[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2014179634A - Resin composition for solar cell sealing material, solar cell sealing material manufactured therefrom, and solar battery module - Google Patents

Resin composition for solar cell sealing material, solar cell sealing material manufactured therefrom, and solar battery module Download PDF

Info

Publication number
JP2014179634A
JP2014179634A JP2014092472A JP2014092472A JP2014179634A JP 2014179634 A JP2014179634 A JP 2014179634A JP 2014092472 A JP2014092472 A JP 2014092472A JP 2014092472 A JP2014092472 A JP 2014092472A JP 2014179634 A JP2014179634 A JP 2014179634A
Authority
JP
Japan
Prior art keywords
solar cell
ethylene
component
resin composition
cell sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014092472A
Other languages
Japanese (ja)
Other versions
JP5800054B2 (en
Inventor
Takahiro Amamiya
隆浩 雨宮
Tamami Onaka
珠美 尾中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Polyethylene Corp
Original Assignee
Japan Polyethylene Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Polyethylene Corp filed Critical Japan Polyethylene Corp
Priority to JP2014092472A priority Critical patent/JP5800054B2/en
Publication of JP2014179634A publication Critical patent/JP2014179634A/en
Application granted granted Critical
Publication of JP5800054B2 publication Critical patent/JP5800054B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: a resin composition for solar cell sealing material which contains an ethylene/α-olefin copolymer, an organic peroxide, etc., and has good crosslinking characteristic and good heat resistance; a solar cell sealing material manufactured from such a resin composition; and a solar battery module manufactured therefrom.SOLUTION: A resin composition for solar cell sealing material comprises: an ethylene/α-olefin copolymer component (A) having the characteristics (a1) and (a2) below; an organic peroxide component (B); and a hindered-amine based optical stabilizer (C). (a1)The density is 0.860-0.920 g/cm; and (a2)the total number (N) branches derived from comonomer in the ethylene/α-olefin copolymer is 54-95(/total 1000C)(where N is a number per 1000 carbon atoms of main and side chains in total as measured by NMR).

Description

本発明は、太陽電池封止材用樹脂組成物、及びそれを用いた太陽電池封止材、太陽電池モジュールに関し、より詳しくは、エチレン・α−オレフィン共重合体と有機過酸化物などを含有し、架橋特性、耐熱性、透明性に優れた太陽電池封止材用樹脂組成物、及びそれを用いた太陽電池封止材、太陽電池モジュールに関するものである。   The present invention relates to a resin composition for a solar cell encapsulant, a solar cell encapsulant using the same, and a solar cell module, and more specifically, contains an ethylene / α-olefin copolymer and an organic peroxide. In addition, the present invention relates to a resin composition for a solar cell encapsulant that is excellent in crosslinking characteristics, heat resistance, and transparency, and a solar cell encapsulant and a solar cell module using the same.

二酸化炭素の増加など地球環境問題がクローズアップされる中で、水力、風力、地熱などの有効利用とともに太陽光発電が再び注目されるようになった。
太陽光発電は、一般にシリコン、ガリウム−砒素、銅−インジウム−セレンなどの太陽電池素子を上部透明保護材と下部基板保護材とで保護し、太陽電池素子と保護材とを樹脂製の封止材で固定し、パッケージ化した太陽電池モジュールを用いるものであり、水力、風力などと比べて規模は小さいものの、電力が必要な場所に分散して配置できることから、発電効率等の性能向上と価格の低下を目指した研究開発が推進されている。また、国や自治体で住宅用太陽光発電システム導入促進事業として設置費用を補助する施策が採られることで、徐々にその普及が進みつつある。しかしながら、更なる普及には一層の低コスト化が必要であり、そのため従来型のシリコンやガリウム−砒素などに代わる新たな素材を用いた太陽電池素子の開発だけでなく、太陽電池モジュールの製造コストをより一層低減する努力も地道に続けられている。
As global environmental issues such as an increase in carbon dioxide are highlighted, solar power generation has come into focus again along with the effective use of hydropower, wind power, and geothermal heat.
Photovoltaic power generation generally protects solar cell elements such as silicon, gallium-arsenic, copper-indium-selenium with an upper transparent protective material and a lower substrate protective material, and the solar cell element and the protective material are sealed with resin. It uses solar cell modules that are fixed with materials and packaged, and although it is smaller in scale than hydropower and wind power, it can be distributed and placed in places where power is required. Research and development aimed at lowering the level is being promoted. In addition, the government and local governments are gradually promoting the spread of measures by substituting installation costs as a residential solar power generation system introduction promotion project. However, further cost reduction is necessary for further spread, so that not only the development of solar cell elements using new materials to replace conventional silicon and gallium arsenide, but also the manufacturing cost of solar cell modules Efforts to further reduce this are continuing.

太陽電池モジュールを構成する太陽電池封止材の条件としては、太陽電池の発電効率を低下しないように、太陽光の入射量を確保するため、透明性が良好なことが求められている。また、太陽電池モジュールは通常、屋外に設置されるから長期間太陽光に晒され温度上昇する。それにより樹脂製の封止材が流動し、モジュールが変形したりするトラブルを避けるために、耐熱性を有するものでなければならない。また年々、太陽電池素子の材料コストを削減するために薄肉化が進んでおり、一層柔軟性に優れた封止材も求められている。   As a condition of the solar cell encapsulant constituting the solar cell module, in order to ensure the incident amount of sunlight so as not to decrease the power generation efficiency of the solar cell, good transparency is required. Moreover, since a solar cell module is usually installed outdoors, it is exposed to sunlight for a long period of time and the temperature rises. Therefore, in order to avoid troubles in which the resin sealing material flows and the module is deformed, it must have heat resistance. Moreover, in order to reduce the material cost of a solar cell element year by year, the thickness has been reduced, and a sealing material with further flexibility is also required.

例えば太陽電池モジュールでは、従来から価格、加工性、耐湿性等の観点から、封止材として、酢酸ビニル含量の高いエチレン・酢酸ビニル共重合体(EVA)に有機過酸化物を配合して架橋構造を付与した組成物が採用されている(たとえば、特許文献1参照)。ところが、エチレン・酢酸ビニル共重合体(EVA)系樹脂は、長期にわたって使用されると黄変、亀裂入り、発泡等の劣化・変質により耐湿性が低下して、太陽電池セルの腐食等による発電量の低下を招いていた。これらはEVA系樹脂が加水分解性の高いエステル構造を有しているために、太陽光や水分の影響を受け易いものと考えられている。   For example, in solar cell modules, from the viewpoint of price, workability, moisture resistance, etc., as an encapsulating material, an organic peroxide is blended with an ethylene / vinyl acetate copolymer (EVA) having a high vinyl acetate content and crosslinked. A composition having a structure is employed (see, for example, Patent Document 1). However, ethylene / vinyl acetate copolymer (EVA) resin, when used over a long period of time, has deteriorated moisture resistance due to deterioration / deterioration such as yellowing, cracking and foaming, and power generation due to corrosion of solar cells, etc. The amount was reduced. These are considered to be easily affected by sunlight and moisture because the EVA resin has an ester structure with high hydrolyzability.

そのため、太陽電池モジュールの封止材では、結晶化度が40%以下の非晶性又は低結晶性のα−オレフィン系共重合体からなるものが提案されている(特許文献2参照)。この特許文献2には、低結晶性のエチレン・ブテン共重合体に、有機過酸化物を混合し、異形押出機を用いて加工温度100℃でシートを作製することが例示されているが、加工温度が低いため、生産性が高められないという問題がある。   Therefore, as a sealing material for a solar cell module, a material composed of an amorphous or low crystalline α-olefin copolymer having a crystallinity of 40% or less has been proposed (see Patent Document 2). In this Patent Document 2, it is exemplified that a low crystalline ethylene / butene copolymer is mixed with an organic peroxide and a sheet is produced at a processing temperature of 100 ° C. using a profile extruder. Since processing temperature is low, there exists a problem that productivity cannot be improved.

また、太陽電池モジュールの封止材として、(a)約0.90g/cc未満の密度、(b)ASTM D−882−02により測定して約150メガパスカル(mPa)未満の2%割線係数、(c)約95℃未満の融点、(d)ポリマーの重量に基づいて少なくとも約15および約50重量%未満のα−オレフィン含量、(e)約−35℃未満のTg、ならびに(f)少なくとも約50のSCBDI、の1以上の条件を満たすポリオレフィンコポリマーを含むポリマー材料が提案されている(特許文献3参照)。   Moreover, as a sealing material for solar cell modules, (a) a density of less than about 0.90 g / cc, (b) a 2% secant coefficient of less than about 150 megapascals (mPa) as measured by ASTM D-882-02 (C) a melting point of less than about 95 ° C., (d) an α-olefin content of at least about 15 and less than about 50% by weight based on the weight of the polymer, (e) a Tg of less than about −35 ° C., and (f) A polymer material containing a polyolefin copolymer that satisfies one or more conditions of at least about 50 SCBDI has been proposed (see Patent Document 3).

太陽電池モジュールでは、太陽電池素子の薄膜化に伴い、太陽電池封止材も薄膜化する傾向がある。その際、太陽電池封止材の上部または下部保護材側から衝撃が加わると、配線が断線しやすいことが問題となっていた。それを改良するため、封止材の剛性を高くすることが求められるが、特許文献3のポリマー材料では剛性を高くすると、架橋効率が悪くなることが問題となっていた。   In the solar cell module, the solar cell encapsulant tends to become thinner as the solar cell element becomes thinner. At that time, when an impact is applied from the upper or lower protective material side of the solar cell sealing material, the wiring is likely to be disconnected. In order to improve it, it is required to increase the rigidity of the sealing material. However, in the polymer material of Patent Document 3, if the rigidity is increased, there is a problem that the crosslinking efficiency is deteriorated.

このように従来の技術では、架橋性、耐熱性、透明性、柔軟性に優れる太陽電池封止材用樹脂組成物は得られていなかった。   Thus, according to the conventional technology, a resin composition for a solar cell encapsulant that is excellent in crosslinkability, heat resistance, transparency, and flexibility has not been obtained.

特開昭58−023870号公報JP 58-023870 A 特開2006−210906号公報JP 2006-210906 A 特表2010−504647号公報JP 2010-504647 A

本発明の目的は、エチレン・α−オレフィン共重合体と有機過酸化物などを含有し、架橋性、耐熱性、透明性、柔軟性に優れる太陽電池封止材用樹脂組成物を提供することにある。   An object of the present invention is to provide a resin composition for a solar cell encapsulant that contains an ethylene / α-olefin copolymer and an organic peroxide, and is excellent in crosslinkability, heat resistance, transparency, and flexibility. It is in.

本発明者らは、上記問題を解決すべく鋭意検討した結果、樹脂成分としてメタロセン触媒などを用いて重合された特定の密度、分子量分布、コモノマーによる分岐数などの特性を有するエチレン・α−オレフィン共重合体を選択し、これに有機過酸化物を配合することにより、架橋性、耐熱性、透明性、柔軟性に優れる太陽電池封止材用樹脂組成物が得られ、これを用いれば太陽電池モジュールの生産性が大幅に向上するとの知見を得て、本発明を完成させるに至った。   As a result of intensive studies to solve the above problems, the present inventors have determined that ethylene / α-olefin having characteristics such as specific density, molecular weight distribution, and number of branches due to a comonomer polymerized using a metallocene catalyst as a resin component By selecting a copolymer and adding an organic peroxide thereto, a resin composition for a solar cell encapsulant that is excellent in crosslinkability, heat resistance, transparency, and flexibility can be obtained. Obtaining knowledge that the productivity of the battery module is greatly improved, the present invention has been completed.

即ち、本発明の第1の発明によれば、下記の成分(A)、成分(B)及び成分(C)を含有することを特徴とする太陽電池封止材用樹脂組成物が提供される。
成分(A):下記(a1)〜(a2)の特性を有するエチレン・α−オレフィン共重合体
(a1)密度が0.860〜0.920g/cm
(a2)エチレン・α−オレフィン共重合体中のコモノマーによる分岐数(N)が、合計で54〜95(個/total 1000C)
(ただし、Nは、NMRで測定した主鎖、側鎖の合計1000個の炭素数あたりの数である。)
成分(B):有機過酸化物
成分(C):ヒンダードアミン系光安定化剤
That is, according to 1st invention of this invention, the resin composition for solar cell sealing materials characterized by containing the following component (A), a component (B), and a component (C) is provided. .
Component (A): ethylene / α-olefin copolymer (a1) having the following characteristics (a1) to (a2): Density of 0.860 to 0.920 g / cm 3
(A2) The total number of branches (N) due to the comonomer in the ethylene / α-olefin copolymer is 54 to 95 (pieces / total 1000C).
(However, N is the number per 1000 carbon atoms in total of the main chain and side chain measured by NMR.)
Component (B): Organic peroxide Component (C): Hindered amine light stabilizer

また、本発明の第2の発明によれば、第1の発明において、成分(A)が、さらに下記(a3)の特性を有するエチレン・α−オレフィン共重合体であることを特徴とする太陽電池封止材組成物が提供される。
(a3)ゲルパーミエーションクロマトグラフィー(GPC)により求めたZ平均分子量(Mz)と数平均分子量(Mn)との比(Mz/Mn)が8.0以下
According to a second aspect of the present invention, in the first aspect, the component (A) is an ethylene / α-olefin copolymer further having the following property (a3): A battery encapsulant composition is provided.
(A3) The ratio (Mz / Mn) of the Z average molecular weight (Mz) and the number average molecular weight (Mn) determined by gel permeation chromatography (GPC) is 8.0 or less.

