[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2014154688A - Semiconductor device and manufacturing method of the same - Google Patents

Semiconductor device and manufacturing method of the same Download PDF

Info

Publication number
JP2014154688A
JP2014154688A JP2013022606A JP2013022606A JP2014154688A JP 2014154688 A JP2014154688 A JP 2014154688A JP 2013022606 A JP2013022606 A JP 2013022606A JP 2013022606 A JP2013022606 A JP 2013022606A JP 2014154688 A JP2014154688 A JP 2014154688A
Authority
JP
Japan
Prior art keywords
heat
semiconductor
circuit board
semiconductor device
conductive material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013022606A
Other languages
Japanese (ja)
Inventor
Yoshio Hironaka
与志雄 廣中
Toshihiro Miyake
敏広 三宅
Toshihisa Yamamoto
敏久 山本
Yoshimichi Hara
芳道 原
Hideki Minato
秀樹 湊
Yuji Kobayashi
裕次 小林
Koji Kameyama
浩二 亀山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2013022606A priority Critical patent/JP2014154688A/en
Priority to DE201410201227 priority patent/DE102014201227A1/en
Publication of JP2014154688A publication Critical patent/JP2014154688A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/433Auxiliary members in containers characterised by their shape, e.g. pistons
    • H01L23/4334Auxiliary members in encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/10Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers
    • H01L25/11Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/115Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3511Warping

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a compact semiconductor device which can ensure a sufficient heat radiation performance even when there is variation in heights of heat radiation surfaces of semiconductor components mounted on a circuit board; and provide a manufacturing method of the semiconductor device.SOLUTION: A semiconductor device 10a, 10b in which a plurality of packaged semiconductor components using a surface on the side opposite to an exposed surface of terminals as a heat radiation surface and which are mounted on a circuit board and has a structure of releasing heat generated by the plurality of semiconductor components to a metallic material opposite to the heat radiation surface comprises a second thermally-conductive material 6a which is arranged on the heat radiation surface of the semiconductor components 1a-1d, 1e-1h and has heat conductivity higher than that of a flexible first thermally-conductive material 5a which can be molded after being mounted on a circuit board 2a, 2b. A clearance CL between the second thermally-conductive material 6a and a metallic material 4 is kept constant across the plurality of semiconductor components 1a-1d, 1e-1h and the first thermally-conductive material 5a lies in the clearance CL.

Description

本発明は、端子の露出面と反対側を放熱面とするパッケージ(以下、背面放熱PKGと呼ぶ)の半導体部品を回路基板に複数個搭載し、該半導体部品が発生する熱を放熱面と対向する金属材に逃がす構造の半導体装置に関する。   In the present invention, a plurality of semiconductor components of a package (hereinafter referred to as backside heat dissipation PKG) having a heat dissipation surface opposite to an exposed surface of a terminal is mounted on a circuit board, and heat generated by the semiconductor components is opposed to the heat dissipation surface. The present invention relates to a semiconductor device having a structure in which it escapes to a metal material.

高さの異なる複数の半導体チップを基板上に搭載し、単一の放熱部材に一括して熱伝導放熱させる構造が、例えば特開平7−245362号公報(特許文献1)と特開平11−121662号公報(特許文献2)に開示されている。   A structure in which a plurality of semiconductor chips having different heights are mounted on a substrate and thermally conducted and dissipated in a single heat radiating member is disclosed in, for example, Japanese Patent Application Laid-Open No. 7-245362 (Patent Document 1) and Japanese Patent Application Laid-Open No. 11-121662. (Patent Document 2).

特許文献1に開示されているマルチチップ型半導体装置では、半導体チップの高さばらつきを吸収するため、半導体チップと放熱部材の間に金属スポンジを介在させて熱伝導放熱するようにしている。また、特許文献2に開示されている半導体装置では、半導体チップと放熱部材の間にグリースを充填した微細フィンを有する伝熱部材を介在させて熱伝導放熱するようにしている。これらの構造により、マルチチップ型で、上記した背面放熱PKGの半導体部品を構成することができる。   In the multi-chip type semiconductor device disclosed in Patent Document 1, in order to absorb the variation in the height of the semiconductor chip, a metal sponge is interposed between the semiconductor chip and the heat radiating member so as to conduct and dissipate heat. Further, in the semiconductor device disclosed in Patent Document 2, heat conduction and heat dissipation are performed by interposing a heat transfer member having fine fins filled with grease between the semiconductor chip and the heat dissipation member. With these structures, the semiconductor component of the above-described back heat dissipation PKG can be configured in a multi-chip type.

次に、上記したマルチチップ型に限らず、パワー半導体素子等の背面放熱PKGの半導体部品は、さらにプリント基板等の回路基板に複数個搭載され、金属等からなる筐体に入れられて各種の半導体装置として使用される。   Next, not only the multi-chip type described above, but also a plurality of semiconductor parts of the backside heat dissipation PKG such as power semiconductor elements are mounted on a circuit board such as a printed circuit board, and are put into a case made of metal etc. Used as a semiconductor device.

特開平7−245362号公報JP 7-245362 A 特開平11−121662号公報Japanese Patent Laid-Open No. 11-121662

従来、プリント基板等に搭載される背面放熱PKGの半導体部品の放熱は、放熱フィンや冷却ファンを用いて熱を大気中に逃がし、各半導体部品で個別に行うのが一般的である。しかしながら、これらプリント基板に搭載される複数個の背面放熱PKGの半導体部品についても、特許文献1,2のように単一の放熱部材に一括して熱伝導放熱させる構造が、放熱性の確保や小型化する上でより好ましい構造である。特に、自動車で用いられる電子制御装置(ECU)やモータと駆動制御装置が一体的に組みつけられる機電一体型の駆動装置の場合には、各半導体部品の発熱量が大きく、筐体等の金属材に一括して熱伝導放熱させる構造が望ましい。   Conventionally, the heat radiation of the semiconductor component of the backside heat radiation PKG mounted on a printed circuit board or the like is generally performed individually by each semiconductor component by releasing heat to the atmosphere using a heat radiation fin or a cooling fan. However, even for the plurality of backside heat dissipation PKG semiconductor components mounted on these printed circuit boards, a structure in which heat conduction and heat dissipation is performed collectively on a single heat dissipation member as in Patent Documents 1 and 2, ensuring heat dissipation and This is a more preferable structure for downsizing. In particular, in the case of an electronic control unit (ECU) used in automobiles or an electro-mechanical integrated type drive unit in which a motor and a drive control unit are assembled together, each semiconductor component generates a large amount of heat, and a metal such as a casing. A structure in which heat conduction and heat dissipation are collectively performed on the material is desirable.

一方、プリント基板等に搭載される複数個の背面放熱PKGの一括熱伝導による放熱については、前述した特許文献1,2の半導体チップの場合と異なり、複数個の背面放熱PKGの半導体部品を搭載するプリント基板が大きくなる。このため、全て同一部品からなり、同じ高さを有する半導体部品をプリント基板に搭載する場合であっても、次のような問題が発生する。   On the other hand, unlike the case of the semiconductor chips of Patent Documents 1 and 2 described above, heat radiation by collective heat conduction of a plurality of backside heat dissipation PKGs mounted on a printed circuit board, etc. is mounted with a plurality of backside heat dissipation PKG semiconductor components. The printed circuit board to be enlarged. For this reason, the following problems occur even when semiconductor components having the same height and all having the same height are mounted on the printed circuit board.

図9は、上記問題点を説明する模式的な断面図で、(a)は、同じ背面放熱PKGの半導体部品1a〜1dをプリント基板2aへ搭載する際に、半田3による接続部にばらつきがある場合である。また、(b)は、半導体部品1e〜1hのプリント基板2bへの半田3による接続部は均一でも、プリント基板2bに反りが発生した場合である。尚、両図において、符号11は、背面放熱PKGのモールド樹脂部である。符号12は、背面放熱PKGの金属からなる放熱板で、図の上面が放熱面となっている。   FIG. 9 is a schematic cross-sectional view for explaining the above-described problem. FIG. 9A shows a variation in the connection portion by the solder 3 when mounting the semiconductor components 1a to 1d of the same backside heat dissipation PKG on the printed board 2a. This is the case. Further, (b) is a case where the printed circuit board 2b is warped even if the connection parts of the semiconductor components 1e to 1h to the printed circuit board 2b by the solder 3 are uniform. In both figures, reference numeral 11 denotes a mold resin portion of the rear heat radiation PKG. Reference numeral 12 denotes a heat radiating plate made of metal of the rear heat radiation PKG, and the upper surface of the figure is a heat radiation surface.

図9(a)の例では、半田3によるプリント基板2aへの接続部のばらつきによって、半導体部品1a〜1dの放熱面高さが、図のHaの範囲でばらついている。図9(b)の例では、プリント基板2bに反りが発生し、半導体部品1e〜1hの放熱面高さが、図のHbの範囲でばらついている。量産時においては、図9に例示したようなプリント基板へ搭載される背面放熱PKGの放熱面高さばらつきは、製造コストを抑制するため、ある程度許容する必要がある。   In the example of FIG. 9A, the height of the heat radiation surface of the semiconductor components 1a to 1d varies in the range of Ha in the figure due to the variation in the connection portion to the printed board 2a due to the solder 3. In the example of FIG. 9B, the printed circuit board 2b is warped, and the heat radiation surface height of the semiconductor components 1e to 1h varies within the range of Hb in the drawing. In mass production, variations in the heat radiation surface height of the rear heat radiation PKG mounted on the printed circuit board as illustrated in FIG. 9 must be allowed to some extent in order to reduce manufacturing costs.

図10は、図9(b)に示した半導体部品1e〜1hを搭載するプリント基板2bを例にして、ヒートシンクとなる筐体等の金属材4に一括熱伝導させて放熱する場合の問題点を説明する模式的な断面図である。(a)は、半導体部品1e〜1hを搭載するプリント基板2bを金属材4に直接接触させる場合であり、(b)は、各半導体部品1e〜1hの放熱面と金属材4の間に、放熱ゲル5aを介在させる場合である。   FIG. 10 shows a problem when heat is radiated by collectively conducting heat to a metal material 4 such as a casing as a heat sink, taking the printed circuit board 2b on which the semiconductor components 1e to 1h shown in FIG. 9B are mounted as an example. It is typical sectional drawing explaining these. (A) is a case where the printed circuit board 2b on which the semiconductor components 1e to 1h are mounted is brought into direct contact with the metal material 4, and (b) is between the heat radiation surface of each of the semiconductor components 1e to 1h and the metal material 4. In this case, the heat dissipating gel 5a is interposed.

図10(a)に示すように、高さばらつきが発生しているプリント基板2bに搭載された半導体部品1e〜1hについては、金属材4に直接押し当てて伝熱させると、プリント基板2bへの半田付け部に応力が集中して、接続寿命の劣化が発生する。(a)では、半導体部品1hの半田3による接続部に応力集中が起きる。従って、高さばらつきを許容した上で応力集中を発生させることなく金属材4に伝熱させるため、図10(b)に示すように、隙間の空気層を無くす熱伝導材として柔軟性を有する放熱ゲル5aを介在させて、金属材4に伝熱させる構造が一般的に採用される。しかしながら、上記した自動車で用いられるECUや機電一体型の駆動装置では、各半導体部品の発熱量が大きいため、セラミックスフィラーや金属フィラーを含有するゲル状物質の放熱ゲルであっても熱抵抗が大きく、十分な放熱性を確保することが困難である。(b)では、半導体部品1fの放熱性が十分でなくなる。   As shown in FIG. 10A, when the semiconductor components 1e to 1h mounted on the printed circuit board 2b where the height variation occurs are directly pressed against the metal material 4 and transferred to the printed circuit board 2b, the semiconductor parts 1e to 1h are transferred to the printed circuit board 2b. The stress concentrates on the soldering part of the wire and the connection life is deteriorated. In (a), stress concentration occurs in the connection portion of the semiconductor component 1h by the solder 3. Accordingly, in order to transfer heat to the metal material 4 without allowing stress concentration while allowing the height variation, as shown in FIG. 10B, it has flexibility as a heat conductive material that eliminates the air layer in the gap. In general, a structure in which heat is transferred to the metal material 4 through the heat dissipation gel 5a is employed. However, in the ECU and the electromechanically integrated drive device used in the above-described automobile, the heat generation amount of each semiconductor component is large, so that even a heat radiation gel of a gel material containing a ceramic filler or a metal filler has a large thermal resistance. It is difficult to ensure sufficient heat dissipation. In (b), the heat dissipation of the semiconductor component 1f is not sufficient.

図9(a)に示した半導体部品1a〜1dを搭載するプリント基板2aについても、金属材4に一括熱伝導させて放熱する場合には、上記した半導体部品1e〜1hを搭載するプリント基板2bと同様の問題が起きる。   When the printed circuit board 2a on which the semiconductor components 1a to 1d shown in FIG. 9A are mounted is also thermally dissipated by collectively conducting heat to the metal material 4, the printed circuit board 2b on which the above-described semiconductor components 1e to 1h are mounted. A similar problem occurs.

以上のことから、本発明は、回路基板に複数個の背面放熱PKGの半導体部品を搭載し、柔軟性を有する熱伝導材を介してヒートシンクに逃がす構造を有した半導体装置およびその製造方法を対象としている。そして、本発明の目的は、回路基板に搭載された複数個の半導体部品の放熱面に高さばらつきがあっても、十分な放熱性を確保することのできる小型の半導体装置およびその製造方法を提供することにある。   In view of the above, the present invention is directed to a semiconductor device having a structure in which a plurality of backside heat radiation PKG semiconductor components are mounted on a circuit board and escaped to a heat sink via a flexible thermal conductive material, and a method for manufacturing the same It is said. An object of the present invention is to provide a small semiconductor device capable of ensuring sufficient heat dissipation even when the heat dissipation surfaces of a plurality of semiconductor components mounted on a circuit board vary in height, and a method for manufacturing the same. It is to provide.

本発明に係る半導体装置は、背面放熱PKGの半導体部品を、複数個、回路基板に搭載し、複数個の半導体部品が発生する熱を、柔軟性を有する第1熱伝導材を介して、半導体部品の放熱面と対向する金属材に逃がす構造を有した半導体装置である。半導体部品の放熱面には、回路基板への搭載後において成形可能で、第1熱伝導材より高い熱伝導率を有した第2熱伝導材が配置される。そして、複数個の半導体部品において、第2熱伝導材と金属材の隙間が一定に確保され、該隙間に第1熱伝導材を介在させる構造を有した半導体装置となっている。   A semiconductor device according to the present invention includes a plurality of semiconductor components of a backside heat dissipation PKG mounted on a circuit board, and the heat generated by the plurality of semiconductor components is transferred to the semiconductor through a flexible first heat conductive material. This is a semiconductor device having a structure in which it escapes to a metal material facing the heat radiating surface of the component. A second heat conductive material that can be molded after being mounted on a circuit board and has a higher thermal conductivity than the first heat conductive material is disposed on the heat radiation surface of the semiconductor component. In the plurality of semiconductor components, the gap between the second heat conductive material and the metal material is ensured to be constant, and the semiconductor device has a structure in which the first heat conductive material is interposed in the gap.

上記半導体装置は、パワー半導体素子等の半導体部品(背面放熱PKG)がプリント基板等の回路基板に複数個搭載され、金属等からなる筐体に入れられて、各種の半導体装置として使用可能である。   The semiconductor device can be used as various semiconductor devices by mounting a plurality of semiconductor components such as power semiconductor elements (backside heat dissipation PKG) on a circuit board such as a printed circuit board and putting it in a casing made of metal or the like. .

上記半導体装置において、回路基板に搭載される複数個の背面放熱PKGの放熱は、単一のヒートシンクである金属材に一括して熱伝導させる構造が採用されている。これによって、各背面放熱PKGにおいて個別に熱を大気中に逃がす従来の放熱構造に較べて、より高い放熱性が確保できると共に、小型化が可能となる。従って、例えば自動車で用いられる各種のECUや電動パワーステアリング(EPS)のモータと駆動制御装置が一体的に組みつけられる機電一体型の駆動装置の場合には、各半導体部品の発熱量が大きい。このため、筐体等の金属材に一括熱伝導させる上記半導体装置の構造が、特に適している。   In the semiconductor device described above, a structure is adopted in which heat radiation of the plurality of back heat radiation PKGs mounted on the circuit board is conducted in a batch with a metal material that is a single heat sink. As a result, it is possible to ensure higher heat dissipation and miniaturization as compared with the conventional heat dissipation structure in which heat is individually released to the atmosphere in each backside heat dissipation PKG. Therefore, for example, in the case of an electromechanically integrated drive device in which various ECUs used in automobiles and motors of electric power steering (EPS) and a drive control device are integrated, the amount of heat generated by each semiconductor component is large. For this reason, the structure of the semiconductor device that conducts heat collectively to a metal material such as a housing is particularly suitable.

一方、回路基板に搭載される複数個の背面放熱PKGの一括熱伝導による放熱については、回路基板が大きくなるため、前述したように、回路基板へ半田付けする際のばらつきや回路基板の反りによって各背面放熱PKGの放熱面高さがばらついてしまう。量産時においては、プリント基板へ搭載される背面放熱PKGの放熱面の高さばらつきは、製造コストを抑制するため、ある程度許容する必要がある。このため、上記半導体装置においては、半導体部品の放熱面に、半導体部品の回路基板への搭載後において成形可能で、第1熱伝導材より高い熱伝導率を有した第2熱伝導材が配置されている。そして、複数個の半導体部品において第2熱伝導材と金属材の隙間が一定に確保され、該隙間に、放熱ゲル等の柔軟性を有する第1熱伝導材を介在させる構造が採用されている。   On the other hand, with respect to heat radiation by collective heat conduction of the plurality of backside heat radiation PKGs mounted on the circuit board, the circuit board becomes large, and as described above, due to variations in soldering to the circuit board and warping of the circuit board. The heat radiation surface height of each rear heat radiation PKG varies. In mass production, variations in the height of the heat radiation surface of the rear heat radiation PKG mounted on the printed circuit board must be allowed to some extent in order to reduce manufacturing costs. For this reason, in the semiconductor device, the second heat conductive material that can be molded after the semiconductor component is mounted on the circuit board and has a higher thermal conductivity than the first heat conductive material is disposed on the heat radiation surface of the semiconductor component. Has been. In addition, a structure is adopted in which a gap between the second heat conductive material and the metal material is ensured in a plurality of semiconductor components, and a flexible first heat conductive material such as a heat radiating gel is interposed in the gap. .

上記半導体装置における第2熱伝導材は、次のような機能を有している。すなわち、放熱面の高さばらつきが発生している回路基板に搭載された各半導体部品について、放熱面に配置される高い熱伝導率を有した第2熱伝導材を精度良く成形し、金属材との隙間が一定となるように高さを揃えることである。これによって、該隙間を小さくすることができるため、柔軟性を有しているが熱伝導率の低い第1熱伝導材を、できるだけ薄くすることができる。このため、半導体部品の放熱面上に第2熱伝導材が配置された上記半導体装置は、第1熱伝導材による半田付け部への応力集中の防止機能だけでなく、放熱面と金属材の間を第1熱伝導材だけで伝熱させる場合に較べて、高い放熱性を確保することができる。   The second heat conductive material in the semiconductor device has the following functions. That is, for each semiconductor component mounted on the circuit board where the height variation of the heat dissipation surface occurs, the second heat conductive material having high thermal conductivity disposed on the heat dissipation surface is accurately formed, and the metal material The height is made uniform so that the gap between and is constant. Thereby, since the gap can be reduced, the first heat conductive material having flexibility but low thermal conductivity can be made as thin as possible. For this reason, the semiconductor device in which the second heat conductive material is disposed on the heat radiation surface of the semiconductor component has not only a function of preventing stress concentration on the soldering portion by the first heat conductive material, but also the heat radiation surface and the metal material. Compared with the case where heat is transferred only by the first heat conductive material, high heat dissipation can be ensured.

上記半導体装置において、半導体部品の放熱面が金属からなる場合、第2熱伝導材として、半導体部品の最高許容温度より融点が高く、半導体部品の端子を回路基板に接続する半田より融点が低い、低融点半田を用いることが好ましい。   In the semiconductor device, when the heat dissipation surface of the semiconductor component is made of metal, the second heat conductive material has a melting point higher than the maximum allowable temperature of the semiconductor component and a melting point lower than that of the solder connecting the terminal of the semiconductor component to the circuit board. It is preferable to use a low melting point solder.

上記低融点半田は、熱によって簡単に精度良く成形することができ、金属からなる半導体部品の放熱面への接合も良好で、半導体部品の端子を回路基板に接続する半田より融点が低いため、回路基板への搭載後においても、問題なく成形が可能である。また、柔軟性を有する放熱ゲル等の第1熱伝導材に較べて格段に高い熱伝導率を有しているため、高い放熱性を確保することができる。   The low melting point solder can be easily and accurately molded by heat, has good bonding to the heat dissipation surface of a semiconductor component made of metal, and has a lower melting point than the solder that connects the terminal of the semiconductor component to the circuit board. Even after mounting on a circuit board, molding is possible without problems. Moreover, since it has remarkably high heat conductivity compared with 1st heat conductive materials, such as a thermal radiation gel which has a softness | flexibility, high heat dissipation can be ensured.

また、回路基板への搭載後において成形可能で、第1熱伝導材より高い熱伝導率を有した第2熱伝導材として、導電性接着剤を採用することもできる。導電性接着剤は、金属フィラーを多く含んだ樹脂系接着剤であり、固化するまでに簡単に成形することができる。また、先の低融点半田より熱伝導率は低いものの、放熱ゲル等の柔軟性を有する第1熱伝導材に較べて、高い熱伝導率を有している。さらに、導電性接着剤は、低融点半田と異なり、半導体部品(背面放熱PKG)の放熱面が金属でなく、PKGのモールド樹脂そのものであっても配置可能である。従って、金属材と電気絶縁性を保ったままで熱だけ金属材へ逃がしたい場合等にも、この構成を採用することができる。   Also, a conductive adhesive can be employed as the second heat conductive material that can be molded after mounting on the circuit board and has a higher thermal conductivity than the first heat conductive material. The conductive adhesive is a resin adhesive containing a large amount of metal filler, and can be easily molded before solidifying. In addition, although the thermal conductivity is lower than that of the previous low melting point solder, it has a higher thermal conductivity than the first thermal conductive material having flexibility such as a heat radiating gel. Further, unlike the low melting point solder, the conductive adhesive can be disposed even if the heat radiation surface of the semiconductor component (backside heat radiation PKG) is not a metal but a PKG mold resin itself. Therefore, this configuration can also be adopted when it is desired to release only heat to the metal material while maintaining electrical insulation with the metal material.

尚、前述したように、上記半導体装置における第1熱伝導材は、金属粒子を含有するゲル状物質の放熱ゲルが好適である。また、上記半導体装置においてヒートシンクとして機能する金属材は、回路基板を収容する筐体であってよく、熱伝達のための中間金属を排除することで、小型化が可能である。   As described above, the first heat conducting material in the semiconductor device is preferably a heat-radiating gel made of a gel material containing metal particles. Further, the metal material that functions as a heat sink in the semiconductor device may be a housing that accommodates a circuit board, and can be reduced in size by eliminating an intermediate metal for heat transfer.

以上のようにして、上記半導体装置は、回路基板に搭載された複数個の半導体部品(背面放熱PKG)の放熱面に高さばらつきがあっても、十分な放熱性を確保することのできる小型の半導体装置とすることができる。従って、上記半導体装置は、機電一体で構成されるモータの制御装置としても好適である。前記モータは、特に小型化が要求される、車載用のモータであってよい。   As described above, the semiconductor device is small enough to ensure sufficient heat dissipation even if the heat dissipation surfaces of the plurality of semiconductor components (backside heat dissipation PKG) mounted on the circuit board have variations in height. It can be set as a semiconductor device. Therefore, the semiconductor device is also suitable as a motor control device constituted by a mechanical and electrical unit. The motor may be an in-vehicle motor that is particularly required to be downsized.

また、上記半導体装置の製造方法として、第2熱伝導材として低融点半田を用いる場合には、例えば、以下の工程からなる製造方法を採用することができる。すなわち、半導体部品の端子を回路基板に半田で接続して、回路基板に複数個の半導体部品を搭載する部品搭載工程と、半導体部品の放熱面上に、低融点半田を塗布する半田塗布工程と、放熱面上に塗布された低融点半田を、金属材の伝熱面に倣った形状の面を有する加熱された型に接触させて溶融し、型の面に接触させたまま急冷して低融点半田を成形する半田成形工程と、成形後の低融点半田とヒートシンクである金属材の間に第1熱伝導材を介在させて、回路基板と金属材を組み付ける組み付け工程とを有してなる製造方法である。   As a method for manufacturing the semiconductor device, when using a low melting point solder as the second heat conducting material, for example, a manufacturing method including the following steps can be employed. That is, a component mounting step of connecting a terminal of a semiconductor component to the circuit board with solder and mounting a plurality of semiconductor components on the circuit substrate, and a solder application step of applying a low melting point solder on the heat radiation surface of the semiconductor component The low melting point solder applied on the heat radiating surface is melted by bringing it into contact with a heated mold having a surface shaped like the heat transfer surface of a metal material, and rapidly cooled while being in contact with the mold surface. A solder molding process for molding the melting point solder, and an assembly process for assembling the circuit board and the metal material by interposing the first thermal conductive material between the molded low-melting-point solder and the heat sink metal material. It is a manufacturing method.

上記製造方法によれば、回路基板へ搭載された複数個の半導体部品に塗布されている低融点半田に対して、金属材の伝熱面に倣った形状の加熱された型に接触させてその後に急冷する簡単な処理で、金属材の隙間が一定となるように成形可能である。   According to the above manufacturing method, a low melting point solder applied to a plurality of semiconductor components mounted on a circuit board is brought into contact with a heated mold having a shape following the heat transfer surface of a metal material, and thereafter It is possible to form the metal material so that the gap between the metal materials is constant by a simple process of rapid cooling.

本発明に係る半導体装置の一例を示す図で、(a),(b)は、それぞれ、半導体装置10a,10bの構造を示した模式的な断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows an example of the semiconductor device which concerns on this invention, (a), (b) is typical sectional drawing which showed the structure of semiconductor device 10a, 10b, respectively. 図1(b)に示した半導体装置10bの製造方法の一例を示す図で、(a)〜(c)は、それぞれ、製造工程別の断面図である。It is a figure which shows an example of the manufacturing method of the semiconductor device 10b shown in FIG.1 (b), (a)-(c) is sectional drawing according to a manufacturing process, respectively. 図10(b)で例示した従来の放熱構造と図1(a),(b)で例示した本発明に係る放熱構造とで、各パラメータの代表的な値を適用し、放熱性能の試算結果を比較した図である。In the conventional heat dissipation structure illustrated in FIG. 10B and the heat dissipation structure according to the present invention illustrated in FIG. 1A and FIG. FIG. (a),(b)は、それぞれ、異なる放熱面の形状を有する背面放熱PKGの半導体部品C,Dを示した図である。(A), (b) is the figure which showed the semiconductor components C and D of the back surface radiation | emission PKG which has a shape of a different heat radiation surface, respectively. (a),(b)は、それぞれ、図1に示した半導体装置10a,10bの変形例で、半導体装置10c,10dの構造を示した模式的な断面図である。(A), (b) is the typical sectional drawing which showed the structure of semiconductor device 10c, 10d by the modification of semiconductor device 10a, 10b shown in FIG. 1, respectively. (a)は、EPSのモータと駆動制御装置が一体的に組みつけられる、機電一体型の駆動装置10eを簡略化して示した断面図である。また、(b)は、ヒートシンクとなる金属材で、EPSのモータハウジング4aの上面図である。(A) is sectional drawing which simplified and showed the electromechanical integrated drive device 10e by which the motor of EPS and a drive control apparatus are assembled | attached integrally. Further, (b) is a top view of the EPS motor housing 4a, which is a metal material serving as a heat sink. 図6(a)の駆動装置10eで用いられる複数個の半導体部品1qを搭載したプリント基板2eを示す図で、(a)は、上面図であり、(b)は、図中のC−C断面図であり、(c)は、下面図である。FIGS. 6A and 6B are diagrams showing a printed circuit board 2e on which a plurality of semiconductor components 1q used in the driving device 10e shown in FIG. 6A are mounted, in which FIG. 6A is a top view and FIG. It is sectional drawing, (c) is a bottom view. 図6(a)に示した駆動装置10eの半導体部品1qの周りを拡大してより詳細に示した断面図で、(a)は、QFP型の半導体部品1qaを用いた場合であり、(b)は、BGA型の半導体部品1qbを用いた場合である。FIG. 6A is a cross-sectional view illustrating the semiconductor device 1q of the driving device 10e illustrated in FIG. 6A in an enlarged manner and illustrating the semiconductor device 1q in more detail. FIG. 6A illustrates a case where a QFP-type semiconductor component 1qa is used. ) Is a case where a BGA type semiconductor component 1qb is used. (a)は、同じ背面放熱PKGの半導体部品1a〜1dをプリント基板2aへ搭載する際に、半田接続部にばらつきがある場合である。また、(b)は、プリント基板2bに反りが発生した場合である。(A) is a case where there is a variation in the solder connection portion when mounting the semiconductor components 1a to 1d of the same backside heat dissipation PKG on the printed circuit board 2a. Further, (b) is a case where the printed circuit board 2b is warped. (a)は、半導体部品1e〜1hを搭載するプリント基板2bを金属材4に直接接触させる場合であり、(b)は、各半導体部品1e〜1hの放熱板12と金属材4の間に、柔軟性を有する放熱ゲル5aを介在させる場合である。(A) is a case where printed circuit board 2b which mounts semiconductor components 1e-1h is made to contact metal material 4 directly, (b) is between heat sink 12 and metal material 4 of each semiconductor components 1e-1h. In this case, the heat-dissipating gel 5a having flexibility is interposed.

以下、本発明に係る半導体装置およびその製造方法の実施形態を、図に基づいて説明する。   Embodiments of a semiconductor device and a method for manufacturing the same according to the present invention will be described below with reference to the drawings.

図1は、本発明に係る半導体装置の一例を示す図で、(a),(b)は、それぞれ、半導体装置10a,10bの構造を示した模式的な断面図である。尚、図1(a),(b)は、それぞれ図9(a),(b)に対応しており、半導体装置10a,10bにおいて半導体部品1a〜1d,1e〜1hを搭載した各プリント基板2a,2bは、図9(a),(b)で示したものと同じである。従って、図1(a),(b)に示した半導体装置10a,10bの構造において、図9(a),(b)と同様の部分については同じ符号を付した。   1A and 1B are diagrams showing an example of a semiconductor device according to the present invention, and FIGS. 1A and 1B are schematic cross-sectional views showing the structures of semiconductor devices 10a and 10b, respectively. 1 (a) and 1 (b) correspond to FIGS. 9 (a) and 9 (b), respectively, and each printed circuit board on which the semiconductor components 1a to 1d and 1e to 1h are mounted in the semiconductor devices 10a and 10b. 2a and 2b are the same as those shown in FIGS. 9A and 9B. Accordingly, in the structure of the semiconductor devices 10a and 10b shown in FIGS. 1A and 1B, the same reference numerals are given to the same parts as those in FIGS. 9A and 9B.

また、図2は、図1(b)に示した半導体装置10bの製造方法の一例を示す図で、(a)〜(c)は、それぞれ、製造工程別の断面図である。   FIG. 2 is a diagram illustrating an example of a method for manufacturing the semiconductor device 10b illustrated in FIG. 1B, and FIGS. 2A to 2C are cross-sectional views for each manufacturing process.

図1(a),(b)に示す半導体装置10a,10bは、それぞれ、複数個の背面放熱PKGの半導体部品1a〜1d,1e〜1hを、所定の回路パターンが形成された回路基板としてのプリント基板2a,2bに搭載している。各半導体部品1a〜1d,1e〜1hは、端子の露出面と反対側を放熱面とするパッケージ(背面放熱PKG)の半導体部品である。そして、半導体装置10a,10bは、それぞれ、複数個の半導体部品1a〜1d,1e〜1hが発生する熱を、柔軟性を有する第1熱伝導材としての放熱ゲル5aを介して、半導体部品1a〜1d,1e〜1hの放熱面と対向する筐体等の金属材4に逃がす構造を有している。   The semiconductor devices 10a and 10b shown in FIGS. 1A and 1B each have a plurality of backside heat dissipation PKG semiconductor components 1a to 1d and 1e to 1h as circuit boards on which predetermined circuit patterns are formed. It is mounted on the printed circuit boards 2a and 2b. Each of the semiconductor components 1a to 1d and 1e to 1h is a semiconductor component of a package (backside heat radiation PKG) having a heat radiation surface opposite to the exposed surface of the terminal. Then, the semiconductor devices 10a and 10b are configured such that the heat generated by the plurality of semiconductor components 1a to 1d and 1e to 1h is transferred to the semiconductor component 1a via the heat dissipation gel 5a as a flexible first heat conductive material. It has a structure that escapes to a metal material 4 such as a housing facing the heat radiating surfaces of ˜1d and 1e to 1h.

図1の半導体装置10a,10bにおいて、半導体部品1a〜1d,1e〜1hを搭載した各プリント基板2a,2bは、上記したように、図9(a),(b)で示したものと同じである。すなわち、図1(a)の半導体装置10aでは、同じ背面放熱PKGの半導体部品1a〜1dをプリント基板2aへ搭載する際に、半田3による接続部にばらつきが発生している。このため、各半導体部品1a〜1dのモールド樹脂部11から露出する放熱板12の放熱面の高さは、図9(a)に示したように、Haの範囲でばらついている。また、図1(b)の半導体装置10bでは、半導体部品1e〜1hをプリント基板2bへ搭載する際に、プリント基板2bに反りが発生している。このため、各半導体部品1e〜1hのモールド樹脂部11から露出する放熱板12の放熱面の高さは、図9(b)に示したように、Hbの範囲でばらついている。   In the semiconductor devices 10a and 10b in FIG. 1, the printed circuit boards 2a and 2b on which the semiconductor components 1a to 1d and 1e to 1h are mounted are the same as those shown in FIGS. 9A and 9B as described above. It is. That is, in the semiconductor device 10a of FIG. 1A, when the semiconductor components 1a to 1d having the same back heat radiation PKG are mounted on the printed circuit board 2a, the connection portion due to the solder 3 varies. For this reason, the height of the heat radiating surface of the heat radiating plate 12 exposed from the mold resin portion 11 of each of the semiconductor components 1a to 1d varies in the range of Ha as shown in FIG. Further, in the semiconductor device 10b of FIG. 1B, when the semiconductor components 1e to 1h are mounted on the printed board 2b, the printed board 2b is warped. For this reason, as shown in FIG.9 (b), the height of the heat sinking surface of the heat sink 12 exposed from the mold resin part 11 of each semiconductor component 1e-1h varies in the range of Hb.

例えば、各半導体部品1a〜1d,1e〜1hをプリント基板2a,2bへ搭載する際の半田3には、融点220℃の錫−銀−銅(Sn−3Ag−0.5Cu)合金からなる半田が用いられる。また、直径が80mm程度のプリント基板2a,2bに搭載される半導体部品1a〜1d,1e〜1hの放熱面の高さばらつきは、最大1.0mm程度になる。   For example, the solder 3 used when mounting the semiconductor components 1a to 1d and 1e to 1h on the printed circuit boards 2a and 2b is a solder made of a tin-silver-copper (Sn-3Ag-0.5Cu) alloy having a melting point of 220 ° C. Is used. Further, the height variation of the heat radiation surfaces of the semiconductor components 1a to 1d and 1e to 1h mounted on the printed boards 2a and 2b having a diameter of about 80 mm is about 1.0 mm at the maximum.

一方、図1に示した各半導体装置10a,10bは、図9と図10で例示した従来の放熱構造と、以下の点で異なる放熱構造を有している。すなわち、図1の各半導体装置10a,10bでは、半導体部品1a〜1d,1e〜1hの金属からなる放熱面(放熱板12上)に、プリント基板2a,2bへの搭載後において成形可能で、放熱ゲル5aより高い熱伝導率を有した、第2熱伝導材としての低融点半田6aが配置されている。低融点半田6aは、半導体部品1a〜1d,1e〜1hの最高許容温度より融点が高く、半導体部品1a〜1d,1e〜1hの端子をプリント基板2a,2bに接続する半田3より融点が低い半田材料である。   On the other hand, each of the semiconductor devices 10a and 10b shown in FIG. 1 has a heat dissipation structure that differs from the conventional heat dissipation structure illustrated in FIGS. 9 and 10 in the following points. That is, in each of the semiconductor devices 10a and 10b in FIG. 1, the semiconductor parts 1a to 1d and 1e to 1h can be molded on the heat dissipation surface (on the heat dissipation plate 12) made of metal after being mounted on the printed circuit boards 2a and 2b. A low melting point solder 6a as a second heat conductive material having a higher thermal conductivity than the heat radiating gel 5a is disposed. The low melting point solder 6a has a melting point higher than the maximum allowable temperature of the semiconductor components 1a to 1d and 1e to 1h, and is lower than that of the solder 3 that connects the terminals of the semiconductor components 1a to 1d and 1e to 1h to the printed circuit boards 2a and 2b. Solder material.

また、図1の各半導体装置10a,10bでは、複数個の半導体部品1a〜1d,1e〜1hにおいて、低融点半田6aと金属材4の隙間CLが一定に確保されている。そして、該隙間CLに、放熱ゲル5aを介在させる構造を有している。   Further, in each of the semiconductor devices 10a and 10b in FIG. 1, the gap CL between the low melting point solder 6a and the metal material 4 is ensured constant in the plurality of semiconductor components 1a to 1d and 1e to 1h. And it has the structure which interposes the thermal radiation gel 5a in this clearance gap CL.

低融点半田6aには、例えば、融点150℃の錫−ビスマス(Sn−Bi)系合金からなる半田を用いることができる。また、半導体部品1a〜1d,1e〜1hの動作時の温度が150℃程度になる場合には、例えば、低融点半田6aとして融点183℃の鉛(Pb)共晶半田を用いることができる。プリント基板2a,2bへの各半導体部品1a〜1d,1e〜1hの実装は、融点220℃のSn−3Ag−0.5Cu合金からなる半田3が用いられているため、後述するように熱で低融点半田6aを溶融しても、半田3の接合部には影響が及ばない。尚、放熱ゲル5aの熱伝導率は、1〜3(W/mK)程度であり、低融点半田6aの熱伝導率は、50(W/mK)程度である。   For the low melting point solder 6a, for example, a solder made of a tin-bismuth (Sn—Bi) alloy having a melting point of 150 ° C. can be used. Further, when the temperature during operation of the semiconductor components 1a to 1d and 1e to 1h is about 150 ° C., for example, lead (Pb) eutectic solder having a melting point of 183 ° C. can be used as the low melting point solder 6a. The mounting of the semiconductor components 1a to 1d and 1e to 1h on the printed circuit boards 2a and 2b uses the solder 3 made of Sn-3Ag-0.5Cu alloy having a melting point of 220 ° C. Even if the low melting point solder 6a is melted, the joint portion of the solder 3 is not affected. The thermal conductivity of the heat radiating gel 5a is about 1 to 3 (W / mK), and the thermal conductivity of the low melting point solder 6a is about 50 (W / mK).

次に、図1(b)に示した半導体装置10bを例にして、その製造方法を、図2を用いて説明する。   Next, a method for manufacturing the semiconductor device 10b shown in FIG. 1B will be described with reference to FIG.

最初に、図9(b)に示すように、部品搭載工程において、半導体部品1e〜1hの各端子をプリント基板2bの回路パターンに半田3で接続して、プリント基板2bに複数個の半導体部品1e〜1hを搭載する。例えば、半田3として融点220℃の錫−銀−銅(Sn−3Ag−0.5Cu)合金からなる半田を用いる場合には、半田付け時において、全体が220℃以上に加熱される。図9(b)に示す例は、前述したように、半導体部品1e〜1hのプリント基板2bへの半田付け時において、プリント基板2bに反りが発生した場合の例である。プリント基板2bの反りに起因して、半導体部品1e〜1hの放熱面高さが、図のHbの範囲でばらついている。   First, as shown in FIG. 9B, in the component mounting process, the terminals of the semiconductor components 1e to 1h are connected to the circuit pattern of the printed circuit board 2b with solder 3, and a plurality of semiconductor components are connected to the printed circuit board 2b. 1e-1h is mounted. For example, when a solder made of a tin-silver-copper (Sn-3Ag-0.5Cu) alloy having a melting point of 220 ° C. is used as the solder 3, the whole is heated to 220 ° C. or more during soldering. The example shown in FIG. 9B is an example when warping occurs in the printed circuit board 2b when the semiconductor components 1e to 1h are soldered to the printed circuit board 2b as described above. Due to the warp of the printed circuit board 2b, the height of the heat radiation surface of the semiconductor components 1e to 1h varies within the range of Hb in the figure.

次に、図2(a)に示す半田塗布工程において、高さばらつきが発生している各半導体部品1e〜1hの放熱面上に、スクリーン印刷等により、低融点半田6aを塗布する。低融点半田6aとしては、例えば、融点150℃の錫−ビスマス(Sn−Bi)系合金からなる半田を用いることができる。尚、低融点半田6aは、溶融時に各半導体部品1e〜1hの金属からなる放熱板12からはみ出ない程度の量であれば、プリント基板2bへ搭載する前の各半導体部品1e〜1hの放熱面上に、予め塗布しておいてもよい。   Next, in the solder application process shown in FIG. 2A, the low melting point solder 6a is applied to the heat radiation surfaces of the semiconductor components 1e to 1h where the height variation occurs by screen printing or the like. As the low melting point solder 6a, for example, a solder made of a tin-bismuth (Sn—Bi) alloy having a melting point of 150 ° C. can be used. If the amount of the low melting point solder 6a is such that the low melting point solder 6a does not protrude from the heat dissipation plate 12 made of the metal of each semiconductor component 1e-1h when melted, the heat dissipation surface of each semiconductor component 1e-1h before being mounted on the printed circuit board 2b. You may apply | coat beforehand on top.

次に、図2(b)に示す半田成形工程において、放熱面上に塗布された低融点半田6aを、金属材4の伝熱面に倣った形状の面を有する加熱された型7に接触させて溶融し、型7の面に接触させたまま急冷凝固させて、低融点半田6aを成形する。例えば、融点150℃の低融点半田6aを用いる場合には、型7の加熱温度を170℃とし、低融点半田6aを型7に接触させて溶融した後、接触部周りを130℃まで急冷して凝固させる。これによって、図2(b)に示すように金属材4の伝熱面に倣った形状の型7の面が平面である場合、各半導体部品1e〜1hの成形後における低融点半田6aの上面高さが、同一平面上に位置するように揃えられる。   Next, in the solder forming step shown in FIG. 2B, the low melting point solder 6a applied on the heat radiating surface is brought into contact with the heated die 7 having a surface shaped like the heat transfer surface of the metal material 4. Then, it is melted and rapidly solidified while being in contact with the surface of the mold 7 to form the low melting point solder 6a. For example, when the low melting point solder 6a having a melting point of 150 ° C. is used, the heating temperature of the mold 7 is set to 170 ° C. After the low melting point solder 6a is brought into contact with the mold 7 and melted, the contact portion is rapidly cooled to 130 ° C. To solidify. 2B, when the surface of the mold 7 shaped like the heat transfer surface of the metal material 4 is a flat surface, the upper surface of the low melting point solder 6a after the molding of the semiconductor components 1e to 1h. The heights are aligned so that they are on the same plane.

次に、図2(c)に示す組み付け工程において、伝熱面に放熱ゲル5aを塗布した金属材4を成形後の低融点半田6aの上方から近づけ、低融点半田6aと金属材4の間に第1熱伝導材である放熱ゲル5aを介在させて、プリント基板2bとヒートシンクとして機能する金属材4を組み付ける。この組み付けにおいては、先の図2(b)に示す工程で、各半導体部品1e〜1hの成形後における低融点半田6aの上面高さが、同一平面上に位置するように揃えられている。このため、金属材4と組み付けた場合には、金属材4との隙間CLを一定にすることができる。   Next, in the assembly step shown in FIG. 2C, the metal material 4 having the heat-dissipating gel 5a applied to the heat transfer surface is brought close to the molded low-melting point solder 6a from between the low-melting point solder 6a and the metal material 4. The metal material 4 functioning as a heat sink is assembled with the heat dissipation gel 5a as the first heat conductive material interposed therebetween. In this assembly, the upper surface height of the low melting point solder 6a after the molding of the respective semiconductor components 1e to 1h is aligned in the same plane in the process shown in FIG. For this reason, when assembled with the metal material 4, the gap CL with the metal material 4 can be made constant.

以上の各工程で、図1(b)に示した半導体装置10bを製造することができる。   Through the above steps, the semiconductor device 10b shown in FIG. 1B can be manufactured.

上記製造方法によれば、プリント基板2bへ搭載された複数個の半導体部品1e〜1hの放熱面上に塗布されている低融点半田6aに対して、金属材4の伝熱面に倣った形状の面を有する加熱された型7に接触させてその後に急冷する簡単な処理で、金属材4との隙間CLが一定となるように成形可能である。尚、図1(a)に示した半導体装置10aについても、同様に製造することが可能である。   According to the manufacturing method, the shape following the heat transfer surface of the metal material 4 with respect to the low melting point solder 6a applied on the heat dissipation surface of the plurality of semiconductor components 1e to 1h mounted on the printed circuit board 2b. It can be formed so that the gap CL with the metal material 4 is constant by a simple process of contacting the heated mold 7 having the above surface and then rapidly cooling it. The semiconductor device 10a shown in FIG. 1A can be manufactured in the same manner.

図1に例示した半導体装置10a,10bは、パワー半導体素子等の半導体部品(背面放熱PKG)1a〜1d,1e〜1hが、回路基板としてのプリント基板2a,2bに複数個搭載されている。そして、金属等からなる筐体に入れられて、各種の半導体装置として使用可能である。   In the semiconductor devices 10a and 10b illustrated in FIG. 1, a plurality of semiconductor components (backside heat dissipation PKG) 1a to 1d and 1e to 1h such as power semiconductor elements are mounted on printed circuit boards 2a and 2b as circuit boards. Then, it can be used as various semiconductor devices by being put in a casing made of metal or the like.

前述したように、従来、回路基板に搭載される背面放熱PKGの半導体部品の放熱は、放熱フィンや冷却ファンを用いて熱を大気中に逃がし、各半導体部品で個別に行うのが一般的である。しかしながら、図1の各半導体装置10a,10bにおいて、プリント基板2a,2bに搭載される複数個の半導体部品1a〜1d,1e〜1hの放熱は、単一のヒートシンクである金属材4に一括して熱伝導放熱させる構造が採用されている。これによって、各背面放熱PKGの半導体部品において個別に熱を大気中に逃がす従来の放熱構造に較べて、より高い放熱性が確保できると共に、小型化が可能となる。従って、図1に例示した半導体装置10a,10bの構造は、半導体部品の発熱量が大きい自動車で用いられる各種のECUや後述するEPSのモータと駆動制御装置が一体的に組みつけられる機電一体型の駆動装置に、特に適している。   As described above, conventionally, the heat radiation of the semiconductor components of the backside heat radiation PKG mounted on the circuit board is generally performed individually by each semiconductor component by using heat radiation fins and cooling fans to release heat to the atmosphere. is there. However, in each of the semiconductor devices 10a and 10b in FIG. 1, the heat radiation of the plurality of semiconductor components 1a to 1d and 1e to 1h mounted on the printed circuit boards 2a and 2b is collectively performed on the metal material 4 that is a single heat sink. A structure that conducts heat and dissipates heat is adopted. As a result, it is possible to ensure higher heat dissipation and miniaturization as compared with the conventional heat dissipation structure in which heat is individually released to the atmosphere in the semiconductor components of each backside heat dissipation PKG. Therefore, the structure of the semiconductor devices 10a and 10b illustrated in FIG. 1 is an electro-mechanical integrated type in which various ECUs used in automobiles with large calorific values of semiconductor components and EPS motors and drive control devices described later are integrally assembled. It is particularly suitable for the driving device.

一方、図9(a),(b)で説明したように、回路基板に搭載される複数個の背面放熱PKGの一括熱伝導による放熱については、回路基板が大きくなるため、回路基板へ半田付けする際のばらつきや回路基板の反りによって各背面放熱PKGの放熱面高さがばらついてしまう。量産時においては、プリント基板へ搭載される背面放熱PKGの放熱面の高さばらつきは、製造コストを抑制するため、ある程度許容する必要がある。   On the other hand, as described with reference to FIGS. 9A and 9B, the heat radiation due to the collective heat conduction of the plurality of back surface heat radiation PKGs mounted on the circuit board becomes large, and the circuit board becomes large. The height of the heat radiation surface of each rear heat radiation PKG varies due to the variation in the process and the warp of the circuit board. In mass production, variations in the height of the heat radiation surface of the rear heat radiation PKG mounted on the printed circuit board must be allowed to some extent in order to reduce manufacturing costs.

しかしながら、図10(a)で説明したように、放熱面の高さばらつきが発生している回路基板に搭載された各背面放熱PKGについては、直接ヒートシンクに押し当てて伝熱させると、回路基板への半田付け部に応力が集中して、応力劣化が発生する。このため、図1に例示した半導体装置10a,10bにおいては、複数個の半導体部品(背面放熱PKG)1a〜1d,1e〜1hが発生する熱を、柔軟性を有する第1熱伝導材としての放熱ゲル5aを介して、金属材4に逃がすようにしている。   However, as described with reference to FIG. 10 (a), each backside heat dissipation PKG mounted on the circuit board where the height variation of the heat dissipation surface occurs is directly pressed against the heat sink to transfer heat. Stress concentrates on the soldered part of the wire, causing stress degradation. For this reason, in the semiconductor devices 10a and 10b illustrated in FIG. 1, the heat generated by the plurality of semiconductor components (backside heat dissipation PKG) 1a to 1d and 1e to 1h is used as the flexible first heat conductive material. It escapes to the metal material 4 through the heat radiating gel 5a.

また、上記した自動車で用いられるECUや機電一体型の駆動装置では、各半導体部品の発熱量が大きいため、セラミックスフィラーや金属フィラーを含有するゲル状物質の放熱ゲルであっても熱抵抗が大きく、十分な放熱性を確保することが困難である。このため、図1に例示した半導体装置10a,10bでは、以下の点で、図10(b)で説明した放熱構造と異なる構造が採用されている。すなわち、図1の半導体装置10a,10bでは、半導体部品1a〜1d,1e〜1hの放熱面に、プリント基板への搭載後において成形可能で、放熱ゲル5aより高い熱伝導率を有した第2熱伝導材としての低融点半田6aが配置されている。また、各半導体装置10a,10bでは、複数個の半導体部品1a〜1d,1e〜1hにおいて、低融点半田6aと金属材4の隙間CLが一定に確保されている。そして、該隙間CLに、放熱ゲル5aを介在させる構造が採用されている。   In addition, in the above-described ECU and electromechanical integrated drive device used in automobiles, each semiconductor component generates a large amount of heat. Therefore, even if it is a gel-like heat-dissipating gel containing ceramic filler or metal filler, the thermal resistance is large. It is difficult to ensure sufficient heat dissipation. For this reason, the semiconductor devices 10a and 10b illustrated in FIG. 1 employ a structure different from the heat dissipation structure described with reference to FIG. That is, in the semiconductor devices 10a and 10b shown in FIG. 1, the second heat dissipation surfaces of the semiconductor components 1a to 1d and 1e to 1h can be molded after mounting on the printed circuit board and have a higher thermal conductivity than the heat dissipation gel 5a. A low melting point solder 6a as a heat conductive material is disposed. Further, in each of the semiconductor devices 10a and 10b, the gap CL between the low melting point solder 6a and the metal material 4 is constantly secured in the plurality of semiconductor components 1a to 1d and 1e to 1h. And the structure which interposes the thermal radiation gel 5a in this clearance gap CL is employ | adopted.

上記半導体装置10a,10bにおける第2熱伝導材としての低融点半田6aは、次のような機能を有している。すなわち、放熱面の高さばらつきが発生しているプリント基板2a,2bに搭載された各半導体部品1a〜1d,1e〜1hについて、放熱面に配置される高い熱伝導率を有した低融点半田6aを精度良く成形し、金属材4との隙間CLが一定となるように高さを揃えることである。これによって、該隙間CLを小さくすることができるため、柔軟性を有しているが熱伝導率の低い第1熱伝導材としての放熱ゲル5aを、できるだけ薄くすることができる。このため、第1熱伝導材によるプリント基板2a,2bへの半田付け部への応力集中の防止機能だけでなく、半導体部品1a〜1d,1e〜1hの放熱面と金属材4の間を放熱ゲル5aだけで伝熱させる場合に較べて、高い放熱性を確保することができる。   The low melting point solder 6a as the second heat conductive material in the semiconductor devices 10a and 10b has the following functions. That is, for each of the semiconductor components 1a to 1d and 1e to 1h mounted on the printed circuit boards 2a and 2b where the height variation of the heat dissipation surface occurs, the low melting point solder having high thermal conductivity disposed on the heat dissipation surface. 6a is formed with high accuracy, and the height is aligned so that the gap CL with the metal material 4 is constant. Accordingly, since the gap CL can be reduced, the heat-dissipating gel 5a as the first heat conductive material having flexibility but low thermal conductivity can be made as thin as possible. For this reason, not only the function of preventing stress concentration on the soldered portions to the printed circuit boards 2a and 2b by the first heat conductive material but also heat radiation between the heat radiation surfaces of the semiconductor components 1a to 1d and 1e to 1h and the metal material 4 is performed. Compared with the case where heat is transferred only by the gel 5a, high heat dissipation can be ensured.

図3は、図10(b)で例示した従来の放熱構造と図1(a),(b)で例示した本発明に係る放熱構造とで、各パラメータの代表的な値を適用し、放熱性能の試算結果を比較した図である。   FIG. 3 shows a conventional heat dissipation structure illustrated in FIG. 10B and a heat dissipation structure according to the present invention illustrated in FIGS. It is the figure which compared the trial calculation result of the performance.

図3に示す従来の放熱構造と本発明に係る放熱構造において、半導体部品A,Bは、同じ0.6mmの放熱面の高さばらつきがある。   In the conventional heat dissipation structure shown in FIG. 3 and the heat dissipation structure according to the present invention, the semiconductor components A and B have the same heat radiation surface height variation of 0.6 mm.

一方、従来の放熱構造では、半導体部品A,Bの放熱面と金属材4の間は、それぞれ厚さが0.8mmと0.2mmで面積が25mm、熱伝導率が2W/mKの放熱ゲル5aで埋められている。これに対して、本発明に係る放熱構造では、半導体部品A,Bの放熱面上に、それぞれ厚さが0.7mmと0.1mmで面積が25mm、熱伝導率が47W/mKの低融点半田6aが配置されている。そして、低融点半田6aと金属材4の間に薄くて均一な0.1mmの隙間CLが形成され、この隙間CLに放熱ゲル5aを介在させている。 On the other hand, in the conventional heat dissipation structure, between the heat dissipation surfaces of the semiconductor components A and B and the metal material 4, the heat dissipation is 0.8 mm and 0.2 mm, the area is 25 mm 2 , and the thermal conductivity is 2 W / mK, respectively. Filled with gel 5a. On the other hand, in the heat dissipation structure according to the present invention, on the heat dissipation surfaces of the semiconductor components A and B, the thickness is 0.7 mm and 0.1 mm, the area is 25 mm 2 , and the thermal conductivity is low as 47 W / mK. A melting point solder 6a is arranged. A thin and uniform 0.1 mm gap CL is formed between the low melting point solder 6a and the metal material 4, and the heat dissipation gel 5a is interposed in the gap CL.

各部の熱抵抗R(℃/W)は、熱伝導材の厚さがt(m)、熱伝導材の面積がS(m)、熱伝導材の熱伝導率をλ(W/mK)とした時、以下の数式1で表すことができる。 The thermal resistance R (° C./W) of each part is that the thickness of the thermal conductive material is t (m), the area of the thermal conductive material is S (m 2 ), and the thermal conductivity of the thermal conductive material is λ (W / mK). The following equation 1 can be used.

(数1) R=t/(λ・S)
図3に示す従来の放熱構造では、半導体部品Aの上方における熱抵抗が16℃/Wになり、半導体部品Bの上方における熱抵抗が4℃/Wになる。これに対して、本発明の放熱構造では、半導体部品Aの上方における全熱抵抗が2.6℃/Wになり、半導体部品Bの上方における熱抵抗が2.09℃/Wになる。このように、本発明の放熱構造は、従来の放熱構造に較べて、熱抵抗を1/5以下に低減できるだけでなく、半導体部品A,Bの上方における熱抵抗のばらつきも低減することができる。
(Equation 1) R = t / (λ · S)
In the conventional heat dissipation structure shown in FIG. 3, the thermal resistance above the semiconductor component A is 16 ° C./W, and the thermal resistance above the semiconductor component B is 4 ° C./W. In contrast, in the heat dissipation structure of the present invention, the total thermal resistance above the semiconductor component A is 2.6 ° C./W, and the thermal resistance above the semiconductor component B is 2.09 ° C./W. As described above, the heat dissipation structure of the present invention not only can reduce the thermal resistance to 1/5 or less, but also can reduce variations in the thermal resistance above the semiconductor components A and B, compared to the conventional heat dissipation structure. .

以上のようにして、図1の半導体装置10a,10bで例示したように、本発明に係る半導体装置は、回路基板に搭載された複数個の半導体部品(背面放熱PKG)の放熱面に高さばらつきがあっても、十分な放熱性を確保することのできる小型の半導体装置とすることができる。   As described above, as exemplified by the semiconductor devices 10a and 10b in FIG. 1, the semiconductor device according to the present invention has a height on the heat radiation surface of a plurality of semiconductor components (back heat radiation PKG) mounted on the circuit board. Even if there is variation, a small semiconductor device capable of ensuring sufficient heat dissipation can be obtained.

次に、本発明に係る半導体装置の細部について、より詳細に説明する。   Next, details of the semiconductor device according to the present invention will be described in more detail.

図1の半導体装置10a,10bのように、半導体部品の放熱面が金属からなる場合には、第2熱伝導材として、半導体部品の最高許容温度より融点が高く、半導体部品の端子を回路基板に接続する半田より融点が低い、低融点半田を用いることが好ましい。   When the heat dissipation surface of the semiconductor component is made of metal as in the semiconductor devices 10a and 10b of FIG. 1, the melting point is higher than the maximum allowable temperature of the semiconductor component as the second heat conducting material, and the terminals of the semiconductor component are connected to the circuit board. It is preferable to use a low melting point solder having a lower melting point than the solder connected to the solder.

上記低融点半田は、熱によって簡単に精度良く成形することができ、金属からなる半導体部品の放熱面への接合も良好である。また、半導体部品の端子を回路基板に接続する半田より融点が低いため、回路基板への搭載後においても、問題なく成形が可能である。さらに、柔軟性を有する放熱ゲル等の第1熱伝導材に較べて格段に高い熱伝導率を有しているため、高い放熱性を確保することができる。   The low-melting-point solder can be easily and accurately molded by heat, and the bonding of the semiconductor component made of metal to the heat dissipation surface is also good. Further, since the melting point is lower than that of the solder for connecting the terminals of the semiconductor component to the circuit board, the molding can be performed without any problem even after mounting on the circuit board. Furthermore, since it has a much higher thermal conductivity than the first heat conductive material such as a heat-radiating gel having flexibility, high heat dissipation can be ensured.

上記低融点半田を第2熱伝導材として用いる場合において、金属からなる背面放熱PKGの放熱面は、例えばPKGの背面に合わせて広い面積をカバーする長方形状であってもよいし、該長方形の各辺に凹部を有する形状であってもよい。   In the case where the low melting point solder is used as the second heat conductive material, the heat radiation surface of the back heat radiation PKG made of metal may be, for example, a rectangular shape covering a large area according to the back surface of the PKG. The shape which has a recessed part on each side may be sufficient.

図4(a),(b)は、それぞれ、上記した異なる放熱面の形状を有する背面放熱PKGの半導体部品C,Dを示した図である。(a)の半導体部品Cは、モールド樹脂部11Cから露出する放熱板12Cの放熱面が長方形状であり、(b)の半導体部品Dは、モールド樹脂部11Dから露出する放熱板12Dの放熱面が長方形の各辺に凹部Kを有する形状である。図4(a),(b)では、それぞれ、低融点半田塗布前の状態を示した上面図、低融点半田塗布後の状態を示した断面図、低融点半田溶融時の状態を示した断面図を記載してある。   FIGS. 4A and 4B are views showing the semiconductor components C and D of the backside heat radiation PKG having the different heat radiation surface shapes described above, respectively. The semiconductor component C in (a) has a rectangular heat dissipation surface exposed from the mold resin portion 11C, and the semiconductor component D in (b) has a heat dissipation surface exposed from the mold resin portion 11D. Is a shape having a recess K on each side of the rectangle. 4 (a) and 4 (b), respectively, a top view showing a state before low-melting-point solder application, a cross-sectional view showing a state after low-melting-point solder application, and a cross-section showing a state at the time of low-melting-point solder melting. The figure is described.

図4に示す各半導体部品C,Dでは、図の中段に示した低融点半田6aC,6aDが同じ分量で放熱面上に塗布されている。しかしながら、図の下段に示す低融点半田6aC,6aDの溶融時には、モールド樹脂部11C,11Dに対して濡れ性がないため、半導体部品Cの低融点半田6aCの高さに較べて、半導体部品Dの低融点半田6aDの高さを高くすることができる。このため、図4(b)に示す背面放熱PKGの放熱面の形状を有した半導体部品Dは、図4(a)に示す半導体部品Cに較べて、各背面放熱PKGの放熱面高さのより広範囲のばらつきに対して、低融点半田を第2熱伝導材として適用することが可能である。尚、両者の放熱面の熱伝達性能については、長方形の対角線長さが同じであるため、ほとんど変わることはない。   In each of the semiconductor components C and D shown in FIG. 4, the low melting point solders 6aC and 6aD shown in the middle of the figure are applied on the heat radiation surface in the same amount. However, when the low melting point solders 6aC and 6aD shown in the lower part of the figure are melted, there is no wettability with respect to the mold resin portions 11C and 11D, so that the semiconductor component D is compared with the height of the low melting point solder 6aC of the semiconductor component C. The height of the low melting point solder 6aD can be increased. For this reason, the semiconductor component D having the shape of the heat radiation surface of the rear heat radiation PKG shown in FIG. 4B is higher in heat radiation surface height of each rear heat radiation PKG than the semiconductor component C shown in FIG. For a wider range of variation, it is possible to apply low melting point solder as the second thermal conductive material. In addition, about the heat transfer performance of both heat radiating surfaces, since the diagonal length of a rectangle is the same, it hardly changes.

図5(a),(b)は、それぞれ、図1に示した半導体装置10a,10bの変形例で、半導体装置10c,10dの構造を示した模式的な断面図である。   FIGS. 5A and 5B are schematic cross-sectional views showing the structures of the semiconductor devices 10c and 10d, respectively, as modifications of the semiconductor devices 10a and 10b shown in FIG.

図5に示す半導体装置10c,10dも、図1に示した半導体装置10a,10bと同様で、各半導体部品1i〜1l,1m〜1pが発生する熱を、第1熱伝導材としての柔軟性を有する放熱ゲル5aを介して、金属材4に逃がす構造となっている。また、図5(a)の半導体装置10cでは、同じ背面放熱PKGの半導体部品1i〜1lをプリント基板2cへ搭載する際に、半田3による接続部にばらつきが発生している。また、図5(b)の半導体装置10dでは、半導体部品1m〜1pをプリント基板2dへ搭載する際に、プリント基板2dに反りが発生している。   The semiconductor devices 10c and 10d shown in FIG. 5 are also the same as the semiconductor devices 10a and 10b shown in FIG. 1, and the heat generated by the semiconductor components 1i to 1l and 1m to 1p is flexible as the first heat conducting material. It has the structure which escapes to the metal material 4 via the thermal radiation gel 5a which has. Further, in the semiconductor device 10c of FIG. 5A, when the semiconductor components 1i to 1l having the same back heat radiation PKG are mounted on the printed circuit board 2c, the connection portion due to the solder 3 varies. Further, in the semiconductor device 10d of FIG. 5B, when the semiconductor components 1m to 1p are mounted on the printed board 2d, the printed board 2d is warped.

一方、図1の半導体装置10a,10bでは、プリント基板に搭載されている各半導体部品1a〜1d,1e〜1hの背面放熱PKGは、金属からなる放熱板12の放熱面がモールド樹脂部11から露出する構造を有していた。これに対して、図5の半導体装置10c,10dでは、プリント基板に搭載されている各半導体部品1i〜1l,1m〜1pの背面放熱PKGは、金属からなる放熱板を有しておらず、モールド樹脂部11の背面自体が放熱面となる構造である。   On the other hand, in the semiconductor devices 10 a and 10 b of FIG. 1, the back surface heat radiation PKG of each of the semiconductor components 1 a to 1 d and 1 e to 1 h mounted on the printed circuit board has a heat radiation surface of the heat radiation plate 12 made of metal from the mold resin portion 11. It had an exposed structure. On the other hand, in the semiconductor devices 10c and 10d in FIG. 5, the back surface heat radiation PKG of each of the semiconductor components 1i to 1l and 1m to 1p mounted on the printed board does not have a heat radiation plate made of metal, This is a structure in which the back surface of the mold resin portion 11 itself becomes a heat radiating surface.

そして、図5の半導体装置10c,10dでは、半導体部品1i〜1l,1m〜1pの放熱面に、プリント基板への搭載後において成形可能で、放熱ゲル5aより高い熱伝導率を有した、第2熱伝導材としての導電性接着剤6bが配置されている。そして、各半導体装置10c,10dでは、複数個の半導体部品1i〜1l,1m〜1pにおいて、導電性接着剤6bと金属材4の隙間CLが一定に確保され、該隙間CLに放熱ゲル5aを介在させる構造を有している。   In the semiconductor devices 10c and 10d of FIG. 5, the heat radiation surfaces of the semiconductor components 1i to 1l and 1m to 1p can be molded after mounting on the printed circuit board and have higher thermal conductivity than the heat radiation gel 5a. 2 A conductive adhesive 6b as a heat conductive material is disposed. In each of the semiconductor devices 10c and 10d, the gap CL between the conductive adhesive 6b and the metal material 4 is kept constant in the plurality of semiconductor components 1i to 1l and 1m to 1p, and the heat dissipation gel 5a is placed in the gap CL. It has an intervening structure.

図5に示した半導体装置10c,10dのように、回路基板への搭載後において成形可能で、柔軟性を有する第1熱伝導材より高い熱伝導率を有した第2熱伝導材として、導電性接着剤を採用することも可能である。導電性接着剤は、金属粒子を多く含んだ樹脂系接着剤であり、固化するまでに簡単に成形することができる。また、先の低融点半田より熱伝導率は低いものの、放熱ゲル等の柔軟性を有する第1熱伝導材に較べて高い熱伝導率を有している。さらに、導電性接着剤は、低融点半田と異なり、半導体部品(背面放熱PKG)の放熱面が金属でなく、PKGのモールド樹脂そのものであっても配置可能である。従って、金属材と電気絶縁性を保ったままで、熱だけ金属材へ逃がしたい場合等にも、この構成を採用することができる。   Like the semiconductor devices 10c and 10d shown in FIG. 5, the second heat conductive material can be molded after mounting on the circuit board and has a higher thermal conductivity than the flexible first heat conductive material. It is also possible to employ an adhesive. The conductive adhesive is a resin-based adhesive containing a large amount of metal particles, and can be easily molded before solidifying. In addition, although the thermal conductivity is lower than that of the previous low melting point solder, it has a higher thermal conductivity than the first thermal conductive material having flexibility such as a heat radiating gel. Further, unlike the low melting point solder, the conductive adhesive can be disposed even if the heat radiation surface of the semiconductor component (backside heat radiation PKG) is not a metal but a PKG mold resin itself. Therefore, this configuration can also be adopted when it is desired to release only heat to the metal material while maintaining electrical insulation with the metal material.

上記した半導体装置では、いずれも、柔軟性を有する第1熱伝導材として、放熱ゲルが用いられていた。上記した半導体装置の構造において、第1熱伝導材の機能は、半導体部品が発生する熱をヒートシンクの金属材に伝えると共に、半導体部品と回路基板の接合部に応力集中を起こさせないことにある。従って、この両機能を果たすうえで、セラミックスフィラーや金属フィラーを含有するゲル状物質の放熱ゲルは、好適な材料である。一般的に放熱ゲルのフィラーの使い分けは、絶縁性を要求する場合はセラミックスフィラーを選択し、絶縁性を要求しない場合は高熱伝導率の金属フィラーを用いる。しかしながら、これに限らず、例えば熱伝導率のよいゴム材であっても、両機能を果たすことができる。   In any of the semiconductor devices described above, a heat radiating gel is used as the flexible first heat conductive material. In the structure of the semiconductor device described above, the function of the first heat conducting material is to transmit heat generated by the semiconductor component to the metal material of the heat sink and not cause stress concentration at the junction between the semiconductor component and the circuit board. Therefore, in order to fulfill both of these functions, a gel-like heat-dissipating gel containing a ceramic filler or a metal filler is a suitable material. Generally, the ceramic gel filler is selected when the insulating gel is required, and the metal filler having high thermal conductivity is used when the insulating property is not required. However, the present invention is not limited to this. For example, even a rubber material with good thermal conductivity can fulfill both functions.

上記半導体装置において、回路基板に搭載される複数の半導体部品は、例示したように、同一部品であってよい。また、これに限らず、高さの異なる半導体部品が混在していてもよい。   In the semiconductor device, the plurality of semiconductor components mounted on the circuit board may be the same component as illustrated. Further, the present invention is not limited to this, and semiconductor components having different heights may be mixed.

背面放熱PKGの半導体部品の代表例は、例えば、発熱量の大きいパワー半導体素子である。また、これに限らず、例えば、発熱量の大きいIC等が混在していてもよい。   A typical example of the semiconductor component of the backside heat dissipation PKG is a power semiconductor element that generates a large amount of heat. Further, the present invention is not limited to this, and for example, ICs having a large calorific value may be mixed.

上記半導体装置における回路基板は、例示したように、安価であるが反り等が発生し易い、絶縁性の樹脂基板上に銅箔で回路パターンを形成したプリント基板であってよい。しかしながらこれに限らず、樹脂絶縁基材に配線層が多層に形成された多層回路基板や、セラミックを絶縁基材とするセラミック基板であってもよい。   As illustrated, the circuit board in the semiconductor device may be a printed board in which a circuit pattern is formed with a copper foil on an insulating resin board that is inexpensive but easily warps. However, the present invention is not limited to this, and it may be a multilayer circuit board in which wiring layers are formed in a multilayer on a resin insulating base material, or a ceramic substrate using ceramic as an insulating base material.

また、上記半導体装置においてヒートシンクとして機能する金属材は、回路基板を収容する筐体であってよく、熱伝達のための中間金属を排除することで小型化が可能である。   In addition, the metal material that functions as a heat sink in the semiconductor device may be a housing that accommodates the circuit board, and can be reduced in size by eliminating an intermediate metal for heat transfer.

以上のようにして、上記半導体装置は、回路基板に搭載された複数個の半導体部品(背面放熱PKG)の放熱面に高さばらつきがあっても、十分な放熱性を確保することのできる小型の半導体装置とすることができる。   As described above, the semiconductor device is small enough to ensure sufficient heat dissipation even if the heat dissipation surfaces of the plurality of semiconductor components (backside heat dissipation PKG) mounted on the circuit board have variations in height. It can be set as a semiconductor device.

図6〜図8は、図1に示した半導体装置10a,10bの具体的な適用例として、EPSのモータと駆動制御装置が一体的に組みつけられる、機電一体型の駆動装置への適用例を示した図である。   6 to 8 show application examples to an electro-mechanical integrated drive device in which an EPS motor and a drive control device are integrally assembled as a specific application example of the semiconductor devices 10a and 10b shown in FIG. FIG.

図6(a)は、EPSのモータと駆動制御装置が一体的に組みつけられる、機電一体型の駆動装置10eを簡略化して示した断面図である。また、図6(b)は、ヒートシンクとなる金属材で、EPSのモータハウジング4aの上面図である。尚、図6(a)に示す駆動装置10eの構造と、図1に示した半導体装置10a,10bの構造とでは、図の上下方向の関係が逆転している。   FIG. 6A is a cross-sectional view showing a simplified electromechanical drive device 10e in which an EPS motor and a drive control device are integrally assembled. FIG. 6B is a top view of the EPS motor housing 4a, which is a metal material serving as a heat sink. 6A and 6B and the structure of the semiconductor devices 10a and 10b shown in FIG. 1 are reversed in the vertical relationship.

図7は、図6(a)の駆動装置10eで用いられる複数個の半導体部品1qを搭載したプリント基板2eを示す図で、図7(a)は、上面図であり、図7(b)は、図中のC−C断面図であり、図7(c)は、下面図である。   FIG. 7 is a view showing a printed circuit board 2e on which a plurality of semiconductor components 1q used in the driving device 10e shown in FIG. 6A is mounted. FIG. 7A is a top view, and FIG. These are CC sectional drawings in a figure, and Drawing 7 (c) is a bottom view.

また、図8は、図6(a)に示した駆動装置10eの半導体部品1qの周りを拡大して、より詳細に示した断面図である。図8(a)は、QFP(Quad Flat Package)型の半導体部品1qaを用いた場合であり、図8(b)は、BGA(Ball Grid Array)型の半導体部品1qbを用いた場合である。   FIG. 8 is a cross-sectional view showing the semiconductor device 1q of the driving device 10e shown in FIG. FIG. 8A shows a case where a QFP (Quad Flat Package) type semiconductor component 1qa is used, and FIG. 8B shows a case where a BGA (Ball Grid Array) type semiconductor component 1qb is used.

図6(a)に示す機電一体型の駆動装置10eにおいては、図7に示すように、発熱量の大きいパワー半導体素子(MOSトランジスタ)からなる同じ背面放熱PKGの半導体部品1qが、複数(図の例では12)個、プリント基板2eの下面側に搭載されている。プリント基板2eの直径は、80mm程度であり、半導体部品1qは、ピーク時において5W/個の発熱量がある。同じくプリント基板2eの下面側には、丈の低いセンサIC部品D4が搭載される。一方、プリント基板2eの上面側には、制御用のIC部品D1および丈の高い電解コンデンサD2やコネクタD3が搭載される。   In the electro-mechanical integrated drive device 10e shown in FIG. 6A, as shown in FIG. 7, a plurality of semiconductor components 1q of the same back surface heat radiation PKG made of a power semiconductor element (MOS transistor) having a large calorific value are formed (FIG. 6). In this example, 12) pieces are mounted on the lower surface side of the printed circuit board 2e. The diameter of the printed circuit board 2e is about 80 mm, and the semiconductor component 1q has a heat generation amount of 5 W / piece at the peak. Similarly, a sensor IC component D4 having a low height is mounted on the lower surface side of the printed board 2e. On the other hand, a control IC component D1, a tall electrolytic capacitor D2, and a connector D3 are mounted on the upper surface side of the printed circuit board 2e.

より詳細には、図8(a)のQFP型の半導体部品1qaや図8(b)のBGA型の半導体部品1qbに示すように、背面放熱PKGの半導体部品は、半導体チップSCが金属からなる放熱板12qa,12qb、リードフレームLFおよびボンディングワイヤBWと共に樹脂モールドされている。QFP型の半導体部品1qaおよびBGA型の半導体部品1qbのいずれにおいても、半導体チップSCは、放熱板12qa,12qbに接合(例えば高温半田付け)されている。そして、半導体チップSCの発生する熱は、放熱板12qa,12qbを介して、パッケージの外へ伝熱される。また、モールド樹脂部11qa,11qbから露出するリードフレームLFの端子が、半田3でプリント基板2ea,2ebに形成された配線パターンPa,Pbに接続され、半導体部品1qa,1qbが、プリント基板2ea,2ebに搭載される。   More specifically, as shown in the QFP-type semiconductor component 1qa in FIG. 8A and the BGA-type semiconductor component 1qb in FIG. 8B, the semiconductor chip SC of the semiconductor component of the backside heat dissipation PKG is made of metal. Resin-molded together with the heatsinks 12qa and 12qb, the lead frame LF, and the bonding wires BW. In both the QFP type semiconductor component 1qa and the BGA type semiconductor component 1qb, the semiconductor chip SC is joined (for example, high temperature soldered) to the heat sinks 12qa, 12qb. The heat generated by the semiconductor chip SC is transferred to the outside of the package through the heat dissipation plates 12qa and 12qb. The terminals of the lead frame LF exposed from the mold resin portions 11qa and 11qb are connected to the wiring patterns Pa and Pb formed on the printed circuit boards 2ea and 2eb by the solder 3, and the semiconductor components 1qa and 1qb are connected to the printed circuit boards 2ea and 2eb.

図7(c)と図8(a),(b)に示すように、背面放熱PKGの半導体部品1q,1qa,1qbは、金属からなる放熱板12q,12qa,12qbの放熱面がモールド樹脂部11q,11qa,11qbから露出する構造を有している。そして、図6(a)と図8(a),(b)に示すように、各半導体部品1q,1qa,1qbの放熱面には、前述した第2熱伝導材として、低融点半田6aが配置されている。そして、放熱面上の低融点半田6aとヒートシンクとして機能するモータハウジング4aの間の隙間CLが、複数個の半導体部品1q,1qa,1qbに亘って一定に確保され、該隙間CLに、前述した第1熱伝導材として、放熱ゲル5aを介在させている。   As shown in FIGS. 7C, 8A, and 8B, the semiconductor parts 1q, 1qa, and 1qb of the backside heat dissipation PKG have heat dissipation surfaces of the metal heat dissipation plates 12q, 12qa, and 12qb that are molded resin parts. It has a structure exposed from 11q, 11qa, 11qb. Then, as shown in FIGS. 6A, 8A, and 8B, the low melting point solder 6a is used as the second heat conductive material described above on the heat radiation surface of each semiconductor component 1q, 1qa, 1qb. Has been placed. A gap CL between the low melting point solder 6a on the heat radiating surface and the motor housing 4a functioning as a heat sink is ensured uniformly over the plurality of semiconductor components 1q, 1qa, 1qb. A heat radiating gel 5a is interposed as the first heat conducting material.

図6(a)に示すように、複数個の半導体部品1qを搭載したプリント基板2eは、モータハウジング4aに組み付けられて金属からなるカバー8が被せられ、モータハウジング4aとカバー8とでプリント基板2eを収容する筐体が構成されている。   As shown in FIG. 6A, a printed circuit board 2e on which a plurality of semiconductor components 1q are mounted is assembled with the motor housing 4a and covered with a metal cover 8, and the printed circuit board is formed by the motor housing 4a and the cover 8. A housing for housing 2e is configured.

上記構造を有する図6〜図8に例示した機電一体型の駆動装置10eについても、図1に示した半導体装置10a,10bと同様に、プリント基板2e,2ea,2ebに搭載された複数個の半導体部品1q,1qa,1qbに高さばらつきがあっても、十分な放熱性を確保できることは言うまでもない。このように、上記半導体装置は、機電一体で構成されるモータの制御装置としても好適である。また、前記モータは、特に小型化が要求される、車載用のモータであってよい。   The electromechanically integrated drive device 10e illustrated in FIGS. 6 to 8 having the above-described structure is also similar to the semiconductor devices 10a and 10b illustrated in FIG. 1 and includes a plurality of printed circuit boards 2e, 2ea, and 2eb. Needless to say, sufficient heat dissipation can be ensured even if the semiconductor components 1q, 1qa, and 1qb have height variations. As described above, the semiconductor device is also suitable as a motor control device configured by mechanical and electrical integration. The motor may be an in-vehicle motor that is particularly required to be miniaturized.

10a〜10e 半導体装置(駆動装置)
1a〜1q,1qa,1qb,A〜D 半導体部品(背面放熱PKG)
2a〜2e,2ea,2eb プリント基板(回路基板)
5a 放熱ゲル(第1熱伝導材)
6a 低融点半田(第2熱伝導材)
6b 導電性接着剤(第2熱伝導材)
4,4a 金属材(ヒートシンク)
CL 隙間
10a to 10e Semiconductor device (drive device)
1a-1q, 1qa, 1qb, AD Semiconductor parts (backside heat dissipation PKG)
2a to 2e, 2ea, 2eb Printed circuit board (circuit board)
5a Heat dissipation gel (first heat conduction material)
6a Low melting point solder (second heat conduction material)
6b Conductive adhesive (second heat conductive material)
4,4a Metal material (heat sink)
CL gap

Claims (13)

端子の露出面と反対側を放熱面とするパッケージの半導体部品(1a〜1q)を、複数個、回路基板(2a〜2e)に搭載し、
前記複数個の半導体部品が発生する熱を、柔軟性を有する第1熱伝導材(5a)を介して、前記放熱面と対向する金属材(4,4a)に逃がす構造を有した半導体装置(10a〜10e)であって、
前記半導体部品の放熱面に、回路基板への搭載後において成形可能で、前記第1熱伝導材より高い熱伝導率を有した第2熱伝導材(6a,6b)が配置されてなり、
前記複数個の半導体部品において、前記第2熱伝導材と前記金属材の隙間(CL)が一定に確保されてなり、
前記隙間に、前記第1熱伝導材を介在させる構造を有してなることを特徴とする半導体装置。
A plurality of semiconductor components (1a to 1q) having a heat dissipation surface opposite to the exposed surface of the terminal are mounted on the circuit board (2a to 2e),
A semiconductor device having a structure for releasing the heat generated by the plurality of semiconductor components to the metal material (4, 4a) facing the heat radiating surface via the flexible first heat conductive material (5a) ( 10a-10e),
A second heat conductive material (6a, 6b) that can be molded after mounting on a circuit board and has a higher thermal conductivity than the first heat conductive material is disposed on the heat dissipation surface of the semiconductor component,
In the plurality of semiconductor components, a gap (CL) between the second heat conductive material and the metal material is secured constant,
A semiconductor device having a structure in which the first thermal conductive material is interposed in the gap.
前記放熱面が、金属からなり、
前記第2熱伝導材が、前記半導体部品の最高許容温度より融点が高く、前記半導体部品の端子を前記回路基板に接続する半田(3)より融点が低い、低融点半田(6a)であることを特徴とする請求項1に記載の半導体装置。
The heat dissipation surface is made of metal,
The second thermal conductive material is a low melting point solder (6a) having a melting point higher than the maximum allowable temperature of the semiconductor component and lower than the solder (3) for connecting the terminal of the semiconductor component to the circuit board. The semiconductor device according to claim 1.
前記放熱面が、長方形状であることを特徴とする請求項2に記載の半導体装置。   The semiconductor device according to claim 2, wherein the heat dissipation surface is rectangular. 前記放熱面が、長方形の各辺に凹部(K)を有する形状であることを特徴とする請求項2に記載の半導体装置。   The semiconductor device according to claim 2, wherein the heat dissipation surface has a shape having a recess (K) on each side of a rectangle. 前記第2熱伝導材が、導電性接着剤(6b)であることを特徴とする請求項1に記載の半導体装置。   The semiconductor device according to claim 1, wherein the second heat conductive material is a conductive adhesive (6 b). 前記第1熱伝導材が、セラミックスフィラーまたは金属フィラーを含有するゲル状物質の放熱ゲル(5a)であることを特徴とする請求項1乃至5のいずれか一項に記載の半導体装置。   6. The semiconductor device according to claim 1, wherein the first heat conductive material is a heat-dissipating gel (5 a) made of a gel material containing a ceramic filler or a metal filler. 前記複数の半導体部品が、同一部品からなることを特徴とする請求項1乃至6のいずれか一項に記載の半導体装置。   The semiconductor device according to claim 1, wherein the plurality of semiconductor components are made of the same component. 前記半導体部品が、パワー半導体素子であることを特徴とする請求項1乃至7のいずれか一項に記載の半導体装置。   The semiconductor device according to claim 1, wherein the semiconductor component is a power semiconductor element. 前記回路基板が、絶縁性の樹脂基板上に銅箔で回路パターンを形成した、プリント基板(2a〜2e)であることを特徴とする請求項1乃至8のいずれか一項に記載の半導体装置。   9. The semiconductor device according to claim 1, wherein the circuit board is a printed circuit board (2a to 2e) in which a circuit pattern is formed of a copper foil on an insulating resin substrate. . 前記金属材が、前記回路基板を収容する筐体であることを特徴とする請求項1乃至9のいずれか一項に記載の半導体装置。   The semiconductor device according to claim 1, wherein the metal material is a housing that houses the circuit board. 前記半導体装置が、機電一体で構成されるモータの制御装置(10e)であることを特徴とする請求項1乃至10のいずれか一項に記載の半導体装置。   11. The semiconductor device according to claim 1, wherein the semiconductor device is a motor control device (10 e) configured integrally with electromechanical devices. 11. 前記モータが、車載用のモータであることを特徴とする請求項11に記載の半導体装置。   The semiconductor device according to claim 11, wherein the motor is an in-vehicle motor. 請求項2に記載の半導体装置の製造方法であって、
前記半導体部品の端子を前記回路基板に半田で接続して、回路基板に前記複数個の半導体部品を搭載する部品搭載工程と、
前記半導体部品の放熱面上に、前記低融点半田を塗布する半田塗布工程と、
前記放熱面上に塗布された低融点半田を、前記金属材の伝熱面に倣った形状の面を有する加熱された型に接触させて溶融し、前記型の面に接触させたまま急冷して低融点半田を成形する半田成形工程と、
前記成形後の低融点半田と前記金属材の間に前記第1熱伝導材を介在させて、前記回路基板と金属材を組み付ける組み付け工程とを有してなることを特徴とする半導体装置の製造方法。
A method of manufacturing a semiconductor device according to claim 2,
A component mounting step of connecting the terminals of the semiconductor component to the circuit board with solder and mounting the plurality of semiconductor components on the circuit board;
A solder application step of applying the low melting point solder on the heat dissipation surface of the semiconductor component;
The low melting point solder applied on the heat radiating surface is melted by being brought into contact with a heated mold having a surface shaped like the heat transfer surface of the metal material, and rapidly cooled while being in contact with the surface of the mold. Solder molding process for molding low melting point solder,
And a step of assembling the circuit board and the metal material by interposing the first heat conductive material between the molded low melting point solder and the metal material. Method.
JP2013022606A 2013-02-07 2013-02-07 Semiconductor device and manufacturing method of the same Pending JP2014154688A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013022606A JP2014154688A (en) 2013-02-07 2013-02-07 Semiconductor device and manufacturing method of the same
DE201410201227 DE102014201227A1 (en) 2013-02-07 2014-01-23 Semiconductor device e.g. electro-mechanical control device for controlling motor used in vehicle, has first heat-conducting element that is laminated between metal element and second heat conducting elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013022606A JP2014154688A (en) 2013-02-07 2013-02-07 Semiconductor device and manufacturing method of the same

Publications (1)

Publication Number Publication Date
JP2014154688A true JP2014154688A (en) 2014-08-25

Family

ID=51206250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013022606A Pending JP2014154688A (en) 2013-02-07 2013-02-07 Semiconductor device and manufacturing method of the same

Country Status (2)

Country Link
JP (1) JP2014154688A (en)
DE (1) DE102014201227A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106061197A (en) * 2015-04-06 2016-10-26 株式会社电装 Electronic control unit
CN110770884A (en) * 2017-12-13 2020-02-07 贺利氏德国有限两合公司 Method for producing a robust sandwich arrangement of two components and solder located therebetween
US10991638B2 (en) 2018-05-14 2021-04-27 Samsung Electronics Co., Ltd. Semiconductor package system
US11075138B2 (en) 2018-05-11 2021-07-27 Samsung Electronics Co., Ltd. Semiconductor package system
US11244885B2 (en) 2018-09-18 2022-02-08 Samsung Electronics Co., Ltd. Semiconductor package system
US11600607B2 (en) 2019-01-17 2023-03-07 Samsung Electronics Co., Ltd. Semiconductor module including multiple power management semiconductor packages

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08172145A (en) * 1994-12-16 1996-07-02 Texas Instr Japan Ltd Semiconductor device and heat dissipating parts
JPH11135691A (en) * 1997-10-31 1999-05-21 Hitachi Ltd Electronic circuit device
JP2006147852A (en) * 2004-11-19 2006-06-08 Denso Corp Semiconductor device, and method and device for manufacturing the same
JP2008130879A (en) * 2006-11-22 2008-06-05 Denso Corp Electronic device
JP2010110098A (en) * 2008-10-30 2010-05-13 Hitachi Automotive Systems Ltd Rotary electric machine apparatus and control device for the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07245362A (en) 1994-03-07 1995-09-19 Fujitsu Ltd Multi-chip semiconductor device
JPH11121662A (en) 1997-10-09 1999-04-30 Hitachi Ltd Cooling structure for semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08172145A (en) * 1994-12-16 1996-07-02 Texas Instr Japan Ltd Semiconductor device and heat dissipating parts
JPH11135691A (en) * 1997-10-31 1999-05-21 Hitachi Ltd Electronic circuit device
JP2006147852A (en) * 2004-11-19 2006-06-08 Denso Corp Semiconductor device, and method and device for manufacturing the same
JP2008130879A (en) * 2006-11-22 2008-06-05 Denso Corp Electronic device
JP2010110098A (en) * 2008-10-30 2010-05-13 Hitachi Automotive Systems Ltd Rotary electric machine apparatus and control device for the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106061197A (en) * 2015-04-06 2016-10-26 株式会社电装 Electronic control unit
CN106061197B (en) * 2015-04-06 2019-07-30 株式会社电装 Electronic control unit
CN110770884A (en) * 2017-12-13 2020-02-07 贺利氏德国有限两合公司 Method for producing a robust sandwich arrangement of two components and solder located therebetween
US11075138B2 (en) 2018-05-11 2021-07-27 Samsung Electronics Co., Ltd. Semiconductor package system
US10991638B2 (en) 2018-05-14 2021-04-27 Samsung Electronics Co., Ltd. Semiconductor package system
US11658090B2 (en) 2018-05-14 2023-05-23 Samsung Electronics Co., Ltd. Semiconductor package system
US11244885B2 (en) 2018-09-18 2022-02-08 Samsung Electronics Co., Ltd. Semiconductor package system
US11600607B2 (en) 2019-01-17 2023-03-07 Samsung Electronics Co., Ltd. Semiconductor module including multiple power management semiconductor packages

Also Published As

Publication number Publication date
DE102014201227A1 (en) 2014-08-07

Similar Documents

Publication Publication Date Title
JP4634497B2 (en) Power semiconductor module
JP3934565B2 (en) Semiconductor device
JP4691455B2 (en) Semiconductor device
JP2014154688A (en) Semiconductor device and manufacturing method of the same
JP2008118067A (en) Power module and motor-integrated controlling device
JP2004281722A (en) Electronic circuit device and its manufacturing method
US20150108630A1 (en) Electronic device, electronic apparatus, and method for manufacturing electronic device
WO2019116828A1 (en) Electronic control device
WO2021215187A1 (en) Electronic device
WO2004112129A1 (en) Electronic device
JP4946488B2 (en) Circuit module
JP2020009989A (en) Semiconductor device
JP2003115681A (en) Mounting structure for electronic component
JP5898575B2 (en) Semiconductor device
JP5239736B2 (en) Electronic equipment
JP2005332918A (en) Electronic apparatus
JP2011171656A (en) Semiconductor package and method for manufacturing the same
JP2004096034A (en) Method of manufacturing module structure, circuit board and method of fixing the same
JP6488658B2 (en) Electronic equipment
WO1999016128A1 (en) Semiconductor module
JP6908278B2 (en) Semiconductor devices and electronic devices
JP5256128B2 (en) Electronic circuit enclosure
US20120292756A1 (en) Semiconductor device with heat spreader
JP2006135361A (en) Electronic circuit device and method of manufacturing the same
JP2019121679A (en) Electronic device and method of manufacturing electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150818

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160106