[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2014163016A - Multi-axis stitched substrate for reinforcement, woven fabric for reinforcement and carbon fiber reinforcement composite material, and method for producing them - Google Patents

Multi-axis stitched substrate for reinforcement, woven fabric for reinforcement and carbon fiber reinforcement composite material, and method for producing them Download PDF

Info

Publication number
JP2014163016A
JP2014163016A JP2013035855A JP2013035855A JP2014163016A JP 2014163016 A JP2014163016 A JP 2014163016A JP 2013035855 A JP2013035855 A JP 2013035855A JP 2013035855 A JP2013035855 A JP 2013035855A JP 2014163016 A JP2014163016 A JP 2014163016A
Authority
JP
Japan
Prior art keywords
carbon fiber
reinforcement
reinforcing
composite material
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013035855A
Other languages
Japanese (ja)
Inventor
Noriyoshi Terasawa
知徳 寺澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2013035855A priority Critical patent/JP2014163016A/en
Publication of JP2014163016A publication Critical patent/JP2014163016A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)
  • Nonwoven Fabrics (AREA)
  • Woven Fabrics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a multi-axis stitched substrate for reinforcement and a woven fabric for reinforcement, which are capable of being successfully impregnated even with a highly viscous resin composition and providing a carbon fiber reinforcement composite material in which performances and qualities are greatly improved.SOLUTION: The multi-axis stitched substrate for reinforcement includes a plurality of sheets in which: tow-like carbon fiber yarns comprising carbon fibers having a single fiber fineness of 1.2-2.4 dtex are arranged in parallel; the sheets are laminated in such a manner that the directions of the tow-like carbon fiber yarns included in respective sheets have different angles with respect to a reference direction; and the sheets are integrated with a stitch yarn. The woven fabric for reinforcement includes tow-like carbon fiber yarns comprising carbon fibers having a single fiber fineness of 1.2-2.4 dtex arranged as warp and weft.

Description

本発明は、炭素繊維糸条からなる強化用多軸ステッチ基材、強化用織物およびそれを用いた炭素繊維強化複合材料とその製造方法に関する。   The present invention relates to a reinforcing multiaxial stitch base material composed of carbon fiber yarns, a reinforcing fabric, a carbon fiber reinforced composite material using the same, and a method for producing the same.

炭素繊維は、高い比強度および比弾性率を有するため、この炭素繊維を強化繊維としてマトリクス樹脂を含浸させた繊維強化複合材料は、優れた力学特性および軽量性に優れることから、スポーツ用途や航空・宇宙用途に加え、自動車や土木・建築、圧力容器および風車ブレードなどの一般産業用途にも幅広く展開されつつあり、更なる高性能化の要請が高い。これら繊維強化複合材料の代表的な成形方法として、オートクレーブ成形法、圧縮成形法、Resin Transfer Molding法(RTM法)およびVaRTM(Vacuum assisted ResinTransfer Molding)法等が知られている。   Since carbon fibers have high specific strength and specific elastic modulus, fiber reinforced composite materials impregnated with a matrix resin using the carbon fibers as reinforcing fibers have excellent mechanical properties and light weight. -In addition to space applications, it is being widely deployed in general industrial applications such as automobiles, civil engineering / architecture, pressure vessels, and windmill blades, and there is a strong demand for higher performance. As typical molding methods for these fiber-reinforced composite materials, an autoclave molding method, a compression molding method, a Resin Transfer Molding method (RTM method), a VaRTM (Vacuum Assisted Resin Transfer Molding) method, and the like are known.

オートクレーブ成形法では、例えば、炭素繊維糸条からなる経糸と緯糸で形成された平織り、綾織り、朱子織りなどの織物に、マトリクス樹脂を含浸させ、プリプレグとし、この織物プリプレグを成形型に積層し、必要に応じてバッグ材で覆い、それをオートクレーブで加熱・加圧(一次真空引き)して繊維強化複合材料を成形する。このオートクレーブ成形法は、プリプレグを用い加圧成形(一次真空引き)することにより、ボイドが少なく極めて信頼性の高い繊維強化複合材料が得られる利点があるが、長い成形工程を有することから、この織物を用いて製造される従来の繊維強化複合材料は、非常に高価な基材となる傾向があった。   In the autoclave molding method, for example, a woven fabric such as plain weave, twill weave, and satin weave formed of carbon fiber yarns is impregnated with a matrix resin to form a prepreg, and this woven prepreg is laminated on a mold. If necessary, it is covered with a bag material, and heated and pressurized (primary vacuum drawing) with an autoclave to form a fiber reinforced composite material. This autoclave molding method has the advantage that a highly reliable fiber-reinforced composite material with few voids can be obtained by pressure molding (primary vacuum drawing) using a prepreg, but this has a long molding process. Conventional fiber reinforced composite materials produced using woven fabrics tend to be very expensive substrates.

また、繊維強化複合材料は等方性を有していると、機械特性等がさらに向上するため、例えば、少なくとも4枚のプリプレグを積層する際、炭素繊維糸が0°/90°/±45°の交差角度をもつように配置する疑似等方積層方式が用いられている。この場合、±45°層については、そこに使用されるプリプレグは、0°/90°層に用いられるプリプレグをバイアスに切断して用いられる。このカット工程が必要である上、切断によるプリプレグのロスが大きいため、このようにして得られる疑似等方性を有する繊維強化複合材料は、高価になる傾向があった。   Further, if the fiber reinforced composite material has isotropic properties, the mechanical properties and the like are further improved. For example, when at least four prepregs are laminated, the carbon fiber yarn is 0 ° / 90 ° / ± 45. A quasi-isotropic stacking method is used so as to have a crossing angle of °. In this case, for the ± 45 ° layer, the prepreg used there is used by cutting the prepreg used for the 0 ° / 90 ° layer into a bias. Since this cutting step is necessary and the loss of the prepreg due to cutting is large, the fiber-reinforced composite material having pseudo-isotropic properties obtained in this way tends to be expensive.

一方、生産性に優れている繊維強化複合材料の代表的な成形法としては、圧縮成形法、RTM法やVaRTM法等が挙げられる。RTM法やVaRTM法では、マトリクス樹脂が含浸されていないドライな複数枚の強化繊維基材を成形型の中に配置し、これに低粘度の液状マトリクス樹脂を注入することにより、強化繊維基材にマトリクス樹脂を含浸させ、その状態で硬化させることにより繊維強化複合材料を成形する。この場合、ドライな状態でも取り扱いが可能な強化繊維基材として、例えば、織物等の基材を用いる必要がある。通常の織物は、強化繊維糸条をたてよこ二方向に配した織組織を有する。そのため、経糸と緯糸の交錯点で強化繊維糸条に屈曲(クリンプ)が発生するが、このクリンプにより強化繊維の真直性が低下するため、一般的に織物は一方向繊維基材を使用した場合と比べ力学特性が劣る傾向にあった。   On the other hand, typical molding methods for fiber-reinforced composite materials having excellent productivity include compression molding, RTM, and VaRTM. In the RTM method and the VaRTM method, a plurality of dry reinforcing fiber bases not impregnated with a matrix resin are placed in a mold, and a low-viscosity liquid matrix resin is injected into the reinforcing fiber base material. A fiber reinforced composite material is formed by impregnating the resin with a matrix resin and curing in that state. In this case, it is necessary to use a substrate such as a woven fabric as the reinforcing fiber substrate that can be handled even in a dry state. A normal woven fabric has a woven structure in which reinforcing fiber yarns are arranged in two vertical directions. For this reason, the reinforcing fiber yarns are bent (crimped) at the intersection of the warp and weft yarns, but the straightness of the reinforcing fibers is reduced by this crimping. The mechanical properties tended to be inferior.

このような問題を解決する一手段として、一方向に平行に配列された強化繊維群の複数層を互いに異なる角度で積層された状態でステッチ糸により一体化された強化用多軸ステッチ基材の使用が注目されている。この基材は、強化繊維のクリンプを低減し、得られる繊維強化複合材料の力学特性を向上できるとともに、一枚で疑似等方などの性能を有しているため、前記バイアスの切断作業や、積層作業も必要としない点で、低コスト基材として期待されている。   As one means for solving such a problem, a reinforcing multiaxial stitch base material integrated with stitch yarns in a state where a plurality of layers of reinforcing fiber groups arranged in parallel in one direction are laminated at different angles from each other is used. The use is drawing attention. This base material can reduce the crimping of the reinforcing fibers, improve the mechanical properties of the resulting fiber-reinforced composite material, and has performance such as quasi-isotropy in a single sheet, so the bias cutting operation, It is expected to be a low-cost substrate because it does not require lamination work.

特許文献1には、トウ状の炭素繊維糸の複数本が互いに並列に配列されてなるシートの複数枚が、それぞれのシートの炭素繊維糸の配列方向が、基準とする方向に対して、異なる角度をもって積層された状態で、ステッチ糸で一体化された強化用多軸ステッチ基材に関する技術が記載されており、この基材とマトリクス樹脂とから、安価で、補強繊維である炭素繊維が均一に分散しているCFRPが得られるとしている。尚、特許文献1には炭素繊維糸を構成する炭素フィラメント(単繊維)の直径が5乃至15ミクロンの範囲にある事が好ましいと記載されている。しかし、単繊維の直径が大きくなると繊維の曲げ剛性が高くなるため、得られる強化繊維基材のドレープ性が低減し、型への追従性が悪くなるため、炭素繊維強化複合材料補強繊維中の炭素繊維が均一に分散しなくなるという問題がある。一方、単繊維の直径が小さいと、強化用多軸ステッチ基材、更には炭素繊維糸条にマトリクス樹脂を含浸させて炭素繊維強化複合材料を製造する際の含浸性が悪くなるという問題がある。   In Patent Document 1, a plurality of sheets in which a plurality of tow-like carbon fiber yarns are arranged in parallel with each other, the arrangement direction of the carbon fiber yarns of each sheet is different from the reference direction. Describes technology related to multi-axis stitch base material for reinforcement integrated with stitch yarn in a state of being laminated at an angle, and carbon fiber, which is a reinforcing fiber, is uniform from this base material and matrix resin. It is said that CFRP dispersed in the above can be obtained. Patent Document 1 describes that the diameter of the carbon filament (single fiber) constituting the carbon fiber yarn is preferably in the range of 5 to 15 microns. However, as the diameter of the single fiber increases, the bending rigidity of the fiber increases, so the drapeability of the resulting reinforcing fiber substrate decreases and the followability to the mold deteriorates. There is a problem that carbon fibers are not uniformly dispersed. On the other hand, when the diameter of the single fiber is small, there is a problem that the impregnation property when the carbon fiber reinforced composite material is produced by impregnating the matrix resin into the reinforcing multiaxial stitch base material and further the carbon fiber yarn is deteriorated. .

また、炭素繊維が交錯して構成される多軸強化用多軸ステッチ基材や織物などの強化繊維基材においては、交錯点における繊維同士の摩擦が強化繊維基材の均一性に大きく影響しており、交錯点での滑りが悪かったり、不均一だったりすると、目開きや厚み斑といった欠陥が生じる問題がある。   In the case of reinforced fiber base materials such as multi-axis reinforcing base materials for multiaxial reinforcement and woven fabrics composed of carbon fibers mixed together, the friction between the fibers at the crossing point greatly affects the uniformity of the reinforced fiber base materials. If the slip at the crossing point is bad or non-uniform, there is a problem that defects such as opening of the eyes and thick spots occur.

特許第4534409号Japanese Patent No. 4534409

本発明の課題は、トウ状の炭素繊維糸条の複数本が互いに並列に配列されてなるシートの複数枚が、それぞれのシートに含まれる炭素繊維糸条の配列方向が、基準とする方向に対して、異なる角度をもって積層された状態で、ステッチ糸で一体化された強化用多軸ステッチ基材において、目開きや厚み斑といった欠陥が無く、マトリクス樹脂の含浸性に優れ、生産コストを低くできる強化用多軸ステッチ基材、それを用いた炭素繊維強化複合材料およびその製造方法を提供することにある。また、トウ状の炭素繊維糸条の経糸および緯糸からなる織物において、目開きや厚み斑といった欠陥が無く、変形性に優れ、マトリクス樹脂の含浸性に優れた強化用織物、それを用いた炭素繊維強化複合材料およびその製造方法を提供することにある。   An object of the present invention is to provide a plurality of sheets of tow-like carbon fiber yarns arranged in parallel with each other, and the arrangement direction of the carbon fiber yarns included in each sheet is in the direction as a reference. On the other hand, the reinforcing multi-axis stitch base material integrated with stitch yarn in a state of being laminated at different angles is free from defects such as openings and thickness irregularities, excellent in matrix resin impregnation, and low in production cost. An object of the present invention is to provide a reinforcing multiaxial stitch base material, a carbon fiber reinforced composite material using the same, and a method for producing the same. Further, in a woven fabric composed of warp and weft yarns of tow-like carbon fiber yarns, there are no defects such as openings and thickness spots, excellent deformability, and a reinforcing fabric excellent in matrix resin impregnation, carbon using the same The object is to provide a fiber-reinforced composite material and a method for producing the same.

本発明の第1の要旨は、単繊維の繊度が1.2〜2.4dtexである炭素繊維からなるトウ状の炭素繊維糸条を、複数本、並列に配置したシートを複数枚含み、それぞれのシートに含まれるトウ状の炭素繊維糸条の方向が、基準とする方向に対して、異なる角度をもって積層され、ステッチ糸で一体化された強化用多軸ステッチ基材である。
また、第2の要旨は、単繊維の繊度が1.2〜2.4dtexである炭素繊維からなるトウ状の炭素繊維糸条を経糸と緯糸として含む強化用織物である。
The first gist of the present invention includes a plurality of tow-like carbon fiber yarns made of carbon fibers having a single fiber fineness of 1.2 to 2.4 dtex, a plurality of sheets arranged in parallel, This is a reinforcing multiaxial stitch base material in which the directions of tow-like carbon fiber yarns included in the sheet are laminated at different angles with respect to the reference direction and integrated with stitch yarns.
The second gist is a reinforcing fabric including tow-like carbon fiber yarns made of carbon fibers having a single fiber fineness of 1.2 to 2.4 dtex as warps and wefts.

(強化用多軸ステッチ基材)
本発明の強化用多軸ステッチ基材は、配列方向が異なる炭素繊維糸条が交錯する点において、良好な滑り性を有するため、目開きや厚み斑といった欠陥を生じない。また、本発明の強化用多軸ステッチ基材によれば、マトリクス樹脂を含浸させて炭素繊維強化複合材料を製造する際の含浸性が優れるため、従来の技術によるステッチ基材に比べ、従来のマトリクス樹脂を用いる場合、含浸速度が速くなり生産性が向上する。また、従来技術では、ステッチ基材にマトリクス樹脂を含浸させる際、加熱して樹脂粘度を下げている場合があるが、本発明のステッチ基材を用いることによって、かかる加熱を省くことが可能となるなど生産性を上げることができる。更に、従来、新たなマトリクス樹脂組成を開発しても、樹脂粘度が高い場合には、使用できなかったが、本発明の強化用多軸ステッチ基材であれば、樹脂粘度が高い場合にも使用できるので、性能や品質が大幅に向上した炭素繊維強化複合材料を得ることが可能となる。
(Multi-axis stitch base material for reinforcement)
Since the reinforcing multiaxial stitch base material of the present invention has good slipperiness at the point where carbon fiber yarns having different arrangement directions cross each other, defects such as openings and thickness spots do not occur. Further, according to the reinforcing multiaxial stitch base material of the present invention, since the impregnation property when the carbon fiber reinforced composite material is produced by impregnating the matrix resin is excellent, compared with the conventional stitch base material, When the matrix resin is used, the impregnation speed is increased and the productivity is improved. In addition, in the prior art, when the matrix resin is impregnated in the stitch base material, the resin viscosity may be lowered by heating, but by using the stitch base material of the present invention, such heating can be omitted. Productivity can be improved. Furthermore, even if a new matrix resin composition has been developed in the past, it could not be used if the resin viscosity was high. Since it can be used, it becomes possible to obtain a carbon fiber reinforced composite material with greatly improved performance and quality.

(強化用織物)
また、本発明の強化用織物は、経糸と緯糸が交錯する点において、良好な滑り性を有するため、目開きや厚み斑といった欠陥が生じない。また本発明の強化用織物によれば、マトリクス樹脂を含浸させて炭素繊維強化複合材料を製造する際の含浸性が優れるため、従来の技術による強化用織物に比べ、従来のマトリクス樹脂を用いる場合、含浸速度が速くなり生産性が向上する。また、従来技術の強化用織物にマトリクス樹脂を含浸させる際、加熱して樹脂粘度を下げている場合には、かかる加熱を省くなど生産性を上げることができる。更に、従来、炭素繊維強化複合材料の性能を向上させる為に、新たなマトリクス樹脂組成を開発しても、樹脂粘度が高い為に使用できなかった樹脂でも本発明に係る強化用織物には適用することが可能となり、炭素繊維強化複合材料の性能や品質を大幅に向上させる事ができる。
(Reinforcing fabric)
Further, the reinforcing fabric of the present invention has good slipperiness at the point where warps and wefts intersect, so that defects such as mesh openings and thickness unevenness do not occur. Further, according to the reinforcing fabric of the present invention, since the impregnation property when the carbon fiber reinforced composite material is produced by impregnating the matrix resin is excellent, the conventional matrix resin is used compared to the reinforcing fabric by the conventional technique. As a result, the impregnation speed is increased and the productivity is improved. Moreover, when impregnating the matrix resin with the reinforcing fabric of the prior art, when the resin viscosity is lowered by heating, productivity can be improved by omitting such heating. Furthermore, in order to improve the performance of carbon fiber reinforced composite materials, even if a new matrix resin composition was developed, even resins that could not be used due to high resin viscosity were applied to the reinforcing fabric according to the present invention. And the performance and quality of the carbon fiber reinforced composite material can be greatly improved.

本発明の強化用多軸ステッチ基材は、単繊維の繊度が1.2〜2.4dtexである炭素繊維からなるトウ状の炭素繊維糸条を、複数本、並列に配置したシートを複数枚含み、それぞれのシートに含まれるトウ状の炭素繊維糸条の方向が、基準とする方向に対して、異なる角度をもって積層され、ステッチ糸で一体化された強化用多軸ステッチ基材であることが必要である。   The reinforcing multiaxial stitch base material of the present invention includes a plurality of tow-like carbon fiber yarns made of carbon fibers having a single fiber fineness of 1.2 to 2.4 dtex, and a plurality of sheets arranged in parallel. The tow-shaped carbon fiber yarns included in each sheet are laminated at different angles with respect to the reference direction, and are multiaxial stitch base materials for reinforcement integrated with stitch yarns. is necessary.

本発明の強化用多軸ステッチ基材の製造方法は、トウ状の炭素繊維糸条の複数本が互いに並列に配列されてなるシートを製造する工程と、該シートの複数毎を所望の角度に積層した状態でステッチ糸により一体化させる工程は、独立した場合と連続した場合のいずれを選択しても良い。   The method for producing a reinforcing multiaxial stitch base material according to the present invention comprises a step of producing a sheet in which a plurality of tow-like carbon fiber yarns are arranged in parallel with each other, and each of the plurality of sheets at a desired angle. The step of integrating the stitched yarns in the stacked state may be selected as either independent or continuous.

また、炭素繊維糸条の複数本が互いに並列に配列されてなるシートを製造する工程において、トウ状の炭素繊維糸条を幅方向に拡幅して使用することが好ましい。前記シートの目付けは特に限定は無く、一般的な50〜500g/mであることが好ましい。
前記シートの積層角度は任意の角度を選ぶ事ができ、シートに含まれる炭素繊維糸条の配列方向が、例えば、ステッチ糸が連続する方向を基準として0度、30度、45度、60度、90度の中から選ぶことができる。また、積層後に各シートがなす角度は、ステッチ糸が連続する方向を基準に対称となっていることが好ましい。
Moreover, in the process of manufacturing a sheet in which a plurality of carbon fiber yarns are arranged in parallel with each other, it is preferable to use the tow-like carbon fiber yarns in the width direction. The basis weight of the sheet is not particularly limited, and is preferably 50 to 500 g / m 2 in general.
The sheet stacking angle can be selected arbitrarily, and the arrangement direction of the carbon fiber yarns included in the sheet is, for example, 0 degree, 30 degrees, 45 degrees, 60 degrees with respect to the direction in which the stitch yarns continue. , You can choose from 90 degrees. Moreover, it is preferable that the angle which each sheet | seat makes after lamination | stacking is symmetrical on the basis of the direction where a stitch thread | yarn continues.

本発明の強化用多軸ステッチ基材に使用するステッチ糸は、いずれの材質でも良く、例えばポリエステル系樹脂、ポリアミド系樹脂、ポリオレフィン系樹脂からなる糸や、ビニロン繊維、炭素繊維、ガラス繊維、アラミド繊維などから選ぶことができる。   The stitch yarn used for the reinforcing multiaxial stitch base material of the present invention may be any material, for example, a yarn made of polyester resin, polyamide resin, polyolefin resin, vinylon fiber, carbon fiber, glass fiber, aramid You can choose from fibers.

本発明の強化用織物は、単繊維の繊度が1.2〜2.4dtexである炭素繊維からなるトウ状の炭素繊維糸条を経糸と緯糸とに含む強化用織物であることが必要である。その織組織は特に限定されるものではなく、平織り、綾織り、朱子織りなどを使用することができる。   The reinforcing fabric of the present invention needs to be a reinforcing fabric including tow-like carbon fiber yarns made of carbon fibers having a single fiber fineness of 1.2 to 2.4 dtex in warps and wefts. . The woven structure is not particularly limited, and plain weave, twill weave, satin weave and the like can be used.

本発明の強化用多軸ステッチ基材または強化用織物に使用するトウ状の炭素繊維糸条としては、単繊維繊度が1.2〜2.4dtexであることが必要である。単繊維繊度がこの範囲であると、強化用多軸ステッチ基材、更には炭素繊維糸条にマトリクス樹脂を含浸させて炭素繊維強化複合材料を製造する際の含浸性が良好で、得られる強化用多軸ステッチ基材のドレープ性が適度で、型への追従性が良好なものだ得られるので好ましい。   The tow-like carbon fiber yarn used for the reinforcing multiaxial stitch base material or reinforcing fabric of the present invention needs to have a single fiber fineness of 1.2 to 2.4 dtex. When the single fiber fineness is within this range, the reinforcement is obtained when the multiaxial stitch base material for reinforcement and the carbon fiber yarns are impregnated with a matrix resin to produce a carbon fiber reinforced composite material. This is preferable because the draping property of the multi-axis stitch base material for use is moderate and the following property to the mold is good.

また、炭素繊維糸条は単繊維の繊維軸に垂直な断面の真円度が0.7以上0.9以下であることが望ましい。真円度が0.7以上0.9以下であれば、炭素繊維の含有率を高くすることが可能となり、繊維強化複合材料の機械物性を維持できる。ここで、真円度は下記式(I)にて求められる値であって、Sは、単繊維の繊維軸に垂直な断面をSEM観察し、画像解析することにより得られる単繊維の断面積であり、Lは、同様に単繊維の断面の周長の長さである。
真円度 = 4πS/L (I)
The carbon fiber yarns preferably have a roundness of a cross section perpendicular to the fiber axis of the single fiber of 0.7 or more and 0.9 or less. If the roundness is 0.7 or more and 0.9 or less, the carbon fiber content can be increased, and the mechanical properties of the fiber-reinforced composite material can be maintained. Here, the roundness is a value obtained by the following formula (I), and S is a cross-sectional area of the single fiber obtained by SEM observation and image analysis of a cross section perpendicular to the fiber axis of the single fiber. And L is the length of the circumference of the cross section of the single fiber.
Roundness = 4πS / L 2 (I)

前記炭素繊維糸条の単繊維は、その表面に長手方向に延びる溝状の凹凸を複数有し、該単繊維の円周長さが2μmの範囲での最高部と最低部の高低差が10〜80nmであることが望ましい。前記高低差が10nmより小さいとマトリクス樹脂の含浸性を悪化させる可能性があり、本発明の硬化を低減させてしまう。また、前記高低差が80nmより大きいと炭素繊維糸条の収束性を低下させる傾向があり、本発明の強化用多軸ステッチ基材または強化用織物の品質を低下させる。   The single fiber of the carbon fiber yarn has a plurality of groove-like irregularities extending in the longitudinal direction on the surface thereof, and the height difference between the highest part and the lowest part in the range of the circumferential length of the single fiber is 2 μm is 10 It is desirable that it is ˜80 nm. If the height difference is smaller than 10 nm, the impregnation property of the matrix resin may be deteriorated, and the curing of the present invention is reduced. Further, if the height difference is larger than 80 nm, the convergence property of the carbon fiber yarn tends to be lowered, and the quality of the reinforcing multiaxial stitch base material or the reinforcing fabric of the present invention is lowered.

本発明で強化用多軸ステッチ基材または強化用織物に含浸させて炭素繊維強化複合材料を構成する樹脂として特に制限は無いが、熱硬化性樹脂組成物または、熱可塑性樹脂組成物であり、熱硬化性樹脂としては特に制限はないが、従来RTM成形やVaRTM成形で使用されている、例えば、エポキシ樹脂、フェノール樹脂、ビニルエステル樹脂、不飽和ポリエステル樹脂、シアネートエステル樹脂、ビスマレイミド樹脂、ベンゾオキサジン樹脂などが挙げられる。また、熱可塑性樹脂としては、特に制限はなく、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル、ポリスチレン、ABS樹脂、アクリル樹脂、塩化ビニル、ポリアミド6等のポリアミド、ポリカーボネート、ポリフェニレンエーテル、ポリエーテルスルフォン、ポリサルフォン、ポリエーテルイミド、ポリケトン、ポリエーテルケトン、ポリエーテルエーテルケトンなどを使用できる。また、これら各樹脂の変性体を用いてもよいし、複数種の樹脂をブレンドして用いてもよい。また、熱可塑性樹脂は、各種添加剤、フィラー、着色剤等を含んでいてもよい。   There is no particular limitation on the resin constituting the carbon fiber reinforced composite material by impregnating the reinforcing multiaxial stitch base material or the reinforcing fabric in the present invention, but a thermosetting resin composition or a thermoplastic resin composition, Although there is no restriction | limiting in particular as a thermosetting resin, For example, an epoxy resin, a phenol resin, a vinyl ester resin, an unsaturated polyester resin, a cyanate ester resin, a bismaleimide resin, a benzo which is conventionally used by RTM molding or VaRTM molding An oxazine resin etc. are mentioned. The thermoplastic resin is not particularly limited. Polyolefin such as polyethylene and polypropylene, polyester such as polyethylene terephthalate and polybutylene terephthalate, polystyrene, ABS resin, acrylic resin, polyamide such as vinyl chloride and polyamide 6, polycarbonate, polyphenylene Ether, polyethersulfone, polysulfone, polyetherimide, polyketone, polyetherketone, polyetheretherketone and the like can be used. Moreover, the modified body of these each resin may be used, and multiple types of resin may be blended and used. Further, the thermoplastic resin may contain various additives, fillers, colorants and the like.

本発明の強化用多軸ステッチ基材または強化用織物を用いた炭素繊維強化複合材料の製造方法としては、前記強化用多軸強化用多軸ステッチ基材を成形型内に配置し、前記強化用多軸ステッチ基材をバギングフイルムで覆い、前記成形型と前記バギングフイルムの間をシールしてキャビティを形成し、前記キャビティ内を減圧して、液状樹脂組成物を吸引・注入するVaRTM法を用いることができる。VaRTM法に用いるバギングフイルム、シール材には特に限定は無く、使用するマトリクス樹脂の種類に応じて耐熱性を有する材質などを選ぶ事ができる。また、必要に応じて樹脂の拡散を促進するフローメディアを用いることができる。樹脂の注入方式としては、成形品の任意の地点から同心円状に樹脂を拡散・含浸させる多点注入方式や、成形品の任意の辺から一方向に平行に樹脂を拡散・含浸させる辺注入方式など必要に応じた方式をとることができる。   As a method for producing a carbon fiber reinforced composite material using a reinforcing multiaxial stitch base material or a reinforcing fabric of the present invention, the multiaxial reinforcing base material for reinforcing multiaxial reinforcement is disposed in a mold, and the reinforcing A VaRTM method in which a multi-axis stitch base material is covered with a bagging film, a cavity is formed by sealing between the mold and the bagging film, the inside of the cavity is decompressed, and a liquid resin composition is sucked and injected. Can be used. There is no particular limitation on the bagging film and sealing material used in the VaRTM method, and a material having heat resistance can be selected according to the type of matrix resin used. Moreover, the flow media which accelerate | stimulate the spreading | diffusion of resin can be used as needed. As a resin injection method, a multi-point injection method in which resin is diffused and impregnated concentrically from any point of the molded product, and a side injection method in which resin is diffused and impregnated in parallel in one direction from any side of the molded product The method according to need can be taken.

また、本発明の強化用多軸ステッチ基材を用いた別の炭素繊維強化複合材料の製造方法としては、前記強化用多軸ステッチ基材を分割成形型内に配置し、分割型を閉じてキャビティを形成し、前記キャビティ内に液状樹脂組成物を注入させるRTM法やハイサイクルRTM法、ハイプレッシャーRTM法を用いることができる。   Further, as another method for producing a carbon fiber reinforced composite material using the reinforcing multiaxial stitch base material of the present invention, the reinforcing multiaxial stitch base material is disposed in a split mold, and the split mold is closed. An RTM method, a high cycle RTM method, or a high pressure RTM method in which a cavity is formed and a liquid resin composition is injected into the cavity can be used.

Claims (9)

単繊維の繊度が1.2〜2.4dtexである炭素繊維からなるトウ状の炭素繊維糸条を、複数本、並列に配置したシートを複数枚含み、それぞれのシートに含まれるトウ状の炭素繊維糸条の方向が、基準とする方向に対して、異なる角度をもって積層され、ステッチ糸で一体化された強化用多軸ステッチ基材。   A plurality of tow-like carbon fiber yarns made of carbon fibers having a single fiber fineness of 1.2 to 2.4 dtex, a plurality of sheets arranged in parallel, and the tow-like carbon contained in each sheet A reinforcing multiaxial stitch base material in which the directions of fiber yarns are laminated at different angles with respect to a reference direction and integrated with stitch yarns. 単繊維の繊度が1.2〜2.4dtexである炭素繊維からなるトウ状の炭素繊維糸条を経糸と緯糸として含む強化用織物。   A reinforcing fabric comprising tow-like carbon fiber yarns made of carbon fibers having a single fiber fineness of 1.2 to 2.4 dtex as warps and wefts. 熱硬化性樹脂組成物と請求項1に記載の強化用多軸ステッチ基材とを含む中間材を硬化してなる炭素繊維強化複合材料。   A carbon fiber reinforced composite material obtained by curing an intermediate material comprising a thermosetting resin composition and the reinforcing multiaxial stitch base material according to claim 1. 熱可塑性樹脂組成物と請求項1に記載の強化用多軸ステッチ基材とを含む炭素繊維強化複合材料。   A carbon fiber reinforced composite material comprising a thermoplastic resin composition and the multiaxial stitch base material for reinforcement according to claim 1. 熱硬化性樹脂組成物と請求項2に記載の強化用織物とを含む中間材を硬化してなる炭素繊維強化複合材料。   A carbon fiber reinforced composite material obtained by curing an intermediate material comprising a thermosetting resin composition and the reinforcing fabric according to claim 2. 熱可塑性樹脂組成物と請求項2に記載の強化用織物とを含む炭素繊維強化複合材料。   A carbon fiber reinforced composite material comprising a thermoplastic resin composition and the reinforcing fabric according to claim 2. 請求項1に記載の強化用多軸ステッチ基材を成形型内に配置し、さらにバギングフイルムで覆い、前記成形型と前記バギングフイルムの間をシールしてキャビティを形成し、前記キャビティ内を減圧するとともに液状樹脂組成物を注入した後、液状樹脂組成物を硬化させる炭素繊維強化複合材料の製造方法。   The reinforcing multiaxial stitch base material according to claim 1 is placed in a mold, further covered with a bagging film, and a cavity is formed by sealing between the mold and the bagging film, and the inside of the cavity is decompressed. And then injecting the liquid resin composition, and then curing the liquid resin composition. 請求項1に記載の強化用多軸ステッチ基材を分割成形型内に配置し、分割型を閉じてキャビティを形成し、前記キャビティ内に液状樹脂組成物を注入した後、液状樹脂組成物を硬化させる炭素繊維強化複合材料の製造方法。   The reinforcing multiaxial stitch base material according to claim 1 is disposed in a split mold, the split mold is closed to form a cavity, and after the liquid resin composition is injected into the cavity, the liquid resin composition is A method for producing a carbon fiber reinforced composite material to be cured. 請求項2に記載の強化用織物を成形型内に配置し、さらにバギングフイルムで覆い、前記成形型と前記バギングフイルムの間をシールしてキャビティを形成し、前記キャビティ内を減圧するとともに液状樹脂組成物を注入した後、液状樹脂組成物を硬化させる炭素繊維強化複合材料の製造方法。   3. The reinforcing fabric according to claim 2 is placed in a mold, further covered with a bagging film, a gap is formed between the mold and the bagging film to form a cavity, the inside of the cavity is decompressed, and a liquid resin A method for producing a carbon fiber reinforced composite material, wherein a liquid resin composition is cured after injecting the composition.
JP2013035855A 2013-02-26 2013-02-26 Multi-axis stitched substrate for reinforcement, woven fabric for reinforcement and carbon fiber reinforcement composite material, and method for producing them Pending JP2014163016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013035855A JP2014163016A (en) 2013-02-26 2013-02-26 Multi-axis stitched substrate for reinforcement, woven fabric for reinforcement and carbon fiber reinforcement composite material, and method for producing them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013035855A JP2014163016A (en) 2013-02-26 2013-02-26 Multi-axis stitched substrate for reinforcement, woven fabric for reinforcement and carbon fiber reinforcement composite material, and method for producing them

Publications (1)

Publication Number Publication Date
JP2014163016A true JP2014163016A (en) 2014-09-08

Family

ID=51613906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013035855A Pending JP2014163016A (en) 2013-02-26 2013-02-26 Multi-axis stitched substrate for reinforcement, woven fabric for reinforcement and carbon fiber reinforcement composite material, and method for producing them

Country Status (1)

Country Link
JP (1) JP2014163016A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016056491A (en) * 2014-09-11 2016-04-21 倉敷紡績株式会社 Fiber sheet for fiber-reinforced resin and production method of the same, and molded body using the same and production method of the molded body
JP2016078258A (en) * 2014-10-10 2016-05-16 倉敷紡績株式会社 Fiber sheet for fiber-reinforced resin and molding using the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS626935A (en) * 1985-06-27 1987-01-13 バスフ アクチェン ゲゼルシャフト Method for weaving fabric
JPH11322956A (en) * 1998-03-17 1999-11-26 Mitsubishi Chemical Corp Carbon-fiber-reinforced resin
WO2001063033A1 (en) * 2000-02-28 2001-08-30 Toray Industries, Inc. Multiaxially stitched base material for reinforcing and fiber reinforced plastic, and method for preparing them
JP2004160927A (en) * 2002-11-15 2004-06-10 Toray Ind Inc Preform substrate, preform, fiber-reinforced plastic molding and molding method
JP2004249527A (en) * 2003-02-19 2004-09-09 Toho Tenax Co Ltd Resin transfer molding method and method for manufacturing sandwich laminate
JP2008307692A (en) * 2007-06-12 2008-12-25 Toray Ind Inc Fiber-reinforced plastic and its manufacturing method
JP2009019202A (en) * 2007-06-12 2009-01-29 Toray Ind Inc Molding material, preform and fiber-reinforced resin
JP2010013770A (en) * 2008-07-04 2010-01-21 Seiren Co Ltd Woven fabric for airbag and airbag
WO2012050171A1 (en) * 2010-10-13 2012-04-19 三菱レイヨン株式会社 Carbon-fiber-precursor fiber bundle, carbon fiber bundle, and uses thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS626935A (en) * 1985-06-27 1987-01-13 バスフ アクチェン ゲゼルシャフト Method for weaving fabric
JPH11322956A (en) * 1998-03-17 1999-11-26 Mitsubishi Chemical Corp Carbon-fiber-reinforced resin
WO2001063033A1 (en) * 2000-02-28 2001-08-30 Toray Industries, Inc. Multiaxially stitched base material for reinforcing and fiber reinforced plastic, and method for preparing them
JP2004160927A (en) * 2002-11-15 2004-06-10 Toray Ind Inc Preform substrate, preform, fiber-reinforced plastic molding and molding method
JP2004249527A (en) * 2003-02-19 2004-09-09 Toho Tenax Co Ltd Resin transfer molding method and method for manufacturing sandwich laminate
JP2008307692A (en) * 2007-06-12 2008-12-25 Toray Ind Inc Fiber-reinforced plastic and its manufacturing method
JP2009019202A (en) * 2007-06-12 2009-01-29 Toray Ind Inc Molding material, preform and fiber-reinforced resin
JP2010013770A (en) * 2008-07-04 2010-01-21 Seiren Co Ltd Woven fabric for airbag and airbag
WO2012050171A1 (en) * 2010-10-13 2012-04-19 三菱レイヨン株式会社 Carbon-fiber-precursor fiber bundle, carbon fiber bundle, and uses thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016056491A (en) * 2014-09-11 2016-04-21 倉敷紡績株式会社 Fiber sheet for fiber-reinforced resin and production method of the same, and molded body using the same and production method of the molded body
JP2016078258A (en) * 2014-10-10 2016-05-16 倉敷紡績株式会社 Fiber sheet for fiber-reinforced resin and molding using the same

Similar Documents

Publication Publication Date Title
JP6138045B2 (en) Method for producing high-weight carbon fiber sheet for RTM method and RTM method
JP6446047B2 (en) Continuous fiber reinforced resin composite and molded product thereof
US20060216490A1 (en) Manufacture of FRP composites
CA2836017A1 (en) Multilayered fabric, its use including processes for production of composites
US20170282491A1 (en) Veil-stabilized composite with improved tensile strength
EP3180467B1 (en) Hybrid woven textile for composite reinforcement
KR102204244B1 (en) Fabric for fiber reinforced plastic and manufacturing method thereof using the same
KR20180066868A (en) Fiber-modified interlayer for a composite structure and method of manufacture
Ahmed et al. Comparison of mechanical behavior of biaxial, unidirectional and standard woven fabric reinforced composites
JP2011246827A (en) Unidirectional fiber-reinforced woven or knitted fabric for fiber-reinforced plastic and fiber base material of the same, method of manufacturing the fiber base material, and method of molding fiber-reinforced plastic using the fiber base material
JP2014163016A (en) Multi-axis stitched substrate for reinforcement, woven fabric for reinforcement and carbon fiber reinforcement composite material, and method for producing them
KR101388242B1 (en) Method for making hybrid fpr having carbon fiber and aramid fiber
CN106544776A (en) A kind of three dimensional fabric
KR20200019676A (en) Woven 3D fiber reinforced structure and manufacturing method thereof
JP2005262818A (en) Reinforcing fiber substrate, preform and reinforcing fiber substrate manufacturing method
JP2006138031A (en) Reinforcing fiber substrate, preform and method for producing them
JP2004256961A (en) Method for producing reinforcing fiber substrate and method for producing composite material by using the substrate
JP7467840B2 (en) Reinforced fiber substrate, reinforced fiber laminate, and fiber reinforced resin
KR101928196B1 (en) A composite article for automobile outer panels using recycled carbon fiber-reinforced plastics
JP2007152672A (en) Three-dimensional fiber-reinforced resin composite material and three-dimensional fabric
KR102671478B1 (en) Fiber composite manufactured using stitching and method for manufacturing the same
JP2018059009A (en) Carbon fiber reinforced composite material
Varshney et al. Innovations in textile composite designing and their applications
KR101771286B1 (en) Continuous fiber reinforced composite material
KR102396494B1 (en) Method of Surface Retarding Flame of Natural Fiber Composite and Natural Fiber Composite Manufactured Using the Same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170530

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171205