.005質量%以下に規定した。 P and S are mixed as unavoidable impurities, but the lower the content, the more desirable. P is 0.06% by mass or less for P as a range that does not have a great adverse effect on processability and other material properties and manufacturability. Was defined as 0.005 mass% or less.
Niはオーステナイト系ステンレス鋼に必須の元素である。良好な熱間加工性を得るには、例えば1200℃の加熱温度でγ単相となるようにNi量を含有させる必要があり、その下限は1.0質量%である。本発明ではコスト低減の観点からNi含有量を極力低く抑える成分設計を行っており、上限を4.0質量%に規定した。 Ni is an essential element for austenitic stainless steel. In order to obtain good hot workability, for example, it is necessary to contain Ni so that it becomes a γ single phase at a heating temperature of 1200 ° C., and the lower limit is 1.0 mass%. In the present invention, component design is performed to keep the Ni content as low as possible from the viewpoint of cost reduction, and the upper limit is defined as 4.0% by mass.
Crはステンレス鋼の耐食性を担保する不動態皮膜の形成に必須の元素である。本発明では、耐食性を十分に確保する上で、Cr含有量の下限を15.0質量%とした。ただし、Crはフェライト生成元素であるため、過度のCr含有により熱延前加熱温度が(γ+δ)2相域となり、加熱後もδフェライトの多量生成を招き熱間加工性を損なう要因となるため、好ましくない。したがって、Cr含有量は上限を19.0質量%に規定した。 Cr is an essential element for forming a passive film that ensures the corrosion resistance of stainless steel. In the present invention, in order to sufficiently secure the corrosion resistance, the lower limit of the Cr content is set to 15.0% by mass. However, since Cr is a ferrite-forming element, the heating temperature before hot rolling becomes a (γ + δ) two-phase region due to excessive Cr content, and after heating, a large amount of δ-ferrite is generated, which is a factor that impairs hot workability. It is not preferable. Therefore, the upper limit of Cr content is defined as 19.0% by mass.
Cuはオーステナイト生成元素であることから、Cu含有量の増加に応じてNi含有量の設定自由度が拡大し、Niを抑制した成分設計が容易になる。時効硬化能を向上させるために1.0%以上のCu含有量を確保する必要がある。ただし、3.5質量%を越える多量のCu含有は熱間加工性を阻害しやすい。このため、Cu含有量は1.0〜3.5質量9%に規定した。 Since Cu is an austenite-generating element, the degree of freedom in setting the Ni content increases with an increase in Cu content, and component design that suppresses Ni becomes easy. In order to improve age hardening ability, it is necessary to secure a Cu content of 1.0% or more. However, a large amount of Cu exceeding 3.5 mass% tends to hinder hot workability. For this reason, Cu content was prescribed | regulated to 1.0-3.5 mass 9%.
Snは不可避的不純物として混入する可能性があるが、Cuを含有している鋼では低融点化合物のCu−Sn相を生成して熱間加工性を著しく低下させる。したがって、Sn含有量の上限を0.02質量%に規定した。 Sn may be mixed as an unavoidable impurity, but in steel containing Cu, a Cu—Sn phase of a low melting point compound is generated to significantly reduce hot workability. Therefore, the upper limit of the Sn content is defined as 0.02% by mass.
Bは熱間加工性や軟質化を改善するために添加させる元素であり、0.001質量%以上の添加により安定した効果が得られる。ただし、過剰に添加するとBの化合物が析出し、熱間加工性を劣化させるのでその上限を0.010質量%に規定した。 B is an element added to improve hot workability and softening, and a stable effect can be obtained by adding 0.001% by mass or more. However, since the compound of B will precipitate when it adds excessively and hot workability will deteriorate, the upper limit was prescribed | regulated to 0.010 mass%.
本発明鋼は、一般的なオーステナイト系ステンレス鋼板の製造プロセスにより製造可能である。具体的には、成分調整された溶鋼を連続鋳造またはバッチ式で鋳造し、得られた鋳造スラブを加熱した後抽出して、連続熱間圧延機またはリバース式熱間圧延機にて熱間圧延する手法が採用できる。熱間圧延以降の中間焼鈍あるいは仕上焼鈍は1050〜1100℃の範囲で行うことが望ましい。また、仕上焼鈍後は目標硬さに応じた調質圧延が施され、例えば板厚0.1〜3.0mmの調質圧延鋼板とすることができる。その後、形状矯正や前述の時効温度範囲における連続時効処理が適宜実施されてもよい。 The steel of the present invention can be manufactured by a general austenitic stainless steel sheet manufacturing process. Specifically, the component-adjusted molten steel is cast continuously or batchwise, and the resulting cast slab is heated and extracted, and then hot-rolled with a continuous hot rolling mill or a reverse hot rolling mill. Can be used. It is desirable to perform intermediate annealing or finish annealing after hot rolling in the range of 1050 to 1100 ° C. Moreover, after finish annealing, the temper rolling according to target hardness is given, for example, it can be set as the temper rolled steel plate of plate thickness 0.1-3.0mm. Thereafter, shape correction and continuous aging treatment in the above-described aging temperature range may be appropriately performed.
