JP2014172184A - Carrier-fitted copper foil, printed wiring board, printed circuit board, copper-clad laminate sheet, and method for manufacturing printed wiring board - Google Patents
Carrier-fitted copper foil, printed wiring board, printed circuit board, copper-clad laminate sheet, and method for manufacturing printed wiring board Download PDFInfo
- Publication number
- JP2014172184A JP2014172184A JP2013043589A JP2013043589A JP2014172184A JP 2014172184 A JP2014172184 A JP 2014172184A JP 2013043589 A JP2013043589 A JP 2013043589A JP 2013043589 A JP2013043589 A JP 2013043589A JP 2014172184 A JP2014172184 A JP 2014172184A
- Authority
- JP
- Japan
- Prior art keywords
- carrier
- copper foil
- layer
- copper
- atomic concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims abstract description 254
- 239000011889 copper foil Substances 0.000 title claims abstract description 145
- 238000000034 method Methods 0.000 title claims abstract description 71
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 21
- 229910052802 copper Inorganic materials 0.000 claims abstract description 113
- 239000010949 copper Substances 0.000 claims abstract description 113
- 239000000758 substrate Substances 0.000 claims abstract description 59
- 239000000654 additive Substances 0.000 claims abstract description 20
- 238000010030 laminating Methods 0.000 claims abstract description 20
- 239000013078 crystal Substances 0.000 claims abstract description 11
- 230000000996 additive effect Effects 0.000 claims abstract description 7
- 239000010410 layer Substances 0.000 claims description 250
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 50
- 239000011701 zinc Substances 0.000 claims description 29
- 229910052725 zinc Inorganic materials 0.000 claims description 28
- 229910052759 nickel Inorganic materials 0.000 claims description 26
- 229910052760 oxygen Inorganic materials 0.000 claims description 26
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 24
- 239000001301 oxygen Substances 0.000 claims description 24
- 238000004458 analytical method Methods 0.000 claims description 23
- 239000010936 titanium Substances 0.000 claims description 23
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 claims description 21
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 19
- 239000011651 chromium Substances 0.000 claims description 18
- 230000008569 process Effects 0.000 claims description 15
- 229910052596 spinel Inorganic materials 0.000 claims description 15
- 239000011029 spinel Substances 0.000 claims description 15
- 229910052804 chromium Inorganic materials 0.000 claims description 14
- 238000007788 roughening Methods 0.000 claims description 14
- 229910052749 magnesium Inorganic materials 0.000 claims description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 9
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 9
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims description 9
- 229910052799 carbon Inorganic materials 0.000 claims description 9
- 229910017052 cobalt Inorganic materials 0.000 claims description 9
- 239000010941 cobalt Substances 0.000 claims description 9
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 9
- 238000010168 coupling process Methods 0.000 claims description 9
- 229910052742 iron Inorganic materials 0.000 claims description 9
- 229910000077 silane Inorganic materials 0.000 claims description 9
- 229910052782 aluminium Inorganic materials 0.000 claims description 8
- 230000008878 coupling Effects 0.000 claims description 8
- 238000005859 coupling reaction Methods 0.000 claims description 8
- 229910052748 manganese Inorganic materials 0.000 claims description 8
- 229910052720 vanadium Inorganic materials 0.000 claims description 8
- 229910045601 alloy Inorganic materials 0.000 claims description 7
- 239000000956 alloy Substances 0.000 claims description 7
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 claims description 6
- 239000011888 foil Substances 0.000 claims description 5
- 230000002265 prevention Effects 0.000 claims description 5
- 229910052718 tin Inorganic materials 0.000 claims description 5
- 229910052719 titanium Inorganic materials 0.000 claims description 5
- 229910052721 tungsten Inorganic materials 0.000 claims description 5
- 229910052790 beryllium Inorganic materials 0.000 claims description 4
- 229910052738 indium Inorganic materials 0.000 claims description 4
- 229910052745 lead Inorganic materials 0.000 claims description 4
- 229910052744 lithium Inorganic materials 0.000 claims description 4
- 239000002356 single layer Substances 0.000 claims description 2
- 230000002349 favourable effect Effects 0.000 abstract description 2
- 238000003475 lamination Methods 0.000 abstract description 2
- 239000011295 pitch Substances 0.000 abstract 1
- 238000007747 plating Methods 0.000 description 52
- 238000005530 etching Methods 0.000 description 51
- 238000004544 sputter deposition Methods 0.000 description 29
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 24
- 229910052751 metal Inorganic materials 0.000 description 21
- 239000007788 liquid Substances 0.000 description 20
- 238000007772 electroless plating Methods 0.000 description 19
- 239000002184 metal Substances 0.000 description 19
- 239000000203 mixture Substances 0.000 description 18
- 229910004298 SiO 2 Inorganic materials 0.000 description 17
- 238000009713 electroplating Methods 0.000 description 15
- 239000000243 solution Substances 0.000 description 14
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 12
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 12
- 239000011347 resin Substances 0.000 description 12
- 229920005989 resin Polymers 0.000 description 12
- 239000011777 magnesium Substances 0.000 description 11
- 238000005259 measurement Methods 0.000 description 9
- 239000011734 sodium Substances 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 7
- 239000004020 conductor Substances 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- 229910000881 Cu alloy Inorganic materials 0.000 description 6
- 229910006404 SnO 2 Inorganic materials 0.000 description 6
- 239000002253 acid Substances 0.000 description 6
- 229910052786 argon Inorganic materials 0.000 description 6
- 239000011135 tin Substances 0.000 description 6
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 239000003822 epoxy resin Substances 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 229920000647 polyepoxide Polymers 0.000 description 5
- 229920001721 polyimide Polymers 0.000 description 5
- NDKWCCLKSWNDBG-UHFFFAOYSA-N zinc;dioxido(dioxo)chromium Chemical compound [Zn+2].[O-][Cr]([O-])(=O)=O NDKWCCLKSWNDBG-UHFFFAOYSA-N 0.000 description 5
- 229910000604 Ferrochrome Inorganic materials 0.000 description 4
- 229910017857 MgGa Inorganic materials 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 229910010389 TiMn Inorganic materials 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 4
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 239000004744 fabric Substances 0.000 description 4
- -1 for example Substances 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 238000010884 ion-beam technique Methods 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 238000007665 sagging Methods 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 241000894007 species Species 0.000 description 4
- 238000005477 sputtering target Methods 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 229910001297 Zn alloy Inorganic materials 0.000 description 3
- 239000012964 benzotriazole Substances 0.000 description 3
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 description 3
- 229910000365 copper sulfate Inorganic materials 0.000 description 3
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000011572 manganese Substances 0.000 description 3
- QELJHCBNGDEXLD-UHFFFAOYSA-N nickel zinc Chemical compound [Ni].[Zn] QELJHCBNGDEXLD-UHFFFAOYSA-N 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000001509 sodium citrate Substances 0.000 description 3
- 229910000679 solder Inorganic materials 0.000 description 3
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 3
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 description 3
- 229910000368 zinc sulfate Inorganic materials 0.000 description 3
- JWAZRIHNYRIHIV-UHFFFAOYSA-N 2-naphthol Chemical compound C1=CC=CC2=CC(O)=CC=C21 JWAZRIHNYRIHIV-UHFFFAOYSA-N 0.000 description 2
- 229910002515 CoAl Inorganic materials 0.000 description 2
- 229910003321 CoFe Inorganic materials 0.000 description 2
- 229910000684 Cobalt-chrome Inorganic materials 0.000 description 2
- 229910018565 CuAl Inorganic materials 0.000 description 2
- 229910015372 FeAl Inorganic materials 0.000 description 2
- 229910002555 FeNi Inorganic materials 0.000 description 2
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- 229910020068 MgAl Inorganic materials 0.000 description 2
- 229910017911 MgIn Inorganic materials 0.000 description 2
- 229910015153 MoAg Inorganic materials 0.000 description 2
- 229910015269 MoCu Inorganic materials 0.000 description 2
- 101100476480 Mus musculus S100a8 gene Proteins 0.000 description 2
- 229910000943 NiAl Inorganic materials 0.000 description 2
- 229910006119 NiIn Inorganic materials 0.000 description 2
- 229910018605 Ni—Zn Inorganic materials 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- NPXOKRUENSOPAO-UHFFFAOYSA-N Raney nickel Chemical compound [Al].[Ni] NPXOKRUENSOPAO-UHFFFAOYSA-N 0.000 description 2
- 229910008336 SnCo Inorganic materials 0.000 description 2
- 229910005728 SnZn Inorganic materials 0.000 description 2
- 229910003668 SrAl Inorganic materials 0.000 description 2
- 229910010069 TiCo Inorganic materials 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 238000007743 anodising Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 description 2
- 239000003245 coal Substances 0.000 description 2
- 229910000361 cobalt sulfate Inorganic materials 0.000 description 2
- 229940044175 cobalt sulfate Drugs 0.000 description 2
- 239000010952 cobalt-chrome Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005065 mining Methods 0.000 description 2
- 229910001120 nichrome Inorganic materials 0.000 description 2
- 239000009719 polyimide resin Substances 0.000 description 2
- KMUONIBRACKNSN-UHFFFAOYSA-N potassium dichromate Chemical compound [K+].[K+].[O-][Cr](=O)(=O)O[Cr]([O-])(=O)=O KMUONIBRACKNSN-UHFFFAOYSA-N 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 2
- 229960001763 zinc sulfate Drugs 0.000 description 2
- LGZNZXOHAFRWEN-UHFFFAOYSA-N 3-[4-(2,5-dioxopyrrol-3-yl)triazin-5-yl]pyrrole-2,5-dione Chemical compound O=C1NC(=O)C(C=2C(=NN=NC=2)C=2C(NC(=O)C=2)=O)=C1 LGZNZXOHAFRWEN-UHFFFAOYSA-N 0.000 description 1
- BZOVBIIWPDQIHF-UHFFFAOYSA-N 3-hydroxy-2-methylbenzenesulfonic acid Chemical compound CC1=C(O)C=CC=C1S(O)(=O)=O BZOVBIIWPDQIHF-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 229910020599 Co 3 O 4 Inorganic materials 0.000 description 1
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- 229910000599 Cr alloy Inorganic materials 0.000 description 1
- 229910001200 Ferrotitanium Inorganic materials 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 101001134276 Homo sapiens S-methyl-5'-thioadenosine phosphorylase Proteins 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- 229910018068 Li 2 O Inorganic materials 0.000 description 1
- 229910015645 LiMn Inorganic materials 0.000 description 1
- 229910013641 LiNbO 3 Inorganic materials 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910017313 Mo—Co Inorganic materials 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 1
- 241000627951 Osteobrama cotio Species 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 102100022050 Protein canopy homolog 2 Human genes 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- 229910010340 TiFe Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- AFTDTIZUABOECB-UHFFFAOYSA-N [Co].[Mo] Chemical compound [Co].[Mo] AFTDTIZUABOECB-UHFFFAOYSA-N 0.000 description 1
- MQRWBMAEBQOWAF-UHFFFAOYSA-N acetic acid;nickel Chemical compound [Ni].CC(O)=O.CC(O)=O MQRWBMAEBQOWAF-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 238000012993 chemical processing Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- XTUHPOUJWWTMNC-UHFFFAOYSA-N cobalt(2+);dioxido(dioxo)chromium Chemical compound [Co+2].[O-][Cr]([O-])(=O)=O XTUHPOUJWWTMNC-UHFFFAOYSA-N 0.000 description 1
- DOBRDRYODQBAMW-UHFFFAOYSA-N copper(i) cyanide Chemical compound [Cu+].N#[C-] DOBRDRYODQBAMW-UHFFFAOYSA-N 0.000 description 1
- ZQLBQWDYEGOYSW-UHFFFAOYSA-L copper;disulfamate Chemical compound [Cu+2].NS([O-])(=O)=O.NS([O-])(=O)=O ZQLBQWDYEGOYSW-UHFFFAOYSA-L 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 1
- PEVJCYPAFCUXEZ-UHFFFAOYSA-J dicopper;phosphonato phosphate Chemical compound [Cu+2].[Cu+2].[O-]P([O-])(=O)OP([O-])([O-])=O PEVJCYPAFCUXEZ-UHFFFAOYSA-J 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 229960002089 ferrous chloride Drugs 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- XEMZLVDIUVCKGL-UHFFFAOYSA-N hydrogen peroxide;sulfuric acid Chemical compound OO.OS(O)(=O)=O XEMZLVDIUVCKGL-UHFFFAOYSA-N 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- NMCUIPGRVMDVDB-UHFFFAOYSA-L iron dichloride Chemical compound Cl[Fe]Cl NMCUIPGRVMDVDB-UHFFFAOYSA-L 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 239000002932 luster Substances 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- CRGGPIWCSGOBDN-UHFFFAOYSA-N magnesium;dioxido(dioxo)chromium Chemical compound [Mg+2].[O-][Cr]([O-])(=O)=O CRGGPIWCSGOBDN-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229940078494 nickel acetate Drugs 0.000 description 1
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 1
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 1
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- CVHZOJJKTDOEJC-UHFFFAOYSA-N saccharin Chemical compound C1=CC=C2C(=O)NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-N 0.000 description 1
- 229940081974 saccharin Drugs 0.000 description 1
- 235000019204 saccharin Nutrition 0.000 description 1
- 239000000901 saccharin and its Na,K and Ca salt Substances 0.000 description 1
- 239000011163 secondary particle Substances 0.000 description 1
- 239000011684 sodium molybdate Substances 0.000 description 1
- 235000015393 sodium molybdate Nutrition 0.000 description 1
- TVXXNOYZHKPKGW-UHFFFAOYSA-N sodium molybdate (anhydrous) Chemical compound [Na+].[Na+].[O-][Mo]([O-])(=O)=O TVXXNOYZHKPKGW-UHFFFAOYSA-N 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- RCIVOBGSMSSVTR-UHFFFAOYSA-L stannous sulfate Chemical compound [SnH2+2].[O-]S([O-])(=O)=O RCIVOBGSMSSVTR-UHFFFAOYSA-L 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 239000002335 surface treatment layer Substances 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 229910000375 tin(II) sulfate Inorganic materials 0.000 description 1
- YJVLWFXZVBOFRZ-UHFFFAOYSA-N titanium zinc Chemical compound [Ti].[Zn] YJVLWFXZVBOFRZ-UHFFFAOYSA-N 0.000 description 1
- HRXKRNGNAMMEHJ-UHFFFAOYSA-K trisodium citrate Chemical compound [Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O HRXKRNGNAMMEHJ-UHFFFAOYSA-K 0.000 description 1
- 229940038773 trisodium citrate Drugs 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
- 235000005074 zinc chloride Nutrition 0.000 description 1
- 239000011686 zinc sulphate Substances 0.000 description 1
- 235000009529 zinc sulphate Nutrition 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Laminated Bodies (AREA)
- Electroplating Methods And Accessories (AREA)
- Parts Printed On Printed Circuit Boards (AREA)
Abstract
Description
本発明は、キャリア付銅箔、プリント配線板、プリント回路板、銅張積層板、及びプリント配線板の製造方法に関する。 The present invention relates to a carrier-attached copper foil, a printed wiring board, a printed circuit board, a copper-clad laminate, and a method for manufacturing a printed wiring board.
プリント配線板は銅箔に絶縁基板を接着させて銅張積層板とした後に、エッチングにより銅箔面に導体パターンを形成するという工程を経て製造されるのが一般的である。近年の電子機器の小型化、高性能化ニーズの増大に伴い搭載部品の高密度実装化や信号の高周波化が進展し、プリント配線板に対して導体パターンの微細化(ファインピッチ化)や高周波対応等が求められている。 Generally, a printed wiring board is manufactured through a process in which an insulating substrate is bonded to a copper foil to form a copper-clad laminate, and then a conductor pattern is formed on the copper foil surface by etching. In recent years, with the increasing needs for miniaturization and higher performance of electronic devices, higher density mounting of components and higher frequency of signals have progressed, and conductor patterns have become finer (fine pitch) and higher frequency than printed circuit boards. Response is required.