また、本発明の第3の発明によれば、第1又は2の発明において、成分(B)の含有量が、成分(A)100重量部に対して、0.2〜5重量部であることを特徴とする太陽電池封止材用樹脂組成物が提供される。
また、本発明の第4発明によれば、第1発明において、成分(C)の含有量が、成分(A)100重量部に対して、0.01〜2.5重量部であることを特徴とする太陽電池封止材用樹脂組成物が提供される。
また、本発明の第5発明によれば、第1〜4いずれかの発明において、成分(A)が、エチレン・1−ブテン、又はエチレン・1−ヘキセン共重合体であることを特徴とする太陽電池封止材用樹脂組成物が提供される。
According to the third aspect of the present invention, in the first or second aspect, the content of the component (B) is 0.2 to 5 parts by weight with respect to 100 parts by weight of the component (A). The resin composition for solar cell sealing materials characterized by this is provided.
According to the fourth invention of the present invention, in the first invention, the content of the component (C) is 0.01 to 2.5 parts by weight with respect to 100 parts by weight of the component (A). A characteristic resin composition for a solar cell encapsulant is provided.
According to a fifth aspect of the present invention, in any one of the first to fourth aspects, the component (A) is ethylene / 1-butene or an ethylene / 1-hexene copolymer. A resin composition for a solar cell encapsulant is provided.

一方、本発明の第6発明によれば、第1〜5いずれかの発明に係り、太陽電池封止材用樹脂組成物からなる太陽電池封止材が提供される。
また、本発明の第7発明によれば、第6発明に係り、太陽電池封止材を用いた太陽電池モジュールが提供される。
On the other hand, according to the sixth invention of the present invention, there is provided a solar cell encapsulant comprising the resin composition for solar cell encapsulant according to any of the first to fifth inventions.
Moreover, according to the 7th invention of this invention, it is related with the 6th invention, The solar cell module using a solar cell sealing material is provided.

本発明の太陽電池封止材用樹脂組成物は、特定の密度、分子量分布、コモノマーによる分岐数などの特性を有するエチレン・α−オレフィン共重合体を主成分とし、これに有機過酸化物を配合しているため、この樹脂組成物をシート化する際には、エチレン・α−オレフィン共重合体が比較的短時間で架橋でき、剛性と架橋効率とのバランスもよく、太陽電池封止材としてモジュールの形成が容易であり、製造コストを低減することができる。また、得られた太陽電池モジュールは、透明性、柔軟性、耐候性等に優れるものとなり、長期間安定した変換効率を維持することが期待できる。   The resin composition for a solar cell encapsulant of the present invention is mainly composed of an ethylene / α-olefin copolymer having specific density, molecular weight distribution, number of branches by comonomer and the like, and an organic peroxide is added thereto. Therefore, when this resin composition is made into a sheet, the ethylene / α-olefin copolymer can be cross-linked in a relatively short time, and the balance between rigidity and cross-linking efficiency is good. As a result, the module can be easily formed, and the manufacturing cost can be reduced. Moreover, the obtained solar cell module becomes excellent in transparency, flexibility, weather resistance, etc., and it can be expected to maintain stable conversion efficiency for a long period of time.

1.太陽電池封止材用樹脂組成物
本発明の太陽電池封止材用樹脂組成物(以下、単に樹脂組成物ともいう)は、下記のエチレン・α−オレフィン共重合体成分(A)、有機過酸化物(B)及びヒンダードアミン系光安定化剤(C)を含有することを特徴とする。
1. Resin composition for solar cell encapsulant The resin composition for solar cell encapsulant of the present invention (hereinafter also simply referred to as resin composition) comprises the following ethylene / α-olefin copolymer component (A), It contains an oxide (B) and a hindered amine light stabilizer (C).

(1)成分(A)
本発明に用いる成分(A)は、下記(a1)〜(a2)の特性を有したエチレン・α−オレフィン共重合体であり、(a3)の特性を有するものが好ましい。
(a1)密度が0.860〜0.920g/cm
(a2)エチレン・α−オレフィン共重合体中のコモノマーによる分岐数(N)が、合計で54〜95(個/total 1000C)
(ただし、Nは、NMRで測定した主鎖、側鎖の合計1000個の炭素数あたりの数である。)
(a3)ゲルパーミエーションクロマトグラフィー(GPC)により求めたZ平均分子量(Mz)と数平均分子量(Mn)との比(Mz/Mn)が8.0以下
(1) Component (A)
Component (A) used in the present invention is an ethylene / α-olefin copolymer having the following characteristics (a1) to (a2), and preferably has the characteristics (a3).
(A1) Density is 0.860-0.920 g / cm 3
(A2) The total number of branches (N) due to the comonomer in the ethylene / α-olefin copolymer is 54 to 95 (pieces / total 1000C).
(However, N is the number per 1000 carbon atoms in total of the main chain and side chain measured by NMR.)
(A3) The ratio (Mz / Mn) of the Z average molecular weight (Mz) and the number average molecular weight (Mn) determined by gel permeation chromatography (GPC) is 8.0 or less.

(i)成分(A)のモノマー構成
本発明に使用されるエチレン・α−オレフィン共重合体は、エチレンから誘導される構成単位を主成分としたエチレンとα−オレフィンのランダム共重合体である。
コモノマーとして用いられるα−オレフィンは、好ましくは炭素数3〜12のα−オレフィンである。具体的には、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、1−オクテン、1−ヘプテン、4−メチル−ペンテン−1、4−メチル−ヘキセン−1、4,4−ジメチルペンテン−1等を挙げることができる。かかるエチレン・α−オレフィン共重合体の具体例としては、エチレン・プロピレン共重合体、エチレン・1−ブテン共重合体、エチレン・1−ヘキセン共重合体、エチレン・1−オクテン共重合体、エチレン・4−メチル−ペンテン−1共重合体等が挙げられる。なかでも、エチレン・1−ブテン共重合体、エチレン・1−ヘキセン共重合体が好ましい。また、α−オレフィンは1種または2種以上の組み合わせでもよい。2種のα−オレフィンを組み合わせて三元共重合体とする場合は、エチレン・プロピレン・1−ヘキセン三元共重合体、エチレン・1−ブテン・1−ヘキセン三元共重合体、エチレン・プロピレン・1−オクテン三元共重合体、エチレン・1−ブテン・1−オクテン三元共重合体等が挙げられる。
コモノマーとして、1,5−ヘキサジエン、1,6−ヘプタジエン、1,7−オクタジエン、1,8−ノナジエン、及び1,9−デカジエン等のジエン化合物を、α−オレフィンに少量配合してもよい。これらのジエン化合物を配合すると、長鎖分岐ができるので、エチレン・α−オレフィン共重合体の結晶性を低下させ、透明性、柔軟性、接着性等が良くなり、分子間の架橋剤ともなるので、機械的強度が増加する。また長鎖分岐の末端基は、不飽和基であるから、有機過酸化物による架橋反応や、酸無水物基含有化合物若しくはエポキシ基含有化合物との共重合反応やグラフト反応を容易におこすことができる。
(I) Monomer structure of component (A) The ethylene / α-olefin copolymer used in the present invention is a random copolymer of ethylene and α-olefin, the main component of which is a structural unit derived from ethylene. .
The α-olefin used as a comonomer is preferably an α-olefin having 3 to 12 carbon atoms. Specifically, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-heptene, 4-methyl-pentene-1, 4-methyl-hexene-1, 4,4-dimethylpentene- 1 etc. can be mentioned. Specific examples of such ethylene / α-olefin copolymers include ethylene / propylene copolymers, ethylene / 1-butene copolymers, ethylene / 1-hexene copolymers, ethylene / 1-octene copolymers, ethylene -4-methyl-pentene-1 copolymer etc. are mentioned. Of these, ethylene / 1-butene copolymer and ethylene / 1-hexene copolymer are preferable. Moreover, 1 type, or 2 or more types of combination may be sufficient as an alpha olefin. When combining two kinds of α-olefins to form a terpolymer, ethylene / propylene / 1-hexene terpolymer, ethylene / 1-butene / 1-hexene terpolymer, ethylene / propylene -1-octene terpolymer, ethylene / 1-butene / 1-octene terpolymer, etc. are mentioned.
As a comonomer, a small amount of a diene compound such as 1,5-hexadiene, 1,6-heptadiene, 1,7-octadiene, 1,8-nonadiene, and 1,9-decadiene may be added to the α-olefin. When these diene compounds are blended, long-chain branching is possible, so that the crystallinity of the ethylene / α-olefin copolymer is lowered, transparency, flexibility, adhesiveness, etc. are improved, and it becomes an intermolecular crosslinking agent. So the mechanical strength increases. Moreover, since the terminal group of the long chain branch is an unsaturated group, it can easily undergo a crosslinking reaction with an organic peroxide, a copolymerization reaction with an acid anhydride group-containing compound or an epoxy group-containing compound, and a graft reaction. it can.

本発明で用いるエチレン・α−オレフィン共重合体は、そのα−オレフィンの含有量が5〜40重量%であり、好ましくは10〜35重量%、より好ましくは15〜30重量%である。この範囲であれば柔軟性と耐熱性が良好である。
ここでα−オレフィンの含有量は、下記の条件の13C−NMR法によって計測される値である。
装置:日本電子製 JEOL−GSX270
濃度:300mg/2mL
溶媒:オルソジクロロベンゼン
The ethylene / α-olefin copolymer used in the present invention has an α-olefin content of 5 to 40% by weight, preferably 10 to 35% by weight, and more preferably 15 to 30% by weight. Within this range, flexibility and heat resistance are good.
Here, the content of α-olefin is a value measured by a 13C-NMR method under the following conditions.
Device: JEOL-GSX270 manufactured by JEOL
Concentration: 300 mg / 2 mL
Solvent: Orthodichlorobenzene

(ii)成分(A)の重合触媒及び重合法
本発明で用いるエチレン・α−オレフィン共重合体は、チーグラー触媒、バナジウム触媒又はメタロセン触媒等、好ましくはバナジウム触媒又はメタロセン触媒、より好ましくはメタロセン触媒を使用して製造することができる。製造法としては、高圧イオン重合法、気相法、溶液法、スラリー法等が挙げられる。特に、高圧イオン重合法等の高圧法を利用するのが好ましい。
メタロセン触媒としては、特に限定されるわけではないが、シクロペンタジエニル骨格を有する基等が配位したジルコニウム化合物などのメタロセン化合物と助触媒とを触媒成分とする触媒が挙げられる。特に、シクロペンタジエニル骨格を有する基等が配位したジルコニウム化合物などのメタロセン化合物を使用するのが、好ましい。市販品としては、日本ポリエチレン社製のハーモレックス(登録商標)シリーズ、カーネル(登録商標)シリーズ、プライムポリマー社製のエボリュー(登録商標)シリーズ、住友化学社製のエクセレン(登録商標)GMHシリーズ、エクセレン(登録商標)FXシリーズが挙げられる。バナジウム触媒としては、可溶性バナジウム化合物と有機アルミニウムハライドとを触媒成分とする触媒が挙げられる。
(Ii) Polymerization catalyst and polymerization method of component (A) The ethylene / α-olefin copolymer used in the present invention is a Ziegler catalyst, vanadium catalyst or metallocene catalyst, preferably a vanadium catalyst or metallocene catalyst, more preferably a metallocene catalyst. Can be manufactured using. Examples of the production method include a high-pressure ion polymerization method, a gas phase method, a solution method, and a slurry method. In particular, it is preferable to use a high-pressure method such as a high-pressure ion polymerization method.
Although it does not necessarily limit as a metallocene catalyst, The catalyst which uses a metallocene compound, such as a zirconium compound coordinated with the group which has a cyclopentadienyl skeleton, etc., and a promoter as a catalyst component is mentioned. In particular, it is preferable to use a metallocene compound such as a zirconium compound in which a group having a cyclopentadienyl skeleton is coordinated. Commercially available products include Harmolex (registered trademark) series, Kernel (registered trademark) series manufactured by Japan Polyethylene, Evolue (registered trademark) series manufactured by Prime Polymer, Exelen (registered trademark) GMH series manufactured by Sumitomo Chemical, Exelen (registered trademark) FX series may be mentioned. Examples of the vanadium catalyst include a catalyst having a soluble vanadium compound and an organic aluminum halide as catalyst components.