表1の組成をもつ各種ステンレス鋼を溶製した。表1において、A1〜A5が本発明で規定する化学成分を有する本発明鋼、B1〜B5が比較鋼である。比較鋼の下線部の化学成分含有量が本発明で規定する範囲を外れる。 Various stainless steels having the compositions shown in Table 1 were melted. In Table 1, A1 to A5 are steels of the present invention having chemical components defined by the present invention, and B1 to B5 are comparative steels. The chemical component content of the underlined portion of the comparative steel is out of the range defined in the present invention.
本発明鋼A1〜A5および比較鋼B1〜B5について、冷延鋼板の素材作製を行った。各鋼とも100kgの鋼塊を得た後に、抽出温度1230℃で熱間圧延することにより板厚3.0mmの熱間圧延板を製造した。それぞれの鋼の板厚3.0mmの熱間圧延板を1080℃で均熱1分の焼鈍を施した後、冷間圧延率40%以上で圧延することにより、硬さが460±10HV、板厚が1.0mmの調質圧延鋼板を得た。なお、調質圧延後の硬さが460HVとなる調質圧延率をそれぞれの鋼についてあらかじめ調べておき、その調質圧延率をもとに冷延前の板厚を設定し、その板厚にて1080℃で均熱1分の焼鈍を施した後、板厚1.0mmまでの調質圧延を実施した。調質圧延は、板温が70℃となるよう加温した上で行った。 For inventive steels A1 to A5 and comparative steels B1 to B5, cold-rolled steel sheets were prepared. After obtaining 100 kg of steel ingot for each steel, hot rolled plates having a thickness of 3.0 mm were manufactured by hot rolling at an extraction temperature of 1230 ° C. Each steel hot-rolled sheet having a thickness of 3.0 mm is annealed at 1080 ° C. for 1 minute soaking, and then rolled at a cold rolling rate of 40% or more, so that the hardness is 460 ± 10 HV, A temper rolled steel sheet having a thickness of 1.0 mm was obtained. In addition, the temper rolling rate at which the hardness after temper rolling becomes 460 HV is examined in advance for each steel, the thickness before cold rolling is set based on the temper rolling rate, and the thickness is set to that thickness. After annealing at 1080 ° C. for 1 minute soaking, temper rolling to a thickness of 1.0 mm was performed. The temper rolling was performed after heating so that the plate temperature became 70 ° C.
上記の板厚1.0mmの調質圧延材を用いて、加工誘起マルテンサイト量の測定を行った。径5mmの円盤を採取後、エッジをリン酸硫酸中にて電解研磨したサンプルを用い、4枚重ね合わせて振動試料型磁力計により測定した。 Using the temper rolled material having a plate thickness of 1.0 mm, the amount of work-induced martensite was measured. After collecting a disk having a diameter of 5 mm, a sample obtained by electropolishing the edge in phosphoric acid sulfuric acid was used, and four sheets were stacked and measured with a vibrating sample magnetometer.
さらに板厚1.0mmの調質圧延材を用いて、時効処理を施した。時効処理条件は450℃で60分施し、時効処理前後のサンプル表面における硬さ測定をJISZ2244に準じ、ビッカース硬さ試験機を用いて10kgの荷重で測定した。また、調質圧延材についてターゲットCoで40kV,200mAでX線解析によるマルテンサイト相の結晶方位(211)の半価幅を測定した。表2に調質圧延材の圧延率、加工誘起マルテンサイト量、半価幅および時効処理前後の硬さを示す。 Further, an aging treatment was performed using a temper rolled material having a plate thickness of 1.0 mm. The aging treatment was performed at 450 ° C. for 60 minutes, and the hardness of the sample surface before and after the aging treatment was measured according to JISZ2244 with a load of 10 kg using a Vickers hardness tester. Further, the half width of the crystal orientation (211) of the martensite phase was measured by X-ray analysis at 40 kV and 200 mA for the temper rolled material. Table 2 shows the rolling rate, the amount of work-induced martensite, the half width, and the hardness before and after the aging treatment of the temper rolled material.
