[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2014172961A - Phthalocyanine dye, dye-sensitized solar cell and photo electric conversion element using the same - Google Patents

Phthalocyanine dye, dye-sensitized solar cell and photo electric conversion element using the same Download PDF

Info

Publication number
JP2014172961A
JP2014172961A JP2013045530A JP2013045530A JP2014172961A JP 2014172961 A JP2014172961 A JP 2014172961A JP 2013045530 A JP2013045530 A JP 2013045530A JP 2013045530 A JP2013045530 A JP 2013045530A JP 2014172961 A JP2014172961 A JP 2014172961A
Authority
JP
Japan
Prior art keywords
dye
phthalocyanine
photoelectric conversion
solar cell
conversion element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013045530A
Other languages
Japanese (ja)
Inventor
Shuji Hayase
修二 早瀬
Sudhir Pandey Shyam
シャム スデル パンディ
Yoshihiro Yamaguchi
能弘 山口
Noriaki Ochi
紀章 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Institute of Technology NUC
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel and Sumikin Chemical Co Ltd
Kyushu Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Chemical Co Ltd, Kyushu Institute of Technology NUC filed Critical Nippon Steel and Sumikin Chemical Co Ltd
Priority to JP2013045530A priority Critical patent/JP2014172961A/en
Publication of JP2014172961A publication Critical patent/JP2014172961A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a novel dye having a wide range of absorption wavelength in a near-infrared region and good photoelectric conversion efficiency, and a photoelectric conversion element and a dye-sensitized solar cell using the same.SOLUTION: Provided is a phthalocyanine dye represented by the following formula (1) having a phthalocyanine ring structure with a carboxyl group and a trisiloxane structure inside the ring in a form of an axial ligand, and also provided are a photoelectric conversion element and a dye-sensitized solar cell using the same for a dye-absorbed semiconductor layer. In the formula (1), R, R, and Reach independently represent an alkyl group.

Description

本発明は、光電変換素子用に適するフタロシアニン色素、これらを単独または他の色素と併用する光電変換素子及び色素増感太陽電池に関する。   The present invention relates to a phthalocyanine dye suitable for a photoelectric conversion element, a photoelectric conversion element using these alone or in combination with another dye, and a dye-sensitized solar cell.

光電変換素子は、光センサー、太陽電池等の光発電装置に使用されている。色素によって増感された半導体微粒子を用いる光電変換素子が特許文献1等で知られている。   Photoelectric conversion elements are used in photovoltaic devices such as optical sensors and solar cells. A photoelectric conversion element using semiconductor fine particles sensitized with a dye is known from Patent Document 1 and the like.

太陽電池としては、単結晶、多結晶あるいはアモルファスのシリコン半導体を用いた太陽電池が、電卓などの電気製品や住宅用などに広く用いられている。しかしながら、このようなシリコン半導体を用いた太陽電池の製造には、プラズマCVDや高温結晶成長プロセスなどの高精度プロセスが用いられるため、多大のエネルギーを必要とすると共に、真空を必要とする高価な装置が必要なために製造コストが高くなっている。   As a solar cell, a solar cell using a monocrystalline, polycrystalline, or amorphous silicon semiconductor is widely used for electrical products such as a calculator or for a house. However, since high-precision processes such as plasma CVD and high-temperature crystal growth processes are used for manufacturing solar cells using such silicon semiconductors, they require a lot of energy and are expensive, requiring a vacuum. Manufacturing costs are high due to the need for equipment.

そこで、低コストで製造可能な太陽電池として、例えば、酸化チタンのような酸化物半導体にルテニウム金属錯体のような光増感色素を吸着させた材料を用いた色素増感太陽電池が提案されている。色素増感太陽電池は具体的には、例えばインジウム添加酸化スズのような透明導電層を設けた透明ガラス板あるいは透明樹脂板のような透明絶縁材料の透明導電層側に、例えばルテニウム錯体からなる色素を表面に吸着した酸化チタンなどを半導体層として形成した負極と、正極となる白金などの金属層あるいは導電層を設けた透明ガラス板あるいは透明樹脂板のような透明絶縁材料との間に電解質の液を封入したものがある。色素増感太陽電池に光が照射されると、負極では光を吸収した色素の電子が励起し、励起した電子が半導体層に移動し、更に透明電極へと導かれ、正極では導電層からくる電子により電解質を還元する。還元された電解質は色素に電子を伝えることで酸化され、このサイクルで色素増感太陽電池が発電すると考えられている。   Therefore, as a solar cell that can be manufactured at a low cost, for example, a dye-sensitized solar cell using a material in which a photosensitizing dye such as a ruthenium metal complex is adsorbed on an oxide semiconductor such as titanium oxide has been proposed. Yes. Specifically, the dye-sensitized solar cell is made of, for example, a ruthenium complex on the transparent conductive layer side of a transparent insulating material such as a transparent glass plate or a transparent resin plate provided with a transparent conductive layer such as indium-added tin oxide. An electrolyte between a negative electrode formed with titanium oxide or the like having a dye adsorbed on its surface as a semiconductor layer and a transparent insulating material such as a transparent glass plate or a transparent resin plate provided with a metal layer or conductive layer such as platinum as a positive electrode There is something that encloses the liquid. When the dye-sensitized solar cell is irradiated with light, the electrons of the dye that absorbed the light are excited in the negative electrode, the excited electrons move to the semiconductor layer, and are further guided to the transparent electrode, and from the conductive layer in the positive electrode The electrolyte is reduced by electrons. The reduced electrolyte is oxidized by transferring electrons to the dye, and it is believed that the dye-sensitized solar cell generates electricity during this cycle.

現在、色素増感太陽電池はシリコン太陽電池に比して照射光エネルギーに対する発電エネルギー効率が低く、その効率を上げることが実効的な色素増感太陽電池を製造する上での重要な課題となっている。色素増感太陽電池の効率は、それを構成する各要素の特性や、更にそれら要素の組み合わせによっても影響を受けると考えられており、さまざまな試みがなされている。中でも、光増感作用を持つ色素について、より高効率な増感色素の開発に注力されている。現在知られている高効率色素としてN719等の可視光領域で高性能を示すRu色素がある。これらの色素は可視光領域の光電変換効率は高いが、近赤外領域の光電変換効率が低く、近赤外領域近傍に吸収帯を有する色素の開発が望まれている。   Currently, dye-sensitized solar cells have lower power generation energy efficiency with respect to irradiation light energy than silicon solar cells, and increasing the efficiency is an important issue in producing effective dye-sensitized solar cells. ing. The efficiency of the dye-sensitized solar cell is considered to be influenced by the characteristics of each element constituting the dye-sensitized solar cell and the combination of these elements, and various attempts have been made. In particular, with regard to dyes having a photosensitizing action, efforts are being made to develop more efficient sensitizing dyes. As a currently known high-efficiency dye, there is a Ru dye exhibiting high performance in the visible light region such as N719. Although these dyes have high photoelectric conversion efficiency in the visible light region, the photoelectric conversion efficiency in the near infrared region is low, and development of a dye having an absorption band near the near infrared region is desired.

この近赤外領域近傍に吸収帯を有する光電変換素子用の有機色素については、特許文献1乃至3及び非特許文献1等でいくつかの化合物が知られている。また、フタロシアニン色素についても、これらの文献で知られている。しかしながら、フタロシアニン色素は色素間で強く起こる会合現象と、励起状態からの速い失活に由来する発電性能低下のため、十分な変換効率を発現していない。   Regarding organic dyes for photoelectric conversion elements having an absorption band in the vicinity of the near infrared region, several compounds are known in Patent Documents 1 to 3, Non-Patent Document 1, and the like. Also, phthalocyanine dyes are known in these documents. However, phthalocyanine dyes do not exhibit sufficient conversion efficiency due to an association phenomenon that occurs strongly between the dyes and a decrease in power generation performance resulting from rapid deactivation from the excited state.

非特許文献2、3では、色素同士の会合現象を抑制したフタロシアニン色素を開示しているが、励起状態からの失活速度は改善されていないため、十分な変換効率を発現しておらず、更なる改良が求められている。   Non-Patent Documents 2 and 3 disclose a phthalocyanine dye that suppresses an association phenomenon between dyes, but the deactivation rate from an excited state is not improved, so that sufficient conversion efficiency is not expressed, There is a need for further improvements.

光電変換素子及び色素増感太陽電池に適したフタロシアニン色素を提供するため、フタロシアニン色素同士の会合現象の抑制と、励起状態からの失活の抑制を両立するように分子設計をする必要がある。しかし、フタロシアニン化合物について、先行文献において多くの構造が開示されながら、いずれの構造も十分な変換効率を発現しないことは、この分子設計の困難さを示している。   In order to provide a phthalocyanine dye suitable for a photoelectric conversion element and a dye-sensitized solar cell, it is necessary to design a molecule so as to achieve both suppression of an association phenomenon between phthalocyanine dyes and suppression of deactivation from an excited state. However, although many structures of phthalocyanine compounds are disclosed in the prior literature, the fact that none of the structures exhibits sufficient conversion efficiency indicates the difficulty in molecular design.

特開平11−74003号公報Japanese Patent Application Laid-Open No. 11-74003 特開2003−123863号公報JP 2003-123863 A 特開2011−60669号公報JP 2011-60669 A

S.Mori et al,J.Am.Chem.Soc.132, 4054−4055(2010)S. Mori et al, J.A. Am. Chem. Soc. 132, 4054-4055 (2010) N.Kobayashi et al,J.Am.Chem.Soc.133, 19642−19645(2011)N. Kobayashi et al. Am. Chem. Soc. 133, 19642-19645 (2011) B. Lim et al,Organic Letters, 15, 4, 784-787(2013).B. Lim et al, Organic Letters, 15, 4, 784-787 (2013).

本発明は、上記の課題に鑑みてなされたものであり、近赤外領域における吸収波長範囲が広く光電変換効率の良好な新規な色素を提供し、これを用いた光電変換素子及び色素増感太陽電池を提供することを目的とする。   The present invention has been made in view of the above problems, and provides a novel dye having a wide absorption wavelength range in the near infrared region and good photoelectric conversion efficiency, and a photoelectric conversion element and dye sensitization using the same. An object is to provide a solar cell.

本発明は下記式(1)で表わされるフタロシアニン色素である。

Figure 2014172961
式(1)において、R1,R2,R3はアルキル基を表す。 The present invention is a phthalocyanine dye represented by the following formula (1).
Figure 2014172961
In the formula (1), R 1 , R 2 and R 3 represent an alkyl group.

また、本発明は、色素を用いる光電変換素子において、色素が上記フタロシアニン色素であることを特徴とする光電変換素子である。また、本発明は、色素として上記フタロシアニン色素の他に、上記フタロシアニン色素と吸収領域の異なる色素を用いることを特徴とする光電変換素子である。   The present invention is also a photoelectric conversion element using a dye, wherein the dye is the phthalocyanine dye. The present invention also provides a photoelectric conversion element using a dye having an absorption region different from that of the phthalocyanine dye, in addition to the phthalocyanine dye.

また、本発明は、上記光電変換素子を用いて構成したことを特徴とする色素増感太陽電池である。   Moreover, this invention is the dye-sensitized solar cell comprised using the said photoelectric conversion element.

本発明のフタロシアニン色素は、フタロシアニン骨格に共有結合もしくは配位結合したケイ素原子を含む嵩高い軸配位子を持つ構造を有する。この嵩高い軸配位子がフタロシアニン骨格を覆うように広がるため、フタロシアニン色素の会合状態を防ぐことができる。また、励起状態からの失活を抑制し、励起寿命を長くすることができる。これは、カルボキシル基がフタロシアニン骨格に直接共有結合しているためと考えられる。そのため、本発明のフタロシアニン色素を使用した光電変換素子及びこれを用いて構成した色素増感太陽電池は、特に近赤外光領域における光電変換効率が高い。   The phthalocyanine dye of the present invention has a structure having a bulky axial ligand containing a silicon atom covalently or coordinately bonded to a phthalocyanine skeleton. Since this bulky axial ligand spreads so as to cover the phthalocyanine skeleton, the association state of the phthalocyanine dye can be prevented. Further, deactivation from the excited state can be suppressed, and the excitation life can be extended. This is presumably because the carboxyl group is directly covalently bonded to the phthalocyanine skeleton. Therefore, the photoelectric conversion element using the phthalocyanine dye of the present invention and the dye-sensitized solar cell configured using the same have high photoelectric conversion efficiency particularly in the near infrared light region.

色素増感太陽電池の一例を示す断面図である。It is sectional drawing which shows an example of a dye-sensitized solar cell. 本発明のフタロシアニン色素D-1のIRスペクトルである。3 is an IR spectrum of phthalocyanine dye D-1 of the present invention. 本発明のフタロシアニン色素D-1の1H-NMRスペクトルである。2 is a 1H-NMR spectrum of phthalocyanine dye D-1 of the present invention.

本発明の光電変換素子又は色素増感太陽電池は、上記式(1)で表されるフタロシアニン色素を増感色素として含む。なお、色素増感太陽電池は光電変換素子を利用するものであるため、両者の説明の多くが共通するので、共通する説明は色素増感太陽電池で代表して説明する。   The photoelectric conversion element or the dye-sensitized solar cell of the present invention contains a phthalocyanine dye represented by the above formula (1) as a sensitizing dye. In addition, since a dye-sensitized solar cell utilizes a photoelectric conversion element, since both description is common, a common description is demonstrated on behalf of a dye-sensitized solar cell.

式(1)において、R1,R2,R3は独立に、アルキル基を表すが、炭素原子を3個以上含むことが好ましく、3〜30個含むことがより好ましく、4〜10個含むことが更に好ましい。そして、R1,R2,R3の炭素原子の合計は、10〜30個の範囲が好ましい。アルキル基は直鎖であっても、分岐状であってもよいが、直鎖が好ましい。 In formula (1), R 1 , R 2 , and R 3 independently represent an alkyl group, preferably containing 3 or more carbon atoms, more preferably 3 to 30 carbon atoms, and more preferably 4 to 10 carbon atoms. More preferably. Then, the sum of carbon atoms of R 1, R 2, R 3 is preferably 10 to 30 range. The alkyl group may be linear or branched, but is preferably linear.