ファインピッチ化に対応して、最近では厚さ9μm以下、更には厚さ5μm以下の銅箔が要求されているが、このような極薄の銅箔は機械的強度が低くプリント配線板の製造時に破れたり、皺が発生したりしやすいので、厚みのある金属箔をキャリアとして利用し、これに剥離層を介して極薄銅層を電着させたキャリア付銅箔が登場している。極薄銅層の表面を絶縁基板に貼り合わせて熱圧着後、キャリアは剥離層を介して剥離除去される。露出した極薄銅層上にレジストで回路パターンを形成した後に、極薄銅層を硫酸−過酸化水素系のエッチャントでエッチング除去する手法(MSAP:Modified−Semi−Additive−Process)により、微細回路が形成される。 Recently, copper foils with a thickness of 9 μm or less and further with a thickness of 5 μm or less have been required in response to the fine pitch, but such ultra-thin copper foils have low mechanical strength and are used in the manufacture of printed wiring boards. Copper foil with a carrier has appeared, in which a thick metal foil is used as a carrier, and an ultrathin copper layer is electrodeposited through a release layer, since it is easily broken or wrinkled. After bonding the surface of the ultrathin copper layer to an insulating substrate and thermocompression bonding, the carrier is peeled and removed through the peeling layer. After forming a circuit pattern with a resist on the exposed ultrathin copper layer, the ultrathin copper layer is etched away with a sulfuric acid-hydrogen peroxide etchant (MSAP: Modified-Semi-Additive-Process). Is formed.
ここで、樹脂との接着面となるキャリア付銅箔の極薄銅層の表面に対しては、主として、極薄銅層と樹脂基材との剥離強度が十分であること、そしてその剥離強度が高温加熱、湿式処理、半田付け、薬品処理等の後でも十分に保持されていることが要求される。極薄銅層と樹脂基材の間の剥離強度を高める方法としては、一般的に、表面のプロファイル(凹凸、粗さ)を大きくした極薄銅層の上に多量の粗化粒子を付着させる方法が代表的である。 Here, for the surface of the ultra-thin copper layer of the copper foil with carrier, which becomes the adhesive surface with the resin, the peel strength between the ultra-thin copper layer and the resin substrate is mainly sufficient, and the peel strength Is required to be sufficiently retained after high-temperature heating, wet processing, soldering, chemical processing, and the like. As a method of increasing the peel strength between the ultrathin copper layer and the resin base material, generally, a large amount of roughened particles are adhered on the ultrathin copper layer having a large surface profile (unevenness, roughness). The method is representative.
しかしながら、プリント配線板の中でも特に微細な回路パターンを形成する必要のある半導体パッケージ基板に、このようなプロファイル(凹凸、粗さ)の大きい極薄銅層を使用すると、回路エッチング時に不要な銅粒子が残ってしまい、回路パターン間の絶縁不良等の問題が発生する。 However, if a very thin copper layer with such a large profile (irregularity, roughness) is used on a semiconductor package substrate that needs to form a particularly fine circuit pattern among printed wiring boards, unnecessary copper particles during circuit etching Will remain, causing problems such as poor insulation between circuit patterns.
このため、WO2004/005588号(特許文献1)では、半導体パッケージ基板をはじめとする微細回路用途のキャリア付銅箔として、極薄銅層の表面に粗化処理を施さないキャリア付銅箔を用いることが試みられている。このような粗化処理を施さない極薄銅層と樹脂との密着性(剥離強度)は、その低いプロファイル(凹凸、粗度、粗さ)の影響で一般的なプリント配線板用銅箔と比較すると低下する傾向がある。そのため、キャリア付銅箔について更なる改善が求められている。 For this reason, in WO2004 / 005588 (Patent Document 1), a copper foil with a carrier that is not subjected to a roughening treatment on the surface of an ultrathin copper layer is used as a copper foil with a carrier for use in a fine circuit including a semiconductor package substrate. It has been tried. The adhesion (peeling strength) between the ultrathin copper layer not subjected to such roughening treatment and the resin is affected by the low profile (unevenness, roughness, roughness) of the general copper foil for printed wiring boards. There is a tendency to decrease when compared. Therefore, the further improvement is calculated | required about copper foil with a carrier.
そこで、特開2007−007937号公報(特許文献2)及び特開2010−006071号公報(特許文献3)では、キャリア付極薄銅箔のポリイミド系樹脂基板と接触(接着)する面に、Ni層又は/及びNi合金層を設けること、クロメート層を設けること、Cr層又は/及びCr合金層を設けること、Ni層とクロメート層とを設けること、Ni層とCr層とを設けることが記載されている。これらの表面処理層を設けることにより、ポリイミド系樹脂基板とキャリア付極薄銅箔との密着強度を粗化処理なし、または粗化処理の程度を低減(微細化)しながら所望の接着強度を得ている。更に、シランカップリング剤で表面処理したり、防錆処理を施したりすることも記載されている。 Therefore, in Japanese Patent Application Laid-Open No. 2007-007937 (Patent Document 2) and Japanese Patent Application Laid-Open No. 2010-006071 (Patent Document 3), the surface of the ultrathin copper foil with carrier that contacts (adheres) the polyimide resin substrate is Ni. It is described that a layer or / and a Ni alloy layer are provided, a chromate layer is provided, a Cr layer or / and a Cr alloy layer are provided, a Ni layer and a chromate layer are provided, and a Ni layer and a Cr layer are provided. Has been. By providing these surface treatment layers, the adhesion strength between the polyimide resin substrate and the ultrathin copper foil with carrier is not roughened, or the desired adhesive strength is achieved while reducing the degree of the roughening treatment (miniaturization). It has gained. Further, it is described that the surface treatment is performed with a silane coupling agent or the rust prevention treatment is performed.
キャリア付銅箔の開発においては、これまで極薄銅層と樹脂基材との剥離強度を確保することに重きが置かれていた。そのため、ファインピッチ化に関しては未だ十分な検討がなされておらず、剥離強度とファインピッチ化の向上を両立する技術については未だ改善の余地が残されている。そこで、本発明は良好な剥離強度を有すると共にファインピッチ形成に好適なキャリア付銅箔を提供することを課題とする。 In the development of a copper foil with a carrier, the emphasis has so far been on ensuring the peel strength between the ultrathin copper layer and the resin substrate. For this reason, sufficient studies have not yet been made on fine pitch formation, and there is still room for improvement with respect to a technique that achieves both improved peel strength and fine pitch. Then, this invention makes it a subject to provide the copper foil with a carrier which has favorable peeling strength and is suitable for fine pitch formation.
上記課題に対し、本発明者はキャリア付銅箔の中間層の機能に着目した。そして、中間層がスピネル型結晶構造を有する酸化物を有すると、中間層と極薄銅層との間で剥離する際の剥離強度が高くなる。また、キャリア付銅箔のプレス前後の極薄銅層の剥離強度が安定すると共に、極薄銅層のエッチング性が向上することを見出した。 The present inventors paid attention to the function of the intermediate layer of the carrier-attached copper foil for the above problems. When the intermediate layer has an oxide having a spinel crystal structure, the peel strength when peeling between the intermediate layer and the ultrathin copper layer is increased. Further, the present inventors have found that the peel strength of the ultrathin copper layer before and after the pressing of the copper foil with carrier is stabilized and the etching property of the ultrathin copper layer is improved.
本発明は上記知見を基礎として完成したものであり、一側面において、銅箔キャリアと、銅箔キャリア上に積層された中間層と、中間層上に積層された極薄銅層とを備えたキャリア付銅箔であって、中間層がスピネル型結晶構造を有する酸化物を有するキャリア付銅箔である。 The present invention has been completed on the basis of the above knowledge, and in one aspect, includes a copper foil carrier, an intermediate layer laminated on the copper foil carrier, and an ultrathin copper layer laminated on the intermediate layer. A copper foil with a carrier, wherein the intermediate layer has an oxide having a spinel crystal structure.
本発明のキャリア付銅箔は別の一実施形態において、前記中間層が、Mo、Ca、V、Pb、Ge、Cd、Hg、Sr、Al、W、Be、Co、Li、Cu、Ni、Mg、Fe、Sn、Ti、Zn及びMnからなるA元素群から選択された一種又は二種以上と、Mg、Zn、V、Ga、Rh、Ni、In、Co、Mn、Al、Fe及びCrからなるB元素群から選択された一種又は二種以上と、酸素とを含む。 In another embodiment of the copper foil with a carrier of the present invention, the intermediate layer has Mo, Ca, V, Pb, Ge, Cd, Hg, Sr, Al, W, Be, Co, Li, Cu, Ni, One or more selected from the element group consisting of Mg, Fe, Sn, Ti, Zn and Mn, and Mg, Zn, V, Ga, Rh, Ni, In, Co, Mn, Al, Fe and Cr 1 type or 2 types or more selected from the B element group which consists of, and oxygen.
本発明のキャリア付銅箔は別の一実施形態において、前記中間層が電気伝導性酸化物を含む。 In another embodiment of the copper foil with a carrier of the present invention, the intermediate layer contains an electrically conductive oxide.
本発明のキャリア付銅箔は更に別の一実施形態において、前記中間層/極薄銅層間で剥離させたとき、XPSによる表面からの深さ方向分析から得られた深さ方向(x:単位nm)のクロムの原子濃度(%)をe(x)とし、亜鉛の原子濃度(%)をf(x)とし、ニッケルの原子濃度(%)をg(x)とし、銅の原子濃度(%)をh(x)とし、酸素の合計原子濃度(%)をi(x)とし、炭素の原子濃度(%)をj(x)とし、その他の原子濃度(%)をk(x)とすると、前記中間層表面からの深さ方向分析の区間[0、1.0]において、∫i(x)dx/(∫e(x)dx +∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫i(x)dx + ∫j(x)dx+ ∫k(x)dx)が10%以上を満たす。 In still another embodiment, the carrier-attached copper foil of the present invention has a depth direction (x: unit) obtained by analyzing the depth direction from the surface by XPS when peeled between the intermediate layer / ultra-thin copper layer. nm) chromium atomic concentration (%) is e (x), zinc atomic concentration (%) is f (x), nickel atomic concentration (%) is g (x), copper atomic concentration ( %) Is h (x), oxygen total atomic concentration (%) is i (x), carbon atomic concentration (%) is j (x), and other atomic concentration (%) is k (x) Then, in the section [0, 1.0] of the depth direction analysis from the intermediate layer surface, ∫i (x) dx / (∫e (x) dx + ∫f (x) dx + ∫g (x dx + xh (x) dx + ∫i (x) dx + ∫j (x) dx + ∫k (x) dx) satisfies 10% or more.
本発明のキャリア付銅箔は更に別の一実施形態において、前記中間層/極薄銅層間で剥離させたとき、XPSによる表面からの深さ方向分析から得られた深さ方向(x:単位nm)のクロムの原子濃度(%)をe(x)とし、亜鉛の原子濃度(%)をf(x)とし、ニッケルの原子濃度(%)をg(x)とし、銅の原子濃度(%)をh(x)とし、酸素の合計原子濃度(%)をi(x)とし、炭素の原子濃度(%)をj(x)とし、その他の原子濃度(%)をk(x)とすると、前記中間層表面からの深さ方向分析の区間[0、1.0]において、∫i(x)dx/(∫e(x)dx +∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫i(x)dx + ∫j(x)dx+ ∫k(x)dx)が15%以上を満たす。 In still another embodiment, the carrier-attached copper foil of the present invention has a depth direction (x: unit) obtained by analyzing the depth direction from the surface by XPS when peeled between the intermediate layer / ultra-thin copper layer. nm) chromium atomic concentration (%) is e (x), zinc atomic concentration (%) is f (x), nickel atomic concentration (%) is g (x), copper atomic concentration ( %) Is h (x), oxygen total atomic concentration (%) is i (x), carbon atomic concentration (%) is j (x), and other atomic concentration (%) is k (x) Then, in the section [0, 1.0] of the depth direction analysis from the intermediate layer surface, ∫i (x) dx / (∫e (x) dx + ∫f (x) dx + ∫g (x dx + xh (x) dx + ∫i (x) dx + ∫j (x) dx + ∫k (x) dx) satisfies 15% or more.
本発明のキャリア付銅箔は更に別の一実施形態において、前記中間層/極薄銅層間で剥離させたとき、XPSによる表面からの深さ方向分析から得られた深さ方向(x:単位nm)のクロムの原子濃度(%)をe(x)とし、亜鉛の原子濃度(%)をf(x)とし、ニッケルの原子濃度(%)をg(x)とし、銅の原子濃度(%)をh(x)とし、酸素の合計原子濃度(%)をi(x)とし、炭素の原子濃度(%)をj(x)とし、その他の原子濃度(%)をk(x)とすると、前記中間層表面からの深さ方向分析の区間[0、1.0]において、C=∫i(x)dx/(∫e(x)dx +∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫i(x)dx + ∫j(x)dx+ ∫k(x)dx)とし、D=(∫e(x)dx +∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫k(x)dx)/(∫e(x)dx +∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫i(x)dx + ∫j(x)dx+ ∫k(x)dx)とし、E=C−0.3×Dとすると、Eが0%以上を満たす。 In still another embodiment, the carrier-attached copper foil of the present invention has a depth direction (x: unit) obtained by analyzing the depth direction from the surface by XPS when peeled between the intermediate layer / ultra-thin copper layer. nm) chromium atomic concentration (%) is e (x), zinc atomic concentration (%) is f (x), nickel atomic concentration (%) is g (x), copper atomic concentration ( %) Is h (x), oxygen total atomic concentration (%) is i (x), carbon atomic concentration (%) is j (x), and other atomic concentration (%) is k (x) Then, C = 区間 i (x) dx / (∫e (x) dx + ∫f (x) dx + ∫g) in the interval [0, 1.0] of the depth direction analysis from the intermediate layer surface. (x) dx + ∫h (x) dx + ∫i (x) dx + ∫j (x) dx + ∫k (x) dx) and D = (と し e (x) dx + ∫f (x) dx + ∫g (x) dx + ∫h (x) dx + ∫k (x) dx) / (∫e (x) dx + ∫f (x) dx + ∫g (x) dx + ∫h (x) dx + ∫i (x) dx + ∫j (x) dx + ∫k (x) dx), and E = C−0.3 × D, E Satisfies 0% or more.
本発明のキャリア付銅箔は更に別の一実施形態において、前記銅箔キャリアが電解銅箔または圧延銅箔で形成されている。 In yet another embodiment of the copper foil with a carrier according to the present invention, the copper foil carrier is formed of an electrolytic copper foil or a rolled copper foil.
本発明のキャリア付銅箔は更に別の一実施形態において、前記極薄銅層表面に粗化処理層を有する。 In still another embodiment, the carrier-attached copper foil of the present invention has a roughened layer on the surface of the ultrathin copper layer.
本発明のキャリア付銅箔は更に別の一実施形態において、前記粗化処理層が、銅、ニッケル、コバルト及び亜鉛からなる群から選択されたいずれかの単体又はいずれか1種以上を含む合金からなる層である。 In still another embodiment of the copper foil with a carrier according to the present invention, the roughening treatment layer is any one element selected from the group consisting of copper, nickel, cobalt, and zinc, or an alloy containing at least one kind. It is the layer which consists of.
本発明のキャリア付銅箔は更に別の一実施形態において、前記粗化処理層の表面に、耐熱層、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を有する。 In yet another embodiment, the carrier-attached copper foil of the present invention is one type selected from the group consisting of a heat-resistant layer, a rust-proof layer, a chromate-treated layer, and a silane coupling-treated layer on the surface of the roughened layer. It has the above layers.
本発明のキャリア付銅箔は更に別の一実施形態において、前記極薄銅層の表面に、耐熱層、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を有する。 In yet another embodiment, the carrier-attached copper foil of the present invention is one type selected from the group consisting of a heat-resistant layer, a rust-proof layer, a chromate treatment layer, and a silane coupling treatment layer on the surface of the ultrathin copper layer. It has the above layers.
本発明は別の一側面において、本発明のキャリア付銅箔を用いて製造したプリント配線板である。 In another aspect, the present invention is a printed wiring board produced using the carrier-attached copper foil of the present invention.
本発明は更に別の一側面において、本発明のキャリア付銅箔を用いて製造したプリント回路板である。 In still another aspect, the present invention is a printed circuit board manufactured using the carrier-attached copper foil of the present invention.
本発明は更に別の一側面において、本発明のキャリア付銅箔を用いて製造した銅張積層板である。 In yet another aspect, the present invention is a copper clad laminate produced using the carrier-attached copper foil of the present invention.
本発明は更に別の一側面において、本発明のキャリア付銅箔と絶縁基板とを準備する工程、前記キャリア付銅箔と絶縁基板とを積層する工程、前記キャリア付銅箔と絶縁基板とを積層した後に、前記キャリア付銅箔のキャリアを剥がす工程を経て銅張積層板を形成し、その後、セミアディティブ法、サブトラクティブ法、パートリーアディティブ法又はモディファイドセミアディティブ法のいずれかの方法によって、回路を形成する工程を含むプリント配線板の製造方法である。 In yet another aspect of the present invention, the step of preparing the copper foil with carrier and the insulating substrate of the present invention, the step of laminating the copper foil with carrier and the insulating substrate, the copper foil with carrier and the insulating substrate, After the lamination, a copper-clad laminate is formed through a step of peeling the carrier of the copper foil with carrier, and then the circuit is formed by any of the semi-additive method, the subtractive method, the partial additive method, or the modified semi-additive method. It is a manufacturing method of a printed wiring board including the process of forming.