表2に示されるように、本発明鋼A1〜A5は冷間圧延率40%以上で製造され、加工誘起マルテンサイト量が10%以上で、半価幅が1.5°以上と本発明の範囲内にあるので時効処理後のΔHVが高い。一方、比較鋼B1〜B5は、B2が冷間圧延率40%未満、B3が加工誘起マルテンサイト量10%未満、さらにB1〜B5が半価幅が1.5°未満と本発明の範囲内にないため時効処理後のΔHVが低い。 As shown in Table 2, the steels A1 to A5 of the present invention are manufactured at a cold rolling rate of 40% or more, the amount of work-induced martensite is 10% or more, and the half width is 1.5 ° or more. Since it is within the range, ΔHV after aging treatment is high. On the other hand, the comparative steels B1 to B5 have a B2 of less than 40%, B3 of less than 10% of work-induced martensite, and B1 to B5 of less than 1.5 ° half width within the scope of the present invention. Therefore, ΔHV after aging treatment is low.
本結果より冷間圧延率40%以上で圧延し、任意の部位の表面硬さが400HV以上で、加工誘起マルテンサイト量が10%以上であり、ターゲットCoにて40kV,200m AでX線解析をした場合、加工誘起マルテンサイト相の結晶方位(211)での半価幅が1.5°以上であることさらに、450℃で60分時効処理を施した時の時効処理前後の硬さの差が50HV以上であることが確認された。以上のように、成分範囲と材料の圧延率を調整することにより半価幅が増加し、時効硬化特性に優れた低Ni系オーステナイト系ステンレス鋼板が得られることを見出した。 From this result, the steel sheet was rolled at a cold rolling rate of 40% or more, the surface hardness of any part was 400 HV or more, the amount of work-induced martensite was 10% or more, and X-ray analysis was performed at 40 kV and 200 mA at the target Co. The half-value width in the crystal orientation (211) of the processing-induced martensite phase is 1.5 ° or more, and the hardness before and after the aging treatment when aging treatment is performed at 450 ° C. for 60 minutes. It was confirmed that the difference was 50 HV or more. As described above, it has been found that by adjusting the component range and the rolling ratio of the material, the half width is increased and a low Ni austenitic stainless steel sheet having excellent age hardening characteristics can be obtained.
Claims (3)
C:0.03〜0.30%以下
Si:1.50%以下
Mn:2.0〜5.0%以下
P:0.06%以下
S:0.005%以下
Ni:1.0〜4.0%以下
Cr:15.0〜19.0%以下
Cu:1.0〜3.5%以下
N:0.03〜0.30%以下
Sn:0.02%以下
B:0.001〜0.010%以下
を含み、残部が実質的にFeおよび不可避的不純物からなり、任意の部位の表面硬さが400HV以上で、加工誘起マルテンサイト量が10%以上であり、ターゲットCoにて40kV,200mAでX線解析をした場合、加工誘起マルテンサイト相の結晶方位(211)での半価幅が1.5°以上であることを特徴とする時効硬化特性に優れた低Niオーステナイト系ステンレス鋼板。 % By mass
C: 0.03 to 0.30% or less Si: 1.50% or less Mn: 2.0 to 5.0% or less P: 0.06% or less S: 0.005% or less Ni: 1.0 to 4 0.0% or less Cr: 15.0 to 19.0% or less Cu: 1.0 to 3.5% or less N: 0.03 to 0.30% or less Sn: 0.02% or less B: 0.001 0.010% or less, the balance being substantially composed of Fe and inevitable impurities, the surface hardness of any part is 400 HV or more, the amount of work-induced martensite is 10% or more, and the target Co is 40 kV , Low Ni austenitic stainless steel with excellent age-hardening characteristics characterized in that the half-value width in the crystal orientation (211) of the work-induced martensite phase is 1.5 ° or more when X-ray analysis is performed at 200 mA steel sheet.