式(1)で表されるフタロシアニン色素は、一例として、次のスキームに従って合成することができる。   The phthalocyanine dye represented by the formula (1) can be synthesized according to the following scheme as an example.

4-tert-ブチル-1,2-ジシアノベンゼン(A-1)、エチル3,4-ジシアノベンゾエイト(A-2)、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)をペンタノールに入れ還流する。メタノールを加え、ガラス棒などで激しくかき混ぜた後、中間体(A-3)を得る。A-3のエステル基は原料A-2由来のエチルエステル基の一部が溶媒として用いているペンタノールとのエステル交換によりペンチルエステル基に変換された構造を有していると考えられる。また、A-3はフタロシアニン骨格にtert-ブチル基がβ1位、β3位、β5位に結合した構造、β1位、β4位、β5位に結合した構造、β1位、β3位、β6位に結合した構造、β1位、β4位、β6位に結合した構造、β2位、β3位、β5位に結合した構造、β2位、β4位、β5位に結合した構造、β2位、β3位、β6位に結合した構造、β2位、β4位、β6位に結合した構造の混合物であると考えられる。   4-tert-butyl-1,2-dicyanobenzene (A-1), ethyl 3,4-dicyanobenzoate (A-2), 1,8-diazabicyclo [5.4.0] -7-undecene (DBU) Reflux in pentanol. Add methanol and stir vigorously with a glass rod to obtain intermediate (A-3). The ester group of A-3 is considered to have a structure in which a part of the ethyl ester group derived from the raw material A-2 is converted to a pentyl ester group by transesterification with pentanol used as a solvent. A-3 is a structure in which a tert-butyl group is bonded to the phthalocyanine skeleton at the β1, β3, and β5 positions, a structure that is bonded to the β1, β4, and β5 positions, and the β1, β3, and β6 positions. , Β1, β4, β6, β2, β3, β5, β2, β4, β5, β2, β3, β6 It is considered that this is a mixture of a structure bonded to, a structure bonded to the β2, β4, and β6 positions.

次に、アルゴン雰囲気下にA-3、ジクロロメタン、テトラブチルアミン(TBA)を入れてからトリクロロシランを滴下する。さらに、トリエチルアミンを入れ、その混合物に水を入れクエンチする。その後、塩酸を入れ撹拌する。吸引濾過後、抽出、水洗、乾燥する。分離後、カラム精製を行い、ケイ素原子がフタロシアニン骨格に共有結合もしくは配位結合した中間体(A-4)を得る。クロロトリアルキルシランSiClR1R2R3(R1、R2、R3はアルキル基を表す)とピリジンを入れ還流する。溶媒留去後、カラム精製し、中間体(A-5)を得る。A-5とテトラヒドロフラン、アルカリ性溶液を入れ還流する。酸性溶液を加え、溶媒留去する。そのままカラム精製を行い、フタロシアニン色素D-1を得る。このようなスキームは、以上に述べたフタロシアニン色素の合成に適用できる。 Next, A-3, dichloromethane, and tetrabutylamine (TBA) are put in an argon atmosphere, and then trichlorosilane is added dropwise. Further, triethylamine is added, and the mixture is quenched with water. Then, add hydrochloric acid and stir. After suction filtration, extraction, washing with water and drying. After separation, column purification is performed to obtain an intermediate (A-4) in which the silicon atom is covalently or coordinately bonded to the phthalocyanine skeleton. Chlorotrialkylsilane SiClR 1 R 2 R 3 (R 1 , R 2 and R 3 represent an alkyl group) and pyridine are added and refluxed. After the solvent is distilled off, the column is purified to obtain an intermediate (A-5). Add A-5, tetrahydrofuran and alkaline solution to reflux. Add acidic solution and evaporate. Column purification is performed as it is to obtain phthalocyanine dye D-1. Such a scheme can be applied to the synthesis of the phthalocyanine dyes described above.

Figure 2014172961
Figure 2014172961

本発明の色素を用いた光電変換素子又は色素増感太陽電池の基本構成の一例を図1により説明する。図1は光電変換素子の一例を示す断面図であり、基板1上に、導電層2と半導体層に増感用の色素が吸着された色素吸着半導体層3が積層された電極10と、基板4上に導電層5が設けられた対向電極11を有し、両電極間に電解質層6を配した構成となっている。色素吸着半導体層3は、電極の一部を構成するため半導体電極ともいう。色素吸着半導体層3はチタニアあるいは金属酸化物微粒子を用い1つの層として塗工・焼結されたもの、又は複数回の塗工・焼結により形成された層であり、色素が吸着された半導体層であり、酸化チタン粒子等の金属酸化物粒子とこの粒子の表面を覆うように存在する増感色素からなっている。なお、光は電極10側から入る。そして、本発明の色素増感太陽電池は、上記と同様な基本構成を有するが外部回路で仕事をさせるようにしたものである。そして、色素光電変換素子を色素増感太陽電池とする方法は上記特許文献1〜3等で公知であり、これら公知の方法でよい。   An example of the basic configuration of a photoelectric conversion element or a dye-sensitized solar cell using the dye of the present invention will be described with reference to FIG. FIG. 1 is a cross-sectional view illustrating an example of a photoelectric conversion element. An electrode 10 in which a conductive layer 2 and a dye-adsorbing semiconductor layer 3 in which a sensitizing dye is adsorbed on a semiconductor layer are stacked on a substrate 1 and a substrate are illustrated. 4 has a counter electrode 11 provided with a conductive layer 5, and an electrolyte layer 6 is disposed between both electrodes. The dye-adsorbing semiconductor layer 3 is also referred to as a semiconductor electrode because it forms part of the electrode. The dye adsorbing semiconductor layer 3 is a layer coated and sintered as a single layer using titania or metal oxide fine particles, or a layer formed by applying and sintering a plurality of times, and a semiconductor to which a dye is adsorbed This layer is composed of metal oxide particles such as titanium oxide particles and a sensitizing dye present so as to cover the surface of the particles. Light enters from the electrode 10 side. The dye-sensitized solar cell of the present invention has the same basic configuration as described above, but is made to work in an external circuit. And the method of making a dye photoelectric conversion element into a dye-sensitized solar cell is well-known in the said patent documents 1-3 etc., These well-known methods may be sufficient.

基板1としては、透明な絶縁材料であれば特に限定されるものではなく、例えば通常のガラス板やプラスチック板などが挙げられ、更には屈曲性のあるものでも良く、例えばPET樹脂などが挙げられるが、好ましくは約500℃を上限にした酸化チタンを焼付ける工程に耐え得る耐熱材料であることであり、透明なガラス板が挙げられる。   The substrate 1 is not particularly limited as long as it is a transparent insulating material. For example, a normal glass plate or plastic plate may be used, and further, a flexible material may be used. For example, a PET resin may be used. However, it is preferably a heat-resistant material that can withstand the step of baking titanium oxide with an upper limit of about 500 ° C., and a transparent glass plate can be mentioned.

次に、この基板1の表面に基材の透明性を損なわないような導電層2を設けるが、導電層としてはいわゆる透明電極として知られているITO、FTO、ATOあるいはこれらを組み合わせたものでよく、更には透明性を損なわない厚みの金属層であってもよい。これらの導電層を設ける方法は特に限定されるものではなく、スパッタリング、蒸着(CVD及びPVDを含む)、スプレー、レーザアブレーションあるいはペースト化した各材料を用いるスピンコート、バーコート、スクリーン印刷の手法など既知の手法を用いることができる。中でも、スプレー法又は気相で行われるスパッタリング又は蒸着法が適する。   Next, a conductive layer 2 is provided on the surface of the substrate 1 so as not to impair the transparency of the base material. As the conductive layer, ITO, FTO, ATO known as a so-called transparent electrode, or a combination thereof is used. Moreover, it may be a metal layer having a thickness that does not impair the transparency. The method of providing these conductive layers is not particularly limited, and spin coating, bar coating, screen printing methods using sputtering, vapor deposition (including CVD and PVD), spray, laser ablation, or pasted materials, etc. Known techniques can be used. Among them, a spray method or a sputtering or vapor deposition method performed in a gas phase is suitable.

この上に、色素吸着半導体層3を設ける。通常は半導体として金属酸化物の層を形成したのち、これに増感色素を吸着させる。金属酸化物としては、光電変換材料と知られているものが使用でき、酸化チタン、酸化亜鉛、酸化タングステン、酸化スズ等を挙げることができる、中でも酸化チタン及び酸化スズが好ましい。酸化チタンとしては、アナターゼ型、ルチル型、ブルッカイト型等の酸化チタンの他、水酸化チタン、含水酸化チタン類であってもよい。また、Nb、V又はTaの各元素の少なくとも1つを酸化チタンに対して30ppm〜5%の重量濃度(金属元素として)になるようドーピングしてもよい。このような金属酸化物であれば、本発明に用いることが可能であるが、平均粒子径が5〜500nm、好ましくは10〜200nmの範囲の微粒子であることがよい。   On this, the dye adsorption semiconductor layer 3 is provided. Usually, after a metal oxide layer is formed as a semiconductor, a sensitizing dye is adsorbed thereto. As a metal oxide, what is known as a photoelectric conversion material can be used, and titanium oxide, zinc oxide, tungsten oxide, tin oxide, and the like can be used. Of these, titanium oxide and tin oxide are preferable. Titanium oxide may be titanium hydroxide such as anatase type, rutile type, brookite type, titanium hydroxide or hydrous titanium oxide. Further, at least one of Nb, V, or Ta may be doped so as to have a weight concentration (as a metal element) of 30 ppm to 5% with respect to titanium oxide. If it is such a metal oxide, it can be used for this invention, but it is good that it is a fine particle with an average particle diameter of 5-500 nm, Preferably it is the range of 10-200 nm.

金属酸化物の層を前記導電層2上に形成するが、その方法については、特に限定されるものではなく、例えばペースト化した金属酸化物をスピンコート、印刷、スプレーコートなどの各手法を用いても良い。また、製膜後に酸化チタン等の金属酸化物の焼結などを目的に焼成することも可能である。次に、金属酸化物に増感用の色素を吸着させて色素吸着金属酸化物として、色素吸着半導体層3とする。   A metal oxide layer is formed on the conductive layer 2, but the method is not particularly limited. For example, each method such as spin coating, printing, spray coating, or the like is used for pasting the metal oxide. May be. It is also possible to sinter for the purpose of sintering a metal oxide such as titanium oxide after film formation. Next, a dye for sensitization is adsorbed on the metal oxide to form a dye adsorbing semiconductor layer 3 as a dye adsorbing metal oxide.

本発明では増感色素とそれを含む層に特徴があり、その他の層又は材料は公知の構造又は材料とすることができ、図1に示す構造のものに限らない。   The present invention is characterized by a sensitizing dye and a layer containing the sensitizing dye, and other layers or materials may have a known structure or material, and are not limited to those having the structure shown in FIG.

色素吸着半導体層3を構成する材料は、半導体と色素であるが、通常、半導体は金属酸化物、好ましくは酸化チタン又は酸化スズであるので、半導体を金属酸化物又は酸化チタンで代表することがある。また、色素増感用の色素としては、上記式(1)で表わされるフタロシアニン色素を使用する。なお、必要により吸収波長領域を広げるためにこのフタロシアニン色素とは異なる範囲に最大吸収波長を有する他の色素を併用することも有利である。   The materials constituting the dye-adsorbing semiconductor layer 3 are a semiconductor and a dye. Usually, since the semiconductor is a metal oxide, preferably titanium oxide or tin oxide, the semiconductor may be represented by a metal oxide or titanium oxide. is there. As the dye for dye sensitization, a phthalocyanine dye represented by the above formula (1) is used. It is also advantageous to use another dye having a maximum absorption wavelength in a different range from this phthalocyanine dye in order to broaden the absorption wavelength region if necessary.

色素はこれを溶解する溶媒に溶解してチタニア半導体層に吸着させる。吸着溶媒は色素が可溶である溶媒であれば、使用することができる。具体的には、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール等の脂肪族アルコール類、アセトニトリル、プロピオニトリル等のニトリル溶媒、アセトン、メチルエチルケトン等のケトン類、ジメチルカーボネート、ジエチルカーボネート等のカーボネート類、ラクトン類、カプロラクタム類を使用することができる。好ましくはメタノール、エタノール又はアセトニトリルである。   The dye is dissolved in a solvent that dissolves the dye and adsorbed to the titania semiconductor layer. The adsorption solvent can be used if it is a solvent in which the dye is soluble. Specifically, aliphatic alcohols such as methanol, ethanol, n-propanol, isopropanol and n-butanol, nitrile solvents such as acetonitrile and propionitrile, ketones such as acetone and methyl ethyl ketone, dimethyl carbonate, diethyl carbonate and the like Carbonates, lactones and caprolactams can be used. Methanol, ethanol or acetonitrile is preferred.

色素溶液にデオキシコール酸、ケノデオキシコール酸(DCA)等の共吸着剤を溶解した色素溶液を用い、吸着してもよい。   The dye solution may be adsorbed using a dye solution in which a coadsorbent such as deoxycholic acid or chenodeoxycholic acid (DCA) is dissolved.

色素は超臨界流体、加圧流体に溶解して吸着させてもよい。具体的には、炭酸ガスや炭酸ガスにエントレーナーを加えた溶液により吸着させることが好ましい。   The dye may be dissolved and adsorbed in a supercritical fluid or a pressurized fluid. Specifically, it is preferably adsorbed by carbon dioxide or a solution obtained by adding an entrainer to carbon dioxide.

色素の吸着した金属酸化物には、更にCO2超臨界流体中でカルボン酸を吸着させてもよい。カルボン酸を吸着させる効果は、非特許文献J. Photochem.and Photobio.A,Chem.164(2004)117等により公知である。しかしながら、色素吸着やリンス処理と同様に、酸化チタン、酸化スズなどの金属酸化物の微細孔内部まで有効に吸着させることが重要である。色素の吸着した金属酸化物(色素の吸着した金属酸化物層を有する基板であってもよい)とカルボン酸を、圧力範囲5〜30Mpaであり、温度範囲が40〜60℃で形成されるCO2超臨界流体中又は加圧CO2中に置くことで、有効にカルボン酸を吸着できる。カルボン酸としては、好ましくは安息香酸、酢酸、アニス酸、ニコチン酸を挙げることができる。これらカルボン酸は、メタノール、エタノール、プロパノール、ブタノールのうちの少なくともいずれか1種類を含むアルコールに溶解した状態で使用することが好ましく、そのカルボン酸濃度が0.01〜10mol/Lの範囲であることが好ましい。さらに、色素の吸着は亜臨界状態の加圧下で吸着することが好ましく色素を溶媒に溶解させた溶液と炭酸ガスとの混合溶液中で吸着させたものであり、その炭酸ガスの圧力が1〜5MPa、温度が40℃〜60℃の範囲であることが好ましい。 The metal oxide adsorbed with the dye may be further adsorbed with carboxylic acid in a CO 2 supercritical fluid. The effect of adsorbing carboxylic acid is described in Non-Patent Document J. Pat. Photochem. and Photobio. A, Chem. 164 (2004) 117 and the like. However, it is important to effectively adsorb the fine pores of metal oxides such as titanium oxide and tin oxide as in the case of dye adsorption and rinsing. CO formed with a dye-adsorbed metal oxide (which may be a substrate having a dye-adsorbed metal oxide layer) and a carboxylic acid in a pressure range of 5-30 Mpa and a temperature range of 40-60 ° C. 2 by placing the supercritical fluid or in the pressure CO 2, it can effectively adsorb the carboxylic acid. Preferred examples of the carboxylic acid include benzoic acid, acetic acid, anisic acid, and nicotinic acid. These carboxylic acids are preferably used in a state dissolved in an alcohol containing at least one of methanol, ethanol, propanol, and butanol, and the carboxylic acid concentration is in the range of 0.01 to 10 mol / L. It is preferable. Furthermore, the adsorption of the dye is preferably carried out under subcritical pressure, and the dye is adsorbed in a mixed solution of a solution in which the dye is dissolved in a solvent and carbon dioxide, and the pressure of the carbon dioxide is 1 to 5 MPa and the temperature are preferably in the range of 40 ° C to 60 ° C.

上記のように基板1、導電層2及び色素吸着半導体層3からなる電極10は負極として作用する。もう一方の正極として作用する電極(対向電極)11は図1に示すように、電極10と対向して配置する。正極となる電極は、導電性の金属などでよく、また、例えば通常のガラス板やプラスチック板などの基板4に金属膜や炭素膜等の導電層5を施したものでもよい。   As described above, the electrode 10 composed of the substrate 1, the conductive layer 2, and the dye-adsorbing semiconductor layer 3 functions as a negative electrode. An electrode (counter electrode) 11 acting as the other positive electrode is disposed to face the electrode 10 as shown in FIG. The electrode serving as the positive electrode may be a conductive metal or the like, or may be a substrate 4 such as a normal glass plate or plastic plate provided with a conductive layer 5 such as a metal film or a carbon film.

負極となる電極10と、正極となる対向電極11の間には、電解質層6を設ける。この電解質層6を構成する電解質の種類は、光励起され半導体への電子注入を果たした後の色素を還元するための酸化還元種を含んでいれば特に限定されず、液状の電解質であってもよく、これに公知のゲル化剤(高分子又は低分子のゲル化剤)やイオン液体と金属酸化物を混練した擬固体を添加して得られるゲル状の電解質であってもよい。   An electrolyte layer 6 is provided between the electrode 10 serving as the negative electrode and the counter electrode 11 serving as the positive electrode. The type of the electrolyte constituting the electrolyte layer 6 is not particularly limited as long as it contains a redox species for reducing the dye after photoexcitation and electron injection into the semiconductor, and even if it is a liquid electrolyte Alternatively, it may be a gelled electrolyte obtained by adding a known gelling agent (polymer or low molecular weight gelling agent) or a quasi-solid obtained by kneading an ionic liquid and a metal oxide.

例えば、溶液電解質に用いる電解質の例としては、ヨウ素とヨウ化物(LiI、NaI、KI、CsI、CaI2等の金属ヨウ化物、テトラアルキルアンモニウムヨーダイド、ピリジニウムヨーダイド、イミダゾリウムヨーダイド等の4級アンモニウム化合物ヨウ素塩等)の組み合わせ、臭素と臭化物(LiBr、NaBr、KBr、CsBr、CaBr2 等の金属臭化物、テトラアルキルアンモニウムブロマイド、ピリジニウムブロマイド等の4級アンモニウム化合物臭素塩等)の組み合わせ、ポリ硫化ナトリウム、アルキルチオール、アルキルジスルフィド等のイオウ化合物、ビオロゲン色素、ヒドロキノン、キノン等が挙げられる。電解質は混合して用いてもよい。 For example, examples of the electrolyte used in the solution electrolyte, iodine and iodide (LiI, NaI, KI, CsI, metal iodide such as CaI 2, tetraalkylammonium iodide, pyridinium iodide, such as imidazolium iodide 4 Combination of bromine and bromide (metal bromide such as LiBr, NaBr, KBr, CsBr, CaBr 2 , quaternary ammonium compound bromide such as tetraalkylammonium bromide, pyridinium bromide, etc.), poly Examples thereof include sulfur compounds such as sodium sulfide, alkyl thiol, and alkyl disulfide, viologen dyes, hydroquinone, and quinone. The electrolyte may be used as a mixture.

また、電解質としては、高沸点を有する溶融塩電解質が好ましい。半導体電極が色素吸着酸化チタン層からなる場合は、溶融塩電解質と組み合わせることにより、特に優れた電池特性を発揮する。溶融塩電解質組成物は溶融塩を含む。溶融塩電解質組成物は常温で液体であるのが好ましい。主成分である溶融塩は室温において液状であるか又は低融点の電解質であり、その一般的な例としては「電気化学」、1997年、第65巻、第11号、p.923 等に記載のピリジニウム塩、イミダゾリウム塩、トリアゾリウム塩等が挙げられる。溶融塩は単独で使用しても2種以上混合して使用してもよい。また、LiI、NaI、KI、LiBF4、CF3COOLi、CF3COONa、LiSCN、NaSCN等のアルカリ金属塩を併用することもできる。通常、溶融塩電解質組成物はヨウ素を含有する。溶融塩電解質組成物の揮発性は低いことが好ましく、溶媒を含まないことが好ましい。溶融塩電解質組成物はゲル化して使用してもよい。 Further, as the electrolyte, a molten salt electrolyte having a high boiling point is preferable. When the semiconductor electrode is composed of a dye-adsorbed titanium oxide layer, particularly excellent battery characteristics are exhibited by combining with a molten salt electrolyte. The molten salt electrolyte composition includes a molten salt. The molten salt electrolyte composition is preferably liquid at room temperature. The molten salt as the main component is a liquid at room temperature or an electrolyte having a low melting point, and a general example thereof is “Electrochemistry”, 1997, Vol. 65, No. 11, p. 923, etc., pyridinium salts, imidazolium salts, triazolium salts and the like. The molten salt may be used alone or in combination of two or more. In addition, alkali metal salts such as LiI, NaI, KI, LiBF 4 , CF 3 COOLi, CF 3 COONa, LiSCN, NaSCN can be used in combination. Usually, the molten salt electrolyte composition contains iodine. The molten salt electrolyte composition preferably has low volatility and preferably does not contain a solvent. The molten salt electrolyte composition may be used after gelation.

電解液に溶媒を使用する場合は、粘度が低く高イオン移動度を示し、優れたイオン伝導性を発現できる化合物であることが望ましい。このような溶媒の例としては、エチレンカーボネート、プロピレンカーボネート等のカーボネート化合物、3-メチル-2-オキサゾリジノン等の複素環化合物、ジオキサン、ジエチルエーテル等のエーテル化合物、エチレングリコールジアルキルエーテル、プロピレングリコールジアルキルエーテル、ポリエチレングリコールジアルキルエーテル、ポリプロピレングリコールジアルキルエーテル等の鎖状エーテル類、メタノール、エタノール、エチレングリコールモノアルキルエーテル、プロピレングリコールモノアルキルエーテル、ポリエチレングリコールモノアルキルエーテル、ポリプロピレングリコールモノアルキルエーテル等のアルコール類、エチレングリコール、プロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、グリセリン等の多価アルコール類、アセトニトリル、グルタロジニトリル、メトキシアセトニトリル、プロピオニトリル、ベンゾニトリル等のニトリル化合物、ジメチルスルホキシド、スルフォラン等の非プロトン極性物質、水等が挙げられる。これらの溶媒は混合して用いることもできる。   When a solvent is used in the electrolytic solution, it is desirable that the compound has a low viscosity and high ion mobility and can exhibit excellent ionic conductivity. Examples of such solvents include carbonate compounds such as ethylene carbonate and propylene carbonate, heterocyclic compounds such as 3-methyl-2-oxazolidinone, ether compounds such as dioxane and diethyl ether, ethylene glycol dialkyl ether, propylene glycol dialkyl ether , Chain ethers such as polyethylene glycol dialkyl ether and polypropylene glycol dialkyl ether, alcohols such as methanol, ethanol, ethylene glycol monoalkyl ether, propylene glycol monoalkyl ether, polyethylene glycol monoalkyl ether and polypropylene glycol monoalkyl ether, ethylene Glycol, propylene glycol, polyethylene glycol, polypropylene glycol Lumpur, polyhydric alcohols such as glycerin, acetonitrile, glutarodinitrile, methoxy acetonitrile, propionitrile, nitrile compounds such as benzonitrile, dimethyl sulfoxide, aprotic polar substances such as sulfolane, water and the like. These solvents can also be used as a mixture.

電解質層6を設ける方法は特に限定されるものではなく、例えば両電極の間にフィルム状のスペーサ7を配置して隙間を形成し、その隙間に電解質を注入する方法でも良く、また、負極内面に電解質を塗布などした後に正極を適当な間隔をおいて積載する方法でも良い。電解質が流出しないよう、両極とその周囲を封止することが望ましいが、封止の方法や封止材の材質については特に限定するものではない。   The method for providing the electrolyte layer 6 is not particularly limited. For example, a method may be used in which a film-like spacer 7 is disposed between both electrodes to form a gap, and an electrolyte is injected into the gap. Alternatively, a method may be employed in which the positive electrode is loaded at an appropriate interval after the electrolyte is applied to the electrode. It is desirable to seal both electrodes and their surroundings so that the electrolyte does not flow out, but the sealing method and the material of the sealing material are not particularly limited.

以下、合成例及び実施例に基づいて本発明について更に詳細に説明する。   Hereinafter, the present invention will be described in more detail based on synthesis examples and examples.

実施例1(合成例) Example 1 (Synthesis example)

200mlナスフラスコに4-tert-ブチル-1,2-ジシアノベンゼン B-1 (15mmol)、 エチル3,4-ジシアノベンゾエイトB-2 (5mmol)、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU) (0.6ml)、ペンタノール(33ml)を入れ14時間還流した。その後、溶媒留去し、カラム精製(ヘキサン:トルエン=1:1)を行った。メタノールを加え、ガラス棒などで激しくかき混ぜた後、中間体(B-3)を20%の収率で得た。B-3のカルボキシル基はアルキル基によりエステル化されているが、このアルキル基は原料B-2由来のエチル基と、溶媒ペンタノール由来のペンチル基の混合物となっていると考えられる。またB-3はtert-ブチル基がフタロシアニン骨格のβ位に結合していると考えられる。   In a 200 ml eggplant flask, 4-tert-butyl-1,2-dicyanobenzene B-1 (15 mmol), ethyl 3,4-dicyanobenzoate B-2 (5 mmol), 1,8-diazabicyclo [5.4.0] -7 -Undecene (DBU) (0.6 ml) and pentanol (33 ml) were added and refluxed for 14 hours. Thereafter, the solvent was distilled off, and column purification (hexane: toluene = 1: 1) was performed. After adding methanol and stirring vigorously with a glass rod or the like, intermediate (B-3) was obtained in a yield of 20%. The carboxyl group of B-3 is esterified with an alkyl group, and this alkyl group is considered to be a mixture of the ethyl group derived from the raw material B-2 and the pentyl group derived from the solvent pentanol. In B-3, the tert-butyl group is considered to be bonded to the β-position of the phthalocyanine skeleton.

Figure 2014172961
Figure 2014172961

500mlの三ツ口フラスコにアルゴン雰囲気下B-3(0.94mmol)、ジクロロメタン(200ml)、トリブチルアミン(25ml)を入れてからトリクロロシラン(2.5ml)をゆっくり滴下した。室温で22時間撹拌後、トリエチルアミン(80ml)を入れ、その混合物を水40mlに少しずつ入れクエンチした。室温で3時間撹拌後、12M 塩酸(60ml)を少しずつ入れ1時間撹拌した。吸引濾過後、クロロホルムで抽出、水洗を2回、硫酸ナトリウムで乾燥した。分離後、溶媒留去し、ショートカラム精製(トルエン:エチルアセテート=9:1)を行った。溶媒を濃縮して粗製B-4を得た後、そのまま粗製B-4を用い次の反応を行った。200mlナスフラスコにクロロトリヘキシルシラン(4.7mmol)、ピリジン(50ml)を入れ15時間還流した。溶媒留去後、カラム精製(トルエン:ヘキサン=1:2)し、B-5を15%の収率で得た。   B-3 (0.94 mmol), dichloromethane (200 ml) and tributylamine (25 ml) were placed in a 500 ml three-necked flask under an argon atmosphere, and then trichlorosilane (2.5 ml) was slowly added dropwise. After stirring at room temperature for 22 hours, triethylamine (80 ml) was added and the mixture was quenched into 40 ml of water in small portions. After stirring at room temperature for 3 hours, 12M hydrochloric acid (60 ml) was added little by little and stirred for 1 hour. After suction filtration, the mixture was extracted with chloroform, washed twice with water, and dried over sodium sulfate. After separation, the solvent was distilled off and short column purification (toluene: ethyl acetate = 9: 1) was performed. After the solvent was concentrated to obtain crude B-4, the following reaction was carried out using crude B-4 as it was. Chlorotrihexylsilane (4.7 mmol) and pyridine (50 ml) were placed in a 200 ml eggplant flask and refluxed for 15 hours. After distilling off the solvent, column purification (toluene: hexane = 1: 2) was performed to obtain B-5 in a yield of 15%.