(iii)成分(A)の特性
(a1)密度
本発明で用いるエチレン・α−オレフィン共重合体は、密度が0.860〜0.920g/cmであり、好ましくは0.870〜0.915g/cm、さらに好ましくは0.875〜0.910g/cmである。エチレン・α−オレフィン共重合体の密度が0.860g/cm未満では、加工後のシートがブロッキングしてしまい、密度が0.920g/cmを超えると加工後のシートの剛性が高すぎて、取り扱い性に欠けるものとなる。
(Iii) Characteristics of component (A) (a1) Density The ethylene / α-olefin copolymer used in the present invention has a density of 0.860 to 0.920 g / cm 3 , preferably 0.870 to 0.8. It is 915 g / cm 3 , more preferably 0.875 to 0.910 g / cm 3 . When the density of the ethylene / α-olefin copolymer is less than 0.860 g / cm 3 , the processed sheet is blocked, and when the density exceeds 0.920 g / cm 3 , the processed sheet has too high rigidity. Thus, the handling property is lacking.

ポリマーの密度を調節するには、例えばα−オレフィン含有量、重合温度、触媒量など適宜調節する方法がとられる。なお、エチレン・α−オレフィン共重合体の密度は、JIS−K6922−2:1997附属書(低密度ポリエチレンの場合)に準拠して測定する(23℃)。   In order to adjust the density of the polymer, for example, a method of appropriately adjusting the α-olefin content, the polymerization temperature, the catalyst amount and the like is employed. The density of the ethylene / α-olefin copolymer is measured according to JIS-K6922-2: 1997 appendix (in the case of low density polyethylene) (23 ° C.).

(a2)エチレン・α−オレフィン共重合体中のコモノマーによる分岐数(N)
本発明で用いるエチレン・α−オレフィン共重合体は、コモノマーによる分岐数(N)が、合計54〜95(個/total 1000C)でなければならない。ここで、分岐数(N)は、NMRで測定した主鎖、側鎖の合計1000個の炭素数あたりの数である。
すなわち、本発明においては、分岐数(N)は、54〜88が好ましく、55〜85がより好ましく、56〜83がさらに好ましく、57〜80が特に好ましい。ポリマー中のコモノマーによる分岐数(N)は、例えばE. W. Hansen, R. Blom, and O. M. Bade, Polymer, 36巻 4295頁(1997年)を参考にC−NMRスペクトルから算出することができる。
(A2) Number of branches by comonomer in the ethylene / α-olefin copolymer (N)
In the ethylene / α-olefin copolymer used in the present invention, the number of branches (N) due to the comonomer must be 54 to 95 in total (total / 1000 C). Here, the number of branches (N) is the number per 1000 carbon atoms in total of the main chain and the side chain measured by NMR.
That is, in the present invention, the number of branches (N) is preferably 54 to 88, more preferably 55 to 85, still more preferably 56 to 83, and particularly preferably 57 to 80. The number of branches (N) due to the comonomer in the polymer is, for example, E.I. W. Hansen, R.A. Blom, and O.M. M.M. It can be calculated from the C-NMR spectrum with reference to Bade, Polymer, 36, 4295 (1997).

(a3)Z平均分子量(Mz)と数平均分子量(Mn)との比(Mz/Mn)
本発明で用いるエチレン・α−オレフィン共重合体は、ゲルパーミエーションクロマグラフィー(GPC)により求めたZ平均分子量(Mz)と数平均分子量(Mn)との比(Mz/Mn)が8.0以下であり、好ましくは5.0以下、より好ましくは4.0以下である。また、Mz/Mnは、2.0以上、好ましくは2.5以上、より好ましくは3.0以上である。ただし、Mz/Mnが8.0を超えると透明性が悪化する。Mz/Mnを所定の範囲に調整するには、適当な触媒系を選択する方法等によることができる。
(A3) Ratio (Mz / Mn) of Z average molecular weight (Mz) to number average molecular weight (Mn)
The ethylene / α-olefin copolymer used in the present invention has a ratio (Mz / Mn) of Z average molecular weight (Mz) to number average molecular weight (Mn) determined by gel permeation chromatography (GPC) of 8.0. Or less, preferably 5.0 or less, more preferably 4.0 or less. Moreover, Mz / Mn is 2.0 or more, preferably 2.5 or more, more preferably 3.0 or more. However, when Mz / Mn exceeds 8.0, transparency deteriorates. In order to adjust Mz / Mn to a predetermined range, a method of selecting an appropriate catalyst system can be used.

なお、Mz/Mnの測定は、ゲルパーミエーションクロマトグラフィー(GPC)で行い、測定条件は次のとおりである。
装置:ウオーターズ社製GPC 150C型
検出器:MIRAN社製 1A赤外分光光度計(測定波長、3.42μm)
カラム:昭和電工製AD806M/S 3本(カラムの較正は、東ソー製単分散ポリスチレン(A500,A2500,F1,F2,F4,F10,F20,F40,F288の各0.5mg/ml溶液)の測定を行い、溶出体積と分子量の対数値を2次式で近似した。また、試料の分子量は、ポリスチレンとポリエチレンの粘度式を用いてポリエチレンに換算した。ここでポリスチレンの粘度式の係数は、α=0.723、logK=−3.967であり、ポリエチレンはα=0.733、logK=−3.407である。)
測定温度:140℃
濃度:20mg/10mL
注入量:0.2ml
溶媒:オルソジクロロベンゼン
流速:1.0ml/分
In addition, the measurement of Mz / Mn is performed by gel permeation chromatography (GPC), and the measurement conditions are as follows.
Apparatus: Waters GPC 150C type detector: MIRAN 1A infrared spectrophotometer (measurement wavelength: 3.42 μm)
Column: Showa Denko AD806M / S 3 (column calibration was measured by Tosoh monodisperse polystyrene (0.5 mg / ml solution of each of A500, A2500, F1, F2, F4, F10, F20, F40, and F288) The logarithmic value of the elution volume and molecular weight was approximated by a quadratic equation, and the molecular weight of the sample was converted to polyethylene using the viscosity equation of polystyrene and polyethylene, where the coefficient of the viscosity equation of polystyrene is α = 0.723, log K = -3.967, polyethylene is α = 0.733, log K = -3.407.)
Measurement temperature: 140 ° C
Concentration: 20 mg / 10 mL
Injection volume: 0.2ml
Solvent: Orthodichlorobenzene Flow rate: 1.0 ml / min

なお、Z平均分子量(Mz)は、高分子量成分の平均分子量への寄与が大きいので、Mz/Mnは、Mw/Mnに比べて高分子量成分の存在を確認しやすい。高分子量成分は、透明性に影響を与える要因であり、高分子量成分が多いと透明性は悪化する。また、架橋効率も悪化する傾向が見られる。よって、Mz/Mnは小さい方が好ましい。   Since the Z average molecular weight (Mz) greatly contributes to the average molecular weight of the high molecular weight component, Mz / Mn is easier to confirm the presence of the high molecular weight component than Mw / Mn. The high molecular weight component is a factor that affects the transparency, and when the high molecular weight component is large, the transparency is deteriorated. Moreover, the tendency for a crosslinking efficiency to deteriorate is seen. Therefore, a smaller Mz / Mn is preferable.

太陽電池モジュールでは、太陽電池素子の薄膜化に伴い、太陽電池封止材も薄膜化する傾向がある。薄膜化した太陽電池封止材では、上部または下部保護材側から衝撃が加わると、配線が断線しやすいため、封止材の剛性を高くすることが求められる。剛性を高くすると、架橋効率が悪くなるので、高分子鎖の分岐度がある程度高い共重合体を用いて、架橋前の共重合体の流動性を向上させ、成形性に優れた材料として使用する必要がある。本発明では、エチレン・α−オレフィン共重合体のコモノマーによる分岐数(N)が前記範囲にあるポリマー構造となっているので、架橋性が大きく、良好である。
エチレン・α−オレフィン共重合体中のコモノマーとして、プロピル、ブチル、ヘキシル、オクチルを挙げたとき、分岐は、それぞれメチル分岐、エチル分岐、ブチル分岐、ヘキシル分岐となる。これらメチル分岐、エチル分岐、ブチル分岐、ヘキシル分岐が合計で54個未満のものは、プロピル、ブチル、ヘキシルのコモノマーが少ないために、架橋効率が悪くなり、分岐が合計で95個を超えるものは、シートのべとつきが大きくなってしまうので好ましくない。
上記分岐は、合計数が54〜95(個/total 1000C)であれば、個々の分岐量は、特に限定されない。例えば、メチル分岐は、20以上が好ましく、ブチル分岐は、10以上が好ましく、エチル分岐は、0.01以上が好ましい。
In the solar cell module, the solar cell encapsulant tends to become thinner as the solar cell element becomes thinner. In the solar cell encapsulating material having a reduced thickness, when an impact is applied from the upper or lower protective material side, the wiring is easily disconnected, so that the rigidity of the encapsulating material is required to be increased. When the rigidity is increased, the crosslinking efficiency is deteriorated. Therefore, a copolymer having a high degree of branching of the polymer chain is used to improve the fluidity of the copolymer before crosslinking and to be used as a material having excellent moldability. There is a need. In the present invention, since the number of branches (N) by the comonomer of the ethylene / α-olefin copolymer is in the above range, the crosslinkability is large and good.
When propyl, butyl, hexyl and octyl are listed as comonomer in the ethylene / α-olefin copolymer, the branches are methyl branch, ethyl branch, butyl branch and hexyl branch, respectively. Those having a total of less than 54 methyl branches, ethyl branches, butyl branches, and hexyl branches have poor crosslinking efficiency due to a small amount of propyl, butyl, and hexyl comonomers, and those having more than 95 branches in total. This is not preferable because the stickiness of the sheet increases.
If the total number of the branches is 54 to 95 (pieces / total 1000C), the amount of individual branches is not particularly limited. For example, the methyl branch is preferably 20 or more, the butyl branch is preferably 10 or more, and the ethyl branch is preferably 0.01 or more.

本発明に係るエチレン・α−オレフィン共重合体は、上述した様に、触媒を用いた共重合反応により製造できるが、共重合させる原料単量体の組成比や使用する触媒の種類を選択することにより、その高分子鎖中の分岐度を容易に調整することが可能である。本発明で用いるエチレン・α−オレフィン共重合体のコモノマーによる分岐数が54〜95(個/total1000C)であるためには、コモノマーは、プロピレン、1−ブテン、又は1−ヘキセンから選択するのが好ましい。また、気相法、高圧法を用いて製造するのが好ましく、特に、高圧法を選択するのがより好ましい。   The ethylene / α-olefin copolymer according to the present invention can be produced by a copolymerization reaction using a catalyst as described above, but the composition ratio of raw material monomers to be copolymerized and the type of catalyst to be used are selected. Thus, the degree of branching in the polymer chain can be easily adjusted. In order that the number of branches by the comonomer of the ethylene / α-olefin copolymer used in the present invention is 54 to 95 (pieces / total 1000 C), the comonomer is selected from propylene, 1-butene, or 1-hexene. preferable. Moreover, it is preferable to produce using a vapor phase method or a high pressure method, and it is more preferable to select a high pressure method.

(2)成分(B)
本発明における成分(B)の有機過酸化物は、主に成分(A)を架橋するために用いられる。
有機過酸化物としては、分解温度(半減期が1時間である温度)が70〜180℃、とくに90〜160℃の有機過酸化物を用いることができる。このような有機過酸化物として、例えば、t−ブチルパーオキシイソプロピルカーボネート、t−ブチルパーオキシ−2−エチルヘキシルカーボネート、t−ブチルパーオキシアセテート、t−ブチルパーオキシベンゾエート、ジクミルパーオキサイド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン、ジ−t−ブチルパーオキサイド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキシン−3、1,1−ジ(t−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ジ(t−ブチルパーオキシ)シクロヘキサン、メチルエチルケトンパーオキサイド、2,5−ジメチルヘキシル−2,5−ジパーオキシベンゾエート、t−ブチルハイドロパーオキサイド、p−メンタンハイドロパーオキサイド、ベンゾイルパーオキサイド、p−クロルベンゾイルパーオキサイド、t−ブチルパーオキシイソブチレート、ヒドロキシヘプチルパーオキサイド、ジクロヘキサノンパーオキサイドなどが挙げられる。
(2) Component (B)
The organic peroxide of component (B) in the present invention is mainly used for crosslinking component (A).
As the organic peroxide, an organic peroxide having a decomposition temperature (temperature at which the half-life is 1 hour) is 70 to 180 ° C., particularly 90 to 160 ° C. can be used. Examples of such organic peroxides include t-butyl peroxyisopropyl carbonate, t-butyl peroxy-2-ethylhexyl carbonate, t-butyl peroxyacetate, t-butyl peroxybenzoate, dicumyl peroxide, 2 , 5-dimethyl-2,5-di (t-butylperoxy) hexane, di-t-butylperoxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexyne-3, 1 , 1-di (t-butylperoxy) -3,3,5-trimethylcyclohexane, 1,1-di (t-butylperoxy) cyclohexane, methyl ethyl ketone peroxide, 2,5-dimethylhexyl-2,5- Diperoxybenzoate, t-butyl hydroperoxide, p-menthane hydroperoxy Id, benzoyl peroxide, p- chlorobenzoyl peroxide, t- butyl peroxy isobutyrate, hydroxyheptyl peroxide, and di cyclohexanone peroxide.