An annealed steel material comprising the component range of claim 1 is rolled at a cold rolling rate of 40% or more, and then subjected to an aging treatment in a range of 400 ° C. or more and 60 minutes. Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013063421A JP6111109B2 (en) | 2013-03-26 | 2013-03-26 | Low Ni austenitic stainless steel sheet with excellent age hardening characteristics and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013063421A JP6111109B2 (en) | 2013-03-26 | 2013-03-26 | Low Ni austenitic stainless steel sheet with excellent age hardening characteristics and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014189802A true JP2014189802A (en) | 2014-10-06 |
JP6111109B2 JP6111109B2 (en) | 2017-04-05 |
Family
ID=51836380
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013063421A Active JP6111109B2 (en) | 2013-03-26 | 2013-03-26 | Low Ni austenitic stainless steel sheet with excellent age hardening characteristics and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6111109B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2016194736A1 (en) * | 2015-05-29 | 2017-06-22 | 日新製鋼株式会社 | Fluid supply pipe |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112063936B (en) * | 2020-08-05 | 2022-06-03 | 广西柳钢中金不锈钢有限公司 | High-nitrogen low-nickel copper-free austenitic stainless steel |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003113449A (en) * | 2001-10-10 | 2003-04-18 | Nisshin Steel Co Ltd | High-strength/high-toughness stainless steel sheet superior in delayed fracture resistance and manufacturing method therefor |
JP2009221554A (en) * | 2008-03-17 | 2009-10-01 | Nisshin Steel Co Ltd | Stainless steel for low nickel vehicle body member excellent in workability and impulse absorption performance |
JP2009221553A (en) * | 2008-03-17 | 2009-10-01 | Nisshin Steel Co Ltd | Stainless steel for low nickel springs excellent in settling resistance and bendability |
JP2010189719A (en) * | 2009-02-18 | 2010-09-02 | Nisshin Steel Co Ltd | Age-hardening type stainless steel sheet for spring |
JP2012172211A (en) * | 2011-02-22 | 2012-09-10 | Nisshin Steel Co Ltd | METHOD OF MANUFACTURING LOW Ni AUSTENITIC STAINLESS STEEL SHEET |
-
2013
- 2013-03-26 JP JP2013063421A patent/JP6111109B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003113449A (en) * | 2001-10-10 | 2003-04-18 | Nisshin Steel Co Ltd | High-strength/high-toughness stainless steel sheet superior in delayed fracture resistance and manufacturing method therefor |
JP2009221554A (en) * | 2008-03-17 | 2009-10-01 | Nisshin Steel Co Ltd | Stainless steel for low nickel vehicle body member excellent in workability and impulse absorption performance |
JP2009221553A (en) * | 2008-03-17 | 2009-10-01 | Nisshin Steel Co Ltd | Stainless steel for low nickel springs excellent in settling resistance and bendability |
JP2010189719A (en) * | 2009-02-18 | 2010-09-02 | Nisshin Steel Co Ltd | Age-hardening type stainless steel sheet for spring |
JP2012172211A (en) * | 2011-02-22 | 2012-09-10 | Nisshin Steel Co Ltd | METHOD OF MANUFACTURING LOW Ni AUSTENITIC STAINLESS STEEL SHEET |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2016194736A1 (en) * | 2015-05-29 | 2017-06-22 | 日新製鋼株式会社 | Fluid supply pipe |
Also Published As
Publication number | Publication date |
---|---|
JP6111109B2 (en) | 2017-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5869922B2 (en) | Ferrite-austenitic duplex stainless steel sheet with small in-plane anisotropy and method for producing the same | |
JP5091732B2 (en) | Stainless steel for low Ni springs with excellent sag resistance and bendability | |
KR101606946B1 (en) | High-strength stainless steel material and process for production of the same | |
KR20210101302A (en) | Austenitic stainless steel and manufacturing method thereof | |
JP2009299171A (en) | Austenitic stainless steel sheet for press forming with fine-grained structure and method for producing the same | |
EP3559295A1 (en) | An object comprising a duplex stainless steel and the use thereof | |
JP5100144B2 (en) | Steel plate for spring, spring material using the same, and manufacturing method thereof | |
JP4327030B2 (en) | Low Ni austenitic stainless steel with excellent overhanging and rust resistance | |
JP5421611B2 (en) | Stainless steel plate for age-hardening springs | |
KR20150074697A (en) | Low-nickel containing stainless steels | |
JP2018003139A (en) | Stainless steel | |
JP2018178144A (en) | Precipitation-hardened stainless steel having excellent hot workability | |
JP6105996B2 (en) | Low Ni austenitic stainless steel sheet and processed product obtained by processing the steel sheet | |
JP6111109B2 (en) | Low Ni austenitic stainless steel sheet with excellent age hardening characteristics and method for producing the same | |
JP7108143B2 (en) | high strength stainless steel | |
JP4606113B2 (en) | Austenitic stainless steel with high proportional limit stress and manufacturing method | |
JP2014019925A (en) | Ni SAVING TYPE AUSTENITIC STAINLESS STEEL | |
JP4331731B2 (en) | Austenitic stainless steel and springs made of that steel | |
JP4841308B2 (en) | High-strength nonmagnetic stainless steel sheet and method for producing the same | |
KR20190077724A (en) | Lean duplex stainless steel with improved bending properties and method of manufacturing the same | |
JP2022155180A (en) | Austenitic stainless steel and method for producing the same | |
JP2019501286A (en) | Lean duplex stainless steel with improved corrosion resistance and workability and method for producing the same | |
WO2012160594A1 (en) | Austenitic stainless steel for spring, and stainless processing material for spring | |
JP2000129400A (en) | Annealed martensitic stainless steel excellent in strength, toughness, and spring characteristic | |
JP4640628B2 (en) | Precipitation hardened martensitic steel with excellent cold workability and high fatigue strength |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160325 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20161212 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170110 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170127 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20170127 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170214 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170313 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6111109 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |