[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2014154761A - Thermoelectric conversion module - Google Patents

Thermoelectric conversion module Download PDF

Info

Publication number
JP2014154761A
JP2014154761A JP2013024578A JP2013024578A JP2014154761A JP 2014154761 A JP2014154761 A JP 2014154761A JP 2013024578 A JP2013024578 A JP 2013024578A JP 2013024578 A JP2013024578 A JP 2013024578A JP 2014154761 A JP2014154761 A JP 2014154761A
Authority
JP
Japan
Prior art keywords
outer layer
temperature side
layer member
thermoelectric conversion
high temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013024578A
Other languages
Japanese (ja)
Inventor
Nobumasa Tanaka
紳公 田中
Ayaki Miyama
文葵 三山
Toru Tateishi
徹 立石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2013024578A priority Critical patent/JP2014154761A/en
Publication of JP2014154761A publication Critical patent/JP2014154761A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

【課題】n型熱電材料及びp型熱電材料を基板上に平面的に交互に配置して構成された熱電変換モジュールにおいて、様々な熱源を利用した発電および、様々な対象に温度差発生を可能とする。
【解決手段】n型熱電素子12及びp型熱電素子13を平面的に交互に配置して構成された熱電変換素子11を備えた熱電変換モジュール1であって、複数の凸部23,24が設けられた低温側外層部材21及び高温側外層部材22を有し、凸部23,24は、n型熱電素子12とp型熱電素子13との低温接続部17及び高温接続部16に対応した位置に熱的に接続されている。
【選択図】図1
In a thermoelectric conversion module configured by alternately arranging a n-type thermoelectric material and a p-type thermoelectric material on a substrate in a plane, it is possible to generate power using various heat sources and generate a temperature difference in various objects. And
A thermoelectric conversion module (1) includes a thermoelectric conversion element (11) configured by alternately arranging n-type thermoelectric elements (12) and p-type thermoelectric elements (13) in a plane, and a plurality of protrusions (23, 24) are provided. It has the low temperature side outer layer member 21 and the high temperature side outer layer member 22 provided, and the convex portions 23 and 24 correspond to the low temperature connection portion 17 and the high temperature connection portion 16 between the n-type thermoelectric element 12 and the p-type thermoelectric element 13. Thermally connected to the location.
[Selection] Figure 1

Description

本発明は、n型熱電材料及びp型熱電材料を平面的に交互に配置した熱電変換モジュールに関する。   The present invention relates to a thermoelectric conversion module in which n-type thermoelectric materials and p-type thermoelectric materials are alternately arranged in a plane.

従来、熱電変換モジュールにおいて、n型の熱電材料及びp型の熱電材料を直列接続となるように平面的に交互に成膜して熱電変換素子を構成し、この熱電変換素子の両面を、ポリイミド等の樹脂で構成されるフィルム状の基板で覆い、基板の面内方向の温度勾配を利用して発電するものが知られている(例えば、特許文献1参照)。特許文献1の構成では、基板及び薄膜の熱電変換素子の柔軟性によって曲面等に対応可能になるため、様々な場所に設置可能であるとともに、薄膜プロセスや印刷プロセスを利用して熱電変換モジュールを容易に形成できるという利点がある。   Conventionally, in a thermoelectric conversion module, an n-type thermoelectric material and a p-type thermoelectric material are alternately formed in a plane so as to be connected in series to form a thermoelectric conversion element. It is known that power is generated using a temperature gradient in the in-plane direction of the substrate, which is covered with a film-like substrate made of a resin such as (see, for example, Patent Document 1). In the configuration of Patent Document 1, since the flexibility of the substrate and the thin film thermoelectric conversion element makes it possible to deal with curved surfaces and the like, the thermoelectric conversion module can be installed in various places and a thin film process or a printing process is used. There is an advantage that it can be formed easily.

特開2006−186255号公報JP 2006-186255 A

しかしながら、上記従来の熱電変換モジュールでは、樹脂の基板の表面の一部に、熱伝導率の高い銅などの材料を設け、この熱伝導率の高い部分を介して熱電変換素子に熱を伝達するため、樹脂の基板の大部分は外側に露出している。このため、利用可能な熱源及び冷熱源が限定されるという課題があった。例えば、上記従来の熱電変換モジュールは、熱伝導率の高い部分のみに直接接触する固体の熱源から熱を回収可能である。しかしながら、液体や気体を熱源とする場合、流体の熱源が基板に直接接触したり、流体が樹脂の基板を透過したりすることによる基板及び熱電変換素子の劣化や、熱源が基板の全体に接触することで温度勾配を形成しにくくなることが問題となる。
また、上記従来の熱電変換モジュールでは、熱電変換モジュールを温度差発生装置(ペルチェ素子)として用いる場合、液体や気体に対して温度差を発生させることが難しかった。
However, in the conventional thermoelectric conversion module, a material such as copper having a high thermal conductivity is provided on a part of the surface of the resin substrate, and heat is transmitted to the thermoelectric conversion element through the high thermal conductivity portion. Therefore, most of the resin substrate is exposed to the outside. For this reason, there existed a subject that the heat source and cold heat source which can be utilized were limited. For example, the conventional thermoelectric conversion module can recover heat from a solid heat source that directly contacts only a portion having high thermal conductivity. However, when a liquid or gas is used as a heat source, the fluid heat source directly contacts the substrate, the substrate and the thermoelectric conversion element deteriorate due to the fluid passing through the resin substrate, or the heat source contacts the entire substrate. This makes it difficult to form a temperature gradient.
Moreover, in the said conventional thermoelectric conversion module, when using a thermoelectric conversion module as a temperature difference generator (Peltier device), it was difficult to generate a temperature difference with respect to a liquid or gas.

本発明は、上述した事情に鑑みてなされたものであり、n型熱電材料及びp型熱電材料を基板上に平面的に交互に配置して構成された熱電変換モジュールにおいて、様々な熱源を利用した発電および、様々な対象に温度差発生を可能とすることを目的とする。   The present invention has been made in view of the above-described circumstances, and uses various heat sources in a thermoelectric conversion module configured by alternately arranging n-type thermoelectric materials and p-type thermoelectric materials on a substrate in a plane. The purpose is to enable power generation and to generate temperature differences in various objects.

上記目的を達成するため、本発明は、n型熱電材料及びp型熱電材料を交互に配置して構成された熱電変換素子を備えた熱電変換モジュールであって、複数の凸部が設けられた外層部材を有し、前記凸部は、前記n型熱電材料と前記p型熱電材料との接続部に対応した位置に熱的に接続されていることを特徴とする。
本発明によれば、熱電変換モジュールは、複数の凸部が設けられた外層部材を有し、凸部は、n型熱電材料とp型熱電材料との接続部に対応した位置に熱的に接続されている。このため、外層部材により熱源から熱を回収し、この熱を凸部を介して熱電変換素子に確実に伝達できるとともに、熱源と熱電変換素子側とが直接的に接触しない構造を実現できる。このため、例えば流体を熱源とした場合であっても、熱電変換素子側と流体とを直接接触させることなく、熱を回収して発電できる。また、熱電変換モジュールが熱源から輻射熱を受ける場合には、外層部材により輻射熱を効率良く回収できる。さらに、熱源から熱電変換素子側への輻射熱を外層部材によって遮蔽できるため、外層部材を介しない熱伝達を抑制し、熱電変換素子に大きな温度勾配を形成できる。これにより、熱源が流体であっても問題なく発電可能であり、様々な熱源から効率よく熱を回収して発電できる。また、熱電材料に電流を流すことによって、さまざまな熱源形状に適用可能な温度差発生装置(ペルチェ素子)として使用することも可能となる。
In order to achieve the above object, the present invention is a thermoelectric conversion module including a thermoelectric conversion element configured by alternately arranging n-type thermoelectric materials and p-type thermoelectric materials, and is provided with a plurality of convex portions. It has an outer layer member, The convex part is thermally connected to the position corresponding to the connection part of the n type thermoelectric material and the p type thermoelectric material, It is characterized by the above-mentioned.
According to the present invention, the thermoelectric conversion module has an outer layer member provided with a plurality of convex portions, and the convex portions are thermally located at positions corresponding to the connection portions between the n-type thermoelectric material and the p-type thermoelectric material. It is connected. Therefore, heat can be recovered from the heat source by the outer layer member, and this heat can be reliably transmitted to the thermoelectric conversion element via the convex portion, and a structure in which the heat source and the thermoelectric conversion element side are not in direct contact can be realized. For this reason, for example, even when a fluid is used as a heat source, it is possible to recover heat and generate electric power without directly contacting the thermoelectric conversion element side and the fluid. Further, when the thermoelectric conversion module receives radiant heat from a heat source, the radiant heat can be efficiently recovered by the outer layer member. Furthermore, since the radiant heat from the heat source to the thermoelectric conversion element side can be shielded by the outer layer member, heat transfer not through the outer layer member can be suppressed, and a large temperature gradient can be formed in the thermoelectric conversion element. Thereby, even if the heat source is a fluid, power can be generated without any problem, and heat can be efficiently recovered from various heat sources to generate power. Further, by passing a current through the thermoelectric material, it can be used as a temperature difference generator (Peltier element) applicable to various heat source shapes.

上記構成において、前記熱電変換素子は一対の基板により挟持されており、前記凸部は、前記基板よりも熱伝導性が高く、かつ、前記凸部は、前記基板の面上の前記接続部に対応した位置に熱的に接続されている構成としても良い。
この場合、熱電変換素子は一対の基板により挟持されており、凸部は、基板よりも熱伝導性が高く、かつ、凸部は、基板の面上の接続部に対応した位置に熱的に接続されているため、樹脂の基板及び熱電変換素子への流体の熱媒体の接触を防止できるとともに、凸部によって熱電変換素子に大きな温度勾配を形成できる。
上記構成において、前記凸部により、前記外層部材と前記熱電変換素子とが絶縁されている構成としても良い。
この場合、凸部によって外層部材と熱電変換素子を絶縁できるため、熱電変換素子を絶縁する樹脂のシート等が必要なく、構造を簡単にできる。
In the above configuration, the thermoelectric conversion element is sandwiched between a pair of substrates, the convex portion has higher thermal conductivity than the substrate, and the convex portion is connected to the connection portion on the surface of the substrate. It is good also as a structure thermally connected to the corresponding position.
In this case, the thermoelectric conversion element is sandwiched between the pair of substrates, the convex portion has higher thermal conductivity than the substrate, and the convex portion is thermally located at a position corresponding to the connecting portion on the surface of the substrate. Since they are connected, the contact of the fluid heat medium to the resin substrate and the thermoelectric conversion element can be prevented, and a large temperature gradient can be formed in the thermoelectric conversion element by the convex portion.
In the above configuration, the outer layer member and the thermoelectric conversion element may be insulated from each other by the convex portion.
In this case, since the outer layer member and the thermoelectric conversion element can be insulated by the convex portion, a resin sheet or the like for insulating the thermoelectric conversion element is not necessary, and the structure can be simplified.

上記構成において、前記外層部材は最外層を構成するように前記熱電変換素子の両面側に一対設けられ、一方の前記外層部材は高温側外層部材を、他方の前記外層部材は低温側外層部材を形成し、前記高温側外層部材の前記凸部と前記低温側外層部材の前記凸部とは、それぞれが異なる前記接続部に対応した位置に熱的に接続されている構成としても良い。
この場合、外層部材は最外層を構成するように熱電変換素子の両面側に一対設けられ、一方の外層部材は高温側外層部材を、他方の外層部材は低温側外層部材を形成し、高温側外層部材の凸部と低温側外層部材の凸部とは、それぞれが異なる接続部に対応した位置に熱的に接続されているため、熱電変換素子に、より大きな温度勾配を形成できる。
In the above configuration, a pair of the outer layer members are provided on both sides of the thermoelectric conversion element so as to constitute the outermost layer, one outer layer member is a high temperature side outer layer member, and the other outer layer member is a low temperature side outer layer member. It is good also as a structure which is formed and the said convex part of the said high temperature side outer layer member and the said convex part of the said low temperature side outer layer member are thermally connected to the position corresponding to the said different connection part, respectively.
In this case, a pair of outer layer members are provided on both sides of the thermoelectric conversion element so as to constitute the outermost layer, one outer layer member forms a high temperature side outer layer member, and the other outer layer member forms a low temperature side outer layer member. Since the convex portion of the outer layer member and the convex portion of the low temperature side outer layer member are thermally connected to positions corresponding to different connecting portions, a larger temperature gradient can be formed in the thermoelectric conversion element.