本発明によれば、良好な剥離強度を有すると共にファインピッチ形成に好適なキャリア付銅箔を提供することができる。 According to the present invention, it is possible to provide a copper foil with a carrier that has good peel strength and is suitable for fine pitch formation.
<キャリア>
本発明に用いることのできるキャリアとしては銅箔を使用する。キャリアは典型的には圧延銅箔や電解銅箔の形態で提供される。一般的には、電解銅箔は硫酸銅めっき浴からチタンやステンレスのドラム上に銅を電解析出して製造され、圧延銅箔は圧延ロールによる塑性加工と熱処理を繰り返して製造される。銅箔の材料としてはタフピッチ銅や無酸素銅といった高純度の銅の他、例えばSn入り銅、Ag入り銅、Cr、Zr又はMg等を添加した銅合金、Ni及びSi等を添加したコルソン系銅合金のような銅合金も使用可能である。なお、本明細書において用語「銅箔」を単独で用いたときには銅合金箔も含むものとする。
<Career>
A copper foil is used as a carrier that can be used in the present invention. The carrier is typically provided in the form of rolled copper foil or electrolytic copper foil. In general, the electrolytic copper foil is produced by electrolytic deposition of copper from a copper sulfate plating bath onto a drum of titanium or stainless steel, and the rolled copper foil is produced by repeating plastic working and heat treatment with a rolling roll. In addition to high-purity copper such as tough pitch copper and oxygen-free copper, the copper foil material is, for example, Sn-containing copper, Ag-containing copper, copper alloy added with Cr, Zr, Mg, etc., and Corson-based added with Ni, Si, etc. Copper alloys such as copper alloys can also be used. In addition, when the term “copper foil” is used alone in this specification, a copper alloy foil is also included.
本発明に用いることのできるキャリアの厚さについても特に制限はないが、キャリアとしての役目を果たす上で適した厚さに適宜調節すればよく、例えば12μm以上とすることができる。但し、厚すぎると生産コストが高くなるので一般には70μm以下とするのが好ましい。従って、キャリアの厚みは典型的には12〜70μmであり、より典型的には18〜35μmである。 The thickness of the carrier that can be used in the present invention is not particularly limited, but may be appropriately adjusted to a thickness suitable for serving as a carrier, for example, 12 μm or more. However, if it is too thick, the production cost increases, so it is generally preferable that the thickness is 70 μm or less. Accordingly, the thickness of the carrier is typically 12-70 μm, more typically 18-35 μm.
<中間層>
キャリアの上には中間層を設ける。中間層は電気伝導性酸化物を含んでいるのが好ましい。本発明において、電気伝導性酸化物とは、電気伝導率が絶縁体よりも高い酸化物をいう。電気伝導性酸化物の電気伝導率は例えば10-8Scm-1以上である。電気伝導性酸化物としては、半導体、固体電解質等が挙げられる。中間層が電気伝導性酸化物を含んでいると、当該電気伝導性酸化物が金属原子の拡散を防止する機能を有しており、キャリア付銅箔において、銅箔キャリアからの金属原子の極薄銅層への拡散を良好に防止することができる。このため、キャリア付銅箔を基板へ圧着させる前と後とで極薄銅層の剥離強度が安定すると共に、極薄銅層のエッチング性が向上する。また、当該酸化物が電気伝導性酸化物であるため、極薄銅層の形成が容易となる。
ここで、電気伝導性酸化物としては例えば、M2O酸化物(Mは金属、例えばNa2O、K2O、Li2O)、MO酸化物(Mは金属、例えばMnO、NiO、CoO、ZnO)、M2O3酸化物(Mは金属、例えばCr2O3、Fe2O3、Y2O3、Yb2O3、V2O3、Ti2O3、Mn2O3、In2O3、Al2O3)、MO2酸化物(例えば、TiO2、ThO2、CrO2、V2O4、SnO2)、M3O4酸化物(例えば、Co3O4、Mn3O4、Fe3O4)、MO3酸化物(例えば、CrO3、UO3)、M2O5酸化物(V2O5、Nb2O5、Ta2O5)、M4O6酸化物、M2O7酸化物(例えば、Mn2O7)、複合酸化物XYO2(X、Yは異なる金属、例えばLiNiO2)、XYO3酸化物(例えば、LiMnO3、FeTiO3、MnTiO3、CoTiO3、NiTiO3、LiNbO3、LiTaO3、NaWO3)、XYO4酸化物(例えば、MgWO4、CdWO4、NiWO4)、XY2O6酸化物(例えば、CaNb2O6)、X2Y2O6酸化物(例えば、Na2Nb2O6)、XY2O4酸化物(例えばMoNa2O4、MoAg2O4、MoCu2O4、MoLi2O4、WLi2O4、TiSr2O4、MnCa2O4、FeCr2O4、TiZn2O4、SnMg2O4SnZn2O4,MgAl2O4,MoAl2O4,CuAl2O4,ZnAl2O4,ZnV2O4,TiMn2O4,ZnMn2O4,NiAl2O4,MgGa2O4,ZnGa2O4,CaGa2O4,TiMg2O4,VMg2O4,MgV2O4,FeV2O4,ZnV2O4, MgCr2O4,MnCr2O4,FeCr2O4,CoCr2O4,NiCr2O4,CuCr2O4,ZnCr2O4,CdCr2O4,TiMn2O4,ZnMn2O4,MgFe2O4,TiFe2O4,MnFe2O4,CoFe2O4,NiFe2O4,CuFe2O4,ZnFe2O4,CdFe2O4,AlFe2O4,PbFe2O4,MgCo2O4,TiCo2O4,ZnCo2O4,SnCo2O4,FeNi2O4,GeNi2O4,MgRh2O4,ZnRh2O4,TiZn2O4,SrAl2O4,CrAl2O4,MoAl2O4,FeAl2O4,CoAl2O4,MgGa2O4,ZnGa2O4,MgIn2O4,CaIn2O4,FeIn2O4,CoIn2O4,NiIn2O4,CdIn2O4,HgIn2O4)、X2YO5酸化物(例えばFe2TiO5、Al2TiO5)などが挙げられる。また、電気伝導性酸化物として公知の電気伝導性酸化物を用いることができる。なお、前述の酸化物が複数種類混合された複合酸化物も用いることができる。(例えば、In2O3・SnO2、Na2O・Al2O3など。)
<Intermediate layer>
An intermediate layer is provided on the carrier. The intermediate layer preferably contains an electrically conductive oxide. In the present invention, an electrically conductive oxide refers to an oxide having an electrical conductivity higher than that of an insulator. The electrical conductivity of the electrically conductive oxide is, for example, 10 −8 Scm −1 or more. Examples of the electrically conductive oxide include semiconductors and solid electrolytes. When the intermediate layer contains an electrically conductive oxide, the electrically conductive oxide has a function of preventing the diffusion of metal atoms. In the copper foil with a carrier, the electrode of the metal atoms from the copper foil carrier Diffusion to the thin copper layer can be satisfactorily prevented. For this reason, the peel strength of the ultrathin copper layer is stabilized before and after the carrier-attached copper foil is pressure-bonded to the substrate, and the etching property of the ultrathin copper layer is improved. Moreover, since the said oxide is an electroconductive oxide, formation of an ultra-thin copper layer becomes easy.
Here, as the electrically conductive oxide, for example, M 2 O oxide (M is a metal, for example, Na 2 O, K 2 O, Li 2 O), MO oxide (M is a metal, for example, MnO, NiO, CoO). , ZnO), M 2 O 3 oxide (M is a metal such as Cr 2 O 3 , Fe 2 O 3 , Y 2 O 3 , Yb 2 O 3 , V 2 O 3 , Ti 2 O 3 , Mn 2 O 3. , In2O3, Al2O3), MO 2 oxide (e.g., TiO 2, ThO 2, CrO 2, V 2 O 4, SnO2), M 3 O 4 oxide (e.g., Co 3 O 4, Mn 3 O 4, Fe 3 O 4 ), MO 3 oxide (for example, CrO 3 , UO 3 ), M 2 O 5 oxide (V 2 O 5 , Nb 2 O 5 , Ta 2 O 5 ), M 4 O 6 oxide, M 2 O 7 oxide (e.g., Mn 2 O 7), a composite oxide XYO 2 (X, Y are different metals, for example, LiNiO 2), XYO 3 oxide (e.g., LiMn 3, FeTiO 3, MnTiO 3, CoTiO 3, NiTiO 3, LiNbO 3, LiTaO 3, NaWO 3), XYO 4 oxides (e.g., MgWO 4, CdWO 4, NiWO 4), XY 2 O 6 oxide (e.g., CaNb 2 O 6 ), X 2 Y 2 O 6 oxide (eg Na 2 Nb 2 O 6 ), XY 2 O 4 oxide (eg MoNa 2 O 4 , MoAg 2 O 4 , MoCu 2 O 4 , MoLi 2 O 4 , WLi 2 O 4 , TiSr 2 O 4 , MnCa 2 O 4 , FeCr 2 O 4 , TiZn 2 O 4 , SnMg 2 O 4 SnZn 2 O 4 , MgAl 2 O 4 , MoAl 2 O 4 , CuAl 2 O 4 , ZnAl 2 O 4 , ZnV 2 O 4 , TiMn 2 O 4 , ZnMn 2 O 4 , NiAl 2 O 4 , MgGa 2 O 4 , ZnGa 2 O 4 , CaGa 2 O 4 , TiMg 2 O 4 , VMg 2 O 4 , MgV 2 O 4 , FeV 2 O 4, ZnV 2 O 4, MgCr 2 O 4, MnCr 2 O 4, FeCr 2 O 4, CoCr 2 O 4, NiCr 2 O 4, CuCr 2 O 4, ZnCr 2 O 4, CdCr 2 O 4 , TiMn 2 O 4 , ZnMn 2 O 4 , MgFe 2 O 4 , TiFe 2 O 4 , MnFe 2 O 4 , CoFe 2 O 4 , NiFe 2 O 4 , CuFe 2 O 4 , ZnFe 2 O 4 , CdFe 2 O 4 , AlFe 2 O 4 , PbFe 2 O 4 , MgCo 2 O 4 , TiCo 2 O 4 , ZnCo 2 O 4 , SnCo 2 O 4 , FeNi 2 O 4 , GeNi 2 O 4 , MgRh 2 O 4 , ZnRh 2 O 4 , TiZn 2 O 4, SrAl 2 O 4, CrAl 2 O 4, MoAl 2 O 4, FeAl 2 O 4, CoAl 2 O 4, MgGa 2 O 4, ZnGa 2 O 4, MgIn 2 O 4, CaIn 2 O 4 , FeIn 2 O 4 , CoIn 2 O 4 , NiIn 2 O 4 , CdIn 2 O 4 , HgIn 2 O 4 ), X 2 YO 5 oxide (for example, Fe 2 TiO 5 , Al 2 TiO 5 ) and the like. Moreover, a well-known electroconductive oxide can be used as an electroconductive oxide. Note that a composite oxide in which a plurality of the above-described oxides are mixed can also be used. (For example, In 2 O 3 .SnO 2 , Na 2 O.Al 2 O 3 etc.)
中間層は、スピネル型結晶構造を有する。中間層がスピネル型結晶構造を有すると、中間層と極薄銅層との間で剥離する際の剥離強度が高くなる傾向にあり、キャリア付銅箔の製造時に、キャリアから極薄銅層が剥がれにくくなるという利点がある。
なお、スピネル型結晶構造を有する酸化物は例えばXY2O4酸化物(例えばMoNa2O4、MoAg2O4、MoCu2O4、MoLi2O4、WLi2O4、TiSr2O4、MnCa2O4、FeCr2O4、TiZn2O4、SnMg2O4, SnZn2O4,MgAl2O4,MoAl2O4,CuAl2O4,ZnAl2O4,ZnV2O4,TiMn2O4,ZnMn2O4,NiAl2O4,MgGa2O4,ZnGa2O4,CaGa2O4,TiMg2O4,VMg2O4,MgV2O4,FeV2O4,ZnV2O4, MgCr2O4,MnCr2O4,FeCr2O4,CoCr2O4,NiCr2O4,CuCr2O4,ZnCr2O4,CdCr2O4,TiMn2O4,ZnMn2O4,MgFe2O4,TiFe2O4,MnFe2O4,CoFe2O4,NiFe2O4,CuFe2O4,ZnFe2O4,CdFe2O4,AlFe2O4,PbFe2O4,MgCo2O4,TiCo2O4,ZnCo2O4,SnCo2O4,FeNi2O4,GeNi2O4,MgRh2O4,ZnRh2O4,TiZn2O4,SrAl2O4,CrAl2O4,MoAl2O4,FeAl2O4,CoAl2O4,MgGa2O4,ZnGa2O4,MgIn2O4,CaIn2O4,FeIn2O4,CoIn2O4,NiIn2O4,CdIn2O4,HgIn2O4)である。なお、前述の電気伝導性酸化物、スピネル型結晶構造を有する酸化物を含む中間層はスパッタリングなどの乾式めっきや、金属めっきとクロメート処理等を併せることにより形成することができる。
The intermediate layer has a spinel crystal structure. When the intermediate layer has a spinel crystal structure, the peel strength when peeling between the intermediate layer and the ultrathin copper layer tends to be high, and the ultrathin copper layer is formed from the carrier during the manufacture of the copper foil with a carrier. There is an advantage that it is difficult to peel off.
The oxide having a spinel crystal structure is, for example, an XY 2 O 4 oxide (for example, MoNa 2 O 4 , MoAg 2 O 4 , MoCu 2 O 4 , MoLi 2 O 4 , WLi 2 O 4 , TiSr 2 O 4 , MnCa 2 O 4 , FeCr 2 O 4 , TiZn 2 O 4 , SnMg 2 O 4 , SnZn 2 O 4 , MgAl 2 O 4 , MoAl 2 O 4 , CuAl 2 O 4 , ZnAl 2 O 4 , ZnV 2 O 4 , TiMn 2 O 4 , ZnMn 2 O 4 , NiAl 2 O 4 , MgGa 2 O 4 , ZnGa 2 O 4 , CaGa 2 O 4 , TiMg 2 O 4 , VMg 2 O 4 , MgV 2 O 4 , FeV 2 O 4 , ZnV 2 O 4, MgCr 2 O 4, MnCr 2 O 4, FeCr 2 O 4, CoCr 2 O 4, NiCr 2 O 4, CuCr 2 O 4, ZnCr 2 O 4, CdCr 2 O 4, TiMn 2 O 4, ZnMn 2 O 4, MgFe 2 O 4, T Fe 2 O 4, MnFe 2 O 4, CoFe 2 O 4, NiFe 2 O 4, CuFe 2 O 4, ZnFe 2 O 4, CdFe 2 O 4, AlFe 2 O 4, PbFe 2 O 4, MgCo 2 O 4, TiCo 2 O 4 , ZnCo 2 O 4 , SnCo 2 O 4 , FeNi 2 O 4 , GeNi 2 O 4 , MgRh 2 O 4 , ZnRh 2 O 4 , TiZn 2 O 4 , SrAl 2 O 4 , CrAl 2 O 4 , MoAl 2 O 4 , FeAl 2 O 4 , CoAl 2 O 4 , MgGa 2 O 4 , ZnGa 2 O 4 , MgIn 2 O 4 , CaIn 2 O 4 , FeIn 2 O 4 , CoIn 2 O 4 , NiIn 2 O 4 , CdIn 2 O 4 , HgIn 2 O 4 ). Note that the intermediate layer containing the above-described electrically conductive oxide and oxide having a spinel crystal structure can be formed by combining dry plating such as sputtering, metal plating, and chromate treatment.
中間層は、Mo、Ca、V、Pb、Ge、Cd、Hg、Sr、Al、W、Be、Co、Li、Cu、Ni、Mg、Fe、Sn、Ti、Zn及びMnからなるA元素群から選択された一種又は二種以上と、Mg、Zn、V、Ga、Rh、Ni、In、Co、Mn、Al、Fe及びCrからなるB元素群から選択された一種又は二種以上と、酸素とを含むのが好ましい。このような構成によれば、中間層にスピネル型の結晶構造を有する酸化物が含まれることとなり、製造安定性が増すとなる。このような構成は、例えば、上述のXY2O4酸化物のうちでZn、Snを含むものが挙げられ、これらは特に導電性が高くなる傾向にあるため好ましい。 The intermediate layer is an A element group composed of Mo, Ca, V, Pb, Ge, Cd, Hg, Sr, Al, W, Be, Co, Li, Cu, Ni, Mg, Fe, Sn, Ti, Zn, and Mn. And one or more selected from the B element group consisting of Mg, Zn, V, Ga, Rh, Ni, In, Co, Mn, Al, Fe and Cr, and It preferably contains oxygen. According to such a configuration, an oxide having a spinel crystal structure is included in the intermediate layer, and manufacturing stability is increased. Such a configuration includes, for example, those containing Zn and Sn among the above-mentioned XY 2 O 4 oxides, and these are particularly preferable because they tend to have high conductivity.
本発明のキャリア付銅箔は、中間層/極薄銅層間で剥離させたとき、XPSによる表面からの深さ方向分析から得られた深さ方向(x:単位nm)のクロムの原子濃度(%)をe(x)とし、亜鉛の原子濃度(%)をf(x)とし、ニッケルの原子濃度(%)をg(x)とし、銅の原子濃度(%)をh(x)とし、酸素の合計原子濃度(%)をi(x)とし、炭素の原子濃度(%)をj(x)とし、その他の原子濃度(%)をk(x)とすると、中間層表面からの深さ方向分析の区間[0、1.0]において、∫i(x)dx/(∫e(x)dx +∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫i(x)dx + ∫j(x)dx+ ∫k(x)dx)が10%以上を満たすように制御されているのが好ましい。このような構成によれば、極薄銅層の中間層側表面に酸素が十分存在しており、電気伝導性酸化物が十分形成され、剥離強度が基板に貼り合わせる際等の熱圧着の前後で変化し難くなる。当該中間層表面からの深さ方向分析の区間[0、1.0]における∫i(x)dx/(∫e(x)dx +∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫i(x)dx + ∫j(x)dx+ ∫k(x)dx)は、15%以上を満たすように制御されているのがより好ましく、15%以上を満たすように制御されているのがより好ましく、18%以上を満たすように制御されているのがより好ましく、20%以上を満たすように制御されているのがより好ましい。なお、当該中間層表面からの深さ方向分析の区間[0、1.0]における∫i(x)dx/(∫e(x)dx +∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫i(x)dx + ∫j(x)dx+ ∫k(x)dx)についての上限は特に設ける必要はないが、例えば、70%以下、例えば60%以下、例えば50%以下である。 When the copper foil with a carrier of the present invention is peeled between the intermediate layer / ultra thin copper layer, the atomic concentration of chromium in the depth direction (x: unit nm) obtained from the depth direction analysis from the surface by XPS ( %) Is e (x), zinc atomic concentration (%) is f (x), nickel atomic concentration (%) is g (x), and copper atomic concentration (%) is h (x). If the total atomic concentration (%) of oxygen is i (x), the atomic concentration (%) of carbon is j (x), and the other atomic concentration (%) is k (x), In the interval [0, 1.0] of the depth direction analysis, ∫i (x) dx / (∫e (x) dx + ∫f (x) dx + ∫g (x) dx + ∫h (x) dx + (I) (x) dx + (j) (x) dx + (k) (x) dx) is preferably controlled so as to satisfy 10% or more. According to such a configuration, oxygen is sufficiently present on the surface of the intermediate layer side of the ultrathin copper layer, the electroconductive oxide is sufficiently formed, and before and after thermocompression bonding such as when the peel strength is bonded to the substrate It becomes difficult to change. ∫i (x) dx / (∫e (x) dx + ∫f (x) dx + ∫g (x) dx + ∫ in the depth direction analysis interval [0, 1.0] from the surface of the intermediate layer h (x) dx + ∫i (x) dx + ∫j (x) dx + ∫k (x) dx) is more preferably controlled to satisfy 15% or more, so as to satisfy 15% or more. Is more preferably controlled to satisfy 18% or more, and more preferably controlled to satisfy 20% or more. Note that ∫i (x) dx / (∫e (x) dx + ∫f (x) dx + ∫g (x) dx in the section [0, 1.0] in the depth direction analysis from the surface of the intermediate layer + ∫h (x) dx + ∫i (x) dx + ∫j (x) dx + ∫k (x) dx) is not particularly limited, but for example, 70% or less, for example 60% or less, For example, it is 50% or less.
本発明のキャリア付銅箔は、中間層表面からの深さ方向分析の区間[0、1.0]において、C=∫i(x)dx/(∫e(x)dx +∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫i(x)dx + ∫j(x)dx+ ∫k(x)dx)とし、D=(∫e(x)dx +∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫k(x)dx)/(∫e(x)dx +∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫i(x)dx + ∫j(x)dx+ ∫k(x)dx)とし、E=C−0.3×Dとすると、Eが0%以上を満たすように制御されているのが好ましい。当該E=C−0.3×Dが0%以上であれば、極薄銅層の中間層側表面に存在する酸素の割合が金属の3割以上であるため、より電気伝導性酸化物が形成されやすく、より剥離強度が基板に貼り合わせる際等の熱圧着の前後で変化し難くなる。当該E=C−0.3×Dは、10%以上を満たすように制御されているのがより好ましく、15%以上を満たすように制御されているのがより好ましく、20%以上を満たすように制御されているのがより好ましい。 The copper foil with a carrier of the present invention has C = ∫i (x) dx / (∫e (x) dx + ∫f (x) in the section [0, 1.0] in the depth direction analysis from the intermediate layer surface. ) dx + ∫g (x) dx + ∫h (x) dx + xi (x) dx + ∫j (x) dx + ∫k (x) dx) and D = (∫e (x) dx + ∫ f (x) dx + ∫g (x) dx + ∫h (x) dx + ∫k (x) dx) / (∫e (x) dx + ∫f (x) dx + ∫g (x) dx + ∫h (x) dx + ∫i (x) dx + ∫j (x) dx + ∫k (x) dx) and E = C−0.3 × D, so that E satisfies 0% or more Preferably it is controlled. If the E = C−0.3 × D is 0% or more, the proportion of oxygen present on the surface on the intermediate layer side of the ultrathin copper layer is 30% or more of the metal. It is easy to form, and the peel strength is less likely to change before and after thermocompression bonding such as when it is bonded to a substrate. The E = C−0.3 × D is more preferably controlled to satisfy 10% or more, more preferably controlled to satisfy 15% or more, and so as to satisfy 20% or more. More preferably, it is controlled.
中間層は、例えば電気めっき、無電解めっき及び浸漬めっきのような湿式めっき、或いはスパッタリング、CVD及びPDVのような乾式めっきにより得ることができる。コストの観点から電気めっきが好ましい。 The intermediate layer can be obtained by wet plating such as electroplating, electroless plating and immersion plating, or dry plating such as sputtering, CVD and PDV. Electroplating is preferable from the viewpoint of cost.
<極薄銅層>
中間層の上には極薄銅層を設ける。極薄銅層は、硫酸銅、ピロリン酸銅、スルファミン酸銅、シアン化銅等の電解浴を利用した電気めっきにより形成することができ、一般的な電解銅箔で使用され、高電流密度での銅箔形成が可能であることから硫酸銅浴が好ましい。極薄銅層の厚みは特に制限はないが、一般的にはキャリアよりも薄く、例えば12μm以下である。典型的には0.5〜12μmであり、より典型的には2〜5μmである。
<Ultrathin copper layer>
An ultrathin copper layer is provided on the intermediate layer. The ultra-thin copper layer can be formed by electroplating using an electrolytic bath such as copper sulfate, copper pyrophosphate, copper sulfamate, copper cyanide, etc., and is used in general electrolytic copper foil with high current density. Since a copper foil can be formed, a copper sulfate bath is preferable. The thickness of the ultrathin copper layer is not particularly limited, but is generally thinner than the carrier, for example, 12 μm or less. It is typically 0.5-12 μm, more typically 2-5 μm.
<粗化処理>
極薄銅層の表面には、例えば絶縁基板との密着性を良好にすること等のために粗化処理を施すことで粗化処理層を設けてもよい。粗化処理は、例えば、銅又は銅合金で粗化粒子を形成することにより行うことができる。粗化処理は微細なものであっても良い。粗化処理層は、銅、ニッケル、りん、タングステン、ヒ素、モリブデン、クロム、コバルト及び亜鉛からなる群から選択されたいずれかの単体又はいずれか1種以上を含む合金からなる層などであってもよい。また、銅又は銅合金で粗化粒子を形成した後、更にニッケル、コバルト、銅、亜鉛の単体または合金等で二次粒子や三次粒子を設ける粗化処理を行うこともできる。その後に、ニッケル、コバルト、銅、亜鉛の単体または合金等で耐熱層または防錆層を形成しても良く、更にその表面にクロメート処理、シランカップリング処理などの処理を施してもよい。または粗化処理を行わずに、ニッケル、コバルト、銅、亜鉛の単体または合金等で耐熱層又は防錆層を形成し、さらにその表面にクロメート処理、シランカップリング処理などの処理を施してもよい。すなわち、粗化処理層の表面に、耐熱層、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を形成してもよく、極薄銅層の表面に、耐熱層、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を形成してもよい。なお、上述の耐熱層、防錆層、クロメート処理層、シランカップリング処理層はそれぞれ複数の層で形成されてもよい(例えば2層以上、3層以上など)。
<Roughening treatment>
A roughening treatment layer may be provided on the surface of the ultrathin copper layer by performing a roughening treatment, for example, in order to improve adhesion to the insulating substrate. The roughening treatment can be performed, for example, by forming roughened particles with copper or a copper alloy. The roughening process may be fine. The roughening treatment layer is a single layer selected from the group consisting of copper, nickel, phosphorus, tungsten, arsenic, molybdenum, chromium, cobalt and zinc, or a layer made of an alloy containing one or more of them. Also good. Moreover, after forming the roughened particles with copper or a copper alloy, a roughening treatment can be performed in which secondary particles or tertiary particles are further formed of nickel, cobalt, copper, zinc alone or an alloy. Thereafter, a heat-resistant layer or a rust-preventing layer may be formed of nickel, cobalt, copper, zinc alone or an alloy, and the surface thereof may be further subjected to a treatment such as a chromate treatment or a silane coupling treatment. Alternatively, a heat-resistant layer or a rust-preventing layer may be formed from nickel, cobalt, copper, zinc alone or an alloy without roughening, and the surface may be subjected to a treatment such as chromate treatment or silane coupling treatment. Good. That is, one or more layers selected from the group consisting of a heat resistant layer, a rust preventive layer, a chromate treated layer and a silane coupling treated layer may be formed on the surface of the roughened treated layer. One or more layers selected from the group consisting of a heat-resistant layer, a rust prevention layer, a chromate treatment layer, and a silane coupling treatment layer may be formed on the surface. In addition, the above-mentioned heat-resistant layer, rust prevention layer, chromate treatment layer, and silane coupling treatment layer may each be formed of a plurality of layers (for example, 2 layers or more, 3 layers or more, etc.).
<キャリア付銅箔>
このようにして、銅箔キャリアと、銅箔キャリア上に積層された中間層と、中間層の上に積層された極薄銅層とを備えたキャリア付銅箔が製造される。キャリア付銅箔自体の使用方法は当業者に周知であるが、例えば極薄銅層の表面を紙基材フェノール樹脂、紙基材エポキシ樹脂、合成繊維布基材エポキシ樹脂、ガラス布・紙複合基材エポキシ樹脂、ガラス布・ガラス不織布複合基材エポキシ樹脂及びガラス布基材エポキシ樹脂、ポリエステルフィルム、ポリイミドフィルム等の絶縁基板に貼り合わせて熱圧着後にキャリアを剥がして銅張積層板とし、絶縁基板に接着した極薄銅層を目的とする導体パターンにエッチングし、最終的にプリント配線板を製造することができる。更に、プリント配線板に電子部品類を搭載することで、プリント回路板が完成する。以下に、本発明に係るキャリア付銅箔を用いたプリント配線板の製造工程の例を幾つか示す。
<Copper foil with carrier>
Thus, the copper foil with a carrier provided with the copper foil carrier, the intermediate layer laminated | stacked on the copper foil carrier, and the ultra-thin copper layer laminated | stacked on the intermediate layer is manufactured. The method of using the copper foil with carrier itself is well known to those skilled in the art. For example, the surface of the ultra-thin copper layer is made of paper base phenol resin, paper base epoxy resin, synthetic fiber cloth base epoxy resin, glass cloth / paper composite. Base epoxy resin, glass cloth / glass nonwoven fabric composite base epoxy resin and glass cloth base epoxy resin, polyester film, polyimide film, etc. The printed wiring board can be finally manufactured by etching the ultrathin copper layer adhered to the substrate into a desired conductor pattern. Furthermore, a printed circuit board is completed by mounting electronic components on the printed wiring board. Below, some examples of the manufacturing process of the printed wiring board using the copper foil with a carrier which concerns on this invention are shown.
本発明に係るプリント配線板の製造方法の一実施形態においては、本発明に係るキャリア付銅箔と絶縁基板とを準備する工程、前記キャリア付銅箔と絶縁基板を積層する工程、前記キャリア付銅箔と絶縁基板を極薄銅層側が絶縁基板と対向するように積層した後に、前記キャリア付銅箔のキャリアを剥がす工程を経て銅張積層板を形成し、その後、セミアディティブ法、モディファイドセミアディティブ法、パートリーアディティブ法及びサブトラクティブ法の何れかの方法によって、回路を形成する工程を含む。絶縁基板は内層回路入りのものとすることも可能である。 In one embodiment of a method for producing a printed wiring board according to the present invention, a step of preparing a copper foil with a carrier and an insulating substrate according to the present invention, a step of laminating the copper foil with a carrier and an insulating substrate, and with the carrier After laminating the copper foil and the insulating substrate so that the ultrathin copper layer side faces the insulating substrate, a copper-clad laminate is formed through a step of peeling the carrier of the copper foil with carrier, and then a semi-additive method, a modified semi-conductor A step of forming a circuit by any one of an additive method, a partial additive method, and a subtractive method. It is also possible for the insulating substrate to contain an inner layer circuit.
本発明において、セミアディティブ法とは、絶縁基板又は銅箔シード層上に薄い無電解めっきを行い、パターンを形成後、電気めっき及びエッチングを用いて導体パターンを形成する方法を指す。 In the present invention, the semi-additive method refers to a method in which a thin electroless plating is performed on an insulating substrate or a copper foil seed layer, a pattern is formed, and then a conductive pattern is formed using electroplating and etching.
従って、セミアディティブ法を用いた本発明に係るプリント配線板の製造方法の一実施形態においては、本発明に係るキャリア付銅箔と絶縁基板とを準備する工程、
前記キャリア付銅箔と絶縁基板を積層する工程、
前記キャリア付銅箔と絶縁基板を積層した後に、前記キャリア付銅箔のキャリアを剥がす工程、
前記キャリアを剥がして露出した極薄銅層を酸などの腐食溶液を用いたエッチングやプラズマなどの方法によりすべて除去する工程、
前記極薄銅層をエッチングにより除去することにより露出した前記樹脂にスルーホールまたは/およびブラインドビアを設ける工程、
前記スルーホールまたは/およびブラインドビアを含む領域についてデスミア処理を行う工程、
前記樹脂および前記スルーホールまたは/およびブラインドビアを含む領域について無電解めっき層を設ける工程、
前記無電解めっき層の上にめっきレジストを設ける工程、
前記めっきレジストに対して露光し、その後、回路が形成される領域のめっきレジストを除去する工程、
前記めっきレジストが除去された前記回路が形成される領域に、電解めっき層を設ける工程、
前記めっきレジストを除去する工程、
前記回路が形成される領域以外の領域にある無電解めっき層をフラッシュエッチングなどにより除去する工程、
を含む。
Therefore, in one embodiment of a method for producing a printed wiring board according to the present invention using a semi-additive method, a step of preparing a copper foil with a carrier and an insulating substrate according to the present invention,
Laminating the copper foil with carrier and an insulating substrate;
A step of peeling the carrier of the copper foil with carrier after laminating the copper foil with carrier and the insulating substrate;
Removing all of the ultrathin copper layer exposed by peeling the carrier by a method such as etching or plasma using a corrosive solution such as acid
Providing a through hole or / and a blind via in the resin exposed by removing the ultrathin copper layer by etching;
Performing a desmear process on the region including the through hole or / and the blind via,
Providing an electroless plating layer for the region including the resin and the through hole or / and the blind via;
Providing a plating resist on the electroless plating layer;
Exposing the plating resist, and then removing the plating resist in a region where a circuit is formed;
Providing an electrolytic plating layer in a region where the circuit from which the plating resist has been removed is formed;
Removing the plating resist;
Removing the electroless plating layer in a region other than the region where the circuit is formed by flash etching or the like;
including.
セミアディティブ法を用いた本発明に係るプリント配線板の製造方法の別の一実施形態においては、本発明に係るキャリア付銅箔と絶縁基板とを準備する工程、
前記キャリア付銅箔と絶縁基板を積層する工程、
前記キャリア付銅箔と絶縁基板を積層した後に、前記キャリア付銅箔のキャリアを剥がす工程、
前記キャリアを剥がして露出した極薄銅層を酸などの腐食溶液を用いたエッチングやプラズマなどの方法によりすべて除去する工程、
前記極薄銅層をエッチングにより除去することにより露出した前記樹脂の表面について無電解めっき層を設ける工程、
前記無電解めっき層の上にめっきレジストを設ける工程、
前記めっきレジストに対して露光し、その後、回路が形成される領域のめっきレジストを除去する工程、
前記めっきレジストが除去された前記回路が形成される領域に、電解めっき層を設ける工程、
前記めっきレジストを除去する工程、
前記回路が形成される領域以外の領域にある無電解めっき層及び極薄銅層をフラッシュエッチングなどにより除去する工程、
を含む。
In another embodiment of the method for producing a printed wiring board according to the present invention using a semi-additive method, a step of preparing a copper foil with a carrier and an insulating substrate according to the present invention,
Laminating the copper foil with carrier and an insulating substrate;
A step of peeling the carrier of the copper foil with carrier after laminating the copper foil with carrier and the insulating substrate;
Removing all of the ultrathin copper layer exposed by peeling the carrier by a method such as etching or plasma using a corrosive solution such as acid
Providing an electroless plating layer on the surface of the resin exposed by removing the ultrathin copper layer by etching;
Providing a plating resist on the electroless plating layer;
Exposing the plating resist, and then removing the plating resist in a region where a circuit is formed;
Providing an electrolytic plating layer in a region where the circuit from which the plating resist has been removed is formed;
Removing the plating resist;
Removing the electroless plating layer and the ultrathin copper layer in a region other than the region where the circuit is formed by flash etching or the like;
including.
本発明において、モディファイドセミアディティブ法とは、絶縁層上に金属箔を積層し、めっきレジストにより非回路形成部を保護し、電解めっきにより回路形成部の銅厚付けを行った後、レジストを除去し、前記回路形成部以外の金属箔を(フラッシュ)エッチングで除去することにより、絶縁層上に回路を形成する方法を指す。 In the present invention, the modified semi-additive method is a method in which a metal foil is laminated on an insulating layer, a non-circuit forming portion is protected by a plating resist, and the copper is thickened in the circuit forming portion by electrolytic plating, and then the resist is removed. Then, a method of forming a circuit on the insulating layer by removing the metal foil other than the circuit forming portion by (flash) etching is indicated.
従って、モディファイドセミアディティブ法を用いた本発明に係るプリント配線板の製造方法の一実施形態においては、本発明に係るキャリア付銅箔と絶縁基板とを準備する工程、
前記キャリア付銅箔と絶縁基板を積層する工程、
前記キャリア付銅箔と絶縁基板を積層した後に、前記キャリア付銅箔のキャリアを剥がす工程、
前記キャリアを剥がして露出した極薄銅層と絶縁基板にスルーホールまたは/およびブラインドビアを設ける工程、
前記スルーホールまたは/およびブラインドビアを含む領域についてデスミア処理を行う工程、
前記スルーホールまたは/およびブラインドビアを含む領域について無電解めっき層を設ける工程、
前記キャリアを剥がして露出した極薄銅層表面にめっきレジストを設ける工程、
前記めっきレジストを設けた後に、電解めっきにより回路を形成する工程、
前記めっきレジストを除去する工程、
前記めっきレジストを除去することにより露出した極薄銅層をフラッシュエッチングにより除去する工程、
を含む。
Therefore, in one embodiment of the method for producing a printed wiring board according to the present invention using the modified semi-additive method, the step of preparing the copper foil with carrier and the insulating substrate according to the present invention,
Laminating the copper foil with carrier and an insulating substrate;
A step of peeling the carrier of the copper foil with carrier after laminating the copper foil with carrier and the insulating substrate;
Providing a through hole or / and a blind via on the insulating substrate and the ultrathin copper layer exposed by peeling the carrier;
Performing a desmear process on the region including the through hole or / and the blind via,
Providing an electroless plating layer for the region including the through hole or / and the blind via;
Providing a plating resist on the surface of the ultrathin copper layer exposed by peeling the carrier,
Forming a circuit by electrolytic plating after providing the plating resist;
Removing the plating resist;
Removing the ultra-thin copper layer exposed by removing the plating resist by flash etching;
including.
モディファイドセミアディティブ法を用いた本発明に係るプリント配線板の製造方法の別の一実施形態においては、本発明に係るキャリア付銅箔と絶縁基板とを準備する工程、
前記キャリア付銅箔と絶縁基板を積層する工程、
前記キャリア付銅箔と絶縁基板を積層した後に、前記キャリア付銅箔のキャリアを剥がす工程、
前記キャリアを剥がして露出した極薄銅層の上にめっきレジストを設ける工程、
前記めっきレジストに対して露光し、その後、回路が形成される領域のめっきレジストを除去する工程、
前記めっきレジストが除去された前記回路が形成される領域に、電解めっき層を設ける工程、
前記めっきレジストを除去する工程、
前記回路が形成される領域以外の領域にある無電解めっき層及び極薄銅層をフラッシュエッチングなどにより除去する工程、
を含む。
In another embodiment of the method for producing a printed wiring board according to the present invention using the modified semi-additive method, the step of preparing the carrier-attached copper foil and the insulating substrate according to the present invention,
Laminating the copper foil with carrier and an insulating substrate;
A step of peeling the carrier of the copper foil with carrier after laminating the copper foil with carrier and the insulating substrate;
Providing a plating resist on the exposed ultrathin copper layer by peeling off the carrier;
Exposing the plating resist, and then removing the plating resist in a region where a circuit is formed;
Providing an electrolytic plating layer in a region where the circuit from which the plating resist has been removed is formed;
Removing the plating resist;
Removing the electroless plating layer and the ultrathin copper layer in a region other than the region where the circuit is formed by flash etching or the like;
including.
本発明において、パートリーアディティブ法とは、導体層を設けてなる基板、必要に応じてスルーホールやバイアホール用の孔を穿けてなる基板上に触媒核を付与し、エッチングして導体回路を形成し、必要に応じてソルダレジストまたはメッキレジストを設けた後に、前記導体回路上、スルーホールやバイアホールなどに無電解めっき処理によって厚付けを行うことにより、プリント配線板を製造する方法を指す。 In the present invention, the partial additive method means that a catalyst circuit is formed on a substrate provided with a conductor layer, and if necessary, a substrate provided with holes for through holes or via holes, and etched to form a conductor circuit. Then, after providing a solder resist or a plating resist as necessary, it refers to a method of manufacturing a printed wiring board by thickening through holes, via holes, etc. on the conductor circuit by electroless plating.
従って、パートリーアディティブ法を用いた本発明に係るプリント配線板の製造方法の一実施形態においては、本発明に係るキャリア付銅箔と絶縁基板とを準備する工程、
前記キャリア付銅箔と絶縁基板を積層する工程、
前記キャリア付銅箔と絶縁基板を積層した後に、前記キャリア付銅箔のキャリアを剥がす工程、
前記キャリアを剥がして露出した極薄銅層と絶縁基板にスルーホールまたは/およびブラインドビアを設ける工程、
前記スルーホールまたは/およびブラインドビアを含む領域についてデスミア処理を行う工程、
前記スルーホールまたは/およびブラインドビアを含む領域について触媒核を付与する工程、
前記キャリアを剥がして露出した極薄銅層表面にエッチングレジストを設ける工程、
前記エッチングレジストに対して露光し、回路パターンを形成する工程、
前記極薄銅層および前記触媒核を酸などの腐食溶液を用いたエッチングやプラズマなどの方法により除去して、回路を形成する工程、
前記エッチングレジストを除去する工程、
前記極薄銅層および前記触媒核を酸などの腐食溶液を用いたエッチングやプラズマなどの方法により除去して露出した前記絶縁基板表面に、ソルダレジストまたはメッキレジストを設ける工程、
前記ソルダレジストまたはメッキレジストが設けられていない領域に無電解めっき層を設ける工程、
を含む。
Therefore, in one embodiment of the method for producing a printed wiring board according to the present invention using a partly additive method, a step of preparing the copper foil with carrier and the insulating substrate according to the present invention,
Laminating the copper foil with carrier and an insulating substrate;
A step of peeling the carrier of the copper foil with carrier after laminating the copper foil with carrier and the insulating substrate;
Providing a through hole or / and a blind via on the insulating substrate and the ultrathin copper layer exposed by peeling the carrier;
Performing a desmear process on the region including the through hole or / and the blind via,
Applying catalyst nuclei to the region containing the through-holes and / or blind vias;
Providing an etching resist on the surface of the ultrathin copper layer exposed by peeling the carrier,
Exposing the etching resist to form a circuit pattern;
Removing the ultrathin copper layer and the catalyst nucleus by a method such as etching or plasma using a corrosive solution such as an acid to form a circuit;
Removing the etching resist;
A step of providing a solder resist or a plating resist on the surface of the insulating substrate exposed by removing the ultrathin copper layer and the catalyst core by a method such as etching or plasma using a corrosive solution such as an acid;
Providing an electroless plating layer in a region where the solder resist or plating resist is not provided,
including.
本発明において、サブトラクティブ法とは、銅張積層板上の銅箔の不要部分を、エッチングなどによって、選択的に除去して、導体パターンを形成する方法を指す。 In the present invention, the subtractive method refers to a method of forming a conductor pattern by selectively removing unnecessary portions of a copper foil on a copper clad laminate by etching or the like.
従って、サブトラクティブ法を用いた本発明に係るプリント配線板の製造方法の一実施形態においては、本発明に係るキャリア付銅箔と絶縁基板とを準備する工程、
前記キャリア付銅箔と絶縁基板を積層する工程、
前記キャリア付銅箔と絶縁基板を積層した後に、前記キャリア付銅箔のキャリアを剥がす工程、
前記キャリアを剥がして露出した極薄銅層と絶縁基板にスルーホールまたは/およびブラインドビアを設ける工程、
前記スルーホールまたは/およびブラインドビアを含む領域についてデスミア処理を行う工程、
前記スルーホールまたは/およびブラインドビアを含む領域について無電解めっき層を設ける工程、
前記無電解めっき層の表面に、電解めっき層を設ける工程、
前記電解めっき層または/および前記極薄銅層の表面にエッチングレジストを設ける工程、
前記エッチングレジストに対して露光し、回路パターンを形成する工程、
前記極薄銅層および前記無電解めっき層および前記電解めっき層を酸などの腐食溶液を用いたエッチングやプラズマなどの方法により除去して、回路を形成する工程、
前記エッチングレジストを除去する工程、
を含む。
Therefore, in one embodiment of the method for producing a printed wiring board according to the present invention using a subtractive method, a step of preparing the carrier-attached copper foil and the insulating substrate according to the present invention,
Laminating the copper foil with carrier and an insulating substrate;
A step of peeling the carrier of the copper foil with carrier after laminating the copper foil with carrier and the insulating substrate;
Providing a through hole or / and a blind via on the insulating substrate and the ultrathin copper layer exposed by peeling the carrier;
Performing a desmear process on the region including the through hole or / and the blind via,
Providing an electroless plating layer for the region including the through hole or / and the blind via;
Providing an electroplating layer on the surface of the electroless plating layer;
A step of providing an etching resist on the surface of the electrolytic plating layer or / and the ultrathin copper layer;
Exposing the etching resist to form a circuit pattern;
Removing the ultrathin copper layer and the electroless plating layer and the electrolytic plating layer by a method such as etching or plasma using a corrosive solution such as an acid to form a circuit;
Removing the etching resist;
including.
サブトラクティブ法を用いた本発明に係るプリント配線板の製造方法の別の一実施形態においては、本発明に係るキャリア付銅箔と絶縁基板とを準備する工程、
前記キャリア付銅箔と絶縁基板を積層する工程、
前記キャリア付銅箔と絶縁基板を積層した後に、前記キャリア付銅箔のキャリアを剥がす工程、
前記キャリアを剥がして露出した極薄銅層と絶縁基板にスルーホールまたは/およびブラインドビアを設ける工程、
前記スルーホールまたは/およびブラインドビアを含む領域についてデスミア処理を行う工程、
前記スルーホールまたは/およびブラインドビアを含む領域について無電解めっき層を設ける工程、
前記無電解めっき層の表面にマスクを形成する工程、
マスクが形成されいない前記無電解めっき層の表面に電解めっき層を設ける工程、
前記電解めっき層または/および前記極薄銅層の表面にエッチングレジストを設ける工程、
前記エッチングレジストに対して露光し、回路パターンを形成する工程、
前記極薄銅層および前記無電解めっき層を酸などの腐食溶液を用いたエッチングやプラズマなどの方法により除去して、回路を形成する工程、
前記エッチングレジストを除去する工程、
を含む。
In another embodiment of the method for producing a printed wiring board according to the present invention using a subtractive method, a step of preparing the carrier-attached copper foil and the insulating substrate according to the present invention,
Laminating the copper foil with carrier and an insulating substrate;
A step of peeling the carrier of the copper foil with carrier after laminating the copper foil with carrier and the insulating substrate;
Providing a through hole or / and a blind via on the insulating substrate and the ultrathin copper layer exposed by peeling the carrier;
Performing a desmear process on the region including the through hole or / and the blind via,
Providing an electroless plating layer for the region including the through hole or / and the blind via;
Forming a mask on the surface of the electroless plating layer;
Providing an electroplating layer on the surface of the electroless plating layer on which no mask is formed;
A step of providing an etching resist on the surface of the electrolytic plating layer or / and the ultrathin copper layer;
Exposing the etching resist to form a circuit pattern;
Removing the ultra-thin copper layer and the electroless plating layer by a method such as etching or plasma using a corrosive solution such as an acid to form a circuit;
Removing the etching resist;
including.
スルーホールまたは/およびブラインドビアを設ける工程、及びその後のデスミア工程は行わなくてもよい。 The process of providing a through hole or / and a blind via and the subsequent desmear process may not be performed.
以下に、本発明の実施例によって本発明をさらに詳しく説明するが、本発明は、これらの実施例によってなんら限定されるものではない。 The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to these examples.
1.キャリア付銅箔の製造
キャリアとして、厚さ35μmの長尺の電解銅箔(JX日鉱日石金属社製JTC)及び圧延銅箔(JX日鉱日石金属社製 タフピッチ銅箔 JIS H3100 合金番号C1100)を用意し、表面に中間層を形成した。中間層の形成は、表1の「中間層形成方法」の項目に記載の処理順により行った。すなわち、例えば「Ni/亜鉛クロメート」と表記されているものは、まず「Ni」の処理を行った後、「亜鉛クロメート」の処理を行ったことを示している。また、当該「中間層」の項目において、「Ni」と表記されているのは純ニッケルめっきを行ったことを意味し、「Ni−Zn」と表記されているのはニッケル亜鉛合金めっきを行ったことを意味し、「Tiスパッタ」と表記されているのはスパッタリングでTiめっきを形成したことを意味し、「加熱」と表記されているのは加熱処理を行ったことを意味し、「BTA処理」と表記されているのはベンゾトリアゾールを用いた表面処理を行ったことを意味する。以下に、各処理条件を示す。なお、各金属の付着量を多くする場合には、電流密度を高めに設定すること、および/または、めっき時間を長めに設定すること、および/または、めっき液中の各元素の濃度を高くすることを行った。また、各金属の付着量を少なくする場合には、電流密度を低めに設定すること、および/または、めっき時間を短めに設定すること、および/または、めっき液中の各元素の濃度を低くすることを行った。また、めっき液等の液組成の残部は水である。
1. Manufacture of copper foil with carrier As a carrier, long electrolytic copper foil (JTC made by JX Nippon Mining & Metals Co., Ltd.) and rolled copper foil (Tough pitch copper foil JIS H3100 alloy number C1100 made by JX Nippon Mining & Metals Co., Ltd.) having a thickness of 35 μm And an intermediate layer was formed on the surface. The formation of the intermediate layer was performed according to the processing order described in the item “Method for forming intermediate layer” in Table 1. That is, for example, what is described as “Ni / zinc chromate” indicates that “Ni” was first processed and then “Zinc chromate” was processed. In the “intermediate layer” item, “Ni” means that pure nickel plating was performed, and “Ni—Zn” means that nickel zinc alloy plating was performed. , “Ti sputtering” means that Ti plating was formed by sputtering, “heating” means that heat treatment was performed, “ “BTA treatment” means that a surface treatment using benzotriazole was performed. Each processing condition is shown below. In addition, when increasing the adhesion amount of each metal, set the current density higher and / or set the plating time longer and / or increase the concentration of each element in the plating solution. I did that. Also, when reducing the amount of each metal attached, set the current density low and / or set the plating time short and / or reduce the concentration of each element in the plating solution. I did that. The balance of the liquid composition such as a plating solution is water.
・「In2O3・SnO2スパッタ」:スパッタリングによるIn2O3・SnO2めっき
In2O3・SnO2:99mass%の組成のスパッタリングターゲットを用いてIn2O3・SnO2層を形成した。
ターゲット:In2O3・SnO2:99mass%
装置:株式会社アルバック製のスパッタ装置
出力:DC50W
アルゴン圧力:0.2Pa
· "In 2 O 3 · SnO 2 sputtering": In 2 O 3 · SnO 2 coating by sputtering In 2 O 3 · SnO 2: forming a In 2 O 3 · SnO 2 layer by using a sputtering target of 99Mass% composition did.
Target: In 2 O 3 · SnO 2 : 99 mass%
Equipment: Sputtering equipment manufactured by ULVAC, Inc. Output: DC50W
Argon pressure: 0.2 Pa
・「Zn」:亜鉛めっき
(液組成)塩化亜鉛:70〜95g/L、塩化カリウム:200〜225g/L、硫酸:25〜30g/L
(pH)4.5〜5.5
(液温)20〜35℃
(電流密度)0.5〜5A/dm2
(通電時間)1〜20秒
"Zn": Zinc plating (Liquid composition) Zinc chloride: 70-95 g / L, Potassium chloride: 200-225 g / L, Sulfuric acid: 25-30 g / L
(PH) 4.5-5.5
(Liquid temperature) 20-35 ° C
(Current density) 0.5 to 5 A / dm 2
(Energization time) 1 to 20 seconds
・「加熱」:加熱処理
窒素雰囲気中酸素濃度100volppmで、200℃で1時間の加熱処理を行った。
“Heating”: Heat treatment Heat treatment was performed at 200 ° C. for 1 hour at an oxygen concentration of 100 volppm in a nitrogen atmosphere.
・「Ni」:ニッケルめっき
(液組成)硫酸ニッケル:270〜280g/L、塩化ニッケル:35〜45g/L、酢酸ニッケル:10〜20g/L、クエン酸三ナトリウム:15〜25g/L、光沢剤:サッカリン、ブチンジオール等、ドデシル硫酸ナトリウム:55〜75ppm
(pH)4〜6
(液温)55〜65℃
(電流密度)1〜11A/dm2
(通電時間)1〜20秒
"Ni": Nickel plating (Liquid composition) Nickel sulfate: 270-280 g / L, Nickel chloride: 35-45 g / L, Nickel acetate: 10-20 g / L, Trisodium citrate: 15-25 g / L, luster Agents: Saccharin, butynediol, etc. Sodium dodecyl sulfate: 55-75 ppm
(PH) 4-6
(Liquid temperature) 55-65 degreeC
(Current density) 1 to 11 A / dm 2
(Energization time) 1 to 20 seconds
・「Ni−Zn」:ニッケル亜鉛合金めっき
上記ニッケルめっきの形成条件において、ニッケルめっき液中に硫酸亜鉛(ZnSO4)の形態の亜鉛を添加し、亜鉛濃度:0.05〜5g/Lの範囲で調整してニッケル亜鉛合金めっきを形成した。
"Ni-Zn": nickel zinc alloy plating In the above nickel plating formation conditions, zinc in the form of zinc sulfate (ZnSO4) is added to the nickel plating solution, and the zinc concentration is in the range of 0.05 to 5 g / L. Adjusted to form a nickel zinc alloy plating.
・「Sn」:スズめっき
(液組成)硫酸第一錫(SnSO4)40〜60g/L、硫酸90〜110g/L、クレゾールスルホン酸990〜110g/L、ゼラチン1.5〜2.5g/L、β−ナフトール1.5〜2.5g/L
(液温)20〜35℃
(電流密度)2〜3A/dm2
(通電時間)1〜20秒
· "Sn": tinned (liquid composition) stannous sulfate (SnSO 4) 40~60g / L, sulfuric acid 90~110g / L, cresol sulfonic acid 990~110g / L, gelatin 1.5~2.5G / L, β-naphthol 1.5-2.5 g / L
(Liquid temperature) 20-35 ° C
(Current density) 2-3 A / dm 2
(Energization time) 1 to 20 seconds
・「Cr」:クロムめっき
(液組成)CrO3:200〜400g/L、H2SO4:1.5〜4g/L
(pH)1〜4
(液温)45〜60℃
(電流密度)10〜40A/dm2
(通電時間)1〜20秒
- "Cr": chromium plating (liquid composition) CrO 3: 200~400g / L, H 2 SO 4: 1.5~4g / L
(PH) 1-4
(Liquid temperature) 45-60 ° C
(Current density) 10-40 A / dm 2
(Energization time) 1 to 20 seconds
・「Fe」:鉄めっき
(液組成)塩化第一鉄(FeCl2・4H2O)280〜330g/L
塩化カルシウム(CaCl2・2H2O)150〜200g/L
(pH)2.5〜3.0
(液温)60〜70℃
(電流密度)1〜10A/dm2
(通電時間)1〜10秒
· "Fe": iron plating (liquid composition) ferrous chloride (FeCl 2 · 4H 2 O) 280~330g / L
Calcium chloride (CaCl 2 · 2H 2 O) 150-200 g / L
(PH) 2.5-3.0
(Liquid temperature) 60-70 ° C
(Current density) 1-10 A / dm 2
(Energization time) 1 to 10 seconds
・「Co」:コバルトめっき
(液組成)硫酸コバルト:10〜200g/L、クエン酸ナトリウム:2〜240g/L
(pH)2〜5
(液温)20〜35℃
(電流密度)2〜3A/dm2
(通電時間)1〜20秒
"Co": Cobalt plating (Liquid composition) Cobalt sulfate: 10-200 g / L, Sodium citrate: 2-240 g / L
(PH) 2-5
(Liquid temperature) 20-35 ° C
(Current density) 2-3 A / dm 2
(Energization time) 1 to 20 seconds
・「Zn−Tiスパッタリング」:スパッタリングによる亜鉛チタン合金めっき
Zn−Ti:99mass%の組成のスパッタリングターゲットを用いてZn−Ti層を形成した。
ターゲット:Zn−Ti:99mass%
装置:株式会社アルバック製のスパッタ装置
出力:DC50W
アルゴン圧力:0.2Pa
"Zn-Ti sputtering": Zinc titanium alloy plating by sputtering Zn-Ti: A Zn-Ti layer was formed using a sputtering target having a composition of 99 mass%.
Target: Zn-Ti: 99 mass%
Equipment: Sputtering equipment manufactured by ULVAC, Inc. Output: DC50W
Argon pressure: 0.2 Pa
・「陽極酸化」:陽極酸化処理
NaOH:10〜20g/L
電解液温度:20〜50℃
電流密度:1〜10A/dm2
通電時間:1〜20秒
"Anodizing": Anodizing treatment NaOH: 10 to 20 g / L
Electrolyte temperature: 20-50 ° C
Current density: 1-10 A / dm 2
Energizing time: 1 to 20 seconds
・「純クロメート」:電解純クロメート処理
(液組成)重クロム酸カリウム:1〜10g/L、亜鉛:0g/L
(pH)2〜4、7〜10
(液温)40〜60℃
(電流密度)0.1〜2.6A/dm2
(クーロン量)0.5〜90As/dm2
(通電時間)1〜30秒
-"Pure chromate": Electrolytic pure chromate treatment (Liquid composition) Potassium dichromate: 1-10 g / L, Zinc: 0 g / L
(PH) 2-4, 7-10
(Liquid temperature) 40-60 ° C
(Current density) 0.1-2.6 A / dm 2
(Coulomb amount) 0.5 to 90 As / dm 2
(Energization time) 1 to 30 seconds
・「亜鉛クロメート」:亜鉛クロメート処理
上記電解純クロメート処理条件において、液中に硫酸亜鉛(ZnSO4)の形態の亜鉛を添加し、亜鉛濃度:0.05〜5g/Lの範囲で調整して亜鉛クロメート処理を行った。
-"Zinc chromate": Zinc chromate treatment In the above electrolytic pure chromate treatment conditions, zinc in the form of zinc sulfate (ZnSO 4 ) is added to the solution, and the zinc concentration is adjusted in the range of 0.05 to 5 g / L. Zinc chromate treatment was performed.
・「Mgクロメート」:Mgクロメート処理
上記電解純クロメート処理条件において、液中に硫酸マグネシウム(MgSO4)の形態のマグネシウムを添加し、マグネシウム濃度:0.05〜5g/Lの範囲で調整してマグネシウムクロメート処理を行った。
・「Coクロメート」:Coクロメート処理
上記電解純クロメート処理条件において、液中に硫酸コバルト(CoSO4)の形態のコバルトを添加し、コバルト濃度:0.05〜5g/Lの範囲で調整してコバルトクロメート処理を行った。
"Mg chromate": Mg chromate treatment Under the above-mentioned electrolytic pure chromate treatment conditions, magnesium in the form of magnesium sulfate (MgSO 4 ) is added to the solution, and the magnesium concentration is adjusted in the range of 0.05 to 5 g / L. Magnesium chromate treatment was performed.
"Co chromate": Co chromate treatment Under the above-mentioned electrolytic pure chromate treatment conditions, cobalt in the form of cobalt sulfate (CoSO 4 ) is added to the solution, and the cobalt concentration is adjusted in the range of 0.05 to 5 g / L. Cobalt chromate treatment was performed.
・BTA処理:ベンゾトリアゾールを用いた防錆処理
(液組成)ベンゾトリアゾール:0.1〜20g/L
(pH)2〜5
(液温)20〜40℃
(浸漬時間)5〜30s
-BTA treatment: rust prevention treatment using benzotriazole (Liquid composition) Benzotriazole: 0.1-20 g / L
(PH) 2-5
(Liquid temperature) 20-40 ° C
(Immersion time) 5-30s
・「Tiスパッタ」:スパッタリングによるTiめっき
Ti:99mass%の組成のチタンターゲットを用いてTi層を形成した。
ターゲット:Ti:99mass%
装置:株式会社アルバック製のスパッタ装置
出力:DC50W
アルゴン圧力:0.2Pa
"Ti sputtering": Ti plating by sputtering Ti: A Ti layer was formed using a titanium target having a composition of 99 mass%.
Target: Ti: 99 mass%
Equipment: Sputtering equipment manufactured by ULVAC, Inc. Output: DC50W
Argon pressure: 0.2 Pa
・「SiO2スパッタ」:スパッタリングによるSiO2めっき
SiO2:99mass%の組成の酸化錫ターゲットを用いてSiO2層を形成した。
ターゲット:SiO2:99mass%
装置:株式会社アルバック製のスパッタ装置
出力:DC50W
アルゴン圧力:0.2Pa
· "SiO 2 sputter": sputtering with SiO 2 Plating SiO 2: tin oxide target 99Mass% of the composition SiO 2 layer was formed by using.
Target: SiO 2 : 99 mass%
Equipment: Sputtering equipment manufactured by ULVAC, Inc. Output: DC50W
Argon pressure: 0.2 Pa
・「Na2O・Al2O3スパッタ」:スパッタリングによるNa2O・Al2O3めっき
Na2O・Al2O3:99mass%の組成のスパッタリングターゲットを用いてNa2O・Al2O3層を形成した。
ターゲット:Na2O・Al2O3:99mass%
装置:株式会社アルバック製のスパッタ装置
出力:DC50W
アルゴン圧力:0.2Pa
- "Na 2 O · Al 2 O 3 sputtering": Na by sputtering 2 O · Al 2 O 3 plating Na 2 O · Al 2 O 3 : using the sputtering target of 99Mass% of the composition Na 2 O · Al 2 O Three layers were formed.
Target: Na 2 O · Al 2 O 3 : 99 mass%
Equipment: Sputtering equipment manufactured by ULVAC, Inc. Output: DC50W
Argon pressure: 0.2 Pa
・「Bi4Ti3O12スパッタ」:スパッタリングによるBi4Ti3O12めっき
Bi4Ti3O12:99mass%の組成のスパッタリングターゲットを用いてBi4Ti3O12層を形成した。
ターゲット:Bi4Ti3O12:99mass%
装置:株式会社アルバック製のスパッタ装置
出力:DC50W
アルゴン圧力:0.2Pa
“Bi 4 Ti 3 O 12 sputtering”: Bi 4 Ti 3 O 12 plating by sputtering Bi 4 Ti 3 O 12 : A Bi 4 Ti 3 O 12 layer was formed using a sputtering target having a composition of 99 mass%.
Target: Bi 4 Ti 3 O 12 : 99 mass%
Equipment: Sputtering equipment manufactured by ULVAC, Inc. Output: DC50W
Argon pressure: 0.2 Pa
・「Mo−Co」:モリブデンコバルト合金めっき
(液組成)硫酸コバルト:10〜200g/L、モリブデン酸ナトリウム:5〜200g/L、クエン酸ナトリウム:2〜240g/L
(pH)2〜5
(液温)10〜70℃
(電流密度)0.5〜10A/dm2
(通電時間)1〜20秒
"Mo-Co": Molybdenum cobalt alloy plating (Liquid composition) Cobalt sulfate: 10-200 g / L, Sodium molybdate: 5-200 g / L, Sodium citrate: 2-240 g / L
(PH) 2-5
(Liquid temperature) 10-70 ° C
(Current density) 0.5 to 10 A / dm 2
(Energization time) 1 to 20 seconds
中間層の形成後、中間層の上に厚み1〜10μmの極薄銅層を以下の条件で電気めっきすることにより形成し、キャリア付銅箔を製造した。
・極薄銅層
銅濃度:30〜120g/L
H2SO4濃度:20〜120g/L
電解液温度:20〜80℃
電流密度:10〜100A/dm2
After forming the intermediate layer, an ultrathin copper layer having a thickness of 1 to 10 μm was formed on the intermediate layer by electroplating under the following conditions to produce a copper foil with a carrier.
-Ultrathin copper layer Copper concentration: 30-120 g / L
H 2 SO 4 concentration: 20 to 120 g / L
Electrolyte temperature: 20-80 ° C
Current density: 10 to 100 A / dm 2
2.キャリア付銅箔の評価
上記のようにして得られたキャリア付銅箔について、以下の方法で各評価を実施した。
<酸化物の組成並びにスピネル型構造を有する酸化物が中間層に存在することの判定>
キャリア付銅箔について、JIS C 6471(方法A)に準拠して極薄銅層をキャリアから剥がした。続いて、キャリアの中間層側の表面について、以下の条件によってXPSによる表面からの深さ方向分析によって深さ方向(x:単位nm)の各金属元素、酸素、炭素の濃度を測定した。同じ深さに前述のスピネル型構造を有する酸化物の構成元素と同じ元素と酸素とが存在する場合、スピネル型構造を有する酸化物が中間層に存在すると判定した。なお、xの値が大きいほど、各種原子濃度の測定位置が表面から深い(遠い)ことを意味する。なお、深さ方向(x:単位nm)の各種原子濃度の測定間隔は0.18〜0.30nm(SiO2換算)とするとよい。本発明においては、深さ方向の金属の原子濃度を0.28nm(SiO2換算)間隔で測定した(スパッタリング時間で、0.1分おきに測定した)。
(XPS分析条件)
・装置:XPS測定装置(アルバックファイ社、型式5600MC)
・到達真空度:3.8×10-7Pa
・X線:単色AlKαまたは非単色MgKα、エックス線出力300W、検出面積800μmφ、試料と検出器のなす角度45°
・イオン線:イオン種Ar+、加速電圧3kV、掃引面積3mm×3mm、スパッタリングレート2.8nm/min(SiO2換算)
そして、スピネル型構造を有する酸化物が中間層に存在すると判定した場合、表1のXPSによるスピネル型構造を有する酸化物の有無判定は「有り」とした。また、スピネル型構造を有する酸化物が中間層に存在しないと判定した場合、表1のXPSによるスピネル型構造を有する酸化物の有無判定は「無し」とした。
なお、酸化物の結晶構造をX線回折(XRD)によっても特定した。X線回折(XRD)によって酸化物の結晶構造を特定する際には、中間層の厚みをX線回折(XRD)の測定に十分となるように中間層の厚みを調整(すなわち厚みが不十分な実施例については厚くした後に測定した)した。
2. Evaluation of copper foil with carrier The copper foil with carrier obtained as described above was evaluated by the following methods.
<Determination of oxide composition and presence of oxide having spinel structure in intermediate layer>
About the copper foil with a carrier, the ultra-thin copper layer was peeled off from the carrier based on JISC6471 (method A). Subsequently, the concentration of each metal element, oxygen, and carbon in the depth direction (x: unit nm) was measured on the surface on the intermediate layer side of the carrier by the depth direction analysis from the surface by XPS under the following conditions. When the same element and oxygen as the constituent elements of the oxide having the spinel structure were present at the same depth, it was determined that the oxide having the spinel structure was present in the intermediate layer. In addition, it means that the measurement position of various atomic concentration is deep (far) from the surface, so that the value of x is large. Note that the measurement interval of various atomic concentrations in the depth direction (x: unit nm) is preferably 0.18 to 0.30 nm (in terms of SiO 2 ). In the present invention, the atomic concentration of the metal in the depth direction was measured at intervals of 0.28 nm (SiO 2 conversion) (measured every 0.1 minutes by sputtering time).
(XPS analysis conditions)
・ Device: XPS measuring device (ULVAC-PHI, Model 5600MC)
・ Achieving vacuum: 3.8 × 10 −7 Pa
X-ray: Monochromatic AlKα or non-monochromatic MgKα, X-ray output 300 W, detection area 800 μmφ, angle between sample and detector 45 °
Ion beam: ion species Ar + , acceleration voltage 3 kV, sweep area 3 mm × 3 mm, sputtering rate 2.8 nm / min (in terms of SiO 2 )
When it was determined that the oxide having the spinel structure exists in the intermediate layer, the presence / absence determination of the oxide having the spinel structure by XPS in Table 1 was “present”. When it was determined that the oxide having the spinel structure was not present in the intermediate layer, the presence / absence determination of the oxide having the spinel structure by XPS in Table 1 was “None”.
Note that the crystal structure of the oxide was also identified by X-ray diffraction (XRD). When specifying the oxide crystal structure by X-ray diffraction (XRD), the thickness of the intermediate layer is adjusted so that the thickness of the intermediate layer is sufficient for X-ray diffraction (XRD) measurement (ie, the thickness is insufficient). In this example, the thickness was measured after the thickness was increased).
<酸化物の組成ならびに電気伝導性酸化物が中間層に存在することの判定>
キャリア付銅箔について、JIS C 6471(方法A)に準拠して極薄銅層をキャリアから剥がした。続いて、キャリアの中間層側の表面について、以下の条件によってXPSによる表面からの深さ方向分析によって深さ方向(x:単位nm)の各金属元素、酸素、炭素の濃度を測定した。同じ深さに前述の電気伝導性酸化物の構成元素と同じ元素と酸素とが存在する場合、電気伝導性酸化物が中間層に存在すると判定した。なお、xの値が大きいほど、各種原子濃度の測定位置が表面から深い(遠い)ことを意味する。なお、深さ方向(x:単位nm)の各種原子濃度の測定間隔は0.18〜0.30nm(SiO2換算)とするとよい。本発明においては、深さ方向の金属の原子濃度を0.28nm(SiO2換算)間隔で測定した(スパッタリング時間で、0.1分おきに測定した)。
(XPS分析条件)
・装置:XPS測定装置(アルバックファイ社、型式5600MC)
・到達真空度:3.8×10-7Pa
・X線:単色AlKαまたは非単色MgKα、エックス線出力300W、検出面積800μmφ、試料と検出器のなす角度45°
・イオン線:イオン種Ar+、加速電圧3kV、掃引面積3mm×3mm、スパッタリングレート2.8nm/min(SiO2換算)
そして、電気伝導性酸化物が中間層に存在すると判定した場合、表1のXPSによる電気伝導性酸化物の有無判定は「有り」とした。また、電気伝導性酸化物が中間層に存在しないと判定した場合、表1のXPSによる電気伝導性酸化物の有無判定は「無し」とした。
<Determination of oxide composition and presence of electrically conductive oxide in intermediate layer>
About the copper foil with a carrier, the ultra-thin copper layer was peeled off from the carrier based on JISC6471 (method A). Subsequently, the concentration of each metal element, oxygen, and carbon in the depth direction (x: unit nm) was measured on the surface on the intermediate layer side of the carrier by the depth direction analysis from the surface by XPS under the following conditions. When the same element and oxygen as the constituent elements of the above-described electrically conductive oxide exist at the same depth, it was determined that the electrically conductive oxide was present in the intermediate layer. In addition, it means that the measurement position of various atomic concentration is deep (far) from the surface, so that the value of x is large. Note that the measurement interval of various atomic concentrations in the depth direction (x: unit nm) is preferably 0.18 to 0.30 nm (in terms of SiO 2 ). In the present invention, the atomic concentration of the metal in the depth direction was measured at intervals of 0.28 nm (SiO 2 conversion) (measured every 0.1 minutes by sputtering time).
(XPS analysis conditions)
・ Device: XPS measuring device (ULVAC-PHI, Model 5600MC)
・ Achieving vacuum: 3.8 × 10 −7 Pa
X-ray: Monochromatic AlKα or non-monochromatic MgKα, X-ray output 300 W, detection area 800 μmφ, angle between sample and detector 45 °
Ion beam: ion species Ar + , acceleration voltage 3 kV, sweep area 3 mm × 3 mm, sputtering rate 2.8 nm / min (in terms of SiO 2 )
When it was determined that the electrically conductive oxide was present in the intermediate layer, the presence / absence determination of the electrically conductive oxide by XPS in Table 1 was “present”. In addition, when it was determined that the electrically conductive oxide was not present in the intermediate layer, the presence / absence determination of the electrically conductive oxide by XPS in Table 1 was “None”.
<酸化物の電気伝導度>
前述の電気伝導性酸化物が中間層に存在することの判定で「有り」との判定になった場合には、当該判定のためのXPS測定で検出された元素で構成される電気伝導性酸化物の電気伝導度の過去の報告値(文献値)を採用した。
<Electrical conductivity of oxide>
If it is determined that the above-mentioned electrically conductive oxide is present in the intermediate layer, the presence of the element detected in the XPS measurement for the determination is determined as “present”. The past reported value (document value) of the electrical conductivity of the object was adopted.
<酸化物の構造>
前述の電気伝導性酸化物が中間層に存在することの判定で「有り」との判定になった場合には、当該判定のためのXPS測定で検出された元素で構成される電気伝導性酸化物の構造として過去に報告されている構造を採用した。
<Oxide structure>
If it is determined that the above-mentioned electrically conductive oxide is present in the intermediate layer, the presence of the element detected in the XPS measurement for the determination is determined as “present”. The structure reported in the past was adopted as the structure of the object.
<中間層のA元素濃度、B元素濃度及び酸素濃度>
キャリア付銅箔について、JIS C 6471(方法A)に準拠して極薄銅層をキャリアから剥がした。続いて、キャリアの中間層側の表面について、以下の条件によってXPSによる表面からの深さ方向分析によって深さ方向(x:単位nm)の電気伝導性酸化物が存在する中間層からの深さK(nm)を測定した。さらに、当該中間層からの深さK(nm)におけるA元素(Co、Li、Cu、Ni、Mg、Fe、Sn、Ti、Zn、Mn、Mo、Ca、V、Pb、Ge、Cd、Hg、Sr、Al、W、Be)の濃度a、B元素(Mg、Zn、V、Ga、Rh、Ni、In、Co、Mn、Al、Fe、Cr)の濃度b、及び、酸素濃度cを測定した。なお、xの値が大きいほど、各種原子濃度の測定位置が表面から深い(遠い)ことを意味する。なお、深さ方向(x:単位nm)の各種原子濃度の測定間隔は0.18〜0.30nm(SiO2換算)とするとよい。本発明においては、深さ方向の金属の原子濃度を0.28nm(SiO2換算)間隔で測定した(スパッタリング時間で、0.1分おきに測定した)。
(XPS分析条件)
・装置:XPS測定装置(アルバックファイ社、型式5600MC)
・到達真空度:3.8×10-7Pa
・X線:単色AlKαまたは非単色MgKα、エックス線出力300W、検出面積800μmφ、試料と検出器のなす角度45°
・イオン線:イオン種Ar+、加速電圧3kV、掃引面積3mm×3mm、スパッタリングレート2.8nm/min(SiO2換算)
そして、A元素、B元素、酸素の何れもが検出された場合には、表のXPSによるA元素、B元素、酸素の有無判定欄に「有り」と記載した。また、A元素、B元素、酸素の少なくとも一つが検出されなかった場合には、表のXPSによるA元素、B元素、酸素の有無判定欄に「無し」と記載した。
<E=C−0.3×D>
キャリア付銅箔について、JIS C 6471(方法A)に準拠して極薄銅層をキャリアから剥がした。続いて、キャリアの中間層側の表面について、以下の条件によってXPSによる表面からの深さ方向分析によって前記中間層表面からの深さ方向分析の区間[0、1.0]において、C=∫i(x)dx/(∫e(x)dx +∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫i(x)dx + ∫j(x)dx+ ∫k(x)dx)とし、D=(∫e(x)dx +∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫k(x)dx)/(∫e(x)dx +∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫i(x)dx + ∫j(x)dx+ ∫k(x)dx)とし、E=C−0.3×Dとして、Eの値を算出した。
なお、xの値が大きいほど、各種原子濃度の測定位置が表面から深い(遠い)ことを意味する。なお、深さ方向(x:単位nm)の各種原子濃度の測定間隔は0.18〜0.30nm(SiO2換算)とするとよい。本発明においては、深さ方向の金属の原子濃度を0.28nm(SiO2換算)間隔で測定した(スパッタリング時間で、0.1分おきに測定した)。
(XPS分析条件)
・装置:XPS測定装置(アルバックファイ社、型式5600MC)
・到達真空度:3.8×10-7Pa
・X線:単色AlKαまたは非単色MgKα、エックス線出力300W、検出面積800μmφ、試料と検出器のなす角度45°
・イオン線:イオン種Ar+、加速電圧3kV、掃引面積3mm×3mm、スパッタリングレート2.8nm/min(SiO2換算)
<A element concentration, B element concentration and oxygen concentration of the intermediate layer>
About the copper foil with a carrier, the ultra-thin copper layer was peeled off from the carrier based on JISC6471 (method A). Subsequently, with respect to the surface on the intermediate layer side of the carrier, the depth from the intermediate layer where the conductive oxide in the depth direction (x: unit nm) is present by the depth analysis from the surface by XPS under the following conditions. K (nm) was measured. Furthermore, element A (Co, Li, Cu, Ni, Mg, Fe, Sn, Ti, Zn, Mn, Mo, Ca, V, Pb, Ge, Cd, Hg at a depth K (nm) from the intermediate layer. , Sr, Al, W, Be) concentration a, B element (Mg, Zn, V, Ga, Rh, Ni, In, Co, Mn, Al, Fe, Cr) concentration b, and oxygen concentration c. It was measured. In addition, it means that the measurement position of various atomic concentration is deep (far) from the surface, so that the value of x is large. Note that the measurement interval of various atomic concentrations in the depth direction (x: unit nm) is preferably 0.18 to 0.30 nm (in terms of SiO 2 ). In the present invention, the atomic concentration of the metal in the depth direction was measured at intervals of 0.28 nm (SiO 2 conversion) (measured every 0.1 minutes by sputtering time).
(XPS analysis conditions)
・ Device: XPS measuring device (ULVAC-PHI, Model 5600MC)
・ Achieving vacuum: 3.8 × 10 −7 Pa
X-ray: Monochromatic AlKα or non-monochromatic MgKα, X-ray output 300 W, detection area 800 μmφ, angle between sample and detector 45 °
Ion beam: ion species Ar + , acceleration voltage 3 kV, sweep area 3 mm × 3 mm, sputtering rate 2.8 nm / min (in terms of SiO 2 )
When all of the A element, B element, and oxygen were detected, “present” was written in the presence / absence determination column for the A element, B element, and oxygen by XPS in the table. Further, when at least one of A element, B element, and oxygen was not detected, “None” was described in the presence / absence determination column of A element, B element, and oxygen by XPS in the table.
<E = C-0.3 × D>
About the copper foil with a carrier, the ultra-thin copper layer was peeled off from the carrier based on JISC6471 (method A). Subsequently, for the surface on the intermediate layer side of the carrier, in the section [0, 1.0] of the depth direction analysis from the surface of the intermediate layer by the depth direction analysis from the surface by XPS under the following conditions, C = ∫ i (x) dx / (∫e (x) dx + ∫f (x) dx + ∫g (x) dx + ∫h (x) dx + ∫i (x) dx + ∫j (x) dx + ∫k (x) dx) and D = (∫e (x) dx + ∫f (x) dx + ∫g (x) dx + ∫h (x) dx + ∫k (x) dx) / (∫e ( x) dx + ∫ f (x) dx + ∫ g (x) dx + ∫ h (x) dx + ∫ i (x) dx + ∫ j (x) dx + ∫ k (x) dx), E = C The value of E was calculated as −0.3 × D.
In addition, it means that the measurement position of various atomic concentration is deep (far) from the surface, so that the value of x is large. Note that the measurement interval of various atomic concentrations in the depth direction (x: unit nm) is preferably 0.18 to 0.30 nm (in terms of SiO 2 ). In the present invention, the atomic concentration of the metal in the depth direction was measured at intervals of 0.28 nm (SiO 2 conversion) (measured every 0.1 minutes by sputtering time).
(XPS analysis conditions)
・ Device: XPS measuring device (ULVAC-PHI, Model 5600MC)
・ Achieving vacuum: 3.8 × 10 −7 Pa
X-ray: Monochromatic AlKα or non-monochromatic MgKα, X-ray output 300 W, detection area 800 μmφ, angle between sample and detector 45 °
Ion beam: ion species Ar + , acceleration voltage 3 kV, sweep area 3 mm × 3 mm, sputtering rate 2.8 nm / min (in terms of SiO 2 )
<極薄銅層の厚み>
作製したキャリア付銅箔の極薄銅層の厚みの測定は、FIB-SIMを用いて極薄銅層の断面を観察(倍率:10000〜30000倍)することにより行った。極薄銅層の断面において、30μm間隔で5箇所、極薄銅層の厚みを測定し、平均値を求めた。そして、前記平均値を極薄銅層の厚みとした。
<Thickness of ultrathin copper layer>
The thickness of the ultrathin copper layer of the produced copper foil with carrier was measured by observing the cross section of the ultrathin copper layer using FIB-SIM (magnification: 10,000 to 30,000 times). In the cross section of the ultrathin copper layer, the thickness of the ultrathin copper layer was measured at five locations at intervals of 30 μm, and the average value was obtained. And the said average value was made into the thickness of an ultra-thin copper layer.
<剥離強度>
キャリア付銅箔を極薄銅層側をBT樹脂(トリアジン−ビスマレイミド系樹脂、三菱瓦斯化学株式会社製)に、大気中、圧力:20kgf/cm2、220℃×2時間の条件下で熱圧着させて貼り付けた。続いて、ロードセルにてキャリア側を引っ張り、90°剥離法(JIS C 6471 8.1)に準拠して剥離強度を測定した。また、熱圧着の温度のみ300℃で異なる以外は、上記と同様の試験を行い、剥離強度を測定した。さらに、上記樹脂との加熱圧着前の各試料についても、同様に剥離強度を測定しておいた。また、それらの熱圧着前後における剥離強度の変化率(%)も算出した。熱圧着前後における剥離強度の変化率(%)は以下の式で算出した。
熱圧着前後における剥離強度の変化率(%)=((熱圧着後における剥離強度(N/m))−(熱圧着前における剥離強度(N/m)))/(熱圧着前における剥離強度(N/m))
<Peel strength>
Heat the copper foil with a carrier to the BT resin (triazine-bismaleimide resin, manufactured by Mitsubishi Gas Chemical Co., Ltd.) in the atmosphere under pressure of 20 kgf / cm 2 and 220 ° C. × 2 hours. Crimped and pasted. Subsequently, the carrier side was pulled with a load cell, and the peel strength was measured according to the 90 ° peel method (JIS C 6471 8.1). Moreover, except that only the temperature of thermocompression bonding was different at 300 ° C., a test similar to the above was performed to measure the peel strength. Further, the peel strength was measured in the same manner for each sample before thermocompression bonding with the resin. Further, the rate of change (%) in peel strength before and after thermocompression bonding was also calculated. The rate of change (%) in peel strength before and after thermocompression bonding was calculated by the following formula.