(4)成分(B)の配合割合
成分(B)の配合割合は、成分(A)を100重量部としたときに、好ましくは、0.2〜5重量部であり、より好ましくは、0.5〜3重量部、さらに好ましくは、1〜2重量部である。成分(B)の配合割合が上記範囲よりも少ないと、架橋しないかまたは架橋に時間がかかる。また、上記範囲よりも大きいと、分散が不十分となり架橋度が不均一になりやすい。
(4) Mixing ratio of component (B) The mixing ratio of component (B) is preferably 0.2 to 5 parts by weight, more preferably 0, when component (A) is 100 parts by weight. 0.5-3 parts by weight, more preferably 1-2 parts by weight. When the blending ratio of the component (B) is less than the above range, crosslinking is not performed or it takes time for crosslinking. Moreover, when larger than the said range, dispersion | distribution will become inadequate and it will be easy to become non-uniform | crosslinked.

(5)ヒンダードアミン系光安定化剤(C)
本発明において、樹脂組成物にはヒンダードアミン系光安定化剤を配合する。ヒンダードアミン系光安定化剤は、ポリマーに対して有害なラジカル種を補足し、新たなラジカルを発生しないようにするものである。ヒンダードアミン系光安定化剤には、低分子量のものから高分子量のものまで多くの種類の化合物があるが、従来公知のものであれば特に制限されずに用いることができる。
(5) Hindered amine light stabilizer (C)
In the present invention, a hindered amine light stabilizer is blended in the resin composition. The hindered amine light stabilizer captures radical species harmful to the polymer and prevents generation of new radicals. There are many types of hindered amine light stabilizers ranging from low molecular weight compounds to high molecular weight compounds, but any conventionally known compounds can be used without particular limitation.

低分子量のヒンダードアミン系光安定化剤としては、デカン二酸ビス(2,2,6,6−テトラメチル−1(オクチルオキシ)−4−ピペリジニル)エステル、1,1−ジメチルエチルヒドロパーオキサイド及びオクタンの反応生成物(分子量737)70重量%とポリプロピレン30重量%からなるもの;ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)[[3,5−ビス(1,1−ジメチルエチル)−4−ヒドロキシフェニル]メチル]ブチルマロネート(分子量685);ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)セバケート及びメチル−1,2,2,6,6−ペンタメチル−4−ピペリジルセバケート混合物(分子量509);ビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート(分子量481);テトラキス(2,2,6,6−テトラメチル−4−ピペリジル)−1,2,3,4−ブタンテトラカルボキシレート(分子量791);テトラキス(1,2,2,6,6−ペンタメチル−4−ピペリジル)−1,2,3,4−ブタンテトラカルボキシレート(分子量847);2,2,6,6−テトラメチル−4−ピペリジル−1,2,3,4−ブタンテトラカルボキシレートとトリデシル−1,2,3,4−ブタンテトラカルボキシレートの混合物(分子量900);1,2,2,6,6−ペンタメチル−4−ピペリジル−1,2,3,4−ブタンテトラカルボキシレートとトリデシル−1,2,3,4−ブタンテトラカルボキシレートの混合物(分子量900)などが挙げられる。   Low molecular weight hindered amine light stabilizers include decanedioic acid bis (2,2,6,6-tetramethyl-1 (octyloxy) -4-piperidinyl) ester, 1,1-dimethylethyl hydroperoxide and Consists of 70% by weight of a reaction product of octane (molecular weight 737) and 30% by weight of polypropylene; bis (1,2,2,6,6-pentamethyl-4-piperidyl) [[3,5-bis (1,1 -Dimethylethyl) -4-hydroxyphenyl] methyl] butyl malonate (molecular weight 685); bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate and methyl-1,2,2,6 6-pentamethyl-4-piperidyl sebacate mixture (molecular weight 509); bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate ( 481); tetrakis (2,2,6,6-tetramethyl-4-piperidyl) -1,2,3,4-butanetetracarboxylate (molecular weight 791); tetrakis (1,2,2,6, 6-pentamethyl-4-piperidyl) -1,2,3,4-butanetetracarboxylate (molecular weight 847); 2,2,6,6-tetramethyl-4-piperidyl-1,2,3,4-butane Mixture of tetracarboxylate and tridecyl-1,2,3,4-butanetetracarboxylate (molecular weight 900); 1,2,2,6,6-pentamethyl-4-piperidyl-1,2,3,4-butane Examples thereof include a mixture (molecular weight 900) of tetracarboxylate and tridecyl-1,2,3,4-butanetetracarboxylate.

高分子量のヒンダードアミン系光安定化剤としては、ポリ[{6−(1,1,3,3−テトラメチルブチル)アミノ−1,3,5−トリアジン−2,4−ジイル}{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}](分子量2,000〜3,100);コハク酸ジメチルと4−ヒドロキシ−2,2,6,6−テトラメチル−1−ピペリジンエタノールの重合物(分子量3,100〜4,000);N,N’,N”,N”’−テトラキス−(4,6−ビス−(ブチル−(N−メチル−2,2,6,6−テトラメチルピペリジン−4−イル)アミノ)−トリアジン−2−イル)−4,7−ジアザデカン−1,10−ジアミン(分子量2,286)と上記コハク酸ジメチルと4−ヒドロキシ−2,2,6,6−テトラメチル−1−ピペリジンエタノールの重合物の混合物;ジブチルアミン・1,3,5−トリアジン・N,N’−ビス(2,2,6,6−テトラメチル−4−ピペリジル−1,6−ヘキサメチレンジアミンとN−(2,2,6,6−テトラメチル−4−ピペリジル)ブチルアミンの重縮合物(分子量2,600〜3,400)、並びに、4−アクリロイルオキシ−2,2,6,6−テトラメチルピペリジン、4−アクリロイルオキシ−1,2,2,6,6−ペンタメチルピペリジン、4−アクリロイルオキシ−1−エチル−2,2,6,6−テトラメチルピペリジン、4−アクリロイルオキシ−1−プロピル−2,2,6,6−テトラメチルピペリジン、4−アクリロイルオキシ−1−ブチル−2,2,6,6−テトラメチルピペリジン、4−メタクリロイルオキシ−2,2,6,6−テトラメチルピペリジン、4−メタクリロイルオキシ−1,2,2,6,6−ペンタメチルペリジン、4−メタクリロイルオキシ−1−エチル−2,2,6,6−テトラメチルピペリジン、4−メタクリロイルオキシ−1−ブチル−2,2,6,6−テトラメチルピペリジン、4−クロトノイルオキシ−2,2,6,6−テトラメチルピペリジン、4−クロトノイルオキシ−1−プロピル−2,2,6,6−テトラメチルピペリジン等の環状アミノビニル化合物とエチレンとの共重合体などが挙げられる。上述したヒンダードアミン系光安定化剤は、一種単独で用いられてもよく、二種以上を混合して用いてもよい。   As the high molecular weight hindered amine light stabilizer, poly [{6- (1,1,3,3-tetramethylbutyl) amino-1,3,5-triazine-2,4-diyl} {(2, 2,6,6-tetramethyl-4-piperidyl) imino} hexamethylene {(2,2,6,6-tetramethyl-4-piperidyl) imino}] (molecular weight 2,000-3,100); succinic acid Polymer of dimethyl and 4-hydroxy-2,2,6,6-tetramethyl-1-piperidineethanol (molecular weight 3,100 to 4,000); N, N ′, N ″, N ″ ′-tetrakis- ( 4,6-bis- (butyl- (N-methyl-2,2,6,6-tetramethylpiperidin-4-yl) amino) -triazin-2-yl) -4,7-diazadecane-1,10- Diamine (molecular weight 2,286) and above A mixture of dimethyl succinate and 4-hydroxy-2,2,6,6-tetramethyl-1-piperidineethanol; dibutylamine, 1,3,5-triazine, N, N′-bis (2,2 , 6,6-tetramethyl-4-piperidyl-1,6-hexamethylenediamine and N- (2,2,6,6-tetramethyl-4-piperidyl) butylamine polycondensate (molecular weight 2,600-3) 400) and 4-acryloyloxy-2,2,6,6-tetramethylpiperidine, 4-acryloyloxy-1,2,2,6,6-pentamethylpiperidine, 4-acryloyloxy-1-ethyl -2,2,6,6-tetramethylpiperidine, 4-acryloyloxy-1-propyl-2,2,6,6-tetramethylpiperidine, 4-acryloyloxy 1-butyl-2,2,6,6-tetramethylpiperidine, 4-methacryloyloxy-2,2,6,6-tetramethylpiperidine, 4-methacryloyloxy-1,2,2,6,6-pentamethyl Peridine, 4-methacryloyloxy-1-ethyl-2,2,6,6-tetramethylpiperidine, 4-methacryloyloxy-1-butyl-2,2,6,6-tetramethylpiperidine, 4-crotonoyloxy Examples include copolymers of cyclic aminovinyl compounds such as -2,2,6,6-tetramethylpiperidine, 4-crotonoyloxy-1-propyl-2,2,6,6-tetramethylpiperidine and ethylene. The above-mentioned hindered amine light stabilizers may be used alone or in combination of two or more.

これらの中でも、ヒンダードアミン系光安定化剤としては、ポリ[{6−(1,1,3,3−テトラメチルブチル)アミノ−1,3,5−トリアジン−2,4−ジイル}{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}](分子量2,000〜3,100);コハク酸ジメチルと4−ヒドロキシ−2,2,6,6−テトラメチル−1−ピペリジンエタノールの重合物(分子量3,100〜4,000);N,N’,N”,N”’−テトラキス−(4,6−ビス−(ブチル−(N−メチル−2,2,6,6−テトラメチルピペリジン−4−イル)アミノ)−トリアジン−2−イル)−4,7−ジアザデカン−1,10−ジアミン(分子量2,286)と上記コハク酸ジメチルと4−ヒドロキシ−2,2,6,6−テトラメチル−1−ピペリジンエタノールの重合物の混合物;ジブチルアミン・1,3,5−トリアジン・N,N’−ビス(2,2,6,6−テトラメチル−4−ピペリジル−1,6−ヘキサメチレンジアミンとN−(2,2,6,6−テトラメチル−4−ピペリジル)ブチルアミンの重縮合物(分子量2,600〜3,400)環状アミノビニル化合物とエチレンとの共重合体を用いるのが好ましい。製品使用時に経時でのヒンダードアミン系光安定剤のブリードアウトが妨げられるからである。また、ヒンダードアミン系光安定化剤は、融点が、60℃以上であるものを用いるのが、組成物の作製しやすさの観点から好ましい。   Among these, as the hindered amine light stabilizer, poly [{6- (1,1,3,3-tetramethylbutyl) amino-1,3,5-triazine-2,4-diyl} {(2 , 2,6,6-tetramethyl-4-piperidyl) imino} hexamethylene {(2,2,6,6-tetramethyl-4-piperidyl) imino}] (molecular weight 2,000-3,100); Polymer of dimethyl acid and 4-hydroxy-2,2,6,6-tetramethyl-1-piperidineethanol (molecular weight 3,100 to 4,000); N, N ′, N ″, N ″ ′-tetrakis- (4,6-Bis- (butyl- (N-methyl-2,2,6,6-tetramethylpiperidin-4-yl) amino) -triazin-2-yl) -4,7-diazadecane-1,10 -Diamine (molecular weight 2,286) A mixture of dimethyl succinate and 4-hydroxy-2,2,6,6-tetramethyl-1-piperidineethanol; dibutylamine, 1,3,5-triazine, N, N′-bis (2 , 2,6,6-Tetramethyl-4-piperidyl-1,6-hexamethylenediamine and N- (2,2,6,6-tetramethyl-4-piperidyl) butylamine polycondensate (molecular weight 2,600) ~ 3,400) It is preferable to use a copolymer of a cyclic aminovinyl compound and ethylene, because the hindered amine light stabilizer is prevented from bleeding out over time when the product is used. An agent having a melting point of 60 ° C. or higher is preferably used from the viewpoint of easy preparation of the composition.

本発明において、ヒンダードアミン系光安定化剤の含有量は、前記エチレン・α−オレフィン共重合体100重量部に対して、0.01〜2.5重量部とし、好ましくは0.01〜1.0重量部、より好ましくは0.01〜0.5重量部、さらに好ましくは0.01〜0.2重量部、最も好ましくは0.03〜0.1重量部とするのがよい。
前記含有量を0.01重量部以上とすることにより安定化への効果が十分に得られ、2.5重量部以下とすることによりヒンダードアミン系光安定化剤の過剰な添加による樹脂の変色を抑えることができる
また、本発明において、前記有機過酸化物(B)と前記ヒンダードアミン系光安定化剤(C)との重量比(B:C)を、1:0.01〜1:10とし、好ましくは1:0.02〜1:6.5とする。これにより、樹脂の黄変を顕著に抑制することが可能となる。
In the present invention, the content of the hindered amine light stabilizer is 0.01 to 2.5 parts by weight, preferably 0.01 to 1 part by weight based on 100 parts by weight of the ethylene / α-olefin copolymer. 0 parts by weight, more preferably 0.01 to 0.5 parts by weight, still more preferably 0.01 to 0.2 parts by weight, and most preferably 0.03 to 0.1 parts by weight.
When the content is 0.01 parts by weight or more, a sufficient stabilizing effect is obtained, and when the content is 2.5 parts by weight or less, the resin is discolored due to excessive addition of a hindered amine light stabilizer. In the present invention, the weight ratio (B: C) of the organic peroxide (B) to the hindered amine light stabilizer (C) is 1: 0.01 to 1:10. , Preferably 1: 0.02 to 1: 6.5. Thereby, it becomes possible to remarkably suppress yellowing of the resin.

(6)架橋助剤
また、本発明の樹脂組成物には架橋助剤を配合することができる。架橋助剤は、架橋反応を促進させ、エチレン・α−オレフィン共重合体の架橋度を高めるのに有効であり、その具体例としては、ポリアリル化合物やポリ(メタ)アクリロキシ化合物のような多不飽和化合物を例示することができる。
より具体的には、トリアリルイソシアヌレート、トリアリルシアヌレート、ジアリルフタレート、ジアリルフマレート、ジアリルマレエートのようなポリアリル化合物、エチレングリコールジアクリレート、エチレングリコールジメタクリレート、トリメチロールプロパントリメタクリレートのようなポリ(メタ)アクリロキシ化合物、ジビニルベンゼンなどを挙げることができる。架橋助剤は、成分(A)100重量部に対し、0〜5重量部程度の割合で配合することができる。
(6) Crosslinking aid Further, a crosslinking aid can be blended in the resin composition of the present invention. The crosslinking aid is effective in promoting the crosslinking reaction and increasing the degree of crosslinking of the ethylene / α-olefin copolymer. Specific examples thereof include polyaryl compounds and poly (meth) acryloxy compounds. Saturated compounds can be exemplified.
More specifically, polyallyl compounds such as triallyl isocyanurate, triallyl cyanurate, diallyl phthalate, diallyl fumarate, diallyl maleate, ethylene glycol diacrylate, ethylene glycol dimethacrylate, trimethylolpropane trimethacrylate, etc. Examples include poly (meth) acryloxy compounds and divinylbenzene. A crosslinking adjuvant can be mix | blended in the ratio of about 0-5 weight part with respect to 100 weight part of component (A).

(7)紫外線吸収剤
本発明の樹脂組成物には、紫外線吸収剤を配合することができる。紫外線吸収剤としては、ベンゾフェノン系、ベンゾトリアゾール系、トリアジン系、サリチル酸エステル系など各種タイプのものを挙げることができる。
ベンゾフェノン系紫外線吸収剤としては、例えば、2−ヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−2’−カルボキシベンゾフェノン、2−ヒドロキシ−4−n−オクトキシベンゾフェノン、2−ヒドロキシ−4−n−ドデシルオキシベンゾフェノン、2−ヒドロキシ−4−n−オクタデシルオキシベンゾフェノン、2−ヒドロキシ−4−ベンジルオキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−5−スルホベンゾフェノン、2−ヒドロキシ−5−クロロベンゾフェノン、2,4−ジヒドロキシベンゾフェノン、2,2’−ジヒドロキシ−4−メトキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシベンゾフェノン、2,2’,4,4’−テトラヒドロキシベンゾフェノンなどを挙げることができる。
(7) Ultraviolet absorber An ultraviolet absorber can be mix | blended with the resin composition of this invention. Examples of the ultraviolet absorber include various types such as benzophenone, benzotriazole, triazine, and salicylic acid ester.
Examples of benzophenone-based ultraviolet absorbers include 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-2′-carboxybenzophenone, 2-hydroxy-4-n-octoxybenzophenone, and 2-hydroxy-4. -N-dodecyloxybenzophenone, 2-hydroxy-4-n-octadecyloxybenzophenone, 2-hydroxy-4-benzyloxybenzophenone, 2-hydroxy-4-methoxy-5-sulfobenzophenone, 2-hydroxy-5-chlorobenzophenone 2,2-dihydroxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxybenzophenone, 2,2 ', 4,4'-tetrahydroxybenzophenone, etc. To mention Can.

ベンゾトリアゾール系紫外線吸収剤としては、ヒドロキシフェニル置換ベンゾトリアゾール化合物であって、例えば、2−(2−ヒドロキシ−5−メチルフェニル)ベンゾトリアゾール、2−(2−ヒドロキシ−5−t−ブチルフェニル)ベンゾトリアゾール、2−(2−ヒドロキシ−3,5−ジメチルフェニル)ベンゾトリアゾール、2−(2−メチル−4−ヒドロキシフェニル)ベンゾトリアゾール、2−(2−ヒドロキシ−3−メチル−5−t−ブチルフェニル)ベンゾトリアゾール、2−(2−ヒドロキシ−3,5−ジ−t−アミルフェニル)ベンゾトリアゾール、2−(2−ヒドロキシ−3,5−ジ−t−ブチルフェニル)ベンゾトリアゾール、などを挙げることができる。またトリアジン系紫外線吸収剤としては、2−[4,6−ビス(2,4−ジメチルフェニル)−1,3,5−トリアジン−2−イル]−5−(オクチルオキシ)フェノール、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−(ヘキシルオキシ)フェノールなどを挙げることができる。サリチル酸エステル系としては、フェニルサリチレート、p−オクチルフェニルサリチレートなどを挙げることができる。
これら紫外線吸収剤は、エチレン・α−オレフィン共重合体100重量部に対し0〜2.0重量部配合し、好ましくは0.05〜2.0重量部、より好ましくは0.1〜1.0重量部、さらに好ましくは0.1〜0.5重量部、最も好ましくは0.2〜0.4重量部配合するのがよい。
The benzotriazole ultraviolet absorber is a hydroxyphenyl-substituted benzotriazole compound, for example, 2- (2-hydroxy-5-methylphenyl) benzotriazole, 2- (2-hydroxy-5-t-butylphenyl) Benzotriazole, 2- (2-hydroxy-3,5-dimethylphenyl) benzotriazole, 2- (2-methyl-4-hydroxyphenyl) benzotriazole, 2- (2-hydroxy-3-methyl-5-t- Butylphenyl) benzotriazole, 2- (2-hydroxy-3,5-di-t-amylphenyl) benzotriazole, 2- (2-hydroxy-3,5-di-t-butylphenyl) benzotriazole, and the like. Can be mentioned. Examples of triazine ultraviolet absorbers include 2- [4,6-bis (2,4-dimethylphenyl) -1,3,5-triazin-2-yl] -5- (octyloxy) phenol, 2- ( And 4,6-diphenyl-1,3,5-triazin-2-yl) -5- (hexyloxy) phenol. Examples of salicylic acid esters include phenyl salicylate and p-octylphenyl salicylate.
These ultraviolet absorbers are blended in an amount of 0 to 2.0 parts by weight, preferably 0.05 to 2.0 parts by weight, more preferably 0.1 to 1. part by weight based on 100 parts by weight of the ethylene / α-olefin copolymer. 0 parts by weight, more preferably 0.1 to 0.5 parts by weight, and most preferably 0.2 to 0.4 parts by weight.

本発明の樹脂組成物には、主に太陽電池の上部保護材や太陽電池素子との接着力を向上させる目的でシランカップリング剤を用いることができる。
本発明におけるシランカップリング剤としては、例えばγ−クロロプロピルトリメトキシシラン;ビニルトリクロルシラン;ビニルトリエトキシシラン;ビニルトリメトキシシラン;ビニル−トリス−(β−メトキシエトキシ)シラン;γ−メタクリロキシプロピルトリメトキシシラン;β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン;γ−グリシドキシプロピルトリメトキシシラン;ビニルトリアセトキシシラン;γ−メルカプトプロピルトリメトキシシラン;γ−アミノプロピルトリメトキシシラン;N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシラン、3−アクリロキシプロピルトリメトキシシラン等を挙げることができる。好ましくは、ビニルトリメトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、3−アクリロキシプロピルトリメトキシシランである。
これらのシランカップリング剤は、エチレン・α−オレフィン共重合体100重量部に対して0〜5重量部使用し、好ましくは0.01〜4重量部、より好ましくは0.01〜2重量部、さらに好ましくは、0.05〜1重量部で使用される。
In the resin composition of the present invention, a silane coupling agent can be used mainly for the purpose of improving the adhesive strength between the solar cell upper protective material and the solar cell element.
Examples of the silane coupling agent in the present invention include γ-chloropropyltrimethoxysilane; vinyltrichlorosilane; vinyltriethoxysilane; vinyltrimethoxysilane; vinyl-tris- (β-methoxyethoxy) silane; γ-methacryloxypropyl. Β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane; γ-glycidoxypropyltrimethoxysilane; vinyltriacetoxysilane; γ-mercaptopropyltrimethoxysilane; γ-aminopropyltrimethoxysilane; N-β- (aminoethyl) -γ-aminopropyltrimethoxysilane, 3-acryloxypropyltrimethoxysilane and the like can be mentioned. Vinyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, and 3-acryloxypropyltrimethoxysilane are preferable.
These silane coupling agents are used in an amount of 0 to 5 parts by weight, preferably 0.01 to 4 parts by weight, more preferably 0.01 to 2 parts by weight, based on 100 parts by weight of the ethylene / α-olefin copolymer. More preferably, it is used at 0.05 to 1 part by weight.

(8)他の添加成分
本発明の樹脂組成物には、本発明の目的を著しく損なわない範囲で、他の付加的任意成分を配合することができる。このような任意成分としては、通常のポリオレフィン系樹脂材料に使用される酸化防止剤、結晶核剤、透明化剤、滑剤、着色剤、分散剤、充填剤、蛍光増白剤、紫外線吸収剤、光安定剤等を挙げることができる。
(8) Other additive components In the resin composition of the present invention, other additional optional components can be blended within a range that does not significantly impair the object of the present invention. As such optional components, antioxidants, crystal nucleating agents, clearing agents, lubricants, colorants, dispersants, fillers, fluorescent whitening agents, UV absorbers used in ordinary polyolefin resin materials, A light stabilizer etc. can be mentioned.

また、本発明の樹脂組成物には、柔軟性等を付与するため、本発明の目的を損なわない範囲で、チーグラー系又はメタロセン系触媒によって重合された結晶性のエチレン・α−オレフィン共重合体及び/又はEBR、EPR等のエチレン・α−オレフィンエラストマー若しくはSEBS、水添スチレンブロック共重合体等のスチレン系エラストマー等のゴム系化合物を3〜75重量部配合することもできる。さらに、溶融張力等を付与するため、高圧法低密度ポリエチレンを3〜75重量部配合することもできる。   Further, in order to impart flexibility and the like to the resin composition of the present invention, a crystalline ethylene / α-olefin copolymer polymerized by a Ziegler-based or metallocene-based catalyst within a range not impairing the object of the present invention. And / or rubber compounds such as ethylene / α-olefin elastomers such as EBR and EPR, or styrene elastomers such as SEBS and hydrogenated styrene block copolymers may be blended in an amount of 3 to 75 parts by weight. Furthermore, in order to give melt tension etc., 3-75 weight part of high pressure process low density polyethylene can also be mix | blended.

2.太陽電池封止材
本発明の太陽電池封止材(以下、単に封止材ともいう)は、上記樹脂組成物をペレット化し、あるいはシート化したものである。
この太陽電池封止材を用いれば、太陽電池素子を上下の保護材とともに固定することにより太陽電池モジュールを製作することができる。このような太陽電池モジュールとしては、種々のタイプのものを例示することができる。例えば上部透明保護材/封止材/太陽電池素子/封止材/下部保護材のように太陽電池素子の両側から封止材で挟む構成のもの、下部基板保護材の内周面上に形成させた太陽電池素子上に封止材と上部透明保護材を形成させるような構成のもの、上部透明保護材の内周面上に形成させた太陽電池素子、例えばフッ素樹脂系透明保護材上にアモルファス太陽電池素子をスパッタリング等で作成したものの上に封止材と下部保護材を形成させるような構成のものなどを挙げることができる。
2. Solar cell encapsulant The solar cell encapsulant of the present invention (hereinafter also simply referred to as encapsulant) is a pelletized or sheeted product of the resin composition.
If this solar cell sealing material is used, a solar cell module can be manufactured by fixing a solar cell element with upper and lower protective materials. Examples of such solar cell modules include various types. For example, the upper transparent protective material / encapsulant / solar cell element / encapsulant / lower protective material sandwiched between the solar cell elements from both sides, formed on the inner peripheral surface of the lower substrate protective material A solar cell element formed on the inner peripheral surface of the upper transparent protective material, for example, a fluororesin-based transparent protective material. The thing of the structure which forms a sealing material and a lower protective material on what created the amorphous solar cell element by sputtering etc. can be mentioned.

太陽電池素子としては、特に制限されず、単結晶シリコン、多結晶シリコン、アモルファスシリコンなどのシリコン系、ガリウム−砒素、銅−インジウム−セレン、カドミウム−テルルなどのIII−V族やII−VI族化合物半導体系等の各種太陽電池素子を用いることができる。本発明においては、基板としてガラスを用いたものが好ましい。   The solar cell element is not particularly limited, and is based on silicon such as single crystal silicon, polycrystalline silicon, amorphous silicon, III-V group or II-VI group such as gallium-arsenic, copper-indium-selenium, cadmium-tellurium. Various solar cell elements such as compound semiconductors can be used. In the present invention, those using glass as the substrate are preferred.

太陽電池モジュールを構成する上部保護材としては、ガラス、アクリル樹脂、ポリカーボネート、ポリエステル、フッ素含有樹脂などを例示することができる。
また、下部保護材としては、金属や各種熱可塑性樹脂フィルムなどの単体もしくは多層のシートであり、例えば、錫、アルミ、ステンレススチールなどの金属、ガラス等の無機材料、ポリエステル、無機物蒸着ポリエステル、フッ素含有樹脂、ポリオレフィンなどの1層もしくは多層の保護材を例示することができる。このような上部及び/又は下部の保護材には、封止材との接着性を高めるためにプライマー処理を施すことができる。本発明においては、上部保護材としてガラスが好ましい。
Examples of the upper protective material constituting the solar cell module include glass, acrylic resin, polycarbonate, polyester, and fluorine-containing resin.
The lower protective material is a single or multilayer sheet such as a metal or various thermoplastic resin films, for example, a metal such as tin, aluminum or stainless steel, an inorganic material such as glass, polyester, an inorganic vapor-deposited polyester, or fluorine. Examples of the protective material include a single layer or a multilayer such as a containing resin and polyolefin. Such an upper and / or lower protective material can be subjected to a primer treatment in order to enhance the adhesion to the sealing material. In the present invention, glass is preferred as the upper protective material.

本発明の太陽電池封止材は、ペレットとして使用してもよいが、通常、0.1〜1mm程度の厚みのシート状に成形して使用される。0.1mmよりも薄いと強度が小さく、接着が不十分となり、1mmよりも厚いと透明性が低下して問題になる場合がある。好ましい厚さは、0.1〜0.8mmである。   The solar cell encapsulant of the present invention may be used as a pellet, but is usually used after being formed into a sheet having a thickness of about 0.1 to 1 mm. If the thickness is less than 0.1 mm, the strength is small and the adhesion is insufficient. If the thickness is more than 1 mm, the transparency may be lowered, which may be a problem. A preferred thickness is 0.1 to 0.8 mm.

シート状太陽電池封止材は、T−ダイ押出機、カレンダー成形機などを使用する公知のシート成形法によって製造することができる。例えばエチレン・α−オレフィン共重合体に、架橋剤を添加し、必要に応じて、ヒンダードアミン系光安定化剤、さらには架橋助剤、シランカップリング剤、紫外線吸収剤、酸化防止剤、光安定剤等の添加剤を予めドライブレンドしてT−ダイ押出機のホッパーから供給し、80〜150℃の押出温度において、シート状に押出成形することによって得ることができる。これらドライブレンドに際して、一部又は全部の添加剤は、マスターバッチの形で使用することができる。またT−ダイ押出やカレンダー成形において、予め非晶性α−オレフィン系共重合体に一部又は全部の添加剤を、一軸押出機、二軸押出機、バンバリーミキサー、ニーダーなどを用いて溶融混合して得た樹脂組成物を使用することもできる。   The sheet-like solar cell encapsulant can be produced by a known sheet molding method using a T-die extruder, a calendar molding machine, or the like. For example, a cross-linking agent is added to an ethylene / α-olefin copolymer, and if necessary, a hindered amine light stabilizer, a cross-linking aid, a silane coupling agent, an ultraviolet absorber, an antioxidant, a light stabilizer. An additive such as an agent can be dry-blended in advance and supplied from a hopper of a T-die extruder, and extruded into a sheet at an extrusion temperature of 80 to 150 ° C. In these dry blends, some or all of the additives can be used in the form of a masterbatch. In addition, in T-die extrusion and calendering, some or all of the additive is previously melt-mixed into the amorphous α-olefin copolymer using a single screw extruder, twin screw extruder, Banbury mixer, kneader, etc. Thus obtained resin composition can also be used.

太陽電池モジュールを製造するに当たっては、本発明の封止材のシートを予め作っておき、封止材の樹脂組成物が溶融する温度、例えば150〜200℃で圧着するという方法によって、前記のような構成のモジュールを形成することができる。また本発明の封止材を押出コーティングすることによって太陽電池素子や上部保護材あるいは下部保護材と積層する方法を採用すれば、わざわざシート成形することなく一段階で太陽電池モジュールを製造することが可能である。したがって本発明の封止材を使用すれば、モジュールの生産性を格段に改良することができる。   In manufacturing the solar cell module, the sheet of the sealing material of the present invention is prepared in advance, and the above-described method is performed by pressure bonding at a temperature at which the resin composition of the sealing material melts, for example, 150 to 200 ° C. A module having a simple structure can be formed. Moreover, if the method of laminating with the solar cell element, the upper protective material or the lower protective material by extrusion coating the sealing material of the present invention is adopted, the solar cell module can be manufactured in one step without bothering to form a sheet. Is possible. Therefore, if the sealing material of this invention is used, the productivity of a module can be improved markedly.

一方、太陽電池モジュールを製造する際、有機過酸化物が実質的に分解せず、かつ本発明の封止材料が溶融するような温度で、太陽電池素子や保護材に該封止材を仮接着し、次いで昇温して充分な接着とエチレン・α−オレフィン共重合体の架橋を行うこともできる。この場合は、封止材層の融点(DSC法)が85℃以上、150℃の貯蔵弾性率が10Pa以上の耐熱性が良好な太陽電池モジュールを得るために、封止材層におけるゲル分率(試料1gをキシレン100mlに浸漬し、110℃、24時間加熱した後、20メッシュ金網で濾過し未溶融分の質量分率を測定)が50〜98%、好ましくは70〜95%程度になるように架橋するのがよい。 On the other hand, when the solar cell module is manufactured, the sealing material is temporarily applied to the solar cell element or the protective material at a temperature at which the organic peroxide is not substantially decomposed and the sealing material of the present invention is melted. Adhesion is then carried out to raise the temperature, and sufficient adhesion and crosslinking of the ethylene / α-olefin copolymer can be carried out. In this case, the gel in the encapsulant layer is used in order to obtain a solar cell module with good heat resistance having a melting point (DSC method) of the encapsulant layer of 85 ° C. or higher and a storage elastic modulus of 150 ° C. of 10 3 Pa or higher. Fraction (1 g of sample is immersed in 100 ml of xylene, heated at 110 ° C. for 24 hours, then filtered through a 20 mesh wire net and the mass fraction of unmelted portion is measured) is 50 to 98%, preferably about 70 to 95% It is better to crosslink so that

なお、前記特許文献2では、非晶質又は低結晶性エチレン・ブテン共重合体100重量部に、有機過酸化物として2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサンを1.5重量部および架橋助剤としてトリアリルイソシアヌレートを2重量部混合した混合物を、異型押出機を用いて加工温度100℃で厚み0.5mmのシートを作製している(実施例3)。しかしながら、このような組成物を選択したのでは、加工温度が低いため十分な生産性を得ることはできない。   In Patent Document 2, 100 parts by weight of an amorphous or low crystalline ethylene / butene copolymer is added to 2,5-dimethyl-2,5-di (t-butylperoxy) hexane as an organic peroxide. A mixture of 1.5 parts by weight and 2 parts by weight of triallyl isocyanurate as a crosslinking aid was produced using a profile extruder at a processing temperature of 100 ° C. and a thickness of 0.5 mm (Example 3). ). However, when such a composition is selected, sufficient productivity cannot be obtained because the processing temperature is low.

太陽電池素子の封止作業では、太陽電池素子を上記本発明の封止材でカバーした後、有機過酸化物が分解しない程度の温度に数分から10分程度加熱して仮接着し、次に、オーブン内において有機過酸化物が分解する150〜200℃程度の高温で5分から30分間加熱処理して接着させる等の方法がある。   In the sealing operation of the solar cell element, after covering the solar cell element with the sealing material of the present invention, the solar cell element is temporarily bonded by heating to a temperature at which the organic peroxide is not decomposed for several minutes to 10 minutes, In addition, there is a method in which the organic peroxide is decomposed in the oven at a high temperature of about 150 to 200 ° C. for 5 to 30 minutes to be bonded.

以下、本発明を実施例によって、具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。なお、実施例、比較例で用いた評価方法及び使用樹脂は、以下の通りである。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. The evaluation methods and resins used in the examples and comparative examples are as follows.

1.樹脂物性の評価方法
(1)メルトフローレート(MFR):エチレン・α−オレフィン共重合体のMFRは、JIS−K6922−2:1997附属書(190℃、21.18N荷重)に準拠して測定した。
(2)密度:前述の通り、エチレン・α−オレフィン共重合体の密度は、JIS−K6922−2:1997附属書(23℃、低密度ポリエチレンの場合)に準拠して測定した。
(3)Mz/Mn:前述の通り、GPCにより測定した。
(4)溶融粘度:JIS−K−7199−1999に準拠して、東洋精機製作所製キャピログラフ1−Bを用い、設定温度:100℃、D=1mm、L/D=10のキャピラリーを用いて、せん断速度2.43×10sec−1での溶融粘度(η )、せん断速度2.43×10sec−1での溶融粘度(η )の測定を行う。
1. Evaluation method of resin physical properties (1) Melt flow rate (MFR): MFR of ethylene / α-olefin copolymer is measured according to JIS-K6922-2: 1997 appendix (190 ° C., 21.18 N load). did.
(2) Density: As described above, the density of the ethylene / α-olefin copolymer was measured according to JIS-K6922-2: 1997 appendix (23 ° C., in the case of low density polyethylene).
(3) Mz / Mn: Measured by GPC as described above.
(4) Melt viscosity: In accordance with JIS-K-7199-1999, using Capillograph 1-B manufactured by Toyo Seiki Seisakusho, using a capillary with set temperature: 100 ° C., D = 1 mm, L / D = 10, melt viscosity at a shear rate of 2.43 × 10sec -1 (η * 1 ), to measure the melt viscosity at a shear rate of 2.43 × 10 2 sec -1 (η * 2).

(5)分岐数:ポリマー中の分岐数(N)は、NMRにより次の条件で測定し、コモノマー量は、主鎖及び側鎖の合計1000個の炭素あたりの個数で求めた。
装置 : ブルカー・バイオスピン(株) AVANCEIII cryo−400MHz
溶媒 : o−ジクロロベンゼン/重化ブロモベンゼン = 8/2混合溶液
<試料量>
460mg/2.3ml
<C−NMR>
・Hデカップル、NOEあり
・積算回数:256scan
・フリップ角:90°
・パルス間隔20秒
・AQ(取り込み時間)=5.45s D1(待ち時間)=14.55s
(5) Number of branches: The number of branches (N) in the polymer was measured by NMR under the following conditions, and the amount of comonomer was determined by the number of main chains and side chains per 1000 carbons in total.
Apparatus: Bruker BioSpin Corporation AVANCEIII cryo-400MHz
Solvent: o-dichlorobenzene / deuterated bromobenzene = 8/2 mixed solution <sample amount>
460mg / 2.3ml
<C-NMR>
・ H decouple, NOE available ・ Number of integration: 256scan
・ Flip angle: 90 °
・ Pulse interval 20 seconds ・ AQ (acquisition time) = 5.45 s D1 (waiting time) = 14.55 s

2.押出成形物(シート)の評価方法
(1)HAZE
厚み0.7mmのプレスシートを用いて、JIS−K7136−2000に準拠して測定した。プレスシート片を関東化学製特級流動パラフィンを入れたガラス製セルにセットし測定した。プレスシートは、160℃の条件で熱プレス機に30分間保管し、架橋させ準備した。HAZE値は、小さいほど良い。
2. Method for evaluating extruded product (sheet) (1) HAZE
It measured based on JIS-K7136-2000 using the press sheet of thickness 0.7mm. The press sheet piece was set in a glass cell containing special liquid paraffin made by Kanto Chemical Co., Ltd. and measured. The press sheet was stored in a hot press machine at 160 ° C. for 30 minutes, and prepared by crosslinking. The smaller the HAZE value, the better.

(2)光線透過率
厚み0.7mmのプレスシートを用いて、JIS−K7361−1−1997に準拠して測定した。プレスシート片を関東化学製特級流動パラフィンを入れたガラス製セルにセットし測定した。プレスシートは、160℃の条件で熱プレス機に30分間保管し、架橋させ準備した。
光線透過率は、80%以上であり、好ましくは、85%以上、さらに好ましくは90%以上である。
(2) Light transmittance It measured based on JIS-K7361-1-1997 using the press sheet of thickness 0.7mm. The press sheet piece was set in a glass cell containing special liquid paraffin made by Kanto Chemical Co., Ltd. and measured. The press sheet was stored in a hot press machine at 160 ° C. for 30 minutes, and prepared by crosslinking.
The light transmittance is 80% or more, preferably 85% or more, and more preferably 90% or more.

(3)引張弾性率
160℃で30分架橋した厚み0.7mmのプレスシートを用いて、ISO1184−1983に準拠して測定した。尚、引張速度1mm/min、試験片幅10mm、つかみ具間を100mmとし、伸び率1%のときの引張弾性率を求めた。この値が小さい程、柔軟性に優れていることを示す。
(3) Tensile modulus Measured according to ISO 1184-1983 using a press sheet having a thickness of 0.7 mm crosslinked at 160 ° C. for 30 minutes. The tensile elastic modulus was determined when the tensile rate was 1 mm / min, the test piece width was 10 mm, the distance between grips was 100 mm, and the elongation was 1%. It shows that it is excellent in the softness, so that this value is small.

(4)耐熱性
160℃で架橋したシート及び150℃で30分架橋したシートのゲル分率で評価した。ゲル分率が高いほど架橋が進行しており、耐熱性が高いと評価できる。ゲル分率が70wt%以上のものを、耐熱性評価「○」とした。尚、ゲル分率は、当該シートを、約1gを切り取り精秤して、キシレン100ccに浸漬し110℃で24時間処理し、ろ過後残渣を乾燥し精秤して、処理前の重量で割りゲル分率を算出する。
(4) Heat resistance The gel fraction of a sheet crosslinked at 160 ° C and a sheet crosslinked at 150 ° C for 30 minutes was evaluated. It can be evaluated that the higher the gel fraction, the more the crosslinking proceeds and the higher the heat resistance. A gel fraction having a gel fraction of 70 wt% or more was designated as a heat resistance evaluation “◯”. As for the gel fraction, about 1 g of the sheet is cut out and weighed accurately, immersed in 100 cc of xylene, treated at 110 ° C. for 24 hours, the residue after filtration is dried and weighed, and divided by the weight before treatment. Calculate the gel fraction.

3.使用原料
(1)成分(A): エチレン・α−オレフィン共重合体
下記の<製造例1><製造例2>及び<製造例3>で重合したエチレンとプロピレン、1−ヘキセンの共重合体(PE−1)(PE−2)(PE−3)、市販のエチレン・1−オクテン共重合体「ダウ社製 エンゲージ8400」(PE−4)を用いた。物性を表1に示す。
(2)有機過酸化物:2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン(アルケマ吉富社製、ルペロックス101)
(3)ヒンダードアミン系光安定化剤:コハク酸ジメチルと4−ヒドロキシ−2,2,6,6−テトラメチル−1−ピペリジンエタノールの重合物(BASF社製、TINUVIN 622LD)
(4)紫外線吸収剤:2−ヒドロキシ−4−n−オクトキシベンゾフェノン(サンケミカル社製、CYTEC UV531)
3. Used Raw Material (1) Component (A): Ethylene / α-Olefin Copolymer A copolymer of ethylene, propylene and 1-hexene polymerized in <Production Example 1>, <Production Example 2> and <Production Example 3> below. (PE-1) (PE-2) (PE-3), a commercially available ethylene / 1-octene copolymer “Dengage Engage 8400” (PE-4) was used. The physical properties are shown in Table 1.
(2) Organic peroxide: 2,5-dimethyl-2,5-di (t-butylperoxy) hexane (manufactured by Arkema Yoshitomi, Luperox 101)
(3) Hindered amine light stabilizer: polymer of dimethyl succinate and 4-hydroxy-2,2,6,6-tetramethyl-1-piperidineethanol (manufactured by BASF, TINUVIN 622LD)
(4) UV absorber: 2-hydroxy-4-n-octoxybenzophenone (manufactured by Sun Chemical Co., Ltd., CYTEC UV531)

<製造例1、2>
下記製造例3において、エチレン/プロピレン/1−ヘキセンの供給量比を変化させたこと以外は、製造例3と同様な条件で重合を行い、エチレン・プロピレン・1−ヘキセン共重合体(PE−1、PE−2)を得た。このエチレン・プロピレン・1−ヘキセン共重合体の特性を表1に示す。
<Production Examples 1 and 2>
In the following Production Example 3, polymerization was carried out under the same conditions as in Production Example 3 except that the supply ratio of ethylene / propylene / 1-hexene was changed, and an ethylene / propylene / 1-hexene copolymer (PE- 1, PE-2) was obtained. The characteristics of this ethylene / propylene / 1-hexene copolymer are shown in Table 1.

<製造例3>
錯体であるエチレンビス(4,5,6,7−テトラヒドロインデニル)ジルコニウムジクロライド2.0ミリモルに、東洋ストウファー製メチルアルミノオキサンを上記錯体に対して1000モル倍加え、トルエンで10リットルに希釈して触媒溶液を調整した。この触媒溶液を内容積1.5リットルの攪拌式オートクレーブ型連続反応器内に入れ、更にこの反応器内にエチレンとプロピレンと1−ヘキセンとの混合物をエチレン/プロピレン/1−ヘキセン=49/20/31(重量%)となるように供給し、反応器内の圧力を1000kg/cm2に保ち、160℃で反応を行った。
反応終了後、MFRが3.7g/10分、密度が0.895g/cm、Mz/Mnが3.7であるエチレン・プロピレン・プロピレン・1−ヘキセン共重合体(PE−3)を得た。
このエチレン・プロピレン・1−ヘキセン共重合体(PE−3)の特性を表1に示す。
<Production Example 3>
Methylaluminoxane made by Toyo Stofer is added 1000 moles to the above complex to 2.0 mmol of the complex ethylenebis (4,5,6,7-tetrahydroindenyl) zirconium dichloride and diluted to 10 liters with toluene. Thus, a catalyst solution was prepared. The catalyst solution was placed in a 1.5 liter stirred autoclave continuous reactor, and a mixture of ethylene, propylene and 1-hexene was further added to the reactor, ethylene / propylene / 1-hexene = 49/20. / 31 (wt%) was supplied, the pressure in the reactor was kept at 1000 kg / cm 2, and the reaction was carried out at 160 ° C.
Obtained after completion of the reaction, MFR is 3.7 g / 10 min, density of 0.895g / cm 3, Mz / Mn is 3.7 ethylene-propylene-propylene-1-hexene copolymer (PE-3) It was.
The characteristics of this ethylene / propylene / 1-hexene copolymer (PE-3) are shown in Table 1.

Figure 2014179634
Figure 2014179634

(実施例1)
エチレンとプロピレン、1−ヘキセンの共重合体(PE−1)100重量部に対して、有機過酸化物として、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン(アルケマ吉富社製、ルペロックス101)を1.5重量部と、ヒンダードアミン系光安定化剤として、コハク酸ジメチルと4−ヒドロキシ−2,2,6,6−テトラメチル−1−ピペリジンエタノールの重合物(BASF社製、TINUVIN 622LD)0.05重量部を配合した。これを十分に混合し、40mmφ単軸押出機を用いて設定温度130℃、押出量(17kg/時)の条件でペレット化した。
得られたシートを、160℃−0kg/cmの条件で、3分予熱した後、160℃−100kg/cmの条件で27分加圧(160℃で30分間プレス成形)し、その後、30℃に設定された冷却プレスに100kg/cmの加圧の条件で、10分間冷却することで、厚み0.7mmのシートを作製した。シートのHAZE、光線透過率、引張弾性率、耐熱性を測定、評価した。
また、別に耐熱性評価用に、150℃−0kg/cmの条件で、3分予熱した後、150℃−100kg/cmの条件で27分加圧(150℃で30分間プレス成形)し、その後、30℃に設定された冷却プレスに100kg/cmの加圧の条件で、10分間冷却することで、厚み0.7mmのシートを準備した。
評価結果を表2に示す。
Example 1
As an organic peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane (Arkema) is used as an organic peroxide with respect to 100 parts by weight of a copolymer of ethylene, propylene and 1-hexene (PE-1). 1.5 parts by weight of Luperox (produced by Yoshitomi Co., Ltd.) and a polymer of dimethyl succinate and 4-hydroxy-2,2,6,6-tetramethyl-1-piperidineethanol as a hindered amine light stabilizer ( 0.05 parts by weight of BASF Corporation, TINUVIN 622LD) was blended. This was sufficiently mixed and pelletized using a 40 mmφ single screw extruder under the conditions of a set temperature of 130 ° C. and an extrusion rate (17 kg / hour).
The resulting sheets, at the 160 ℃ -0kg / cm 2 conditions, after 3 minutes preheat, 160 ℃ -100kg / cm (30 minutes press molding at 160 ° C.) 27 minutes pressurization at 2 conditions, and then, A sheet having a thickness of 0.7 mm was produced by cooling for 10 minutes in a cooling press set to 30 ° C. under a pressure of 100 kg / cm 2 . The sheet was measured for HAZE, light transmittance, tensile modulus, and heat resistance.
Separately for evaluation of heat resistance, under the condition of 150 ℃ -0kg / cm 2, after 3 minutes preheat, 150 ℃ -100kg / cm (30 minutes press molding at 0.99 ° C.) in 27 min pressurized second condition and Then, a sheet having a thickness of 0.7 mm was prepared by cooling for 10 minutes on a cooling press set to 30 ° C. under a pressure of 100 kg / cm 2 .
The evaluation results are shown in Table 2.

(実施例2)
実施例1において、PE−1に替えて、PE−2を用いた以外は、実施例1と同様にシートを作製した。シートのHAZE、光線透過率、引張弾性率、耐熱性を測定、評価した。評価結果を表2に示す。
(Example 2)
In Example 1, a sheet was produced in the same manner as in Example 1 except that PE-2 was used instead of PE-1. The sheet was measured for HAZE, light transmittance, tensile modulus, and heat resistance. The evaluation results are shown in Table 2.

(実施例3)
実施例1において、さらに、紫外線吸収剤として、2−ヒドロキシ−4−n−オクトキシベンゾフェノン(サンケミカル社製 CYTEC UV531)0.3重量部を添加した以外は、実施例1と同様にシートを作製した。シートのHAZE、光線透過率、引張弾性率、耐熱性を測定、評価を行った。評価結果を表2に示す。
(Example 3)
In Example 1, a sheet was prepared in the same manner as in Example 1 except that 0.3 part by weight of 2-hydroxy-4-n-octoxybenzophenone (CYTEC UV531 manufactured by Sun Chemical Co., Ltd.) was added as an ultraviolet absorber. Produced. The sheet was evaluated for HAZE, light transmittance, tensile modulus, and heat resistance. The evaluation results are shown in Table 2.

(比較例1)
エチレンとプロピレン、1−ヘキセンの共重合体(PE−1)の代わりに、PE−3を用いた以外は、実施例1と同様にシートを作製した。シートのHAZE、光線透過率、引張弾性率、耐熱性を測定、評価を行った。評価結果を表2に示す。
(Comparative Example 1)
A sheet was produced in the same manner as in Example 1 except that PE-3 was used instead of the copolymer of ethylene, propylene and 1-hexene (PE-1). The sheet was evaluated for HAZE, light transmittance, tensile modulus, and heat resistance. The evaluation results are shown in Table 2.

(比較例2)
PE−1の代わりに、PE−4(エチレン・1−オクテン共重合体、ダウ社製 エンゲージ8400)を用いた以外は、実施例1と同様にシートを作製した。シートのHAZE、光線透過率、引張弾性率、耐熱性を測定、評価を行った。評価結果を表2に示す。
(Comparative Example 2)
A sheet was prepared in the same manner as in Example 1 except that PE-4 (ethylene / 1-octene copolymer, Dow Engage 8400) was used instead of PE-1. The sheet was evaluated for HAZE, light transmittance, tensile modulus, and heat resistance. The evaluation results are shown in Table 2.

Figure 2014179634
Figure 2014179634

「評価」
この結果、表2から明らかなように、実施例1〜3では、本発明の樹脂組成物を用いているために、これを押出成形して得られたシートは、架橋特性が良く、HAZEが小さく、光線透過率が大きく、柔軟性があり耐熱性も優れている。
これに対して、比較例1では、本発明とは異なり、コモノマーによる分岐数(N)が、合計で54(個/total 1000C)未満のプロピレン、1−ヘキセンの共重合体を含む樹脂組成物を用いているために、架橋効率が低下した。また、得られたシートは、柔軟性、耐熱性が小さいものとなった。比較例2も、本発明から外れるエチレン・1−オクテン共重合体を含む樹脂組成物を用いたために、得られたシートは、架橋効率が悪く耐熱性が劣る結果となった。
"Evaluation"
As a result, as is apparent from Table 2, in Examples 1 to 3, since the resin composition of the present invention was used, the sheet obtained by extrusion molding had good cross-linking properties and HAZE Small, high light transmittance, flexible and excellent heat resistance.
On the other hand, in Comparative Example 1, unlike the present invention, a resin composition containing a copolymer of propylene and 1-hexene having a total number of branches (N) of comonomer of less than 54 (total / total 1000C). As a result, the crosslinking efficiency was reduced. Moreover, the obtained sheet | seat became a thing with a small softness | flexibility and heat resistance. Since the comparative example 2 also used the resin composition containing the ethylene / 1-octene copolymer which deviates from this invention, the obtained sheet | seat resulted in inferior crosslinking efficiency and inferior heat resistance.