上記構成において、前記高温側外層部材の前記凸部と前記低温側外層部材の前記凸部とは、それぞれ異なる熱伝導性を有する構成としても良い。
この場合、上述した効果に加え、異なる熱伝導性物質を用いることによりモジュール厚等の設計許容範囲を広くすることができるという利点がある。
また、上記構成において、複数の前記凸部の間には空間部が形成されている構成としても良い。
この場合、複数の凸部の間において外部の熱源からの伝搬する熱を、空間部によって断熱できるため、熱電変換素子により大きな温度勾配を形成できる。
The said structure WHEREIN: The said convex part of the said high temperature side outer layer member and the said convex part of the said low temperature side outer layer member are good also as a structure which has respectively different thermal conductivity.
In this case, in addition to the above-described effects, there is an advantage that a design allowable range such as a module thickness can be widened by using different thermal conductive materials.
Further, in the above configuration, a space portion may be formed between the plurality of convex portions.
In this case, since the heat propagated from the external heat source between the plurality of convex portions can be insulated by the space portion, a large temperature gradient can be formed by the thermoelectric conversion element.

上記構成において、前記空間部に、前記凸部よりも熱伝導性が低い材料を設ける構成としても良い。
この場合、空間部に、凸部よりも熱伝導性が低い材料を設けるため、空間部側の熱電変換素子に外層部材から熱が伝達されることを抑制でき、熱電変換素子により大きな温度勾配を形成できる。
また、上記構成において、前記基板は、絶縁性を備えたシートである構成としても良い。
この場合、シートを基板に用いることにより、熱電変換モジュールの柔軟性及び絶縁性を確保できる。また、熱源が基板に接触することを外層部材によって防止できるので、シートを基板に用いた場合の耐久性の問題を解消できる。
さらに、前記凸部は、前記外層部材とは別体に形成されている構成であっても良い。
この場合、上記構成において、前記外装部材と凸部を異なる材料を用いる構成としても良い。前記凸部および前記凸部の間を絶縁材料とすることで、前記基板がない構成とすることが可能になるという利点がある。
この場合、凸部が別体であるため、熱電変換モジュールの要求特性に合わせて凸部の熱伝導率を自由に設定できる。
また、前記外層部材の表面は黒色である構成としても良い。
この場合、外層部材によって、熱媒体からの輻射熱をより効率よく回収して発電できる。
The said structure WHEREIN: It is good also as a structure which provides the material whose heat conductivity is lower than the said convex part in the said space part.
In this case, since a material having lower thermal conductivity than the convex portion is provided in the space portion, heat can be prevented from being transmitted from the outer layer member to the thermoelectric conversion element on the space portion side, and a large temperature gradient is generated by the thermoelectric conversion element. Can be formed.
Moreover, the said structure WHEREIN: The said board | substrate is good also as a structure which is a sheet | seat provided with insulation.
In this case, the flexibility and insulation of the thermoelectric conversion module can be ensured by using the sheet as the substrate. Further, since the outer layer member can prevent the heat source from coming into contact with the substrate, the problem of durability when the sheet is used for the substrate can be solved.
Further, the convex portion may be formed separately from the outer layer member.
In this case, in the above configuration, the exterior member and the convex portion may be configured using different materials. By using an insulating material between the convex portions and the convex portions, there is an advantage that the substrate can be eliminated.
In this case, since the convex portion is a separate body, the thermal conductivity of the convex portion can be freely set according to the required characteristics of the thermoelectric conversion module.
The outer layer member may have a black surface.
In this case, the outer layer member can recover the radiant heat from the heat medium more efficiently and generate electric power.

本発明によれば、n型熱電材料及びp型熱電材料を基板上に平面的に交互に配置して構成された熱電変換モジュールにおいて、様々な熱源から効率よく熱を回収した発電、および温度差発生を行うことができる。   According to the present invention, in a thermoelectric conversion module configured by alternately arranging a n-type thermoelectric material and a p-type thermoelectric material on a substrate in a plane, power generation efficiently recovering heat from various heat sources, and temperature difference Generation can take place.

本発明の第1の実施の形態に係る熱電変換モジュールの構造を示す図である。It is a figure which shows the structure of the thermoelectric conversion module which concerns on the 1st Embodiment of this invention. 熱電変換モジュールの断面図である。It is sectional drawing of a thermoelectric conversion module. 第1の実施の形態の変形例を示す断面図である。It is sectional drawing which shows the modification of 1st Embodiment. 第2の実施の形態における熱電変換モジュールの断面図である。It is sectional drawing of the thermoelectric conversion module in 2nd Embodiment. 第3の実施の形態における熱電変換モジュールの断面図である。It is sectional drawing of the thermoelectric conversion module in 3rd Embodiment. 第4の実施の形態における熱電変換モジュールの断面図である。It is sectional drawing of the thermoelectric conversion module in 4th Embodiment. 熱電変換モジュールの参考例を示す断面図である。It is sectional drawing which shows the reference example of a thermoelectric conversion module.

以下、図面を参照して本発明の実施の形態について説明する。
[第1の実施の形態]
図1は、本発明の第1の実施の形態に係る熱電変換モジュールの構造を示す斜視図であり、理解の便宜を図るため一部破断面を示している。
図1に示すように、熱電変換モジュール1は、フレキシブル基板部10上に熱電変換素子11を平面的に配置したシート状のフレキシブルな発電モジュールであり、フレキシブル基板部10の面内方向に生じる温度差によって発電する。
Embodiments of the present invention will be described below with reference to the drawings.
[First Embodiment]
FIG. 1 is a perspective view showing the structure of the thermoelectric conversion module according to the first embodiment of the present invention, and shows a partially broken section for the sake of convenience of understanding.
As shown in FIG. 1, the thermoelectric conversion module 1 is a sheet-like flexible power generation module in which thermoelectric conversion elements 11 are arranged in a plane on a flexible substrate portion 10, and the temperature generated in the in-plane direction of the flexible substrate portion 10. Power is generated by the difference.

フレキシブル基板部10は、熱電変換素子11を両面からそれぞれ覆う一対の、低温側基板14および高温側基板15で構成される。低温側基板14は熱電変換素子11の一方の面を覆い、高温側基板15は他方の面を覆い、熱電変換素子11は低温側基板14と高温側基板15との間に狭持されている。低温側基板14及び高温側基板15は、絶縁性及び可撓性を有するフィルム(シート)により構成されている。例えば、低温側基板14及び高温側基板15の材料としては、ポリイミド、カプトン、ポリカーボネート、ポリエチレン、ポリエチレンテレフタレート(PET)、ポリサルフォン(PSF)、ポリエーテルサルフォン(PES)、ポリエーテルエチルケトン(PEEK)、ポリフェニレンサルファイト(PPS)、ポリシラザン、フレキシブルガラス等を用いることができる。これらの材料から、熱電変換素子11の動作温度や、動作環境等によって適切なものを選択すればよく、ここでは、ポリイミドのフィルムが用いられている。   The flexible substrate unit 10 includes a pair of a low temperature side substrate 14 and a high temperature side substrate 15 that respectively cover the thermoelectric conversion elements 11 from both sides. The low temperature side substrate 14 covers one surface of the thermoelectric conversion element 11, the high temperature side substrate 15 covers the other surface, and the thermoelectric conversion element 11 is sandwiched between the low temperature side substrate 14 and the high temperature side substrate 15. . The low temperature side substrate 14 and the high temperature side substrate 15 are made of an insulating and flexible film (sheet). For example, materials for the low temperature side substrate 14 and the high temperature side substrate 15 are polyimide, kapton, polycarbonate, polyethylene, polyethylene terephthalate (PET), polysulfone (PSF), polyethersulfone (PES), and polyether ethyl ketone (PEEK). Polyphenylene sulfite (PPS), polysilazane, flexible glass and the like can be used. An appropriate material may be selected from these materials depending on the operating temperature of the thermoelectric conversion element 11, the operating environment, and the like. Here, a polyimide film is used.

熱電変換素子11は、複数のn型熱電素子12(n型熱電材料)及びp型熱電素子13(p型熱電材料)を交互に直列接続したものである。詳細には、熱電変換素子11は、低温側基板14上に、帯状のn型熱電素子12及びp型熱電素子13を直線状に交互に成膜することで形成される。n型熱電素子12及びp型熱電素子13の膜の幅、長さ及び厚さは材料特性等によって適切なものを選択する。図示した実施の形態においては、略同一である。n型熱電素子12及びp型熱電素子13の配列パターンは、フレキシブル基板部10の面内にn型熱電素子12及びp型熱電素子13を高密度に配置可能なように、複数の折り返し部(不図示)を含んでいる。
n型熱電素子12及びp型熱電素子13の配列の両端には、熱電変換素子11の電極が形成される。一方の電極(不図示)はn型熱電素子12の端部に接続され、他方の電極(不図示)はp型熱電素子13の端部に接続される。
The thermoelectric conversion element 11 is formed by alternately connecting a plurality of n-type thermoelectric elements 12 (n-type thermoelectric material) and p-type thermoelectric elements 13 (p-type thermoelectric material) in series. Specifically, the thermoelectric conversion element 11 is formed by alternately forming strip-shaped n-type thermoelectric elements 12 and p-type thermoelectric elements 13 on the low temperature side substrate 14 in a straight line. The film width, length, and thickness of the n-type thermoelectric element 12 and the p-type thermoelectric element 13 are appropriately selected depending on material characteristics and the like. In the illustrated embodiment, they are substantially the same. The arrangement pattern of the n-type thermoelectric elements 12 and the p-type thermoelectric elements 13 includes a plurality of folded portions (in order that the n-type thermoelectric elements 12 and the p-type thermoelectric elements 13 can be arranged at high density in the plane of the flexible substrate portion 10 ( (Not shown).
Electrodes of the thermoelectric conversion element 11 are formed at both ends of the arrangement of the n-type thermoelectric element 12 and the p-type thermoelectric element 13. One electrode (not shown) is connected to the end of the n-type thermoelectric element 12, and the other electrode (not shown) is connected to the end of the p-type thermoelectric element 13.

n型熱電素子12の材料としては、例えば、クロメルが用いられ、p型熱電素子13の材料としては、コンスタンタンが用いられる。
他の熱電材料としては、例えば、BiTe系材料、PbTe系材料、Si−Ge系材料、シリサイド系材料、スクッテルダイト系材料、遷移金属酸化物系材料、亜鉛アンチモン系材料、ホウ素化合物、クラスレート化合物、クラスタ固体、酸化亜鉛系材料、カーボンナノチューブ等を用いることができる。BiTe系材料の例として、BiTe、SbTe、BiSe、およびこれらの化合物が挙げられる。PbTe系材料の例として、PbTe、SnTe、AgSbTe、GeTe、及びこれらの化合物が挙げられる。Si−Ge系材料の例として、Si、Ge、SiGeが挙げられる。シリサイド系材料の例として、FeSi、MnSi、CrSi等が挙げられる。スクッテルダイト系材料の例として、MX3、RM412と表記される化合物が挙げられる。ここで、Mは、Co、Rh、またはIrであり、Xは、As、P、またはSbであり、Rは、La、Yb、またはCeを表す。遷移金属酸化物系材料として、NaCoO、CaCoO、ZnInO、SrTiO、BiSrCoO、PbSrCoO、CaBiCoO、BaBiCoO等が挙げられる。亜鉛アンチモン系材料の例として、AnSbが挙げられる。ホウ素化合物の例として、CeB、BaB、SrB、CaB、MgB、VB、NiB、CuB、LiB等が挙げられる。クラスレート化合物の例として、BaGaAlSi、BaGaAlGeが挙げられる。クラスタ固体の例として、Bクラスタ、Siクラスタ、Cクラスタ、AlRe、AlReSi等が挙げられる。酸化亜鉛系材料の例として、ZnOが挙げられる。
For example, chromel is used as the material of the n-type thermoelectric element 12, and constantan is used as the material of the p-type thermoelectric element 13.
Other thermoelectric materials include, for example, BiTe materials, PbTe materials, Si-Ge materials, silicide materials, skutterudite materials, transition metal oxide materials, zinc antimony materials, boron compounds, clathrate Compounds, cluster solids, zinc oxide-based materials, carbon nanotubes, and the like can be used. Examples of BiTe-based materials include BiTe, SbTe, BiSe, and these compounds. Examples of PbTe-based materials include PbTe, SnTe, AgSbTe, GeTe, and compounds thereof. Examples of the Si—Ge material include Si, Ge, and SiGe. Examples of the silicide material include FeSi, MnSi, CrSi and the like. Examples of the skutterudite-based material include compounds represented by MX 3 and RM 4 X 12 . Here, M is Co, Rh, or Ir, X is As, P, or Sb, and R represents La, Yb, or Ce. Examples of transition metal oxide materials include NaCoO, CaCoO, ZnInO, SrTiO, BiSrCoO, PbSrCoO, CaBiCoO, BaBiCoO, and the like. An example of the zinc antimony material is AnSb. Examples of the boron compound include CeB, BaB, SrB, CaB, MgB, VB, NiB, CuB, and LiB. Examples of clathrate compounds include BaGaAlSi and BaGaAlGe. Examples of cluster solids include B clusters, Si clusters, C clusters, AlRe, AlReSi, and the like. An example of the zinc oxide-based material is ZnO.