100mlナスフラスコにB-5(0.14mmol)とテトラヒドロフラン(5ml)、40%水酸化ナトリウム溶液(1.2ml)を入れ、2日間還流した。次いで、酢酸(1ml)を入れ、溶媒留去した。そのままカラム精製(トルエン:エチルアセテート=9:1)を行い21%の収率でフタロシアニン色素D-2を得た。   B-5 (0.14 mmol), tetrahydrofuran (5 ml) and 40% sodium hydroxide solution (1.2 ml) were placed in a 100 ml eggplant flask and refluxed for 2 days. Then acetic acid (1 ml) was added and the solvent was distilled off. Column purification (toluene: ethyl acetate = 9: 1) was performed as it was to obtain phthalocyanine dye D-2 in a yield of 21%.

実施例2
30mm×25mm×3mmの透明導電膜付ガラス基板として日本板ガラス製のFTO(フッ素ドープ酸化スズ)膜付ガラス基板(商品名:Low‐Eガラス)を使用した。
次に、導電性膜付き基板の導電性膜上に、酸化チタン膜を形成した。酸化チタンは、市販の酸化チタンペースト(ソラロニクス社製Dペースト)を使用した。これを、導電性膜付き基板の導電性膜上に、スキージ印刷の手法で5mm×5mmの範囲に塗工し、乾燥後450℃で焼成して厚み15μmの酸化チタン層を形成した積層板を得た。
Example 2
As a glass substrate with a transparent conductive film of 30 mm × 25 mm × 3 mm, a glass substrate with FTO (fluorine-doped tin oxide) film made by Nippon Sheet Glass (trade name: Low-E glass) was used.
Next, a titanium oxide film was formed on the conductive film of the substrate with the conductive film. As titanium oxide, a commercially available titanium oxide paste (D paste made by Solaronics) was used. A laminated plate in which a titanium oxide layer having a thickness of 15 μm was formed by coating this on a conductive film of a substrate with a conductive film by a squeegee printing method in a range of 5 mm × 5 mm, drying and baking at 450 ° C. Obtained.

色素としてフタロシアニン色素D-1を使用した。これを3×10-4mol/L、DCAを3×10-3mol/Lとなるようにエタノールに溶解させた。色素の吸着は、容器に上記色素溶液を入れ、更に上記酸化チタン層を形成した積層板を配置し、2時間静置後、容器から色素の吸着した積層板を取り出した。 The phthalocyanine dye D-1 was used as the dye. This was dissolved in ethanol to 3 × 10 −4 mol / L and DCA to 3 × 10 −3 mol / L. For the adsorption of the dye, the above dye solution was placed in a container, and a laminated board on which the above titanium oxide layer was formed was placed.

この積層板の5mm×5mmの酸化チタンの膜の外周4辺に厚み50μmのアイオノマー樹脂からなるシート状の熱可塑性接着剤(三井デュポンポリケミカル社商品名;ハイミランシート)を、電解液が注入できるよう、外周部の2箇所に約1mm程度の隙間を設けるようにして貼り付けた。この熱可塑性接着剤は、封止材であると同時に、両極間のスペーサの役割を果たす。次に、正極となる厚み10nmの白金膜をスパッタリングの手法で形成したガラス基板を、白金側が酸化チタン側と対向するように前記熱可塑性接着剤フィルムを介して貼り合わせた。この熱可塑性接着剤フィルムの隙間から、1.0MのLiIと0.05Mのヨウ素を主成分として含むアセトニトリル溶液を毛細管現象を利用して基材と正極の間に満たした。電解質を満たした後、直ちに前記隙間をエポキシ樹脂接着剤で封止して、光電変換素子F−1を得た。   A sheet-like thermoplastic adhesive (trade name of Mitsui Dupont Polychemical Co., Ltd .; Himiran sheet) made of ionomer resin with a thickness of 50 μm is injected into the outer peripheral four sides of a 5 mm × 5 mm titanium oxide film of this laminate. In order to make it possible, a gap of about 1 mm was provided at two locations on the outer periphery. This thermoplastic adhesive is not only a sealing material but also serves as a spacer between the two electrodes. Next, a glass substrate on which a platinum film having a thickness of 10 nm serving as a positive electrode was formed by a sputtering method was bonded through the thermoplastic adhesive film so that the platinum side was opposed to the titanium oxide side. From the gap between the thermoplastic adhesive films, an acetonitrile solution containing 1.0M LiI and 0.05M iodine as main components was filled between the base material and the positive electrode by utilizing capillary action. Immediately after filling the electrolyte, the gap was sealed with an epoxy resin adhesive to obtain a photoelectric conversion element F-1.

作製した光電変換素子F−1を色素増感太陽電池として、ソーラーシミュレータを用いAM1.5、100mW/cm2の擬似太陽光を用い、I−Vカーブトレーサーを用いて特性評価した。変換効率(%)、短絡電流(Jsc: mA/cm2)、開放電圧(Voc: V), フィルファクター(ff:形状係数)の各特性を測定した結果を表1に示す。 The produced photoelectric conversion element F-1 was used as a dye-sensitized solar cell, and its characteristics were evaluated by using a solar simulator, AM1.5, 100 mW / cm 2 simulated sunlight, and an IV curve tracer. Table 1 shows the results of measuring the characteristics of conversion efficiency (%), short circuit current (Jsc: mA / cm 2 ), open circuit voltage (Voc: V), and fill factor (ff: shape factor).

比較例1

Figure 2014172961
Comparative Example 1
Figure 2014172961

3-(4-ヒドロキシフェニル)プロピオン酸(25.7 mmol)と4-ニトロフタロニトリル(17.3 mmol)を窒素雰囲気中で乾燥ジメチルスルホキシド(DMSO)40mlに加えた。炭酸カリウム5.26gを添加し、4時間撹拌後、さらに炭酸カリウム5.26gを加えた。24時間撹拌した後、さらに炭酸カリウム5.26gを加えた。室温、窒素雰囲気下で4日間撹拌した。最後に、水500mlと塩酸を加え、PH2に調整した。濾過により固体を得た後、PH7となるまで十分に水洗した。この固体をカラムクロマトグラフィーで精製した(エーテル:アセトン=8:2)。生成物をテトラヒドロフラン溶液中で再結晶し、フタロシアニン色素D-3(2.98g)の粉末を得た。   3- (4-Hydroxyphenyl) propionic acid (25.7 mmol) and 4-nitrophthalonitrile (17.3 mmol) were added to 40 ml of dry dimethyl sulfoxide (DMSO) in a nitrogen atmosphere. After adding 5.26 g of potassium carbonate and stirring for 4 hours, 5.26 g of potassium carbonate was further added. After stirring for 24 hours, 5.26 g of potassium carbonate was further added. The mixture was stirred at room temperature under a nitrogen atmosphere for 4 days. Finally, 500 ml of water and hydrochloric acid were added to adjust to PH2. After obtaining a solid by filtration, it was sufficiently washed with water until it became PH7. This solid was purified by column chromatography (ether: acetone = 8: 2). The product was recrystallized in a tetrahydrofuran solution to obtain a powder of phthalocyanine dye D-3 (2.98 g).

フタロシアニン色素D-2の代わりに、D-3を色素として使用したこと以外は、実施例1と同様に操作して、比較例1の光電変換素子F−2を製作した。   A photoelectric conversion element F-2 of Comparative Example 1 was produced in the same manner as in Example 1 except that D-3 was used as the dye instead of the phthalocyanine dye D-2.

Figure 2014172961
Figure 2014172961

1:基板、2:導電層、3:色素吸着半導体層、4:基板、5:導電層、6:電解質層、7:スペーサ、10:電極、11:対向電極 1: substrate, 2: conductive layer, 3: dye adsorption semiconductor layer, 4: substrate, 5: conductive layer, 6: electrolyte layer, 7: spacer, 10: electrode, 11: counter electrode

Claims (4)

下記式(1)で表わされるフタロシアニン色素。
Figure 2014172961
式(1)において、R1、R2及びR3はアルキル基を表す。
A phthalocyanine dye represented by the following formula (1).
Figure 2014172961
In the formula (1), R 1 , R 2 and R 3 represent an alkyl group.
色素を用いる光電変換素子において、色素として請求項1に記載のフタロシアニン色素を用いることを特徴とする光電変換素子。   In the photoelectric conversion element using a pigment | dye, the phthalocyanine pigment | dye of Claim 1 is used as a pigment | dye, The photoelectric conversion device characterized by the above-mentioned. 色素として請求項1に記載のフタロシアニン色素の他に、該フタロシアニン色素とは吸収領域の異なる色素を用いる請求項2に記載の光電変換素子。   The photoelectric conversion element according to claim 2, wherein a dye having a different absorption region from the phthalocyanine dye is used in addition to the phthalocyanine dye according to claim 1. 請求項2または3に記載の光電変換素子を用いて構成したことを特徴とする色素増感太陽電池。   A dye-sensitized solar cell comprising the photoelectric conversion element according to claim 2.
JP2013045530A 2013-03-07 2013-03-07 Phthalocyanine dye, dye-sensitized solar cell and photo electric conversion element using the same Pending JP2014172961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013045530A JP2014172961A (en) 2013-03-07 2013-03-07 Phthalocyanine dye, dye-sensitized solar cell and photo electric conversion element using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013045530A JP2014172961A (en) 2013-03-07 2013-03-07 Phthalocyanine dye, dye-sensitized solar cell and photo electric conversion element using the same

Publications (1)

Publication Number Publication Date
JP2014172961A true JP2014172961A (en) 2014-09-22

Family

ID=51694553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013045530A Pending JP2014172961A (en) 2013-03-07 2013-03-07 Phthalocyanine dye, dye-sensitized solar cell and photo electric conversion element using the same

Country Status (1)

Country Link
JP (1) JP2014172961A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009193763A (en) * 2008-02-13 2009-08-27 Konica Minolta Holdings Inc Semiconductor for photoelectric conversion material, photoelectric conversion element, and solar cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009193763A (en) * 2008-02-13 2009-08-27 Konica Minolta Holdings Inc Semiconductor for photoelectric conversion material, photoelectric conversion element, and solar cell

Similar Documents

Publication Publication Date Title
JP5527620B2 (en) Dye-sensitized solar cell, photoelectric conversion element and dye used therefor
JP5240681B2 (en) Photoelectric conversion element and manufacturing method thereof
WO2006120939A1 (en) Novel amino group-containing heterocyclic derivatives and sensitizing dyes for photoelectric conversion containing the heterocyclic derivatives
JP2008174734A (en) Compound, photoelectric transfer element, and photoelectrochemical cell
JP5725459B2 (en) SQUARYLIUM DYES, DYE-SENSITIZED SOLAR CELLS, AND PHOTOELECTRIC CONVERSION DEVICES USING THE DYES
JP2008226505A (en) Phenanthrothiophene based compound, its usage, and its manufacturing method
JP2012051952A (en) Pigment, photoelectric element and photoelectrochemical battery
JP5846579B2 (en) Polymethine dye precursor, squarylium dye containing the precursor skeleton, dye-sensitized solar cell using the same, photoelectric conversion element
JP6001387B2 (en) Photosensitizing dye and dye-sensitized solar cell having the same
JP5392765B2 (en) Dye for photoelectric conversion element, photoelectric conversion element and dye-sensitized solar cell
JP5875511B2 (en) SQUARYLIUM DYE, PHOTOELECTRIC CONVERSION ELEMENT AND DYE SENSITIZED SOLAR CELL
JP5906522B2 (en) Phthalocyanine dye, dye-sensitized solar cell and photoelectric conversion element using phthalocyanine dye
JP5906489B2 (en) Porphyrin dye, dye-sensitized solar cell and photoelectric conversion element using porphyrin dye
KR20100128096A (en) Novel ruthenium-based dye and preparation thereof
JP6616907B2 (en) Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, dye solution, and oxide semiconductor electrode
JP2014172961A (en) Phthalocyanine dye, dye-sensitized solar cell and photo electric conversion element using the same
JP5906521B2 (en) Phthalocyanine dye, dye-sensitized solar cell and photoelectric conversion element using phthalocyanine dye
JP6300337B2 (en) Photoelectric conversion element, dye-sensitized solar cell, ruthenium complex dye and dye solution
JP6300338B2 (en) Photoelectric conversion element, dye-sensitized solar cell, ruthenium complex dye and dye solution
JP2015180718A (en) Phthalocyanine dye, and dye-sensitized solar cell and photoelectric conversion element prepared using the same
JP2012204284A (en) Cyanine dye, and dye-sensitized solar cell and photoelectric conversion element containing cyanine dye
JP2012201864A (en) Cyanine dye, and dye-sensitized solar cell and photoelectric conversion element made using the same
JP2013112702A (en) Squarylium dye for photoelectric conversion element, and photoelectric conversion element and dye-sensitized solar cell using the same
JP6265551B2 (en) Photoelectric conversion element, dye-sensitized solar cell, and dye solution
JP2014209628A (en) Photoelectric conversion element and process of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20151105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160809

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170411