本発明の太陽電池封止材用樹脂組成物は、架橋特性が高く、しかも透明性、柔軟性、耐熱性等に優れるので太陽電池封止材として好ましく利用される。特に薄膜太陽電池やIC(集積回路)の封止材、太陽電池モジュールとして有用である。
The resin composition for a solar cell encapsulant of the present invention is preferably used as a solar cell encapsulant because it has high crosslinking properties and is excellent in transparency, flexibility, heat resistance and the like. In particular, it is useful as a sealing material for thin film solar cells, ICs (integrated circuits), and solar cell modules.

Claims (8)

下記の成分(A)、成分(B)及び成分(C)を含有することを特徴とする太陽電池封止材用樹脂組成物。
成分(A):下記(a1)〜(a2)の特性を有するエチレン・α−オレフィン共重合体
(a1)密度が0.860〜0.920g/cm
(a2)エチレン・α−オレフィン共重合体中のコモノマーによる分岐数(N)が、合計で54〜95(個/total 1000C)
(ただし、Nは、NMRで測定した主鎖、側鎖の合計1000個の炭素数あたりの数である。)
成分(B):有機過酸化物
成分(C):ヒンダードアミン系光安定化剤
The resin composition for solar cell sealing materials characterized by containing the following component (A), a component (B), and a component (C).
Component (A): ethylene / α-olefin copolymer (a1) having the following characteristics (a1) to (a2): Density of 0.860 to 0.920 g / cm 3
(A2) The total number of branches (N) due to the comonomer in the ethylene / α-olefin copolymer is 54 to 95 (pieces / total 1000C).
(However, N is the number per 1000 carbon atoms in total of the main chain and side chain measured by NMR.)
Component (B): Organic peroxide Component (C): Hindered amine light stabilizer
成分(A)が、さらに下記(a3)の特性を有するエチレン・α−オレフィン共重合体であることを特徴とする請求項1に記載の太陽電池封止材用樹脂組成物。
(a3)ゲルパーミエーションクロマトグラフィー(GPC)により求めたZ平均分子量(Mz)と数平均分子量(Mn)との比(Mz/Mn)が8.0以下
The resin composition for a solar cell sealing material according to claim 1, wherein the component (A) is an ethylene / α-olefin copolymer further having the following property (a3).
(A3) The ratio (Mz / Mn) of the Z average molecular weight (Mz) and the number average molecular weight (Mn) determined by gel permeation chromatography (GPC) is 8.0 or less.
成分(B)の含有量が、成分(A)100重量部に対して、0.2〜5重量部であることを特徴とする請求項1または2に記載の太陽電池封止材用樹脂組成物。   Content of a component (B) is 0.2-5 weight part with respect to 100 weight part of a component (A), The resin composition for solar cell sealing materials of Claim 1 or 2 characterized by the above-mentioned. object. 成分(C)の含有量が、成分(A)100重量部に対して、0.01〜2.5重量部であることを特徴とする請求項1に記載の太陽電池封止材用樹脂組成物。   Content of a component (C) is 0.01-2.5 weight part with respect to 100 weight part of component (A), The resin composition for solar cell sealing materials of Claim 1 characterized by the above-mentioned. object. 成分(A)が、エチレン・1−ブテン、又はエチレン・1−ヘキセン共重合体であることを特徴とする請求項1〜4のいずれかに記載の太陽電池封止材用樹脂組成物。   Component (A) is ethylene / 1-butene or ethylene / 1-hexene copolymer, The resin composition for solar cell sealing materials in any one of Claims 1-4 characterized by the above-mentioned. 成分(A)が、エチレン・プロピレン・1−ヘキセン共重合体であることを特徴とする請求項1〜4のいずれかに記載の太陽電池封止材用樹脂組成物。   The component (A) is an ethylene / propylene / 1-hexene copolymer, and the resin composition for a solar cell encapsulant according to any one of claims 1 to 4. 請求項1〜6のいずれかに記載の太陽電池封止材用樹脂組成物からなる太陽電池封止材。   The solar cell sealing material which consists of a resin composition for solar cell sealing materials in any one of Claims 1-6. 請求項7に記載の太陽電池封止材を用いた太陽電池モジュール。   The solar cell module using the solar cell sealing material of Claim 7.
JP2014092472A 2014-04-28 2014-04-28 Resin composition for solar cell encapsulant, and solar cell encapsulant and solar cell module using the same Active JP5800054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014092472A JP5800054B2 (en) 2014-04-28 2014-04-28 Resin composition for solar cell encapsulant, and solar cell encapsulant and solar cell module using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014092472A JP5800054B2 (en) 2014-04-28 2014-04-28 Resin composition for solar cell encapsulant, and solar cell encapsulant and solar cell module using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010145294A Division JP5539064B2 (en) 2010-06-25 2010-06-25 Resin composition for solar cell encapsulant, and solar cell encapsulant and solar cell module using the same

Publications (2)

Publication Number Publication Date
JP2014179634A true JP2014179634A (en) 2014-09-25
JP5800054B2 JP5800054B2 (en) 2015-10-28

Family

ID=51699210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014092472A Active JP5800054B2 (en) 2014-04-28 2014-04-28 Resin composition for solar cell encapsulant, and solar cell encapsulant and solar cell module using the same

Country Status (1)

Country Link
JP (1) JP5800054B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019225761A1 (en) * 2018-05-24 2019-11-28 大日本印刷株式会社 Encapsulant sheet for self-luminous display or encapsulant sheet for direct backlight, self-luminous display, and direct backlight

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005111874A (en) * 2003-10-09 2005-04-28 Japan Polypropylene Corp Laminate and medical bag using laminate
JP2006210906A (en) * 2004-12-28 2006-08-10 Mitsui Chemical Fabro Inc Material for sealing solar cells
JP2008036853A (en) * 2006-08-02 2008-02-21 J-Film Corp Laminated film for thermal lamination
WO2010005030A1 (en) * 2008-07-11 2010-01-14 三菱樹脂株式会社 Solar cell backsheet
JP2010504647A (en) * 2006-09-20 2010-02-12 ダウ グローバル テクノロジーズ インコーポレイティド Electronic device module comprising polyolefin copolymer
JP2010504646A (en) * 2006-09-20 2010-02-12 ダウ グローバル テクノロジーズ インコーポレイティド Electronic device module comprising ethylene multi-block copolymer
JP2010093122A (en) * 2008-10-09 2010-04-22 Dainippon Printing Co Ltd Filler sheet for solar cell module, and solar cell module using the same
JP2010519346A (en) * 2007-02-15 2010-06-03 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Articles comprising a high melt flow ionomer composition
JP2012009691A (en) * 2010-06-25 2012-01-12 Japan Polyethylene Corp Resin composition for solar cell sealing material and solar cell sealing material using the same, and solar cell module

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005111874A (en) * 2003-10-09 2005-04-28 Japan Polypropylene Corp Laminate and medical bag using laminate
JP2006210906A (en) * 2004-12-28 2006-08-10 Mitsui Chemical Fabro Inc Material for sealing solar cells
JP2008036853A (en) * 2006-08-02 2008-02-21 J-Film Corp Laminated film for thermal lamination
JP2010504647A (en) * 2006-09-20 2010-02-12 ダウ グローバル テクノロジーズ インコーポレイティド Electronic device module comprising polyolefin copolymer
JP2010504646A (en) * 2006-09-20 2010-02-12 ダウ グローバル テクノロジーズ インコーポレイティド Electronic device module comprising ethylene multi-block copolymer
JP2010519346A (en) * 2007-02-15 2010-06-03 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Articles comprising a high melt flow ionomer composition
WO2010005030A1 (en) * 2008-07-11 2010-01-14 三菱樹脂株式会社 Solar cell backsheet
JP2010093122A (en) * 2008-10-09 2010-04-22 Dainippon Printing Co Ltd Filler sheet for solar cell module, and solar cell module using the same
JP2012009691A (en) * 2010-06-25 2012-01-12 Japan Polyethylene Corp Resin composition for solar cell sealing material and solar cell sealing material using the same, and solar cell module

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019225761A1 (en) * 2018-05-24 2019-11-28 大日本印刷株式会社 Encapsulant sheet for self-luminous display or encapsulant sheet for direct backlight, self-luminous display, and direct backlight
JPWO2019225761A1 (en) * 2018-05-24 2020-07-09 大日本印刷株式会社 Sealant sheet for self-luminous type display or direct type backlight, self-luminous type display, direct type backlight
CN113506848A (en) * 2018-05-24 2021-10-15 大日本印刷株式会社 Sealing material sheet for self-luminous display or direct backlight, self-luminous display, and direct backlight
JP2022183210A (en) * 2018-05-24 2022-12-08 大日本印刷株式会社 Sealant seat for self-luminous display or direct backlight, self-luminous display, and direct backlight
US11550186B2 (en) 2018-05-24 2023-01-10 Dai Nippon Printing Co., Ltd. Encapsulant sheet for self-luminous display or encapsulant sheet for direct backlight, self-luminous display, and direct backlight
JP2023016045A (en) * 2018-05-24 2023-02-01 大日本印刷株式会社 Encapsulant sheet for self-luminous display or for direct backlight, self-luminous display, and direct backlight
US11822185B2 (en) 2018-05-24 2023-11-21 Dai Nippon Printing Co., Ltd. Encapsulant sheet for self-luminous display or encapsulant sheet for direct backlight, self-luminous display, and direct backlight
US11829034B2 (en) 2018-05-24 2023-11-28 Dai Nippon Printing Co., Ltd. Encapsulant sheet for self-luminous display or encapsulant sheet for direct backlight, self-luminous display, and direct backlight
JP7435688B2 (en) 2018-05-24 2024-02-21 大日本印刷株式会社 Encapsulant sheet for self-luminous displays or direct backlights, self-luminous displays, direct backlights

Also Published As

Publication number Publication date
JP5800054B2 (en) 2015-10-28

Similar Documents

Publication Publication Date Title
JP5688441B2 (en) Resin composition for solar cell encapsulant
JP5539063B2 (en) Resin composition for solar cell encapsulant, and solar cell encapsulant and solar cell module using the same
JP6428199B2 (en) Resin composition for solar cell encapsulant, and solar cell encapsulant and solar cell module using the same
JP5800053B2 (en) Resin composition for solar cell encapsulant, and solar cell encapsulant and solar cell module using the same
WO2010114028A1 (en) Resin composition for solar cell sealing material, solar cell sealing material, and solar cell module using the material
JP5636221B2 (en) Resin composition for solar cell encapsulant
WO2011162324A1 (en) Resin composition for solar cell sealing material, and solar cell sealing material and solar cell module using same
JP6269329B2 (en) Resin composition for solar cell encapsulant, and solar cell encapsulant and solar cell module using the same
JP5417534B2 (en) Solar cell encapsulant and solar cell module using the same
JP5519409B2 (en) Resin sheet for solar cell encapsulant
JP2013139558A (en) Resin composition for sealing solar cell, and solar cell sealant and solar cell module using the same
JP5555554B2 (en) Resin composition for solar cell encapsulant
JP5821341B2 (en) Resin composition for solar cell encapsulant and solar cell encapsulant using the same
JP5854073B2 (en) Manufacturing method of solar cell encapsulant sheet and solar cell module using the same
JP5764819B2 (en) Extruded resin composition, solar cell module sealing material and solar cell module, water shielding sheet, or tarpaulin using the same
JP5542503B2 (en) Resin composition for solar cell encapsulant
JP2014062239A (en) Resin composition for solar cell sealing material, solar cell sealing material using the same, and solar cell module
JP5560099B2 (en) Resin composition for solar cell encapsulant
JP2017110221A (en) Polyethylene resin, polyethylene resin composition and solar cell encapsulation material and solar cell module using the same
JP5539064B2 (en) Resin composition for solar cell encapsulant, and solar cell encapsulant and solar cell module using the same
JP5530828B2 (en) Method for producing resin composition for solar cell encapsulant
JP5824902B2 (en) Resin composition for solar cell encapsulant, and solar cell encapsulant and solar cell module using the same
JP5800054B2 (en) Resin composition for solar cell encapsulant, and solar cell encapsulant and solar cell module using the same
JP5519428B2 (en) Resin composition for solar cell encapsulant

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150410

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150728

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150810

R150 Certificate of patent or registration of utility model

Ref document number: 5800054

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250