熱電変換素子11の成膜後に、低温側基板14とは反対側の熱電変換素子11の面に高温側基板15が被覆されることで、一対の絶縁シート(低温側基板14、高温側基板15)からなるフレキシブル基板部10内に平面状の熱電変換素子11が挟まれたモジュールが形成される。ここでは、低温側基板14上に熱電変換素子11を成膜しているが、これに限らず、高温側基板15上に熱電変換素子11を成膜し、その後、低温側基板14を熱電変換素子11に被覆する構成としても良い。また、成膜以外の方法により熱電変換素子11を設けてもよい。
フレキシブル基板部10内には、n型熱電素子12とp型熱電素子13との接続部が略等ピッチで並んでおり、隣接する一対の接続部間にそれぞれ温度差を形成することで、熱電発電が可能となる。すなわち、熱電発電の観点からは、フレキシブル基板部10内に配された熱電変換素子11には、高温にされるべき高温接続部16と、低温にされるべき低温接続部17とが略等ピッチで交互に複数形成されている。
After the thermoelectric conversion element 11 is formed, the surface of the thermoelectric conversion element 11 on the side opposite to the low temperature side substrate 14 is coated with the high temperature side substrate 15, so that a pair of insulating sheets (low temperature side substrate 14, high temperature side substrate 15 is formed). A module in which a planar thermoelectric conversion element 11 is sandwiched in a flexible substrate portion 10 made of Here, the thermoelectric conversion element 11 is formed on the low temperature side substrate 14. However, the present invention is not limited to this, and the thermoelectric conversion element 11 is formed on the high temperature side substrate 15 and then the low temperature side substrate 14 is thermoelectrically converted. The element 11 may be covered. Moreover, you may provide the thermoelectric conversion element 11 by methods other than film-forming.
In the flexible substrate part 10, the connection parts of the n-type thermoelectric element 12 and the p-type thermoelectric element 13 are arranged at a substantially equal pitch, and by forming a temperature difference between each pair of adjacent connection parts, the thermoelectric Power generation is possible. That is, from the viewpoint of thermoelectric power generation, the thermoelectric conversion element 11 disposed in the flexible substrate portion 10 has a high temperature connection portion 16 to be heated and a low temperature connection portion 17 to be lowered at a substantially equal pitch. Are formed alternately.

1つの高温接続部16の両側には、一対の低温接続部17が位置しており、p型熱電素子13では、高温接続部16から低温接続部17に電流が流れ、n型熱電素子12では、低温接続部17から高温接続部16に電流が流れ、熱電変換素子11の全体としては、図1中の右側から左側へ電流が流れる。
本第1の実施の形態では、n型熱電素子12及びp型熱電素子13は、低温接続部17及び高温接続部16で互いに直接接合されているが、低温接続部17及び/または高温接続部16に銅等の導体材料を設け、この導体材料を介してn型熱電素子12とp型熱電素子13とを接続する構成としても良い。
A pair of low temperature connection portions 17 are located on both sides of one high temperature connection portion 16. In the p-type thermoelectric element 13, a current flows from the high temperature connection portion 16 to the low temperature connection portion 17. Then, a current flows from the low temperature connection portion 17 to the high temperature connection portion 16, and as a whole, the current flows from the right side to the left side in FIG.
In the first embodiment, the n-type thermoelectric element 12 and the p-type thermoelectric element 13 are directly joined to each other at the low-temperature connection portion 17 and the high-temperature connection portion 16, but the low-temperature connection portion 17 and / or the high-temperature connection portion. A conductive material such as copper may be provided on 16 and the n-type thermoelectric element 12 and the p-type thermoelectric element 13 may be connected via this conductive material.

図2は、熱電変換モジュール1の断面図である。
図1及び図2に示すように、熱電変換モジュール1は、フレキシブル基板部10の両面を覆う外層部材20を備えて構成される。外層部材20は、低温側基板14を被覆する低温側外層部材21と、高温接続部16を被覆する高温側外層部材22とを有して一対で構成される。熱電変換モジュール1は、低温側外層部材21と高温側外層部材22との間に温度差を生じることにより、熱電変換素子11に面内方向の温度勾配を生じ、発電する。このため、低温側外層部材21側には冷熱源が配置され、高温側外層部材22側には熱源が配置される。これら熱源および冷熱源は、それ自体が熱及び冷熱を発するものであってもよいが、冷熱源からの冷熱を伝搬する熱媒体と、熱源からの熱を伝搬する熱媒体とを、それぞれ低温側外層部材21側と高温側外層部材22側に配置してもよい。すなわち、低温側外層部材21と高温側外層部材22とを、熱媒体に接触させることで発電できる。これらの熱媒体は固体であっても流体であってもよい。例えば、高温または低温の流体が流れる配管の表面を熱媒体とすることもできるし、水や空気等を熱媒体とすることもできる。なお、当然のことながら、低温側外層部材21側の熱媒体と高温側外層部材22側の熱媒体とが相対的な温度差を有していればよく、各熱媒体の絶対的な温度は限定されない。本実施形態では一例として、低温側外層部材21に気体または液体の熱媒体が接し、高温側外層部材22には熱媒体として温水が接する場合について説明する。
FIG. 2 is a cross-sectional view of the thermoelectric conversion module 1.
As shown in FIGS. 1 and 2, the thermoelectric conversion module 1 includes an outer layer member 20 that covers both surfaces of the flexible substrate unit 10. The outer layer member 20 includes a low temperature side outer layer member 21 that covers the low temperature side substrate 14 and a high temperature side outer layer member 22 that covers the high temperature connection portion 16. The thermoelectric conversion module 1 generates a temperature difference in the in-plane direction in the thermoelectric conversion element 11 by generating a temperature difference between the low temperature side outer layer member 21 and the high temperature side outer layer member 22, and generates power. Therefore, a cold heat source is disposed on the low temperature side outer layer member 21 side, and a heat source is disposed on the high temperature side outer layer member 22 side. These heat sources and cold heat sources may themselves generate heat and cold. However, the heat medium that propagates the cold from the cold heat source and the heat medium that propagates the heat from the heat source are respectively connected to the low temperature side. You may arrange | position to the outer layer member 21 side and the high temperature side outer layer member 22 side. That is, electric power can be generated by bringing the low temperature side outer layer member 21 and the high temperature side outer layer member 22 into contact with a heat medium. These heat media may be solid or fluid. For example, the surface of a pipe through which a high-temperature or low-temperature fluid flows can be used as a heat medium, and water, air, or the like can be used as a heat medium. As a matter of course, it is sufficient that the heat medium on the low temperature side outer layer member 21 side and the heat medium on the high temperature side outer layer member 22 side have a relative temperature difference, and the absolute temperature of each heat medium is It is not limited. In the present embodiment, as an example, a case will be described in which a gas or liquid heat medium is in contact with the low temperature side outer layer member 21 and hot water is in contact with the high temperature side outer layer member 22 as a heat medium.

低温側外層部材21は、低温側基板14側に突出する複数の凸部23を内面側に有する。低温側外層部材21の外表面21aは、外部の熱媒体に接触する熱媒体接触面である。
各凸部23は、外部の熱媒体から外表面21aに伝達された熱を低温接続部17に伝達するために形成されており、低温接続部17の配列のピッチに略等しいピッチで、低温接続部17に対応した位置に形成され、直線的に並べて配置されている。
凸部23の先端は、低温側外層部材21に密着する接続面23aとなっており、接続面23aは平坦面である。
The low temperature side outer layer member 21 has a plurality of protrusions 23 protruding toward the low temperature side substrate 14 on the inner surface side. The outer surface 21a of the low temperature side outer layer member 21 is a heat medium contact surface that contacts an external heat medium.
Each convex portion 23 is formed to transmit heat transferred from the external heat medium to the outer surface 21 a to the low temperature connection portion 17, and at a pitch substantially equal to the pitch of the arrangement of the low temperature connection portions 17, the low temperature connection It is formed at a position corresponding to the portion 17 and arranged in a straight line.
The tip of the convex portion 23 is a connection surface 23a that is in close contact with the low temperature side outer layer member 21, and the connection surface 23a is a flat surface.

高温側外層部材22は、高温側基板15側に突出する複数の凸部24を内面側に有する。高温側外層部材22の外表面22aは、外部の熱媒体に接触する熱媒体接触面である。高温側外層部材22の外表面22aには、低温側外層部材21側の熱媒体よりも高温の熱媒体が設けられる。各凸部24は、温水から外表面22aに伝達された熱を高温接続部16に伝達する。各凸部24は、高温接続部16の配列のピッチに略等しいピッチで、高温接続部16に対応した位置に形成され、直線的に並べて配置されている。
凸部24の先端は、高温接続部16に密着または接触する平坦な接続面24aとなっている。
The high temperature side outer layer member 22 has a plurality of convex portions 24 protruding toward the high temperature side substrate 15 on the inner surface side. The outer surface 22a of the high temperature side outer layer member 22 is a heat medium contact surface that contacts an external heat medium. The outer surface 22a of the high temperature side outer layer member 22 is provided with a heat medium having a temperature higher than that of the heat medium on the low temperature side outer layer member 21 side. Each convex portion 24 transmits the heat transferred from the hot water to the outer surface 22 a to the high temperature connection portion 16. Each convex part 24 is formed at a position corresponding to the high temperature connection part 16 at a pitch substantially equal to the pitch of the arrangement of the high temperature connection parts 16, and is arranged in a straight line.
The tip of the convex portion 24 is a flat connection surface 24 a that is in close contact with or in contact with the high temperature connection portion 16.

低温側外層部材21及び高温側外層部材22は、樹脂製の低温側基板14及び高温側基板15よりも熱伝導率が高い材料を用いて形成された薄板状または箔状の部材である。本実施形態では、低温側外層部材21及び高温側外層部材22を銅箔として構成した例を示す。低温側外層部材21及び高温側外層部材22は、例えばアルミニウム等の銅以外の金属またはこれらの金属化合物、セラミックス、高熱伝導性樹脂等を用いて構成することもできる。凸部23及び各凸部24は、例えばエッチング加工によって、低温側外層部材21及び高温側外層部材22に一体に形成される。本第1の実施形態において、低温側外層部材21及び凸部23は同一の材料からなり、高温側外層部材22及び凸部24は同一の材料で構成される。
ここで、一例として、凸部23,24を除く低温側外層部材21及び高温側外層部材22の板厚は35μmであり、凸部23,24の高さは35μmであり、凸部23,24の配列方向の長さは200μmである。また、一例として、n型熱電素子12及びp型熱電素子13は、厚さが2μmであり、長さはそれぞれ200μmであり、低温側基板14及び高温側基板15は厚さが25μmである。
The low temperature side outer layer member 21 and the high temperature side outer layer member 22 are thin plate-shaped or foil-shaped members formed using a material having higher thermal conductivity than the resin-made low temperature side substrate 14 and high temperature side substrate 15. In this embodiment, the example which comprised the low temperature side outer layer member 21 and the high temperature side outer layer member 22 as copper foil is shown. The low temperature side outer layer member 21 and the high temperature side outer layer member 22 can also be configured using, for example, a metal other than copper, such as aluminum, or a metal compound thereof, ceramics, high thermal conductive resin, or the like. The convex portion 23 and each convex portion 24 are formed integrally with the low temperature side outer layer member 21 and the high temperature side outer layer member 22 by, for example, etching. In the first embodiment, the low temperature side outer layer member 21 and the convex portion 23 are made of the same material, and the high temperature side outer layer member 22 and the convex portion 24 are made of the same material.
Here, as an example, the plate thickness of the low temperature side outer layer member 21 and the high temperature side outer layer member 22 excluding the convex portions 23 and 24 is 35 μm, the height of the convex portions 23 and 24 is 35 μm, and the convex portions 23 and 24. The length in the arrangement direction is 200 μm. As an example, the n-type thermoelectric element 12 and the p-type thermoelectric element 13 have a thickness of 2 μm and a length of 200 μm, respectively, and the low-temperature side substrate 14 and the high-temperature side substrate 15 have a thickness of 25 μm.

低温側外層部材21は、各凸部23が各低温接続部17に重なるように低温側基板14に被覆される。各凸部23間は凹部となっており、低温側外層部材21が被覆されると、低温側外層部材21の内側で各凸部23間には、空間部25が形成される。各空間部25は、各高温接続部16に重なる位置に配置されている。
低温側の熱媒体から低温側外層部材21の外表面21aに伝達された冷熱は、凸部23及び接続面23aの直下の低温側基板14を介して低温接続部17に伝達される。一方、空間部25を介して低温側外層部材21の冷熱が伝搬することはほとんど無い。従って、低温側の熱媒体によって高温接続部16が冷却されることが抑制される。
The low temperature side outer layer member 21 is covered with the low temperature side substrate 14 so that each convex portion 23 overlaps each low temperature connection portion 17. Between each convex part 23, it is a recessed part, and when the low temperature side outer layer member 21 is coat | covered, the space part 25 will be formed between each convex part 23 inside the low temperature side outer layer member 21. FIG. Each space portion 25 is disposed at a position overlapping each high temperature connection portion 16.
The cold heat transmitted from the low-temperature-side heat medium to the outer surface 21a of the low-temperature-side outer layer member 21 is transmitted to the low-temperature connection portion 17 via the convex portion 23 and the low-temperature substrate 14 directly below the connection surface 23a. On the other hand, the cold of the low temperature side outer layer member 21 hardly propagates through the space 25. Therefore, cooling of the high temperature connection part 16 by the low temperature side heat medium is suppressed.

高温側外層部材22は、各凸部24が各高温接続部16に重なるように高温側基板15に被覆される。各凸部24間は凹部となっており、高温側外層部材22が被覆されると、高温側外層部材22の内側で各凸部24間には、空間部26が形成される。各空間部26は、各低温接続部17に重なる位置に配置されている。
高温側外層部材22の外表面22aに伝達された温水の熱は、凸部24及び接続面24aの直下の高温側外層部材22を介して高温接続部16に伝達される。一方、空間部26を介して高温側外層部材22の熱が伝搬することはほとんど無い。従って、熱媒体である温水の熱によって低温接続部17が加熱されることが抑制される。
The high temperature side outer layer member 22 is covered with the high temperature side substrate 15 such that each convex portion 24 overlaps each high temperature connection portion 16. Between each convex part 24, it is a recessed part, and when the high temperature side outer layer member 22 is coat | covered, the space part 26 will be formed between each convex part 24 inside the high temperature side outer layer member 22. FIG. Each space part 26 is arranged at a position overlapping each low temperature connection part 17.
The heat of warm water transmitted to the outer surface 22a of the high temperature side outer layer member 22 is transmitted to the high temperature connection portion 16 via the high temperature side outer layer member 22 directly below the convex portion 24 and the connection surface 24a. On the other hand, the heat of the high temperature side outer layer member 22 hardly propagates through the space portion 26. Therefore, it is suppressed that the low temperature connection part 17 is heated by the heat of the hot water which is a heat medium.

このように、低温側外層部材21及び高温側外層部材22に凸部23,24及び空間部25,26をそれぞれ設けたため、高温接続部16をできるだけ冷却せずに低温接続部17だけを低温側の熱媒体で冷却できるとともに、低温接続部17をできるだけ加熱せずに高温接続部16だけを高温側の熱媒体(温水)で加熱できる。このため、熱電変換素子11の面方向に大きな温度勾配を形成でき、効率良く発電できる。   Thus, since the convex portions 23 and 24 and the space portions 25 and 26 are provided on the low temperature side outer layer member 21 and the high temperature side outer layer member 22, respectively, only the low temperature connection portion 17 is connected to the low temperature side without cooling the high temperature connection portion 16 as much as possible. It is possible to cool only the high temperature connection portion 16 with the high temperature side heat medium (warm water) without heating the low temperature connection portion 17 as much as possible. For this reason, a big temperature gradient can be formed in the surface direction of the thermoelectric conversion element 11, and it can generate electric power efficiently.

また、本第1の実施の形態では、高温側外層部材22及び低温側外層部材21でフレキシブル基板部10を被覆し、高温側外層部材22及び低温側外層部材21を介して熱電変換素子11に熱を伝達する構成とした。このため、熱媒体が低温側基板14や高温側基板15に直接接触しないので、熱媒体が高温側基板15及び低温側基板14の耐久性等に影響することを防止できる。例えば、高温側基板15をポリイミド製のフィルムにより構成した場合、フィルムを透過した水分による熱電材料への影響を比較的受け易いが、熱媒体が高温側基板15に接触しない構成としたことで、温水等の水系の流体から熱を直接回収でき、効率良く発電できる。低温側基板14においても同様である。このように、フレキシブル基板部10を高温側外層部材22及び低温側外層部材21で覆うことで耐環境性が向上するため、熱電変換モジュール1を様々な設置場所に設置して発電できる。   In the first embodiment, the flexible substrate portion 10 is covered with the high temperature side outer layer member 22 and the low temperature side outer layer member 21, and the thermoelectric conversion element 11 is formed via the high temperature side outer layer member 22 and the low temperature side outer layer member 21. A structure for transferring heat was adopted. For this reason, since the heat medium does not directly contact the low temperature side substrate 14 or the high temperature side substrate 15, it is possible to prevent the heat medium from affecting the durability of the high temperature side substrate 15 and the low temperature side substrate 14. For example, when the high temperature side substrate 15 is composed of a polyimide film, it is relatively susceptible to the thermoelectric material due to moisture transmitted through the film, but the heat medium is configured not to contact the high temperature side substrate 15. Heat can be directly recovered from water-based fluids such as hot water, and power can be generated efficiently. The same applies to the low temperature side substrate 14. As described above, since the environment resistance is improved by covering the flexible substrate portion 10 with the high temperature side outer layer member 22 and the low temperature side outer layer member 21, the thermoelectric conversion module 1 can be installed at various installation locations to generate electric power.

また、熱媒体には高温側外層部材22、低温側外層部材21の全面が接触可能である。このため、例えば特許文献1記載の構成のように、基板の表面の一部にのみ熱伝導率の高い材料を配した構成と比較して、効率よく熱を回収できる。従って、熱電変換素子11に高い温度勾配を形成でき、発電効率が良い。さらに、高温側外層部材22の外表面22aを黒色に着色しておくことで、外側の熱媒体の輻射熱をより効果的に回収できる。
また、フレキシブル基板部10が高温側外層部材22及び低温側外層部材21で被覆されているため、外層部材20の外側の熱媒体の輻射熱を高温側外層部材22及び低温側外層部材21によって遮蔽でき、輻射熱によって熱電変換素子11の温度勾配が低下することを防止できる。このため、発電効率が良い。
また、高温側外層部材22及び低温側外層部材21によって、熱電変換モジュール1の剛性を確保でき、その分だけ低温側基板14及び高温側基板15の厚さを小さくできるため、低温側基板14及び高温側基板15で発生する伝熱のロスを低減できる。このため、発電効率が良い。
Further, the entire surface of the high temperature side outer layer member 22 and the low temperature side outer layer member 21 can contact the heat medium. For this reason, for example, as in the configuration described in Patent Document 1, heat can be efficiently recovered as compared with a configuration in which a material having high thermal conductivity is disposed only on a part of the surface of the substrate. Therefore, a high temperature gradient can be formed in the thermoelectric conversion element 11, and the power generation efficiency is good. Furthermore, by coloring the outer surface 22a of the high temperature side outer layer member 22 in black, the radiant heat of the outer heat medium can be recovered more effectively.
Further, since the flexible substrate portion 10 is covered with the high temperature side outer layer member 22 and the low temperature side outer layer member 21, the radiant heat of the heat medium outside the outer layer member 20 can be shielded by the high temperature side outer layer member 22 and the low temperature side outer layer member 21. It can prevent that the temperature gradient of the thermoelectric conversion element 11 falls by radiant heat. For this reason, power generation efficiency is good.
Moreover, the rigidity of the thermoelectric conversion module 1 can be ensured by the high temperature side outer layer member 22 and the low temperature side outer layer member 21, and the thickness of the low temperature side substrate 14 and the high temperature side substrate 15 can be reduced accordingly. Loss of heat transfer generated in the high temperature side substrate 15 can be reduced. For this reason, power generation efficiency is good.

以上説明したように、本発明を適用した第1の実施の形態によれば、熱電変換モジュール1は、複数の凸部が設けられた外層部材を有し、凸部は、n型熱電材料とp型熱電材料との接続部に対応した位置に熱的に接続されている。このため、低温側外層部材21及び高温側外層部材22により外部の熱媒体の熱を回収し、この熱を凸部23,24を介して熱電変換素子11に伝達できるとともに、熱媒体と低温側基板14、高温側基板15及び熱電変換素子11とが直接的に接触しない構造を実現している。このため、上記の例のように流体を熱媒体(熱源)とした場合であっても、熱媒体と熱電変換素子11側とを直接接触させることなく、熱を回収して発電できる。また、熱電変換モジュール1が熱媒体から輻射熱を受ける場合、低温側外層部材21または高温側外層部材22により輻射熱を回収し、熱電変換素子11側への輻射熱を遮蔽する。このため、低温側外層部材21及び高温側外層部材22を介しない熱伝達を抑制して、熱電変換素子11に大きな温度勾配を形成できる。従って、熱媒体が流体であっても問題なく発電可能であり、様々な熱源から効率よく熱を回収し、発電できる。   As described above, according to the first embodiment to which the present invention is applied, the thermoelectric conversion module 1 has an outer layer member provided with a plurality of convex portions, and the convex portions are formed of an n-type thermoelectric material. It is thermally connected to a position corresponding to the connection portion with the p-type thermoelectric material. For this reason, the heat of the external heat medium can be recovered by the low temperature side outer layer member 21 and the high temperature side outer layer member 22, and this heat can be transferred to the thermoelectric conversion element 11 via the convex portions 23 and 24. The structure which the board | substrate 14, the high temperature side board | substrate 15, and the thermoelectric conversion element 11 do not contact directly is implement | achieved. For this reason, even if it is a case where fluid is used as a heat carrier (heat source) like the above-mentioned example, it can collect heat and generate electricity, without making a heat medium and the thermoelectric conversion element 11 side contact directly. Moreover, when the thermoelectric conversion module 1 receives radiant heat from a heat medium, radiant heat is collect | recovered by the low temperature side outer layer member 21 or the high temperature side outer layer member 22, and the radiant heat to the thermoelectric conversion element 11 side is shielded. For this reason, the heat transfer which does not go through the low temperature side outer layer member 21 and the high temperature side outer layer member 22 can be suppressed, and a large temperature gradient can be formed in the thermoelectric conversion element 11. Therefore, even if the heat medium is fluid, power can be generated without any problem, and heat can be efficiently recovered from various heat sources to generate power.

また、熱電変換素子11は一対の低温側基板14及び高温側基板15により挟持されており、凸部23,24は、低温側基板14及び高温側基板15よりも熱伝導性が高く、かつ、凸部23,24は、低温側基板14及び高温側基板15の面上の低温接続部17及び高温接続部16に対応した位置に熱的に接続されているため、樹脂の低温側基板14及び高温側基板15及び熱電変換素子11への流体の熱媒体の接触を防止できるとともに、凸部23,24によって熱電変換素子に大きな温度勾配を形成できる。   Further, the thermoelectric conversion element 11 is sandwiched between a pair of the low temperature side substrate 14 and the high temperature side substrate 15, and the convex portions 23 and 24 have higher thermal conductivity than the low temperature side substrate 14 and the high temperature side substrate 15, and Since the convex portions 23 and 24 are thermally connected to positions corresponding to the low temperature connection portion 17 and the high temperature connection portion 16 on the surfaces of the low temperature side substrate 14 and the high temperature side substrate 15, the resin low temperature side substrate 14 and The contact of the fluid heat medium to the high temperature side substrate 15 and the thermoelectric conversion element 11 can be prevented, and a large temperature gradient can be formed in the thermoelectric conversion element by the convex portions 23 and 24.

また、低温側外層部材21及び高温側外層部材22は熱電変換モジュール1の最外層を構成するように熱電変換素子11の両面側に一対設けられ、熱電変換素子11は、一対の低温側外層部材21及び高温側外層部材22によって挟持されている。高温側外層部材22の凸部24と低温側外層部材21の凸部23とは、それぞれが高温接続部16及び低温接続部17に対応した異なる位置に熱的に接続されているため、流体の熱媒体の低温側基板14及び高温側基板15への接触を防止でき、且つ、熱電変換素子11に大きな温度勾配を形成できる。
また、複数の凸部23,24の間には空間部25,26が形成されており、低温側外層部材21及び高温側外層部材22の外側の熱媒体からの熱を空間部25,26によって断熱できるため、熱電変換素子11に大きな温度勾配を形成できる。
The low temperature side outer layer member 21 and the high temperature side outer layer member 22 are provided as a pair on both sides of the thermoelectric conversion element 11 so as to constitute the outermost layer of the thermoelectric conversion module 1, and the thermoelectric conversion element 11 is a pair of low temperature side outer layer members. 21 and the high temperature side outer layer member 22. The convex portion 24 of the high temperature side outer layer member 22 and the convex portion 23 of the low temperature side outer layer member 21 are thermally connected to different positions corresponding to the high temperature connection portion 16 and the low temperature connection portion 17, respectively. Contact of the heat medium to the low temperature side substrate 14 and the high temperature side substrate 15 can be prevented, and a large temperature gradient can be formed in the thermoelectric conversion element 11.
Space portions 25 and 26 are formed between the plurality of convex portions 23 and 24, and heat from the heat medium outside the low temperature side outer layer member 21 and the high temperature side outer layer member 22 is transmitted by the space portions 25 and 26. Since heat insulation can be performed, a large temperature gradient can be formed in the thermoelectric conversion element 11.

また、流体の熱媒体が低温側基板14及び高温側基板15に接触することを低温側外層部材21及び高温側外層部材22によって防止でき、ポリイミド等の樹脂製の低温側基板14及び高温側基板15を基板に用いることができるため、熱電変換モジュール1の柔軟性及び絶縁性を確保できる。
さらに、凸部23,24は低温側外層部材21及び高温側外層部材22に一体に形成されており、凸部23,24と低温側外層部材21及び高温側外層部材22との接合部等が存在せず熱伝達のロスを抑えることができるため、熱電変換素子11に大きな温度勾配を形成できる。
また、高温側外層部材22の外表面22aを黒色に着色しておくことで、外側の熱媒体の輻射熱をより効果的に回収して高温接続部16を加熱でき、発電効率を向上できる。
Further, the low temperature side outer layer member 21 and the high temperature side outer layer member 22 can prevent the fluid heat medium from contacting the low temperature side substrate 14 and the high temperature side substrate 15, and the low temperature side substrate 14 and the high temperature side substrate made of resin such as polyimide. Since 15 can be used for the substrate, the flexibility and insulation of the thermoelectric conversion module 1 can be ensured.
Further, the convex portions 23 and 24 are integrally formed with the low temperature side outer layer member 21 and the high temperature side outer layer member 22, and a joint portion between the convex portions 23 and 24 and the low temperature side outer layer member 21 and the high temperature side outer layer member 22 is formed. Since the heat transfer loss can be suppressed without being present, a large temperature gradient can be formed in the thermoelectric conversion element 11.
Further, by coloring the outer surface 22a of the high temperature side outer layer member 22 in black, the radiant heat of the outer heat medium can be more effectively recovered to heat the high temperature connection portion 16, and the power generation efficiency can be improved.

なお、上記第1の実施の形態は本発明を適用した一態様を示すものであって、本発明は上記実施の形態に限定されるものではない。
上記第1の実施の形態では、低温側基板14及び高温側基板15の両方が、低温側外層部材21及び高温側外層部材22によってそれぞれ被覆されているものとして説明した。本発明はこれに限定されず、低温側基板14及び高温側基板15の少なくとも一方が外層部材で被覆されていれば良い。例えば、低温側外層部材21を設けずに高温側外層部材22のみを設け、低温側基板14には、低温接続部17に重ねて配置される凸部のみを設けた構成としても良い。
また、上記第1の実施の形態では、凸部23,24は、エッチング加工によって、低温側外層部材21及び高温側外層部材22に一体に形成されるものとして説明したが、凸部23,24は他の製造方法によって形成されても良い。例えば、1枚の外層部材に圧延加工やプレス加工等を施すことによって、凸部23を一体に備えた低温側外層部材21や凸部24を一体に備えた高温側外層部材22を形成しても良い。
In addition, the said 1st Embodiment shows the one aspect | mode which applied this invention, Comprising: This invention is not limited to the said embodiment.
In the first embodiment, the low temperature side substrate 14 and the high temperature side substrate 15 are both covered with the low temperature side outer layer member 21 and the high temperature side outer layer member 22, respectively. The present invention is not limited to this, and it is sufficient that at least one of the low temperature side substrate 14 and the high temperature side substrate 15 is covered with the outer layer member. For example, only the high temperature side outer layer member 22 may be provided without providing the low temperature side outer layer member 21, and the low temperature side substrate 14 may be provided with only the convex portion disposed so as to overlap the low temperature connection portion 17.
In the first embodiment, the convex portions 23 and 24 are described as being integrally formed on the low temperature side outer layer member 21 and the high temperature side outer layer member 22 by etching, but the convex portions 23 and 24 are described. May be formed by other manufacturing methods. For example, the low temperature side outer layer member 21 integrally provided with the convex portions 23 and the high temperature side outer layer member 22 integrally provided with the convex portions 24 are formed by rolling or pressing one outer layer member. Also good.

また、上記第1の実施の形態において、空間部25,26に、凸部23,24よりも熱伝導性が低い樹脂等の断熱材を充填して熱媒体の熱を断熱し、熱電変換素子11に大きな温度勾配が発生するように構成しても良い。
さらに、外層部材21,22と凸部23,24を異なる材料を用いて構成しても良い。例えば、凸部23,24を絶縁性の高熱伝導性樹脂を用いて形成し、空間部25,26に絶縁性断熱材を充填することにより、フレキシブル基板部10の無い構成することが可能となる。この場合、上述した実施形態に係る効果に加え、外層部の熱を効率的に熱電変換素子11に伝えることが可能となるため、熱電変換素子11により大きな温度勾配を発生させることができる。
或いは、空間部25,26内の低温側基板14及び高温側基板15の表面に、凸部23,24よりも薄い金属被覆層を蒸着等によって形成しても良い。この金属被覆層を設けることで、空間部25,26を介して低温接続部17及び高温接続部16に伝搬する輻射熱の影響をさらに抑制できる。これにより、熱電変換素子11に、より大きな温度勾配を発生させることができる。
また、上記第1の実施の形態において、低温側外層部材21と高温側外層部材22とを、熱伝導率が異なる材料により構成してもよい。すなわち、凸部23を含む低温側外層部材21と、凸部24を含む高温側外層部材22とが、異なる熱伝導性を有する構成としてもよい。この場合、上述した実施形態に係る効果に加え、素子に必要な機械強度や熱膨張率にあわせた前記凸部の材料を選択することができるという利点がある。この場合の低温側外層部材21及び高温側外層部材22の具体的な例としては、銅とアルミを用いる構成が挙げられる。
Further, in the first embodiment, the space portions 25 and 26 are filled with a heat insulating material such as a resin having a lower thermal conductivity than the convex portions 23 and 24 to insulate the heat of the heat medium, and the thermoelectric conversion element. 11 may be configured to generate a large temperature gradient.
Furthermore, you may comprise the outer-layer members 21 and 22 and the convex parts 23 and 24 using a different material. For example, by forming the convex portions 23 and 24 using an insulating high thermal conductive resin and filling the space portions 25 and 26 with an insulating heat insulating material, it is possible to configure without the flexible substrate portion 10. . In this case, in addition to the effects according to the above-described embodiment, it is possible to efficiently transmit the heat of the outer layer portion to the thermoelectric conversion element 11, so that a large temperature gradient can be generated in the thermoelectric conversion element 11.
Alternatively, a metal coating layer thinner than the convex portions 23 and 24 may be formed on the surfaces of the low temperature side substrate 14 and the high temperature side substrate 15 in the space portions 25 and 26 by vapor deposition or the like. By providing this metal coating layer, the influence of radiant heat propagating to the low temperature connection portion 17 and the high temperature connection portion 16 through the space portions 25 and 26 can be further suppressed. Thereby, a larger temperature gradient can be generated in the thermoelectric conversion element 11.
In the first embodiment, the low temperature side outer layer member 21 and the high temperature side outer layer member 22 may be made of materials having different thermal conductivities. That is, the low temperature side outer layer member 21 including the convex portion 23 and the high temperature side outer layer member 22 including the convex portion 24 may have different thermal conductivities. In this case, in addition to the effects according to the above-described embodiment, there is an advantage that the material of the convex portion can be selected in accordance with the mechanical strength and the thermal expansion coefficient required for the element. Specific examples of the low temperature side outer layer member 21 and the high temperature side outer layer member 22 in this case include a configuration using copper and aluminum.

また、上記第1の実施形態では、凸部23、23の間の空間25、及び、凸部24、24の間の空間26が、いずれも矩形断面の形状となっている例を示したが、空間25、26の断面形状が矩形となっていなくてもよい。例えば、空間25、26の隅部が曲面となっていてもよい。また、図3に示すように、空間25、26の底面全体が、曲面状(いわゆるR形状)の底面部28となっていてもよい。このような構成とした場合には、凸部23,24の強度がより高くなることが期待できる。
また、熱電変換モジュール1は、熱電変換素子11に電流を流すことで、温度差発生装置(ペルチェ素子)としても使用可能である。上記第1の実施形態の熱電変換モジュール1は、外層部材20を備えて耐環境性が高いため、液体や気体を含む様々な対象に温度差を形成できる。また、外層部材20の表面の全体に熱媒体を接触させることができ、効率良く温度差を形成できる。熱電変換モジュール1は、フレキシブルであるため様々な対象に設置でき、例えば、自動車の乗員用シート内に熱電変換モジュール1を設けることで、乗員用シートを加熱及び冷却できる。
In the first embodiment, the space 25 between the convex portions 23 and 23 and the space 26 between the convex portions 24 and 24 are both rectangular rectangular. The cross-sectional shapes of the spaces 25 and 26 do not have to be rectangular. For example, the corners of the spaces 25 and 26 may be curved surfaces. Further, as shown in FIG. 3, the entire bottom surfaces of the spaces 25 and 26 may be curved (so-called R-shaped) bottom surface portions 28. In the case of such a configuration, it can be expected that the strength of the convex portions 23 and 24 is further increased.
The thermoelectric conversion module 1 can also be used as a temperature difference generator (Peltier element) by passing a current through the thermoelectric conversion element 11. Since the thermoelectric conversion module 1 of the first embodiment includes the outer layer member 20 and has high environmental resistance, a temperature difference can be formed in various objects including liquid and gas. Further, the heat medium can be brought into contact with the entire surface of the outer layer member 20, and a temperature difference can be formed efficiently. Since the thermoelectric conversion module 1 is flexible, it can be installed on various objects. For example, by providing the thermoelectric conversion module 1 in an automobile passenger seat, the passenger seat can be heated and cooled.

[第2の実施の形態]
以下、図4を参照して、本発明を適用した第2の実施の形態について説明する。この第2の実施の形態において、上記第1の実施の形態と同様に構成される部分については、同符号を付して説明を省略する。
上記第1の実施の形態では、凸部23,24は低温側外層部材21及び高温側外層部材22にエッチング加工によって一体に形成されているものとして説明したが、本第2の実施の形態は、凸部123,124が別体で設けられる点が、上記第1の実施の形態と異なる。
[Second Embodiment]
Hereinafter, a second embodiment to which the present invention is applied will be described with reference to FIG. In the second embodiment, parts that are configured in the same manner as in the first embodiment are given the same reference numerals, and descriptions thereof are omitted.
In the first embodiment, the convex portions 23 and 24 have been described as being integrally formed on the low temperature side outer layer member 21 and the high temperature side outer layer member 22 by etching, but the second embodiment is The point from which the convex parts 123 and 124 are provided separately differs from the said 1st Embodiment.

図4は、第2の実施の形態における熱電変換モジュール101の断面図である。
図4に示すように、熱電変換モジュール101は、熱電変換素子11と、フレキシブル基板部10と、フレキシブル基板部10の両面を覆う外層部材120とを備えて構成される。
外層部材120は、低温側基板14を被覆する低温側外層部材121と、高温接続部16を被覆する高温側外層部材122とを有して一対で構成される。
低温側外層部材121は、平坦な箔部121aと、各低温接続部17に対応して箔部121a上に設けられる複数の凸部123とを有する。
高温側外層部材122は、平坦な箔部122aと、各高温接続部16に対応して箔部122a上に設けられる複数の凸部124とを有する。
箔部121a,122aは、樹脂製の低温側基板14及び高温側基板15よりも熱伝導率が高い材料を用いて形成された薄板状または箔状の部材である。箔部121a,122aに用いられる材料としては、例えば、銅やアルミニウム箔等の他の金属または金属化合物、セラミックス、高熱伝導性樹脂等が挙げられる。また、凸部123,124は、樹脂製のフレキシブル基板部10よりも熱伝導率が高い材料を用いて形成された薄板状または箔状の部材である。凸部123,124に用いられる材料としては、例えば、銅やアルミニウム箔等の他の金属または金属化合物、セラミックス、高熱伝導性樹脂等が挙げられる。
FIG. 4 is a cross-sectional view of the thermoelectric conversion module 101 according to the second embodiment.
As shown in FIG. 4, the thermoelectric conversion module 101 includes a thermoelectric conversion element 11, a flexible substrate unit 10, and an outer layer member 120 that covers both surfaces of the flexible substrate unit 10.
The outer layer member 120 includes a low temperature side outer layer member 121 that covers the low temperature side substrate 14 and a high temperature side outer layer member 122 that covers the high temperature connection portion 16.
The low temperature side outer layer member 121 includes a flat foil portion 121 a and a plurality of convex portions 123 provided on the foil portion 121 a corresponding to each low temperature connection portion 17.
The high temperature side outer layer member 122 includes a flat foil portion 122 a and a plurality of convex portions 124 provided on the foil portion 122 a corresponding to the high temperature connection portions 16.
The foil portions 121a and 122a are thin plate-like or foil-like members formed using a material having a higher thermal conductivity than the resin-made low-temperature side substrate 14 and the high-temperature side substrate 15. Examples of the material used for the foil portions 121a and 122a include other metals or metal compounds such as copper and aluminum foil, ceramics, and high thermal conductive resins. The convex portions 123 and 124 are thin plate-like or foil-like members formed using a material having a higher thermal conductivity than the resin-made flexible substrate portion 10. Examples of the material used for the convex portions 123 and 124 include other metals or metal compounds such as copper and aluminum foil, ceramics, and high thermal conductive resin.

各凸部123,124は、箔部121a,122aとは別体として低温側基板14及び高温側基板15にそれぞれ設けられている。例えば、凸部123,124は、低温側基板14及び高温側基板15の各々に銅箔等の金属箔を貼り合わせ、この金属箔にエッチング加工を施して凸状に形成したものである。このように形成された凸部123,124に、箔部121a,122aを貼り合わせ、ろう付けや金属粒子を用いた拡散接合等によって接合することにより、図4に示した低温側外層部材121及び高温側外層部材122を実現できる。
本第2の実施の形態では、凸部123,124が箔部121a,122aと別体であるため、熱電変換モジュール101の要求特性に合わせて凸部123,124の熱伝導率を自由に設定できる。すなわち、凸部123、124を、それぞれ、箔部121a,122aとは異なる材料で構成することができる。
さらに、凸部123と、凸部124とを、熱伝導率が異なる材料で構成することも可能である。具体的には、低温側凸部123にアルミを用い、高温側凸部124に銅を用いる例が挙げられる。この場合、上述した実施形態に係る効果に加え、前記高温側凸部と前記低温側凸部での熱膨張に伴う伸び量を近づけることができるという利点がある。
The convex portions 123 and 124 are provided on the low temperature side substrate 14 and the high temperature side substrate 15 separately from the foil portions 121a and 122a, respectively. For example, the convex portions 123 and 124 are formed in a convex shape by bonding a metal foil such as a copper foil to each of the low temperature side substrate 14 and the high temperature side substrate 15 and etching the metal foil. The foil portions 121a and 122a are bonded to the convex portions 123 and 124 thus formed, and bonded by brazing, diffusion bonding using metal particles, or the like, so that the low temperature side outer layer member 121 and The high temperature side outer layer member 122 can be realized.
In the second embodiment, since the convex portions 123 and 124 are separate from the foil portions 121a and 122a, the thermal conductivity of the convex portions 123 and 124 can be freely set according to the required characteristics of the thermoelectric conversion module 101. it can. That is, the convex portions 123 and 124 can be made of a material different from that of the foil portions 121a and 122a, respectively.
Furthermore, the convex part 123 and the convex part 124 can be made of materials having different thermal conductivities. Specifically, there is an example in which aluminum is used for the low temperature side convex portion 123 and copper is used for the high temperature side convex portion 124. In this case, in addition to the effects according to the above-described embodiment, there is an advantage that the amount of elongation accompanying thermal expansion at the high temperature side convex portion and the low temperature side convex portion can be made closer.

なお、上記第2の実施の形態は本発明を適用した一態様を示すものであって、本発明は上記実施の形態に限定されるものではない。
上記第2の実施の形態では、低温側基板14及び高温側基板15に、エッチング加工により凸部123、124を形成し、これら凸部123,124に箔部121a,122aを貼り合わせる例について説明したが、本発明はこれに限定されない。例えば、箔部121a,122aに、メッキ、溶射及び蒸着等の加工方法によって凸部123、124をそれぞれ形成して、この凸部を低温側基板14及び高温側基板15に密着させる構成としても良い。或いは、低温側基板14及び高温側基板15に凸部123、124を形成し、その後、高熱伝導性樹脂等を溶融させた材料を用いてインサート鋳造を行い、凸部123、124と一体化させてもよい。
また、熱電変換モジュール101は、熱電変換素子11に電流を流すことで、温度差発生装置(ペルチェ素子)としても使用可能である。
In addition, the said 2nd Embodiment shows the one aspect | mode which applied this invention, Comprising: This invention is not limited to the said embodiment.
In the second embodiment, an example in which convex portions 123 and 124 are formed on the low temperature side substrate 14 and the high temperature side substrate 15 by etching and the foil portions 121a and 122a are bonded to the convex portions 123 and 124 will be described. However, the present invention is not limited to this. For example, the convex portions 123 and 124 may be formed on the foil portions 121a and 122a by a processing method such as plating, thermal spraying, and vapor deposition, and the convex portions may be in close contact with the low temperature side substrate 14 and the high temperature side substrate 15. . Alternatively, the convex portions 123 and 124 are formed on the low temperature side substrate 14 and the high temperature side substrate 15, and then insert casting is performed using a material in which a high thermal conductive resin or the like is melted, so that the convex portions 123 and 124 are integrated. May be.
The thermoelectric conversion module 101 can also be used as a temperature difference generating device (Peltier element) by passing a current through the thermoelectric conversion element 11.

[第3の実施の形態]
以下、図5を参照して、本発明を適用した第3の実施の形態について説明する。この第3の実施の形態において、上記第1の実施の形態と同様に構成される部分については、同符号を付して説明を省略する。
上記第2の実施の形態では、凸部123,124は、箔部121a,122aの内面の平らな面にそれぞれ貼り合わされているが、本第3の実施の形態は、凸部223,224が箔部221a,222aに形成された凹部221b,222bに係合する点で、上記第2の実施の形態と異なる。
[Third Embodiment]
Hereinafter, a third embodiment to which the present invention is applied will be described with reference to FIG. In the third embodiment, parts that are configured in the same manner as in the first embodiment are given the same reference numerals, and descriptions thereof are omitted.
In the second embodiment, the convex portions 123 and 124 are bonded to the flat surfaces of the inner surfaces of the foil portions 121a and 122a. However, in the third embodiment, the convex portions 223 and 224 are bonded to each other. The second embodiment is different from the second embodiment in that it engages with concave portions 221b and 222b formed in the foil portions 221a and 222a.

図5は、第3の実施の形態における熱電変換モジュール201の断面図である。
この図5に示すように、熱電変換モジュール201は、熱電変換素子11と、フレキシブル基板部10と、フレキシブル基板部10の両面を覆う外層部材220とを備えて構成される。
外層部材220は、低温側基板14を被覆する低温側外層部材221と、高温接続部16を被覆する高温側外層部材222とを有して一対で構成される。
低温側外層部材221は、平坦な箔部221aと、各低温接続部17に対応して箔部221a上に設けられる複数の凸部223とを有する。
高温側外層部材222は、平坦な箔部222aと、各高温接続部16に対応して箔部222a上に設けられる複数の凸部224とを有する。
箔部221a,222a及び凸部223、224は、樹脂製の低温側基板14及び高温側基板15よりも熱伝導率が高い材料を用いて形成されている。具体的な材料としては、銅やアルミニウム箔等の他の金属または金属化合物、セラミックス、高熱伝導性樹脂等が挙げられる。本実施形態では、箔部221a,222aに銅箔を用い、凸部223、224に銅を用いた例を示す。
FIG. 5 is a cross-sectional view of the thermoelectric conversion module 201 according to the third embodiment.
As shown in FIG. 5, the thermoelectric conversion module 201 includes the thermoelectric conversion element 11, the flexible substrate unit 10, and an outer layer member 220 that covers both surfaces of the flexible substrate unit 10.
The outer layer member 220 includes a low temperature side outer layer member 221 that covers the low temperature side substrate 14 and a high temperature side outer layer member 222 that covers the high temperature connection portion 16.
The low temperature side outer layer member 221 includes a flat foil portion 221 a and a plurality of convex portions 223 provided on the foil portion 221 a corresponding to each low temperature connection portion 17.
The high temperature side outer layer member 222 has a flat foil portion 222 a and a plurality of convex portions 224 provided on the foil portion 222 a corresponding to each high temperature connection portion 16.
The foil portions 221 a and 222 a and the convex portions 223 and 224 are formed using a material having a higher thermal conductivity than the resin-made low-temperature side substrate 14 and the high-temperature side substrate 15. Specific examples of the material include other metals or metal compounds such as copper and aluminum foil, ceramics, and high thermal conductive resins. In the present embodiment, an example in which copper foil is used for the foil portions 221a and 222a and copper is used for the convex portions 223 and 224 is shown.

凸部223,224は、第2の実施の形態で説明した凸部123、124と同様の方法により、低温側基板14及び高温側基板15の表面に形成できる。
一方、箔部221aには、低温側基板14側の面に、凹部221bが形成されている。箔部221aを凸部223と接合した場合に、凸部223が凹部221bに嵌入する。箔部222aにも同様に、高温側基板15側の面に凹部222bが形成され、箔部222aを凸部224と接合して一体化させた場合に凸部224が凹部222bに嵌入する。凸部223、224は、その先端の一部のみが押部221b、222bにそれぞれ入り込む。他の部分は箔部221a、222aとフレキシブル基板部10とを離隔させるので、空間25、26が確保される。
凸部223,224と箔部221a,222aとを接合する方法としては、ろう付け、金属粒子を用いた拡散接合、接着等が挙げられる。
このように、凸部223,224を凹部221b,222bに係合させることで、凸部223,224をより強固に箔部221a,222aに接合できる。
The convex portions 223 and 224 can be formed on the surfaces of the low temperature side substrate 14 and the high temperature side substrate 15 by the same method as the convex portions 123 and 124 described in the second embodiment.
On the other hand, a concave portion 221b is formed on the surface of the foil portion 221a on the low temperature side substrate 14 side. When the foil part 221a is joined to the convex part 223, the convex part 223 fits into the concave part 221b. Similarly, a concave portion 222b is formed on the surface of the foil portion 222a on the high temperature side substrate 15, and when the foil portion 222a is joined and integrated with the convex portion 224, the convex portion 224 fits into the concave portion 222b. Only a part of the tip of the convex portions 223 and 224 enters the pressing portions 221b and 222b, respectively. Since the other portions separate the foil portions 221a and 222a from the flexible substrate portion 10, the spaces 25 and 26 are secured.
Examples of the method for joining the convex portions 223 and 224 and the foil portions 221a and 222a include brazing, diffusion bonding using metal particles, and adhesion.
Thus, by engaging the convex portions 223 and 224 with the concave portions 221b and 222b, the convex portions 223 and 224 can be more firmly joined to the foil portions 221a and 222a.

なお、上記第3の実施の形態は本発明を適用した一態様を示すものであって、本発明は上記実施の形態に限定されるものではない。
例えば、上記第3の実施の形態では、低温側基板14及び高温側基板15に予め設けられた凸部223,224と、凹部221b,222bが形成された箔部221a,222aとを接合する例について説明した。本発明はこれに限定されず、例えば、高熱伝導樹脂を用いたインサート鋳造によって、箔部221a、222aを形成するとともに凸部223,224と一体化させてもよい。この場合、事前に凹部221b、222bを形成する必要がない。
また、熱電変換モジュール201は、熱電変換素子11に電流を流すことで、温度差発生装置(ペルチェ素子)としても使用可能である。
The third embodiment shows one aspect to which the present invention is applied, and the present invention is not limited to the above-described embodiment.
For example, in the third embodiment, the convex portions 223 and 224 provided in advance on the low temperature side substrate 14 and the high temperature side substrate 15 are joined to the foil portions 221a and 222a in which the concave portions 221b and 222b are formed. Explained. The present invention is not limited to this. For example, the foil portions 221a and 222a may be formed and integrated with the convex portions 223 and 224 by insert casting using a high thermal conductive resin. In this case, it is not necessary to form the recesses 221b and 222b in advance.
The thermoelectric conversion module 201 can also be used as a temperature difference generator (Peltier element) by passing a current through the thermoelectric conversion element 11.

[第4の実施の形態]
以下、図6を参照して、本発明を適用した第4の実施の形態について説明する。この第4の実施の形態において、上記第1の実施の形態と同様に構成される部分については、同符号を付して説明を省略する。
上記第1の実施の形態では、熱電変換素子11は、一対の樹脂製の低温側基板14および高温側基板15によって両面から覆われているが、本第4の実施の形態は、低温側基板14および高温側基板15が設けられておらず、熱電変換素子11が低温側外層部材321及び高温側外層部材322で覆われる点で、上記第1の実施の形態と異なる。
[Fourth Embodiment]
The fourth embodiment to which the present invention is applied will be described below with reference to FIG. In the fourth embodiment, parts that are configured in the same manner as in the first embodiment are given the same reference numerals, and descriptions thereof are omitted.
In the first embodiment, the thermoelectric conversion element 11 is covered from both sides by a pair of resin-made low-temperature side substrate 14 and high-temperature side substrate 15, but the fourth embodiment is a low-temperature side substrate. 14 and the high temperature side substrate 15 are not provided, and the thermoelectric conversion element 11 is different from the first embodiment in that the thermoelectric conversion element 11 is covered with the low temperature side outer layer member 321 and the high temperature side outer layer member 322.

図6は、第4の実施の形態における熱電変換モジュール301の断面図である。
この図6に示すように、熱電変換モジュール301は、熱電変換素子11と、熱電変換素子11の両面を覆う外層部材320とを備えて構成される。
外層部材320は、熱電変換素子11の一方の面を覆う低温側外層部材321と、熱電変換素子11の他方の面を覆う高温側外層部材322とを有して一対で構成される。
低温側外層部材321は、平坦な箔部321aと、各低温接続部17に対応して箔部321a上に設けられる複数の凸部323とを有する。
高温側外層部材322は、平坦な箔部322aと、各高温接続部16に対応して箔部322a上に設けられる複数の凸部324とを有する。
低温側外層部材321は低温の熱媒体側に設けられ、高温側外層部材322は高温の熱媒体側に設けられる。
FIG. 6 is a cross-sectional view of the thermoelectric conversion module 301 according to the fourth embodiment.
As shown in FIG. 6, the thermoelectric conversion module 301 includes the thermoelectric conversion element 11 and an outer layer member 320 that covers both surfaces of the thermoelectric conversion element 11.
The outer layer member 320 includes a pair of a low temperature side outer layer member 321 that covers one surface of the thermoelectric conversion element 11 and a high temperature side outer layer member 322 that covers the other surface of the thermoelectric conversion element 11.
The low temperature side outer layer member 321 has a flat foil portion 321 a and a plurality of convex portions 323 provided on the foil portion 321 a corresponding to each low temperature connection portion 17.
The high temperature side outer layer member 322 includes a flat foil portion 322 a and a plurality of convex portions 324 provided on the foil portion 322 a corresponding to each high temperature connection portion 16.
The low temperature side outer layer member 321 is provided on the low temperature heat medium side, and the high temperature side outer layer member 322 is provided on the high temperature heat medium side.

箔部321a,322aは、熱伝導率が高い材料を用いて形成されたフレキシブルな薄板状または箔状の部材である。箔部321a,322aに用いられる材料としては、本第4の実施の形態では銅であるが、例えば、アルミニウム箔等の他の金属または金属化合物、セラミックス、高熱伝導性樹脂等を用いることもできる。また、凸部323,324は、絶縁性を備えるとともに熱伝導率が高い材料を用いて形成された薄板状または箔状の部材である。凸部323,324に用いられる材料としては、本第4の実施の形態では絶縁性樹脂であるが、例えば、樹脂とアルミナ等のセラミックスとを混合して固化したものであっても良い。   The foil portions 321a and 322a are flexible thin plate-like or foil-like members formed using a material having high thermal conductivity. The material used for the foil portions 321a and 322a is copper in the fourth embodiment, but other metals or metal compounds such as aluminum foil, ceramics, high thermal conductive resin, etc. can also be used. . In addition, the convex portions 323 and 324 are thin plate-like or foil-like members formed using a material having insulating properties and high thermal conductivity. The material used for the convex portions 323 and 324 is an insulating resin in the fourth embodiment, but may be a material obtained by mixing and solidifying a resin and ceramics such as alumina.

各凸部323,324は、箔部321a,322aとは別体として箔部321a,322aにそれぞれ設けられている。低温側外層部材321は、各凸部323が各低温接続部17に重なって接続されるように熱電変換素子11を覆う。高温側外層部材322は、各凸部324が各低温接続部16に重なって接続されるように熱電変換素子11を覆う。各凸部323間には、空間部25が形成される。各凸部324間には、空間部26が形成される。ここで、凸部323と、凸部324とは、熱伝導率が異なる材料で構成されても良い。
空間部25,26には、凸部323,324よりも熱伝導率が低く、且つ、絶縁性を備えた樹脂等の断熱材330が充填されている。この構成により、空間部25,26に対応する部分の熱電変換素子11と箔部321a,322aとを確実に絶縁できるとともに、箔部321a,322aにおける空間部25,26に面する部分の熱が熱電変換素子11へ伝達されることを抑制でき、熱電変換素子11に大きな温度勾配を形成できる。
Each convex part 323,324 is provided in foil part 321a, 322a as a separate body from foil part 321a, 322a, respectively. The low temperature side outer layer member 321 covers the thermoelectric conversion element 11 so that each convex portion 323 is connected to each low temperature connection portion 17. The high temperature side outer layer member 322 covers the thermoelectric conversion element 11 so that each convex portion 324 is connected to each low temperature connection portion 16. A space portion 25 is formed between the convex portions 323. A space portion 26 is formed between the convex portions 324. Here, the convex portion 323 and the convex portion 324 may be made of materials having different thermal conductivities.
The space portions 25 and 26 are filled with a heat insulating material 330 such as a resin having a lower thermal conductivity than the convex portions 323 and 324 and having an insulating property. With this configuration, the thermoelectric conversion element 11 corresponding to the space portions 25 and 26 can be reliably insulated from the foil portions 321a and 322a, and the heat of the portions facing the space portions 25 and 26 in the foil portions 321a and 322a can be obtained. Transmission to the thermoelectric conversion element 11 can be suppressed, and a large temperature gradient can be formed in the thermoelectric conversion element 11.

本第4の実施の形態によれば、絶縁性を備えるとともに熱伝導率が高い凸部323,324を備えた低温側外層部材321及び高温側外層部材322によって熱電変換素子11を直接覆うため、凸部323,324によって箔部321a,322aと熱電変換素子11とを絶縁し、且つ、低温接続部17及び高温接続部16に効率良く熱を伝達できる。このため、上記第1の実施の形態で説明した、ポリイミド等の樹脂で構成される低温側基板14及び高温側基板15を設ける必要がなく、様々な熱媒体に対応可能な熱電変換モジュール301を簡単な構造で実現できる。
また、低温側基板14及び高温側基板15を設けない分だけ熱抵抗が低下するため、外側の熱媒体の熱を効率良く熱電変換素子11に伝達でき、発電効率が良い。
なお、熱電変換モジュール301は、熱電変換素子11に電流を流すことで、温度差発生装置(ペルチェ素子)としても使用可能である。
According to the fourth embodiment, since the thermoelectric conversion element 11 is directly covered by the low temperature side outer layer member 321 and the high temperature side outer layer member 322 that have the convex portions 323 and 324 having insulation and high thermal conductivity, The foil portions 321a and 322a and the thermoelectric conversion element 11 are insulated by the convex portions 323 and 324, and heat can be efficiently transmitted to the low temperature connection portion 17 and the high temperature connection portion 16. For this reason, it is not necessary to provide the low temperature side substrate 14 and the high temperature side substrate 15 made of a resin such as polyimide described in the first embodiment, and the thermoelectric conversion module 301 that can handle various heat media is provided. It can be realized with a simple structure.
Further, since the thermal resistance is lowered by the amount not provided with the low temperature side substrate 14 and the high temperature side substrate 15, the heat of the outside heat medium can be efficiently transmitted to the thermoelectric conversion element 11, and the power generation efficiency is good.
The thermoelectric conversion module 301 can also be used as a temperature difference generator (Peltier element) by passing a current through the thermoelectric conversion element 11.

図7は、熱電変換モジュール102の参考例を示す断面図である。
図7に示す熱電変換モジュール102は、熱電変換モジュール101において、高温側外層部材122の箔部122a(図4)を設けずに、高温側基板15の表面において各凸部124の間の凹部に、凸部124よりも薄い金属被覆層130を蒸着等によって形成したものである。金属被覆層130を設けることで、高温側の熱媒体からの輻射熱が低温接続部17に影響することを抑制できるため、熱電変換素子11に大きな温度勾配を発生させることができ、発電効率が良い。また、樹脂製の高温側基板15の表面が金属被覆層130で覆われて外部に露出しないため、高温側基板15の耐久性が向上する。
FIG. 7 is a cross-sectional view showing a reference example of the thermoelectric conversion module 102.
The thermoelectric conversion module 102 shown in FIG. 7 is not provided with the foil portion 122a (FIG. 4) of the high temperature side outer layer member 122 in the thermoelectric conversion module 101, but in the concave portions between the convex portions 124 on the surface of the high temperature side substrate 15. The metal coating layer 130 thinner than the convex portion 124 is formed by vapor deposition or the like. By providing the metal coating layer 130, it is possible to suppress the influence of the radiant heat from the heat medium on the high temperature side on the low temperature connection portion 17, so that a large temperature gradient can be generated in the thermoelectric conversion element 11, and the power generation efficiency is good. . Moreover, since the surface of the resin-made high temperature side substrate 15 is covered with the metal coating layer 130 and is not exposed to the outside, the durability of the high temperature side substrate 15 is improved.

1,101,201,301 熱電変換モジュール
10 フレキシブル基板部
11 熱電変換素子
12 n型熱電素子(n型熱電材料)
13 p型熱電素子(p型熱電材料)
14 低温側基板(基板)
15 高温側基板(基板)
16 高温接続部(接続部)
17 低温接続部(接続部)
21,121,221,321 低温側外層部材(外層部材)
22,122,222,322 高温外層部材(外層部材)
22a 外表面(表面)
23,24,123,124,223,224,323,324 凸部
25,26 空間部
1, 101, 201, 301 Thermoelectric conversion module 10 Flexible substrate part 11 Thermoelectric conversion element 12 n-type thermoelectric element (n-type thermoelectric material)
13 p-type thermoelectric element (p-type thermoelectric material)
14 Low temperature side substrate (substrate)
15 High temperature side substrate (substrate)
16 High temperature connection (connection)
17 Low temperature connection (connection)
21, 121, 221, 321 Low temperature side outer layer member (outer layer member)
22, 122, 222, 322 High temperature outer layer member (outer layer member)
22a Outer surface (surface)
23, 24, 123, 124, 223, 224, 323, 324 Convex part 25, 26 Space part

Claims (10)

n型熱電材料及びp型熱電材料を交互に配置して構成された熱電変換素子を備えた熱電変換モジュールであって、
複数の凸部が設けられた外層部材を有し、
前記凸部は、前記n型熱電材料と前記p型熱電材料との接続部に対応した位置に熱的に接続されていることを特徴とする熱電変換モジュール。
A thermoelectric conversion module comprising thermoelectric conversion elements configured by alternately arranging n-type thermoelectric materials and p-type thermoelectric materials,
Having an outer layer member provided with a plurality of convex portions,
The convex portion is thermally connected to a position corresponding to a connection portion between the n-type thermoelectric material and the p-type thermoelectric material.
前記熱電変換素子は一対の基板により挟持されており、前記凸部は、前記基板よりも熱伝導性が高く、かつ、前記凸部は、前記基板の面上の前記接続部に対応した位置に熱的に接続されていることを特徴とする請求項1記載の熱電変換モジュール。   The thermoelectric conversion element is sandwiched between a pair of substrates, the convex portion has higher thermal conductivity than the substrate, and the convex portion is at a position corresponding to the connecting portion on the surface of the substrate. The thermoelectric conversion module according to claim 1, wherein the thermoelectric conversion module is thermally connected. 前記凸部により、前記外層部材と前記熱電変換素子とが絶縁されていることを特徴とする請求項1記載の熱電変換モジュール。   The thermoelectric conversion module according to claim 1, wherein the outer layer member and the thermoelectric conversion element are insulated by the convex portion. 前記外層部材は最外層を構成するように前記熱電変換素子の両面側に一対設けられ、
一方の前記外層部材は高温側外層部材を、他方の前記外層部材は低温側外層部材を形成し、
前記高温側外層部材の前記凸部と前記低温側外層部材の前記凸部とは、それぞれが異なる前記接続部に対応した位置に熱的に接続されていることを特徴とする請求項1から3のいずれかに記載の熱電変換モジュール。
A pair of the outer layer members are provided on both sides of the thermoelectric conversion element to constitute the outermost layer,
One outer layer member forms a high temperature side outer layer member, and the other outer layer member forms a low temperature side outer layer member,
The said convex part of the said high temperature side outer layer member and the said convex part of the said low temperature side outer layer member are thermally connected to the position corresponding to the said different connection part, respectively. The thermoelectric conversion module according to any one of the above.
前記高温側外層部材の前記凸部と前記低温側外層部材の前記凸部とは、それぞれ異なる熱伝導性を有することを特徴とする請求項4に記載の熱電変換モジュール。   The thermoelectric conversion module according to claim 4, wherein the convex portion of the high temperature side outer layer member and the convex portion of the low temperature side outer layer member have different thermal conductivities. 複数の前記凸部の間には空間部が形成されていることを特徴とする請求項1から5のいずれかに記載の熱電変換モジュール。   The thermoelectric conversion module according to claim 1, wherein a space portion is formed between the plurality of convex portions. 前記空間部に、前記凸部よりも熱伝導性が低い材料を設けることを特徴とする請求項6に記載の熱電変換モジュール。   The thermoelectric conversion module according to claim 6, wherein a material having lower thermal conductivity than the convex portion is provided in the space portion. 前記基板は、絶縁性を備えたシートであることを特徴とする請求項2に記載の熱電変換モジュール。   The thermoelectric conversion module according to claim 2, wherein the substrate is an insulating sheet. 前記凸部は、前記外層部材とは別体に形成されていることを特徴とする請求項1から8のいずれかに記載の熱電変換モジュール。   The thermoelectric conversion module according to any one of claims 1 to 8, wherein the convex portion is formed separately from the outer layer member. 前記外層部材の表面は黒色であることを特徴とする請求項1から9のいずれかに記載の熱電変換モジュール。   The thermoelectric conversion module according to claim 1, wherein a surface of the outer layer member is black.
JP2013024578A 2013-02-12 2013-02-12 Thermoelectric conversion module Pending JP2014154761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013024578A JP2014154761A (en) 2013-02-12 2013-02-12 Thermoelectric conversion module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013024578A JP2014154761A (en) 2013-02-12 2013-02-12 Thermoelectric conversion module

Publications (1)

Publication Number Publication Date
JP2014154761A true JP2014154761A (en) 2014-08-25

Family

ID=51576313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013024578A Pending JP2014154761A (en) 2013-02-12 2013-02-12 Thermoelectric conversion module

Country Status (1)

Country Link
JP (1) JP2014154761A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016039022A1 (en) * 2014-09-08 2016-03-17 富士フイルム株式会社 Thermoelectric conversion element and thermoelectric conversion module
JP2016058734A (en) * 2014-09-11 2016-04-21 コリア・ユニバーシティ・リサーチ・アンド・ビジネス・ファウンデーション Thermoelectric power generation module and manufacturing method thereof
FR3029355A1 (en) * 2014-12-02 2016-06-03 St Microelectronics Crolles 2 Sas THERMOELECTRIC GENERATOR
WO2016203939A1 (en) * 2015-06-17 2016-12-22 富士フイルム株式会社 Thermoelectric conversion element and thermoelectric conversion module
WO2017086271A1 (en) * 2015-11-17 2017-05-26 富士フイルム株式会社 Thermoelectric conversion element and thermoelectric conversion module
CN106997921A (en) * 2016-01-25 2017-08-01 丰田自动车株式会社 The TRT of vehicle
JP2018046090A (en) * 2016-09-13 2018-03-22 古河電気工業株式会社 Thermoelectric conversion element and thermoelectric conversion module
JPWO2018143185A1 (en) * 2017-01-31 2019-11-21 日本ゼオン株式会社 Thermoelectric conversion module
JPWO2018143178A1 (en) * 2017-01-31 2019-11-21 日本ゼオン株式会社 Thermoelectric conversion module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1093149A (en) * 1996-09-12 1998-04-10 Matsushita Electric Works Ltd Thermoelectric converter
WO2011050203A1 (en) * 2009-10-25 2011-04-28 Digital Angel Corporation Planar thermoelectric generator
WO2011065185A1 (en) * 2009-11-27 2011-06-03 富士通株式会社 Thermoelectric conversion module and method for manufacturing same
JP2012222244A (en) * 2011-04-12 2012-11-12 Fujitsu Ltd Thermoelectric conversion device and method of manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1093149A (en) * 1996-09-12 1998-04-10 Matsushita Electric Works Ltd Thermoelectric converter
WO2011050203A1 (en) * 2009-10-25 2011-04-28 Digital Angel Corporation Planar thermoelectric generator
WO2011065185A1 (en) * 2009-11-27 2011-06-03 富士通株式会社 Thermoelectric conversion module and method for manufacturing same
JP2012222244A (en) * 2011-04-12 2012-11-12 Fujitsu Ltd Thermoelectric conversion device and method of manufacturing the same

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016039022A1 (en) * 2014-09-08 2017-06-01 富士フイルム株式会社 Thermoelectric conversion element and thermoelectric conversion module
US10243128B2 (en) 2014-09-08 2019-03-26 Fujifilm Corporation Thermoelectric conversion element and thermoelectric conversion module
WO2016039022A1 (en) * 2014-09-08 2016-03-17 富士フイルム株式会社 Thermoelectric conversion element and thermoelectric conversion module
JP2016058734A (en) * 2014-09-11 2016-04-21 コリア・ユニバーシティ・リサーチ・アンド・ビジネス・ファウンデーション Thermoelectric power generation module and manufacturing method thereof
US10103310B2 (en) 2014-12-02 2018-10-16 Stmicroelectronics (Crolles 2) Sas Thermo-electric generator
FR3029355A1 (en) * 2014-12-02 2016-06-03 St Microelectronics Crolles 2 Sas THERMOELECTRIC GENERATOR
CN105655473A (en) * 2014-12-02 2016-06-08 意法半导体(克洛尔2)公司 Thermo-electric generator
US10741740B2 (en) 2014-12-02 2020-08-11 Stmicroelectronics (Crolles 2) Sas Thermo-electric generator
WO2016203939A1 (en) * 2015-06-17 2016-12-22 富士フイルム株式会社 Thermoelectric conversion element and thermoelectric conversion module
US10236431B2 (en) 2015-11-17 2019-03-19 Fujifilm Corporation Thermoelectric conversion element and thermoelectric conversion module
JPWO2017086271A1 (en) * 2015-11-17 2018-09-13 富士フイルム株式会社 Thermoelectric conversion element and thermoelectric conversion module
WO2017086271A1 (en) * 2015-11-17 2017-05-26 富士フイルム株式会社 Thermoelectric conversion element and thermoelectric conversion module
JP2017135152A (en) * 2016-01-25 2017-08-03 トヨタ自動車株式会社 Vehicle power generator
CN106997921A (en) * 2016-01-25 2017-08-01 丰田自动车株式会社 The TRT of vehicle
JP2018046090A (en) * 2016-09-13 2018-03-22 古河電気工業株式会社 Thermoelectric conversion element and thermoelectric conversion module
JPWO2018143185A1 (en) * 2017-01-31 2019-11-21 日本ゼオン株式会社 Thermoelectric conversion module
JPWO2018143178A1 (en) * 2017-01-31 2019-11-21 日本ゼオン株式会社 Thermoelectric conversion module
JP7183794B2 (en) 2017-01-31 2022-12-06 日本ゼオン株式会社 Thermoelectric conversion module

Similar Documents

Publication Publication Date Title
JP2014154761A (en) Thermoelectric conversion module
US9105809B2 (en) Segmented thermoelectric device
JP5336373B2 (en) Thermoelectric conversion module
JP6297025B2 (en) Thermoelectric conversion element
JP6380168B2 (en) Thermal flow sensor
US20140034106A1 (en) Thermoelectric generator
EP2789822B1 (en) Thermoelectric generator to engine exhaust manifold assembly
JP2007036178A (en) Thermoelectric conversion device and cooling / heating device
JP5708174B2 (en) Thermoelectric conversion device and manufacturing method thereof
JP6159532B2 (en) Thermoelectric conversion member
JP2010245265A (en) Thermoelectric module
JP7183794B2 (en) Thermoelectric conversion module
US20150349233A1 (en) Carrier element and module
JP5742613B2 (en) Flat type thin film thermoelectric module
JP5478518B2 (en) Power generator
JPH11233837A (en) Thermoelectric conversion module
JP5776700B2 (en) Thermoelectric conversion module
JP4622577B2 (en) Cascade module for thermoelectric conversion
JP2016092027A (en) Thermoelectric module
JP2011047127A (en) Window structure
JP7588507B2 (en) Thermoelectric power generation device
KR20200067647A (en) Thermoelectric module and apparatus for modulating a temperature including thereof
JP2012532468A (en) Module having a plurality of thermoelectric elements
EP3373348A1 (en) Thermoelectric device
US20140305480A1 (en) Thermoelectric generator to engine exhaust manifold assembly

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150915