Change rate of peel strength before and after thermocompression bonding (%) = ((peel strength after thermocompression bonding (N / m)) − (peel strength before thermocompression bond (N / m))) / (peel strength before thermocompression bonding) (N / m))
<エッチング性>
キャリア付銅箔をポリイミド基板に貼り付けて220℃で2時間加熱圧着し、その後、極薄銅層をキャリアから剥がした。続いて、ポリイミド基板上の極薄銅層表面に、感光性レジストを塗布した後、露光工程により50本のL/S=5μm/5μm幅の回路を印刷し、銅層の不要部分を除去するエッチング処理を以下のスプレーエッチング条件にて行った。
(スプレーエッチング条件)
エッチング液:塩化第二鉄水溶液(ボーメ度:40度)
液温:60℃
スプレー圧:2.0MPa
エッチングを続け、回路トップ幅が4μmになるまでの時間を測定し、さらにそのときの回路ボトム幅(底辺Xの長さ)及びエッチングファクターを評価した。エッチングファクターは、末広がりにエッチングされた場合(ダレが発生した場合)、回路が垂直にエッチングされたと仮定した場合の、銅箔上面からの垂線と樹脂基板との交点からのダレの長さの距離をaとした場合において、このaと銅箔の厚さbとの比:b/aを示すものであり、この数値が大きいほど、傾斜角は大きくなり、エッチング残渣が残らず、ダレが小さくなることを意味する。図1に、回路パターンの幅方向の横断面の模式図と、該模式図を用いたエッチングファクターの計算方法の概略とを示す。このXは回路上方からのSEM観察により測定し、エッチングファクター(EF=b/a)を算出した。なお、a=(X(μm)−4(μm))/2で計算した。エッチングファクターは回路中の12点を測定し、平均値をとったものを示す。これにより、エッチング性の良否を簡単に判定できる。また、12点のエッチングファクターの標準偏差も算出することで、エッチングにより形成した回路の直線性の良し悪しを判定することができる。
本発明では、エッチングファクターが5以上をエッチング性:○、2.5以上5未満をエッチング性:△、2.5未満或いは算出不可または回路形成不可をエッチング性:×、剥離不可をエッチング性:−と評価した。また、エッチングファクターの標準偏差は小さいほど回路の直線性が良好であると云える。エッチングファクターの標準偏差が1.0未満を直線性:○、1.0超を直線性:×と判断した。
結果を表1及び表2に示す。
<Etching property>
A copper foil with a carrier was attached to a polyimide substrate and heat-pressed at 220 ° C. for 2 hours, and then the ultrathin copper layer was peeled off from the carrier. Subsequently, after applying a photosensitive resist to the surface of the ultra-thin copper layer on the polyimide substrate, 50 L / S = 5 μm / 5 μm wide circuits are printed by an exposure process to remove unnecessary portions of the copper layer. The etching process was performed under the following spray etching conditions.
(Spray etching conditions)
Etching solution: Ferric chloride aqueous solution (Baume degree: 40 degrees)
Liquid temperature: 60 ° C
Spray pressure: 2.0 MPa
Etching was continued, the time until the circuit top width reached 4 μm was measured, and the circuit bottom width (the length of the base X) and the etching factor at that time were evaluated. The etching factor is the distance of the length of sagging from the intersection of the vertical line from the upper surface of the copper foil and the resin substrate, assuming that the circuit is etched vertically when sagging at the end (when sagging occurs) Is a ratio of a to the thickness b of the copper foil: b / a, and the larger the value, the larger the inclination angle, and the etching residue does not remain and the sagging is small. It means to become. FIG. 1 shows a schematic diagram of a cross section in the width direction of a circuit pattern and an outline of a method for calculating an etching factor using the schematic diagram. This X was measured by SEM observation from above the circuit, and the etching factor (EF = b / a) was calculated. In addition, it calculated by a = (X (μm) −4 (μm)) / 2. The etching factor is obtained by measuring 12 points in the circuit and taking an average value. Thereby, the quality of etching property can be determined easily. Also, by calculating the standard deviation of the 12 etching factors, it is possible to determine whether the linearity of the circuit formed by etching is good or bad.
In the present invention, an etching factor of 5 or more is etching property: ◯, 2.5 or more and less than 5 is etching property: Δ, less than 2.5 or calculation is impossible or circuit formation is impossible. -Evaluated. Moreover, it can be said that the smaller the standard deviation of the etching factor, the better the linearity of the circuit. When the standard deviation of the etching factor was less than 1.0, the linearity was evaluated as ◯, and when the etching factor exceeded 1.0, the linearity was determined as ×.
The results are shown in Tables 1 and 2.
Claims (15)
前記中間層がスピネル型結晶構造を有する酸化物を有するキャリア付銅箔。 A copper foil with a carrier comprising a copper foil carrier, an intermediate layer laminated on the copper foil carrier, and an ultrathin copper layer laminated on the intermediate layer,
The copper foil with a carrier in which the said intermediate | middle layer has the oxide which has a spinel type crystal structure.
前記中間層表面からの深さ方向分析の区間[0、1.0]において、∫i(x)dx/(∫e(x)dx +∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫i(x)dx + ∫j(x)dx+ ∫k(x)dx)が10%以上を満たす請求項1〜3のいずれかに記載のキャリア付銅箔。 When peeling between the intermediate layer / ultra-thin copper layer, e (x) is the atomic concentration (%) of chromium in the depth direction (x: unit nm) obtained from the depth direction analysis from the surface by XPS. The atomic concentration (%) of zinc is f (x), the atomic concentration (%) of nickel is g (x), the atomic concentration (%) of copper is h (x), and the total atomic concentration of oxygen (% ) Is i (x), carbon atomic concentration (%) is j (x), and other atomic concentration (%) is k (x).
In the interval [0, 1.0] of the depth direction analysis from the intermediate layer surface, ∫i (x) dx / (∫e (x) dx + ∫f (x) dx + ∫g (x) dx + The copper foil with a carrier according to any one of claims 1 to 3, wherein ∫h (x) dx + ∫i (x) dx + ∫j (x) dx + ∫k (x) dx) satisfies 10% or more.
前記中間層表面からの深さ方向分析の区間[0、1.0]において、∫i(x)dx/(∫e(x)dx +∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫i(x)dx + ∫j(x)dx+ ∫k(x)dx)が15%以上を満たす請求項4に記載のキャリア付銅箔。 When peeling between the intermediate layer / ultra-thin copper layer, e (x) is the atomic concentration (%) of chromium in the depth direction (x: unit nm) obtained from the depth direction analysis from the surface by XPS. The atomic concentration (%) of zinc is f (x), the atomic concentration (%) of nickel is g (x), the atomic concentration (%) of copper is h (x), and the total atomic concentration of oxygen (% ) Is i (x), carbon atomic concentration (%) is j (x), and other atomic concentration (%) is k (x).
In the interval [0, 1.0] of the depth direction analysis from the intermediate layer surface, ∫i (x) dx / (∫e (x) dx + ∫f (x) dx + ∫g (x) dx + The copper foil with a carrier according to claim 4, wherein ∫h (x) dx + ∫i (x) dx + + j (x) dx + ∫k (x) dx) satisfies 15% or more.
前記中間層表面からの深さ方向分析の区間[0、1.0]において、C=∫i(x)dx/(∫e(x)dx +∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫i(x)dx + ∫j(x)dx+ ∫k(x)dx)とし、D=(∫e(x)dx +∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫k(x)dx)/(∫e(x)dx +∫f(x)dx + ∫g(x)dx + ∫h(x)dx + ∫i(x)dx + ∫j(x)dx+ ∫k(x)dx)とし、E=C−0.3×Dとすると、Eが0%以上を満たす請求項1〜5のいずれかに記載のキャリア付銅箔。 When peeling between the intermediate layer / ultra-thin copper layer, e (x) is the atomic concentration (%) of chromium in the depth direction (x: unit nm) obtained from the depth direction analysis from the surface by XPS. The atomic concentration (%) of zinc is f (x), the atomic concentration (%) of nickel is g (x), the atomic concentration (%) of copper is h (x), and the total atomic concentration of oxygen (% ) Is i (x), carbon atomic concentration (%) is j (x), and other atomic concentration (%) is k (x).
In the interval [0, 1.0] in the depth direction analysis from the intermediate layer surface, C = ∫i (x) dx / (∫e (x) dx + ∫f (x) dx + ∫g (x) dx + ∫h (x) dx + ∫i (x) dx + ∫j (x) dx + ∫k (x) dx) and D = (∫e (x) dx + ∫f (x) dx + ∫g (x) dx + ∫h (x) dx + ∫k (x) dx) / (∫e (x) dx + ∫f (x) dx + ∫g (x) dx + ∫h (x) dx + ∫ i (x) dx + ∫j (x) dx + ∫k (x) dx), where E = C−0.3 × D, E satisfies 0% or more. Copper foil with carrier.
前記キャリア付銅箔と絶縁基板とを積層する工程、
前記キャリア付銅箔と絶縁基板とを積層した後に、前記キャリア付銅箔のキャリアを剥がす工程を経て銅張積層板を形成し、
その後、セミアディティブ法、サブトラクティブ法、パートリーアディティブ法又はモディファイドセミアディティブ法のいずれかの方法によって、回路を形成する工程を含むプリント配線板の製造方法。 Preparing a copper foil with a carrier and an insulating substrate according to any one of claims 1 to 10,
Laminating the copper foil with carrier and an insulating substrate;
After laminating the carrier-attached copper foil and the insulating substrate, a copper-clad laminate is formed through a step of peeling the carrier of the carrier-attached copper foil,
Then, the manufacturing method of a printed wiring board including the process of forming a circuit by any method of a semi-additive method, a subtractive method, a partly additive method, or a modified semi-additive method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013043589A JP6274736B2 (en) | 2013-03-06 | 2013-03-06 | Copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and printed wiring board manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013043589A JP6274736B2 (en) | 2013-03-06 | 2013-03-06 | Copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and printed wiring board manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014172184A true JP2014172184A (en) | 2014-09-22 |
JP6274736B2 JP6274736B2 (en) | 2018-02-07 |
Family
ID=51693976
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013043589A Active JP6274736B2 (en) | 2013-03-06 | 2013-03-06 | Copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and printed wiring board manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6274736B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180035566A (en) | 2016-09-29 | 2018-04-06 | 제이엑스금속주식회사 | Metal foil with carrier, laminate, method of manufacturing printed wiring board, method of manufacturing electronic device and method of manufacturing metal foil with carrier |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63162848A (en) * | 1986-12-25 | 1988-07-06 | Hitachi Chem Co Ltd | Production of ceramic coated copper foil |
JP2005076091A (en) * | 2003-09-01 | 2005-03-24 | Furukawa Circuit Foil Kk | Method of producing ultrathin copper foil with carrier, and ultrathin copper foil with carrier produced by the production method |
JP2006022406A (en) * | 2000-09-22 | 2006-01-26 | Furukawa Circuit Foil Kk | Ultrathin copper foil with carrier |
JP2006240074A (en) * | 2005-03-03 | 2006-09-14 | Nippon Denkai Kk | Composite copper foil and its production method |
JP2007007937A (en) * | 2005-06-29 | 2007-01-18 | Furukawa Circuit Foil Kk | Very thin copper foil with carrier, flexible copper-clad polyimide laminate, and flexible printed wiring polyimide board |
JP2007186797A (en) * | 2007-02-15 | 2007-07-26 | Furukawa Circuit Foil Kk | Method for producing ultrathin copper foil with carrier, ultrathin copper foil produced by the production method, and printed circuit board, multilayer printed circuit board and wiring board for chip on film using the ultrathin copper foil |
WO2012046804A1 (en) * | 2010-10-06 | 2012-04-12 | 古河電気工業株式会社 | Copper foil and manufacturing method therefor, copper foil with carrier and manufacturing method therefor, printed circuit board, and multilayer printed circuit board |
-
2013
- 2013-03-06 JP JP2013043589A patent/JP6274736B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63162848A (en) * | 1986-12-25 | 1988-07-06 | Hitachi Chem Co Ltd | Production of ceramic coated copper foil |
JP2006022406A (en) * | 2000-09-22 | 2006-01-26 | Furukawa Circuit Foil Kk | Ultrathin copper foil with carrier |
JP2005076091A (en) * | 2003-09-01 | 2005-03-24 | Furukawa Circuit Foil Kk | Method of producing ultrathin copper foil with carrier, and ultrathin copper foil with carrier produced by the production method |
JP2006240074A (en) * | 2005-03-03 | 2006-09-14 | Nippon Denkai Kk | Composite copper foil and its production method |
JP2007007937A (en) * | 2005-06-29 | 2007-01-18 | Furukawa Circuit Foil Kk | Very thin copper foil with carrier, flexible copper-clad polyimide laminate, and flexible printed wiring polyimide board |
JP2007186797A (en) * | 2007-02-15 | 2007-07-26 | Furukawa Circuit Foil Kk | Method for producing ultrathin copper foil with carrier, ultrathin copper foil produced by the production method, and printed circuit board, multilayer printed circuit board and wiring board for chip on film using the ultrathin copper foil |
WO2012046804A1 (en) * | 2010-10-06 | 2012-04-12 | 古河電気工業株式会社 | Copper foil and manufacturing method therefor, copper foil with carrier and manufacturing method therefor, printed circuit board, and multilayer printed circuit board |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180035566A (en) | 2016-09-29 | 2018-04-06 | 제이엑스금속주식회사 | Metal foil with carrier, laminate, method of manufacturing printed wiring board, method of manufacturing electronic device and method of manufacturing metal foil with carrier |
Also Published As
Publication number | Publication date |
---|---|
JP6274736B2 (en) | 2018-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5228130B1 (en) | Copper foil with carrier | |
JP5156873B1 (en) | Copper foil with carrier | |
JP5922227B2 (en) | Copper foil with carrier, method for producing copper foil with carrier, and method for producing printed wiring board | |
JP5481553B1 (en) | Copper foil with carrier | |
JP5997080B2 (en) | Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board | |
JP5364838B1 (en) | Copper foil with carrier | |
JP6134569B2 (en) | Copper foil with carrier, method for producing copper foil with carrier, method for producing copper-clad laminate, and method for producing printed wiring board | |
JP2011210994A (en) | Copper foil for printed wiring board, and laminate using the same | |
JP5298252B1 (en) | Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board | |
JP2011014647A (en) | Copper foil for printed wiring board | |
JP5903446B2 (en) | Copper foil with carrier, method for producing copper foil with carrier, method for producing printed wiring board, method for producing printed circuit board, method for producing copper-clad laminate, and method for producing electronic device | |
JP6140480B2 (en) | Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board | |
JP2014172183A (en) | Carrier-provided copper foil, printed wiring board, printed circuit board, copper-clad laminate and method of producing printed wiring board | |
JP6274736B2 (en) | Copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and printed wiring board manufacturing method | |
JP5247929B1 (en) | Copper foil with carrier, method for producing copper foil with carrier, printed wiring board and printed circuit board | |
JP6140481B2 (en) | Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board | |
JP5854872B2 (en) | Copper foil with carrier, method for producing copper foil with carrier, laminate and method for producing printed wiring board | |
JP2014193591A (en) | Carrier-fitted copper foil, method for manufacturing carrier-fitted copper foil, printed wiring board, printed circuit board, copper-clad laminate sheet, and method for manufacturing printed wiring board | |
JP4799710B1 (en) | Copper foil for printed wiring boards | |
JP6176948B2 (en) | Copper foil with carrier, method for producing copper foil with carrier, method for producing printed circuit board, method for producing copper-clad laminate, and method for producing printed wiring board | |
JP6271134B2 (en) | Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board | |
JP6329727B2 (en) | Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board | |
JP6246486B2 (en) | Copper foil with carrier and method for producing the same, method for producing copper-clad laminate and method for producing printed wiring board | |
JP6336142B2 (en) | Copper foil with carrier, method for producing copper foil with carrier, method for producing printed circuit board, method for producing copper-clad laminate, and method for producing printed wiring board | |
JP2014024315A (en) | Copper foil with carrier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160209 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20161216 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170110 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20170313 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170511 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20171017 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171128 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20171212 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180109 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6274736 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |