JP2014165339A - Method of processing laminated wafer - Google Patents
Method of processing laminated wafer Download PDFInfo
- Publication number
- JP2014165339A JP2014165339A JP2013035057A JP2013035057A JP2014165339A JP 2014165339 A JP2014165339 A JP 2014165339A JP 2013035057 A JP2013035057 A JP 2013035057A JP 2013035057 A JP2013035057 A JP 2013035057A JP 2014165339 A JP2014165339 A JP 2014165339A
- Authority
- JP
- Japan
- Prior art keywords
- wafer
- sealing resin
- polishing
- semiconductor device
- grinding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 24
- 238000007789 sealing Methods 0.000 claims abstract description 65
- 229920005989 resin Polymers 0.000 claims abstract description 52
- 239000011347 resin Substances 0.000 claims abstract description 52
- 238000005498 polishing Methods 0.000 claims abstract description 44
- 239000006061 abrasive grain Substances 0.000 claims abstract description 8
- 239000002002 slurry Substances 0.000 claims abstract description 7
- 239000007788 liquid Substances 0.000 claims description 4
- 239000004065 semiconductor Substances 0.000 description 58
- 235000012431 wafers Nutrition 0.000 description 51
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 1
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Landscapes
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
Abstract
Description
本発明は、ウエーハ上に複数のチップが配設された積層ウエーハの加工方法に関する。 The present invention relates to a method for processing a laminated wafer in which a plurality of chips are arranged on a wafer.
半導体デバイスの製造プロセスにおいては、半導体ウエーハの表面にストリートと呼ばれる分割予定ラインによって区画された各領域にICやLSI等のデバイスが形成される。そして、分割予定ラインに沿って半導体ウエーハをチップに分割することで、個々の半導体デバイスが製造される。このようにして製造された半導体デバイスは各種電気機器に広く利用されている。 In the manufacturing process of semiconductor devices, devices such as ICs and LSIs are formed in each region partitioned by dividing lines called streets on the surface of the semiconductor wafer. Then, individual semiconductor devices are manufactured by dividing the semiconductor wafer into chips along the planned dividing lines. The semiconductor device manufactured in this way is widely used in various electric appliances.
近年、電気機器の小型化・薄型化に伴い半導体デバイスパッケージも小型化・薄型化が要求され、実装の高密度化が要求されている。複数の半導体デバイスを一つのパッケージに集積する手法の一つに複数の半導体デバイスチップを縦方向に積層して実装する三次元実装がある。 In recent years, along with miniaturization and thinning of electrical equipment, semiconductor device packages are also required to be miniaturized and thin, and higher density of packaging is required. One technique for integrating a plurality of semiconductor devices in one package is a three-dimensional mounting in which a plurality of semiconductor device chips are stacked in the vertical direction and mounted.
従来の三次元実装では、ワイヤボンディングを用いて半導体デバイスチップ間、或いは半導体デバイスチップとインターポーザとを接続していた。ワイヤボンディングによる接続では、その配線長分インダクタンス等が大きくなるので高速での信号のやり取りには向かないという問題があるとともに、ワイヤが半導体デバイスチップ等に触れないようにチップを積層する必要があるため小型化が難しい等の問題がある。 In conventional three-dimensional packaging, wire bonding is used to connect between semiconductor device chips or between a semiconductor device chip and an interposer. In connection by wire bonding, inductance and the like increase by the length of the wiring, so that there is a problem that it is not suitable for high-speed signal exchange, and it is necessary to stack chips so that wires do not touch semiconductor device chips and the like Therefore, there are problems such as difficulty in miniaturization.
近年、新たな三次元実装技術として、ワイヤの代わりにSi貫通電極(Through−Silicon Via:TSV)を用いた実装技術が注目されている。TSV技術を用いると、配線長がワイヤより短いため配線抵抗やインダクタンスが大幅に低減でき、消費電力も大幅に低減できるというメリットがある。 In recent years, as a new three-dimensional mounting technique, a mounting technique using a through-silicon via (TSV) instead of a wire has attracted attention. When the TSV technology is used, since the wiring length is shorter than that of the wire, the wiring resistance and inductance can be greatly reduced, and the power consumption can be greatly reduced.
一方、半導体デバイスチップの積層方法としては次のような積層技術が開発されつつある。第1の積層方法は、複数の半導体デバイスウエーハ同士を積層し、積層した半導体デバイスウエーハを貫く貫通電極を形成してウエーハ同士を接続する積層方法である(Wafer on Wafer:WOW)。 On the other hand, as a method for laminating semiconductor device chips, the following laminating techniques are being developed. The first stacking method is a stacking method in which a plurality of semiconductor device wafers are stacked, a through electrode passing through the stacked semiconductor device wafers is formed, and the wafers are connected to each other (Wafer on Wafer: WOW).
第2の積層方法は、個片化した半導体デバイスチップを半導体デバイスウエーハ上にバンプ等を介してマウントする方法である(Chip on Wafer:COW)。これらの積層方法で積層したウエーハを分割することで、個々の積層デバイスチップが製造される。 The second stacking method is a method of mounting individual semiconductor device chips on a semiconductor device wafer via bumps (Chip on Wafer: COW). Individual laminated device chips are manufactured by dividing a wafer laminated by these lamination methods.
COW方法では、半導体デバイスウエーハ上に積層された半導体デバイスチップを保護するために、半導体デバイスウエーハ上に積層された半導体デバイスチップは封止樹脂で封止される。その後、半導体デバイスウエーハ上のデバイスと半導体デバイスチップとはSi貫通電極(TSV)により接続される。 In the COW method, in order to protect the semiconductor device chip stacked on the semiconductor device wafer, the semiconductor device chip stacked on the semiconductor device wafer is sealed with a sealing resin. Thereafter, the device on the semiconductor device wafer and the semiconductor device chip are connected by a Si through electrode (TSV).
更に、封止樹脂面上に半導体デバイスチップ及び/又は半導体デバイスウエーハ上の半導体デバイスに接続される配線が形成される。必要に応じて、新たな半導体デバイスウエーハや半導体デバイスチップが最初の半導体デバイスウエーハ上に積層された半導体デバイスチップ上に積層される。 Furthermore, wiring connected to the semiconductor device chip and / or the semiconductor device on the semiconductor device wafer is formed on the sealing resin surface. If necessary, a new semiconductor device wafer or semiconductor device chip is stacked on the semiconductor device chip stacked on the first semiconductor device wafer.
樹脂封止面上に配線層を形成するには、封止樹脂の上面が平坦である必要がある。しかし、例えば特許文献2に開示されるような研削装置を用いて封止樹脂を研削しても、封止樹脂の被研削面にはスクラッチ等が形成されてしまい、平坦化が難しいという問題がある。 In order to form the wiring layer on the resin sealing surface, the top surface of the sealing resin needs to be flat. However, for example, even if the sealing resin is ground using a grinding apparatus as disclosed in Patent Document 2, scratches and the like are formed on the surface to be ground of the sealing resin, and it is difficult to flatten the surface. is there.
本発明はこのような点に鑑みてなされたものであり、その目的とするところは、封止樹脂を高精度に平坦化しうる積層ウエーハの加工方法を提供することである。 The present invention has been made in view of these points, and an object of the present invention is to provide a method for processing a laminated wafer that can planarize a sealing resin with high accuracy.
本発明によると、ウエーハと、交差する複数の分割予定ラインで区画された該ウエーハの表面上の各領域にそれぞれ積層された複数のチップと、を備えた積層ウエーハの加工方法であって、該積層ウエーハの表面側を封止樹脂で封止する封止ステップと、該封止ステップを実施した後、該積層ウエーハの該封止樹脂面に砥粒を含む研磨スラリーを供給しつつ研磨パッドで該封止樹脂を研磨して平坦化する研磨ステップと、を備えたことを特徴とする積層ウエーハの加工方法が提供される。 According to the present invention, there is provided a method for processing a laminated wafer, comprising: a wafer; and a plurality of chips respectively laminated on each region on the surface of the wafer partitioned by a plurality of intersecting scheduled lines. A sealing step for sealing the surface side of the laminated wafer with a sealing resin, and after performing the sealing step, a polishing pad containing abrasive grains is supplied to the sealing resin surface of the laminated wafer with a polishing pad. And a polishing step for polishing and flattening the sealing resin.
好ましくは、本発明の積層ウエーハの加工方法は、該封止ステップを実施した後、該研磨ステップを実施する前に、砥粒を含まない研削液を該積層ウエーハの該封止樹脂面に供給しつつ、該封止樹脂面を研削砥石を有する研削手段で研削して該封止樹脂を所定の厚みへと薄化する研削ステップを更に備えている。 Preferably, in the method for processing a laminated wafer according to the present invention, after the sealing step is performed, before the polishing step is performed, a grinding liquid not containing abrasive grains is supplied to the sealing resin surface of the laminated wafer. However, the method further includes a grinding step of thinning the sealing resin to a predetermined thickness by grinding the sealing resin surface with a grinding means having a grinding wheel.
本発明の積層ウエーハの加工方法には、封止樹脂面に砥粒を含む研磨スラリーを供給しながら研磨パッドで封止樹脂の研磨を実施するため、封止樹脂面にスクラッチを形成することなく封止樹脂面を高精度に平坦化できる。 In the method for processing a laminated wafer according to the present invention, since the sealing resin is polished with the polishing pad while supplying the polishing slurry containing abrasive grains to the sealing resin surface, no scratch is formed on the sealing resin surface. The sealing resin surface can be flattened with high accuracy.
請求項2記載の発明によると、研磨ステップを実施する前に封止樹脂を所定厚みへと研削によって薄化するため、積層チップの厚みを薄化できる上、研削によって所定厚みへと薄化しておくことで、研磨のみで加工するよりも加工時間を短縮できる。 According to the second aspect of the present invention, since the sealing resin is thinned to a predetermined thickness by grinding before the polishing step is performed, the thickness of the laminated chip can be reduced, and the thickness is reduced to the predetermined thickness by grinding. By setting, processing time can be shortened compared with processing only by polishing.
以下、本発明の実施形態を図面を参照して詳細に説明する。図1を参照すると、本発明実施形態に係る積層ウエーハ11の斜視図が示されている。積層ウエーハ11は、交差する複数の分割予定ライン5により区画された各領域にIC、LSI等の半導体デバイス15が形成された半導体デバイスウエーハ13と、半導体デバイスウエーハ13の各半導体デバイス15上に接着剤等により固定された複数の半導体デバイスチップ17とにより構成されている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Referring to FIG. 1, a perspective view of a laminated
図2の断面図に示すように、各半導体デバイスチップ17は半導体デバイス19をその表面に有している。半導体デバイスウエーハ13は、複数の半導体デバイス15が形成された表面13aと、裏面13bとを有している。
As shown in the cross-sectional view of FIG. 2, each
本発明の積層ウエーハの加工方法では、まず図2に示すように、積層ウエーハ11の表面側を封止樹脂21で封止する封止ステップを実施する。封止樹脂21としては、エポキシ樹脂等の有機樹脂を採用可能である。或いは、有機樹脂中に無機フィラーが分散された封止樹脂でもよい。
In the laminated wafer processing method of the present invention, first, as shown in FIG. 2, a sealing step of sealing the surface side of the laminated
封止ステップを実施した後、封止樹脂面を研削砥石を有する研削ユニット(研削手段)で研削して封止樹脂を所定の厚みへと薄化する研削ステップを実施する。この研削ステップについて、図3を参照して説明する。 After performing the sealing step, a grinding step is performed in which the sealing resin surface is ground by a grinding unit (grinding means) having a grinding wheel to thin the sealing resin to a predetermined thickness. This grinding step will be described with reference to FIG.
図3において、符号10は研削装置の研削ユニット(研削手段)であり、研削ユニット10はモータにより回転駆動されるスピンドル12と、スピンドル12の先端に固定されたホイールマウント14と、ホイールマウント14に装着された研削ホイール16とを含んでいる。研削ホイール16は、環状基台18の下端に複数の研削砥石20が固着されて構成されている。
In FIG. 3,
この研削ステップでは、研削装置のチャックテーブル22で積層ウエーハ11の半導体デバイスウエーハ13側を吸引保持し、封止樹脂21を露出させる。研削液供給ノズル24から砥粒を含まない純水等の研削液を積層ウエーハ11の封止樹脂21の面上に供給しつつ、チャックテーブル22を例えば300rpmで矢印a方向に回転させるとともに、研削ホイール16を矢印b方向に6000rpmで回転させながら、図示しない研削ユニット送り機構を作動して研削砥石20を封止樹脂21の表面に接触させる。
In this grinding step, the semiconductor device wafer 13 side of the laminated
そして、研削ホイール16を所定の研削送り速度で下方に所定量研削送りして、封止樹脂21の研削を実施する。接触式又は非接触式の厚み測定ゲージによって積層ウエーハ11の厚みを測定しながら封止樹脂21を所望の厚みに研削する。
Then, the grinding
封止樹脂21の研削を実施すると、封止樹脂21の被研削面にはスクラッチ等が形成されることがあり、被研削面の十分な平坦度は得られない。よって、本発明の積層ウエーハの加工方法では、研削ステップを実施した後、封止樹脂21の研削面を研磨パッドで研磨する研磨ステップを実施する。
When the sealing
この研磨ステップは、図4に示すような研磨ユニット26を使用して、化学的機械研磨(CMP)により実施する。図4において、研磨ユニット26は、回転駆動されるスピンドル28と、スピンドル28の先端に固定されたホイールマウント30と、ホイールマウント30に装着された研磨ホイール32とを含んでいる。
This polishing step is performed by chemical mechanical polishing (CMP) using a
研磨ホイール32は、基台34の下端部に不織布等の研磨パッド36を接着して構成されている。スピンドル28、ホイールマウント30及び研磨ホイール32の基台34に渡りスラリー供給穴が形成されている。
The
研磨ステップでは、研磨装置のチャックテーブル38で積層ウエーハ11の半導体デバイスウエーハ13側を吸引保持し、研削が実施された封止樹脂21を露出させる。研磨ホイール32のスラリー供給穴を介して研磨パッド36にスラリーを供給しつつ、チャックテーブル38を矢印a方向に回転させるとともに、研磨ホイール32の研磨パッド36を封止樹脂21の研削面に当接させて、研磨ホイール32を矢印b方向に回転させながら封止樹脂21の研削面を研磨して封止樹脂21を平坦化する。
In the polishing step, the semiconductor device wafer 13 side of the laminated
研磨パッド36に供給するスラリーとしては、例えば純水に砥粒としてのシリカ、セリア、アルミナ、ジルコニア等が混入されたものを使用する。この研磨ステップを実施すると、研削により封止樹脂21の研削面にスクラッチが形成されていても研磨によりスクラッチを除去することができ、封止樹脂21の表面を高精度に平坦化することができる。
As the slurry supplied to the
CMPで封止樹脂21を平坦化した後、Si貫通電極(TSV)を形成して、半導体デバイスウエーハ13の半導体デバイス15と半導体デバイスチップ17の半導体デバイス19とを接続する。更に、封止樹脂21上に配線を形成する。
After planarizing the sealing
この配線は、半導体デバイスウエーハ13上に積層された半導体デバイスチップ17に対応して新たな半導体デバイスチップや半導体デバイスウエーハを積層したとき、この積層された半導体デバイスチップ又は半導体デバイスウエーハのデバイスと下側の半導体デバイス15,19とを接続するために使用される。
When the new semiconductor device chip or the semiconductor device wafer is stacked corresponding to the
上述した実施形態では、半導体デバイスウエーハの各半導体デバイス上に半導体デバイスチップを積層して積層ウエーハを構成しているが、積層ウエーハはこれに限定されるものではなく、デバイスを有しないインターポーザーウエーハ上に半導体デバイスチップが積層されたものを含むものである。 In the embodiment described above, the semiconductor device chip is laminated on each semiconductor device of the semiconductor device wafer to constitute the laminated wafer. However, the laminated wafer is not limited to this, and the interposer wafer having no device is used. This includes a semiconductor device chip stacked thereon.
10 研削ユニット
11 積層ウエーハ
15 半導体デバイス
16 研削ホイール
17 半導体デバイスチップ
19 半導体デバイス
20 研削砥石
21 封止樹脂
26 研磨ユニット
32 研磨ホイール
36 研磨パッド
DESCRIPTION OF
Claims (2)
該積層ウエーハの表面側を封止樹脂で封止する封止ステップと、
該封止ステップを実施した後、該積層ウエーハの該封止樹脂面に砥粒を含む研磨スラリーを供給しつつ研磨パッドで該封止樹脂を研磨して平坦化する研磨ステップと、
を備えたことを特徴とする積層ウエーハの加工方法。 A method for processing a laminated wafer, comprising: a wafer; and a plurality of chips each laminated on each area on the surface of the wafer divided by a plurality of intersecting scheduled lines,
A sealing step of sealing the surface side of the laminated wafer with a sealing resin;
After carrying out the sealing step, a polishing step for polishing and planarizing the sealing resin with a polishing pad while supplying a polishing slurry containing abrasive grains to the sealing resin surface of the laminated wafer;
A method for processing a laminated wafer, comprising:
砥粒を含まない研削液を該積層ウエーハの該封止樹脂面に供給しつつ、該封止樹脂面を研削砥石を有する研削手段で研削して該封止樹脂を所定の厚みへと薄化する研削ステップを更に備えた、請求項1記載の積層ウエーハの加工方法。 After performing the sealing step and before performing the polishing step,
While supplying a grinding liquid not containing abrasive grains to the sealing resin surface of the laminated wafer, the sealing resin surface is ground to a predetermined thickness by grinding the sealing resin surface with a grinding means having a grinding wheel. The method for processing a laminated wafer according to claim 1, further comprising a grinding step.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013035057A JP2014165339A (en) | 2013-02-25 | 2013-02-25 | Method of processing laminated wafer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013035057A JP2014165339A (en) | 2013-02-25 | 2013-02-25 | Method of processing laminated wafer |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014165339A true JP2014165339A (en) | 2014-09-08 |
Family
ID=51615685
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013035057A Pending JP2014165339A (en) | 2013-02-25 | 2013-02-25 | Method of processing laminated wafer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2014165339A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018018923A (en) * | 2016-07-27 | 2018-02-01 | 株式会社ディスコ | Processing method |
KR20180134759A (en) | 2017-06-09 | 2018-12-19 | 토와 가부시기가이샤 | Abrasive apparatus and method for manufacturing abrasive article |
US20190131148A1 (en) * | 2017-10-30 | 2019-05-02 | Taiwan Semiconductor Manufacturing Company Ltd. | Planarization apparatus and planarization method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001274182A (en) * | 2000-01-19 | 2001-10-05 | Sanyu Rec Co Ltd | Method of manufacturing electronic component |
JP2001339011A (en) * | 2000-03-24 | 2001-12-07 | Shinko Electric Ind Co Ltd | Semiconductor device and its manufacturing method |
JP2009218288A (en) * | 2008-03-07 | 2009-09-24 | Fujifilm Corp | Polishing solution and chemical mechanical polishing method using the same |
JP2010040932A (en) * | 2008-08-07 | 2010-02-18 | Ebara Corp | Method and device for flattening base material including resin material |
JP2011166058A (en) * | 2010-02-15 | 2011-08-25 | Fujitsu Ltd | Grinding method, manufacturing method of electronic device, and grinding device |
-
2013
- 2013-02-25 JP JP2013035057A patent/JP2014165339A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001274182A (en) * | 2000-01-19 | 2001-10-05 | Sanyu Rec Co Ltd | Method of manufacturing electronic component |
JP2001339011A (en) * | 2000-03-24 | 2001-12-07 | Shinko Electric Ind Co Ltd | Semiconductor device and its manufacturing method |
JP2009218288A (en) * | 2008-03-07 | 2009-09-24 | Fujifilm Corp | Polishing solution and chemical mechanical polishing method using the same |
JP2010040932A (en) * | 2008-08-07 | 2010-02-18 | Ebara Corp | Method and device for flattening base material including resin material |
JP2011166058A (en) * | 2010-02-15 | 2011-08-25 | Fujitsu Ltd | Grinding method, manufacturing method of electronic device, and grinding device |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018018923A (en) * | 2016-07-27 | 2018-02-01 | 株式会社ディスコ | Processing method |
KR20180134759A (en) | 2017-06-09 | 2018-12-19 | 토와 가부시기가이샤 | Abrasive apparatus and method for manufacturing abrasive article |
US20190131148A1 (en) * | 2017-10-30 | 2019-05-02 | Taiwan Semiconductor Manufacturing Company Ltd. | Planarization apparatus and planarization method thereof |
CN109719616A (en) * | 2017-10-30 | 2019-05-07 | 台湾积体电路制造股份有限公司 | Planarize board and its flattening method |
US10879077B2 (en) * | 2017-10-30 | 2020-12-29 | Taiwan Semiconductor Manufacturing Company Ltd. | Planarization apparatus and planarization method thereof |
CN109719616B (en) * | 2017-10-30 | 2023-10-13 | 台湾积体电路制造股份有限公司 | Flattening machine and flattening method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6504750B2 (en) | Wafer processing method | |
JP5943544B2 (en) | Manufacturing method of laminated device and laminated device | |
US8765579B2 (en) | Semiconductor wafer processing method | |
JP2009021462A (en) | Method for processing wafer | |
JP2009010178A (en) | Method of processing wafer | |
US20120080138A1 (en) | Method of processing plate-shaped body having rugged surface | |
JP2012209480A (en) | Processing method of electrode-embedded wafer | |
JP2014165339A (en) | Method of processing laminated wafer | |
JP5995616B2 (en) | Wafer processing method | |
JP5748198B2 (en) | Manufacturing method of laminated device and laminated device | |
JP2014053351A (en) | Wafer processing method | |
JP2014053352A (en) | Wafer processing method | |
KR20150140218A (en) | Method for forming stacked wafer | |
TWI805872B (en) | Wafer processing method | |
JP7313775B2 (en) | Wafer processing method | |
US20120244663A1 (en) | Semiconductor device chip mounting method | |
JP2014053355A (en) | Wafer processing method | |
JP2014053357A (en) | Wafer processing method | |
JP2014053353A (en) | Wafer processing method | |
JP2014053350A (en) | Wafer processing method | |
JP2014053354A (en) | Wafer processing method | |
JP2014053348A (en) | Wafer processing method | |
JP7313968B2 (en) | Wafer processing method | |
JP2018056459A (en) | Processing method for wafer | |
US20230234183A1 (en) | Method of processing workpiece |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20151218 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161004 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20170404 |