[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2014153015A - Pulverized coal burner - Google Patents

Pulverized coal burner Download PDF

Info

Publication number
JP2014153015A
JP2014153015A JP2013024469A JP2013024469A JP2014153015A JP 2014153015 A JP2014153015 A JP 2014153015A JP 2013024469 A JP2013024469 A JP 2013024469A JP 2013024469 A JP2013024469 A JP 2013024469A JP 2014153015 A JP2014153015 A JP 2014153015A
Authority
JP
Japan
Prior art keywords
pulverized coal
forming member
cylinder nozzle
outer cylinder
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013024469A
Other languages
Japanese (ja)
Other versions
JP6070240B2 (en
Inventor
Masahito Tamura
雅人 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2013024469A priority Critical patent/JP6070240B2/en
Publication of JP2014153015A publication Critical patent/JP2014153015A/en
Application granted granted Critical
Publication of JP6070240B2 publication Critical patent/JP6070240B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a pulverized coal burner capable of improving stability of ignition at starting and stability of flames formed in a furnace in normal operation.SOLUTION: A pulverized coal burner includes: a nozzle body 6 including an outer tube nozzle 8 opened to a furnace 2 and configured to jet a pulverized coal mixed flow 18 obtained by mixing pulverized coal and carrying air while rotating the mixed flow and an inner tube nozzle 9 formed inside the outer tube nozzle concentrically with the outer tube nozzle to jet auxiliary combustion air 25; a secondary air adjustment device 7 for jetting combustion air 22 from the periphery of the nozzle body; and a plasma torch 19 for jetting plasma. A retention part formation member 14 for forming a part of an inner surface is formed in the outer tube nozzle so as to be displaced, a retention part for increasing a pulverized coal concentration is formed by displacement of the retention part formation member and the plasma torch is arranged so as to jet plasma to the pulverized coal mixed flow jetted from the retention part.

Description

本発明は、ボイラ火炉の壁面に設けられ、微粉炭を燃焼させる微粉炭バーナ、特に微粉炭着火用としてプラズマトーチを具備する微粉炭バーナに関するものである。   The present invention relates to a pulverized coal burner that is provided on the wall of a boiler furnace and burns pulverized coal, and more particularly to a pulverized coal burner having a plasma torch for pulverized coal ignition.

微粉炭バーナに於いて、微粉炭の着火手段としてプラズマトーチを用いるものがある。プラズマトーチは高温のプラズマを発生するので、揮発分の低い微粉炭に対しても着化性がよく、又プラズマトーチを用いることで燃料供給系が油供給系を必要とせず、微粉炭の供給系の1系統でよくなり、設備の簡略化が図れる。又、プラズマが高温であることから、火炉が冷えた状態での起動、即ち冷缶起動が可能となる。   Some pulverized coal burners use a plasma torch as means for igniting pulverized coal. The plasma torch generates high-temperature plasma, so it can be easily applied to pulverized coal with a low volatile content. By using a plasma torch, the fuel supply system does not require an oil supply system, and pulverized coal can be supplied. One system can be used, and the equipment can be simplified. In addition, since the plasma is high temperature, it is possible to start in a state where the furnace is cold, that is, to start a cold can.

然し乍ら、着火手段としてプラズマトーチを用いる場合、プラズマにより形成される高温領域が狭い為、着火の安定性、又形成される火炎の安定性に問題があった。   However, when a plasma torch is used as the ignition means, there is a problem in the stability of ignition and the stability of the flame formed because the high temperature region formed by the plasma is narrow.

尚、特許文献1には、バーナータイルを有する微粉炭燃焼バーナーの中心にプラズマトーチを組込み、プラズマジェットの高温部に微粉炭と一次空気を吹込み、二次空気をプラズマジェットを囲む様に旋回させて供給することで、微粉炭を完全燃焼させるプラズマ助燃燃焼炉用バーナーが開示されている。   In Patent Document 1, a plasma torch is incorporated in the center of a pulverized coal combustion burner having a burner tile, pulverized coal and primary air are blown into the high temperature portion of the plasma jet, and secondary air is swirled so as to surround the plasma jet. A burner for a plasma assisted combustion furnace that completely burns pulverized coal by supplying the pulverized coal is disclosed.

特開平6−265109号公報JP-A-6-265109

本発明は斯かる実情に鑑み、起動時の着火の安定性及び通常時の火炉に形成される火炎の安定性の向上を図る微粉炭バーナを提供するものである。   In view of such circumstances, the present invention provides a pulverized coal burner that improves the stability of ignition at start-up and the stability of flames formed in a normal furnace.

本発明は、火炉に向って開口し、微粉炭と搬送用空気とが混合された微粉炭混合流を旋回させながら噴出する外筒ノズルと、該外筒ノズルの内部に該外筒ノズルと同心に設けられ補助燃焼用空気を噴出する内筒ノズルとを有するノズル本体と、該ノズル本体の周囲から燃焼用空気を噴出する2次空気調整装置と、プラズマを噴出するプラズマトーチとを具備し、前記外筒ノズルには内面の一部を形成する滞留部形成部材が変位可能に設けられ、該滞留部形成部材の変位により微粉炭濃度を上昇させる滞留部を形成し、該滞留部より噴出される前記微粉炭混合流にプラズマを噴出する様前記プラズマトーチが配設された微粉炭バーナに係るものである。   The present invention includes an outer cylinder nozzle that opens toward the furnace and ejects while swirling a pulverized coal mixed flow in which pulverized coal and conveying air are mixed, and is concentric with the outer cylinder nozzle inside the outer cylinder nozzle. A nozzle main body having an inner cylinder nozzle for ejecting auxiliary combustion air, a secondary air adjusting device for ejecting combustion air from the periphery of the nozzle main body, and a plasma torch for ejecting plasma, The outer cylinder nozzle is provided with a stagnation part forming member that forms a part of the inner surface so as to be displaceable. A stagnation part that increases the pulverized coal concentration is formed by the displacement of the stagnation part forming member, and is ejected from the stagnation part. The present invention relates to a pulverized coal burner in which the plasma torch is disposed so as to eject plasma into the pulverized coal mixed flow.

又本発明は、前記外筒ノズルの内面に設けられた軸心方向に沿って延在する複数のディフレクタアングルと、前記外筒ノズルの内面に形成され前記滞留部形成部材が回転可能な半円柱状の凹溝とを更に具備し、前記滞留部形成部材は一面に前記外筒ノズルの内面と同一の曲率の曲面が形成され、他面に前記ディフレクタアングルよりも軸心に向って突出する突出部が形成された微粉炭バーナに係るものである。   The present invention also includes a plurality of deflector angles provided along the axial direction provided on the inner surface of the outer cylinder nozzle, and a semicircle formed on the inner surface of the outer cylinder nozzle and capable of rotating the stay portion forming member. The stay portion forming member is further formed with a curved surface having the same curvature as the inner surface of the outer cylinder nozzle on one surface, and a protrusion projecting toward the axial center from the deflector angle on the other surface. The present invention relates to a pulverized coal burner in which a portion is formed.

又本発明は、前記外筒ノズルの内面に凹溝が更に形成され、該凹溝に前記滞留部形成部材が挿脱可能であり、前記滞留部形成部材の接触する部分と前記凹溝の接触する部分が同一である微粉炭バーナに係るものである。   According to the present invention, a concave groove is further formed on the inner surface of the outer cylinder nozzle, and the retention portion forming member can be inserted into and removed from the concave groove, and the contact portion between the portion where the retention portion forming member is in contact with the concave groove This relates to a pulverized coal burner having the same parts.

更に又本発明は、前記外筒ノズルの内面に形成され前記滞留部形成部材が嵌合可能な凹部を更に具備し、前記滞留部形成部材は一面に前記外筒ノズルの内面と同一の曲率の曲面が形成されると共に回転可能であり、前記滞留部形成部材は回転することで前記内筒ノズルに向って突出する微粉炭バーナに係るものである。   Furthermore, the present invention further includes a recess formed on the inner surface of the outer cylinder nozzle, into which the staying part forming member can be fitted, and the staying part forming member has the same curvature as the inner surface of the outer cylinder nozzle. A curved surface is formed and is rotatable, and the stay portion forming member is related to a pulverized coal burner that protrudes toward the inner cylinder nozzle by rotating.

本発明によれば、火炉に向って開口し、微粉炭と搬送用空気とが混合された微粉炭混合流を旋回させながら噴出する外筒ノズルと、該外筒ノズルの内部に該外筒ノズルと同心に設けられ補助燃焼用空気を噴出する内筒ノズルとを有するノズル本体と、該ノズル本体の周囲から燃焼用空気を噴出する2次空気調整装置と、プラズマを噴出するプラズマトーチとを具備し、前記外筒ノズルには内面の一部を形成する滞留部形成部材が変位可能に設けられ、該滞留部形成部材の変位により微粉炭濃度を上昇させる滞留部を形成し、該滞留部より噴出される前記微粉炭混合流にプラズマを噴出する様前記プラズマトーチが配設されたので、前記火炉が低温である場合には、前記滞留部形成部材を変位させて前記滞留部を形成し、プラズマによる高温領域に高濃度の前記微粉炭混合流を通過させることで、微粉炭の着火安定性を向上させることができると共に、前記火炉内の温度が充分に上昇した際には、前記滞留部形成部材を前記外筒ノズルの内面の一部とすることで、前記微粉炭混合流を均一な旋回流とすることができ、前記火炉内に形成される火炎の安定性を向上させることができるという優れた効果を発揮する。   According to the present invention, an outer cylinder nozzle that opens toward the furnace and jets while swirling a pulverized coal mixed flow in which pulverized coal and conveying air are mixed, and the outer cylinder nozzle inside the outer cylinder nozzle A nozzle body having an inner cylinder nozzle that is concentrically provided and ejects auxiliary combustion air, a secondary air adjustment device that ejects combustion air from the periphery of the nozzle body, and a plasma torch that ejects plasma The outer cylinder nozzle is provided with a stagnation part forming member that forms a part of the inner surface in a displaceable manner, and a stagnation part that increases the pulverized coal concentration is formed by the displacement of the stagnation part forming member. Since the plasma torch is disposed so as to eject plasma into the pulverized coal mixed flow to be ejected, when the furnace is at a low temperature, the staying part forming member is displaced to form the staying part, High temperature region by plasma By passing the high-concentration pulverized coal mixed flow, the ignition stability of the pulverized coal can be improved, and when the temperature in the furnace is sufficiently increased, By using a part of the inner surface of the outer cylinder nozzle, the pulverized coal mixed flow can be made into a uniform swirl flow, and the excellent effect that the stability of the flame formed in the furnace can be improved. Demonstrate.

本発明の第1の実施例に係る微粉炭バーナを示す概略立断面図である。1 is a schematic vertical sectional view showing a pulverized coal burner according to a first embodiment of the present invention. 本発明の第1の実施例に係る滞留部形成部材及びその周辺部の構成を示す説明図であり、(A)は該滞留部形成部材を外筒ノズルの内面の一部とする場合を示し、(B)は前記滞留部形成部材により滞留部を形成する場合を示している。It is explanatory drawing which shows the structure of the retention part formation member which concerns on 1st Example of this invention, and its peripheral part, (A) shows the case where this retention part formation member is made into a part of inner surface of an outer cylinder nozzle. , (B) shows a case where a staying part is formed by the staying part forming member. 本発明の第2の実施例に係る微粉炭バーナを示す概略立断面図である。It is a schematic elevation sectional drawing which shows the pulverized coal burner which concerns on the 2nd Example of this invention. 本発明の第2の実施例に係る滞留部形成部材及びその周辺部の構成を示す説明図であり、(A)は該滞留部形成部材を外筒ノズルの内面の一部とする場合を示し、(B)は前記滞留部形成部材により滞留部を形成する場合を示している。It is explanatory drawing which shows the structure of the retention part formation member which concerns on 2nd Example of this invention, and its peripheral part, (A) shows the case where this retention part formation member is made into a part of inner surface of an outer cylinder nozzle. , (B) shows a case where a staying part is formed by the staying part forming member. 本発明の第3の実施例に係る滞留部形成部材及びその周辺部の構成を示す説明図であり、(A)は該滞留部形成部材を外筒ノズルの内面の一部とする場合を示し、(B)は前記滞留部形成部材により滞留部を形成する場合を示している。It is explanatory drawing which shows the structure of the retention part formation member which concerns on 3rd Example of this invention, and its peripheral part, (A) shows the case where this retention part formation member is made into a part of inner surface of an outer cylinder nozzle. , (B) shows a case where a staying part is formed by the staying part forming member.

以下、図面を参照しつつ本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

先ず図1、図2(A)(B)に於いて、本発明の第1の実施例に於ける微粉炭バーナ1について説明する。   First, the pulverized coal burner 1 according to the first embodiment of the present invention will be described with reference to FIGS. 1, 2A and 2B.

図1中、2はボイラ(図示せず)の火炉、3は該火炉2の炉壁を示している。該炉壁3にスロート4が設けられ、前記炉壁3の反火炉2側にウインドボックス5が取付けられ、該ウインドボックス5の内部に前記微粉炭バーナ1が前記スロート4と同心に設けられている。   In FIG. 1, 2 is a furnace of a boiler (not shown), and 3 is a furnace wall of the furnace 2. A throat 4 is provided on the furnace wall 3, a wind box 5 is attached to the counter-fire furnace 2 side of the furnace wall 3, and the pulverized coal burner 1 is provided concentrically with the throat 4 inside the wind box 5. Yes.

前記微粉炭バーナ1は、該微粉炭バーナ1の中心軸心上にノズル本体6を有し、又前記スロート4に連設し、前記ノズル本体6の先端部を囲む様に設けられ、該ノズル本体6と同心の2次空気調整装置7を有している。   The pulverized coal burner 1 has a nozzle body 6 on the center axis of the pulverized coal burner 1, is connected to the throat 4, and is provided so as to surround the tip of the nozzle body 6. A secondary air conditioner 7 concentric with the main body 6 is provided.

前記ノズル本体6は、外筒ノズル8と、該外筒ノズル8と同心多重に設けられた内筒ノズル9とを具備し、前記外筒ノズル8と前記内筒ノズル9との間には、中空筒状の空間で、前記火炉2側端が開口された燃料導通空間11を形成している。   The nozzle body 6 includes an outer cylinder nozzle 8 and an inner cylinder nozzle 9 provided concentrically with the outer cylinder nozzle 8, and between the outer cylinder nozzle 8 and the inner cylinder nozzle 9, A fuel-conducting space 11 having an open end at the furnace 2 side is formed in a hollow cylindrical space.

前記外筒ノズル8の内周面には、母線に沿って延在し、且つ周方向に所定の角度ピッチで所要数、例えば45°間隔で断面が三角形状のディフレクタアングル12が配設されている。又、該ディフレクタアングル12のうちの1つと、該ディフレクタアングル12に隣接するディフレクタアングル12との間(図示では最頂部のディフレクタアングル12と、該ディフレクタアングル12に隣接するディフレクタアングル12との間)には、軸方向に所定の長さを有する半円柱状の凹溝13が形成され、該凹溝13には該凹溝13の軸心を中心に滞留部形成部材14が回転可能に設けられている。該滞留部形成部材14には、回転駆動軸10が連結され、該回転駆動軸10は前記ウインドボックス5を貫通し、該ウインドボックス5の外部に延出している。前記回転駆動軸10の軸端には、図示しない駆動手段が連結されている。   On the inner peripheral surface of the outer cylinder nozzle 8, deflector angles 12 having a triangular shape in cross section are disposed at a predetermined number of pitches in the circumferential direction at a predetermined angle pitch, for example, 45 ° intervals. Yes. Also, between one of the deflector angles 12 and the deflector angle 12 adjacent to the deflector angle 12 (between the uppermost deflector angle 12 and the deflector angle 12 adjacent to the deflector angle 12 in the drawing). Is formed with a semi-cylindrical concave groove 13 having a predetermined length in the axial direction, and a retention portion forming member 14 is rotatably provided around the axial center of the concave groove 13. ing. A rotation drive shaft 10 is connected to the staying portion forming member 14, and the rotation drive shaft 10 passes through the window box 5 and extends to the outside of the window box 5. A driving means (not shown) is connected to the shaft end of the rotary drive shaft 10.

前記滞留部形成部材14は、一面に前記外筒ノズル8と同一(同一又は略同一を含む)の曲率の曲面が形成され、他面には例えば断面三角形状の突出部15が形成されている。前記滞留部形成部材14の一面が前記燃料導通空間11に露出している場合には、図2(A)に示される様に、前記外筒ノズル8の内面と前記滞留部形成部材14の一面とが面一となり、該滞留部形成部材14が前記外筒ノズル8の内面の一部となる。   The stay portion forming member 14 has a curved surface having the same curvature (including the same or substantially the same) as the outer cylinder nozzle 8 on one surface, and a projecting portion 15 having a triangular cross section, for example, is formed on the other surface. . When one surface of the retention portion forming member 14 is exposed in the fuel conduction space 11, as shown in FIG. 2A, the inner surface of the outer cylinder nozzle 8 and one surface of the retention portion forming member 14 are provided. And the stay portion forming member 14 becomes a part of the inner surface of the outer cylinder nozzle 8.

又、前記滞留部形成部材14の他面が前記燃料導通空間11に露出している場合には、図2(B)に示される様に、前記突出部15が前記ディフレクタアングル12よりも軸心に向って突出する様になっている。即ち、前記突出部15の高さは、前記ディフレクタアングル12より高くなっている。尚、前記突出部15の軸方向の長さは、後述する滞留部16が形成されるのに十分な長さとなっている。   Further, when the other surface of the staying portion forming member 14 is exposed to the fuel conducting space 11, the projecting portion 15 is more axial than the deflector angle 12 as shown in FIG. It protrudes toward That is, the height of the protrusion 15 is higher than the deflector angle 12. Note that the axial length of the protruding portion 15 is sufficient to form a staying portion 16 to be described later.

前記外筒ノズル8の基部(前記反火炉2側の端部)には、微粉炭混合流導入管17が接線方向から連通されている。該微粉炭混合流導入管17は、微粉炭ミル(図示せず)に接続され、前記微粉炭混合流導入管17を介して搬送用空気である1次空気と微粉炭とが混合された微粉炭混合流18が前記燃料導通空間11に接線方向から流入する。   A pulverized coal mixed flow introduction pipe 17 communicates with the base of the outer cylinder nozzle 8 (the end on the side of the counter-fired furnace 2) from the tangential direction. The pulverized coal mixed flow introduction pipe 17 is connected to a pulverized coal mill (not shown), and the pulverized coal mixed flow introduction pipe 17 is mixed with primary air, which is conveying air, and pulverized coal. The charcoal mixed flow 18 flows into the fuel conduction space 11 from the tangential direction.

前記微粉炭混合流18は、前記燃料導通空間11内部を旋回しながら先端側に向って流動する。前記微粉炭混合流18は、流動の過程で前記突出部15により微粉炭濃度が上昇した前記滞留部16を形成しつつ、前記外筒ノズル8(前記火炉2側端)から噴出される様になっている。   The pulverized coal mixed flow 18 flows toward the front end side while turning inside the fuel conduction space 11. The pulverized coal mixed flow 18 is jetted from the outer cylinder nozzle 8 (the furnace 2 side end) while forming the staying portion 16 in which the pulverized coal concentration is increased by the protrusion 15 during the flow process. It has become.

又、前記外筒ノズル8の外側には、前記ウインドボックス5を貫通してプラズマトーチ19が設けられている。該プラズマトーチ19は、先端に向って漸次前記外筒ノズル8に接近する様傾斜しており、前記プラズマトーチ19の先端は前記滞留部16の先端の近傍に位置している。   Further, a plasma torch 19 is provided outside the outer cylinder nozzle 8 so as to penetrate the window box 5. The plasma torch 19 is inclined so as to gradually approach the outer cylinder nozzle 8 toward the tip, and the tip of the plasma torch 19 is located in the vicinity of the tip of the staying portion 16.

前記ウインドボックス5には2次空気送風ダクト21が連通しており、該2次空気送風ダクト21を介して燃焼用空気である2次空気22が前記ウインドボックス5内に流入する。   A secondary air blowing duct 21 communicates with the window box 5, and secondary air 22 as combustion air flows into the window box 5 through the secondary air blowing duct 21.

又、前記内筒ノズル9の基部には、3次空気導入管23の一端が連通し、他端は前記ウインドボックス5の内部に開口する。前記3次空気導入管23には3次空気流量調整弁24が設けられている。前記3次空気導入管23は、前記ウインドボックス5から前記2次空気22の一部を取入れ、前記3次空気流量調整弁24で流量調整し、補助燃焼用空気である3次空気25として前記内筒ノズル9内に導いている。   Further, one end of a tertiary air introduction pipe 23 communicates with the base portion of the inner cylinder nozzle 9, and the other end opens inside the wind box 5. The tertiary air introduction pipe 23 is provided with a tertiary air flow rate adjustment valve 24. The tertiary air introduction pipe 23 takes in a part of the secondary air 22 from the window box 5, adjusts the flow rate by the tertiary air flow rate adjusting valve 24, and forms the tertiary air 25 as auxiliary combustion air as the tertiary air 25. It leads into the inner cylinder nozzle 9.

前記2次空気調整装置7は、前記ノズル本体6の先端部を収納する補助空気調整機構26と、該補助空気調整機構26の外側に同心多重に設けられた主空気調整機構27から構成されている。   The secondary air adjusting device 7 includes an auxiliary air adjusting mechanism 26 that houses the tip of the nozzle body 6, and a main air adjusting mechanism 27 that is provided concentrically outside the auxiliary air adjusting mechanism 26. Yes.

前記補助空気調整機構26は、先端に向って縮径する第1空気ガイドダクト28と、円周等間隔で回転可能に多数設けられたインナ空気ベーン29とを有し、全てのインナ空気ベーン29はリンク機構(図示せず)を介して同期回動可能であり、空気流れに対する傾斜角を変更可能となっている。又、前記主空気調整機構27は、先端に向って縮径する第2空気ガイドダクト31と、円周等間隔で回転可能に多数設けられたアウタ空気ベーン32とを有し、全てのアウタ空気ベーン32は、前記インナ空気ベーン29と同様にリンク機構(図示せず)を介して同期回動可能であり、空気流れに対する傾斜角を変更可能となっている。   The auxiliary air adjusting mechanism 26 includes a first air guide duct 28 that is reduced in diameter toward the tip, and a large number of inner air vanes 29 that are rotatably provided at equal circumferential intervals. Can be rotated synchronously via a link mechanism (not shown), and the inclination angle with respect to the air flow can be changed. The main air adjustment mechanism 27 includes a second air guide duct 31 that is reduced in diameter toward the tip, and a plurality of outer air vanes 32 that are rotatably provided at equal circumferential intervals, and all the outer air Like the inner air vane 29, the vane 32 can be rotated synchronously via a link mechanism (not shown), and the inclination angle with respect to the air flow can be changed.

尚、前記第2空気ガイドダクト31の先端は、前記スロート4に連続し、前記第1空気ガイドダクト28の先端は前記炉壁3の内壁面から後退した位置にあり、前記外筒ノズル8、前記内筒ノズル9の先端も前記炉壁3の内壁面から後退した位置となっている。   The tip of the second air guide duct 31 is continuous with the throat 4, and the tip of the first air guide duct 28 is in a position retracted from the inner wall surface of the furnace wall 3, and the outer cylinder nozzle 8, The tip of the inner cylinder nozzle 9 is also at a position retracted from the inner wall surface of the furnace wall 3.

次に、前記火炉2内の温度が低いボイラ(図示せず)起動時(冷缶起動時)に於ける前記微粉炭バーナ1での燃焼について説明する。   Next, combustion in the pulverized coal burner 1 when a boiler (not shown) having a low temperature in the furnace 2 is started (when a cold can is started) will be described.

微粉炭ミル(図示せず)により粉砕された微粉炭が1次空気により搬送され、前記微粉炭混合流18として前記微粉炭混合流導入管17より前記燃料導通空間11の基部に供給される。前記微粉炭混合流18は前記燃料導通空間11内を旋回しながら前記火炉2に向って流動する。   The pulverized coal pulverized by a pulverized coal mill (not shown) is conveyed by primary air, and is supplied as the pulverized coal mixed flow 18 from the pulverized coal mixed flow introduction pipe 17 to the base of the fuel conduction space 11. The pulverized coal mixed stream 18 flows toward the furnace 2 while turning in the fuel conduction space 11.

前記微粉炭混合流18は、前記燃料導通空間11内を流動する過程で、前記ディフレクタアングル12により前記微粉炭混合流18中の微粉炭濃度が均一化され、旋回が抑制されて軸心方向への速度が与えられる。この時、前記滞留部形成部材14は他面が前記燃料導通空間11内に露出する様になっており(図2(B)参照)、前記突出部15により旋回する前記微粉炭混合流18が堰き止められることで、該微粉炭混合流18の一部が滞留し、前記突出部15に隣接して微粉炭濃度が上昇した前記滞留部16が形成される。   In the course of flowing in the fuel conduction space 11, the pulverized coal mixed stream 18 is made uniform in the pulverized coal concentration in the pulverized coal mixed stream 18 by the deflector angle 12, and swirling is suppressed to the axial direction. Given speed. At this time, the other portion of the staying portion forming member 14 is exposed in the fuel conduction space 11 (see FIG. 2B), and the pulverized coal mixed flow 18 swirled by the protruding portion 15 is Due to the damming, a part of the pulverized coal mixed flow 18 stays, and the staying part 16 in which the pulverized coal concentration is increased is formed adjacent to the protruding part 15.

前記微粉炭混合流18が前記外筒ノズル8の先端より噴出される際には、前記プラズマトーチ19より噴出されたプラズマが前記滞留部16の先端より噴出された高濃度の前記微粉炭混合流18と交差し、微粉炭が着火される。   When the pulverized coal mixed flow 18 is ejected from the tip of the outer cylinder nozzle 8, the high-concentration pulverized coal mixed flow in which the plasma ejected from the plasma torch 19 is ejected from the tip of the staying portion 16. 18 and pulverized coal is ignited.

又、前記ウインドボックス5には燃焼用空気である前記2次空気22が送給され、該2次空気22は前記アウタ空気ベーン32により旋回力、或は旋回力と風量が調整され、前記第2空気ガイドダクト31を介して前記スロート4に送出される。   Further, the secondary air 22 as combustion air is supplied to the window box 5, and the secondary air 22 is adjusted in turning force or turning force and air volume by the outer air vane 32. 2 is sent to the throat 4 through the air guide duct 31.

尚、前記第2空気ガイドダクト31に取込まれた前記2次空気22の一部は前記インナ空気ベーン29を介して前記第1空気ガイドダクト28の内部に取込まれ、2次補助燃焼用空気として噴出される。又、前記インナ空気ベーン29は空気流れに対して傾斜しており、取込んだ一部の前記2次空気22の旋回力、或は旋回力と風量を調整する様になっている。   A part of the secondary air 22 taken into the second air guide duct 31 is taken into the first air guide duct 28 via the inner air vane 29 and used for secondary auxiliary combustion. Spouted as air. The inner air vane 29 is inclined with respect to the air flow, and adjusts the swirl force or swirl force and air volume of a part of the taken-in secondary air 22.

前記アウタ空気ベーン32による旋回力と風量の調整、前記インナ空気ベーン29による旋回力と風量の調整で、前記2次空気22の供給量及び流れの状態が変化し、微粉炭の燃焼状態が調整される。   By adjusting the turning force and air volume by the outer air vane 32 and by adjusting the turning force and air volume by the inner air vane 29, the supply amount and flow state of the secondary air 22 change, and the combustion state of pulverized coal is adjusted. Is done.

又、前記2次空気22の一部が、前記3次空気導入管23を介して前記3次空気25として取込まれる。該3次空気25は、前記内筒ノズル9の内部を流れ、該内筒ノズル9の先端より前記スロート4に噴出される。   A part of the secondary air 22 is taken in as the tertiary air 25 through the tertiary air introduction pipe 23. The tertiary air 25 flows through the inner cylinder nozzle 9 and is ejected from the tip of the inner cylinder nozzle 9 to the throat 4.

前記3次空気25が噴出されることで、微粉炭の燃焼状態が調整される。従って、前記2次空気22の調整、前記3次空気25の調整等により、微粉炭の燃焼状態が最適となる様に調整される。   The combustion state of pulverized coal is adjusted by ejecting the tertiary air 25. Therefore, the combustion state of the pulverized coal is adjusted to be optimum by adjusting the secondary air 22 and the tertiary air 25.

又、前記火炉2の温度が充分に上昇すると、駆動手段(図示せず)により前記滞留部形成部材14の一面が前記燃料導通空間11内に露出する様、前記滞留部形成部材14が回転される。   Further, when the temperature of the furnace 2 is sufficiently increased, the staying portion forming member 14 is rotated so that one surface of the staying portion forming member 14 is exposed in the fuel conduction space 11 by driving means (not shown). The

該滞留部形成部材14の一面は前記外筒ノズル8の内面と同一の曲率を有し、該外筒ノズル8の内面と前記滞留部形成部材14の一面とが面一となるので(図2(A)参照)、前記滞留部16が形成されることなく、前記微粉炭混合流18により均一の旋回流が形成される。   One surface of the stay portion forming member 14 has the same curvature as the inner surface of the outer cylinder nozzle 8, and the inner surface of the outer tube nozzle 8 and one surface of the stay portion forming member 14 are flush with each other (FIG. 2). (See (A)), the staying portion 16 is not formed, and a uniform swirling flow is formed by the pulverized coal mixed flow 18.

上述の様に、第1の実施例では、前記凹部13に回転可能に設けられた前記滞留部形成部材14の一面に、前記外筒ノズル8の内面と面一且つ同一の曲率を有する曲面を形成し、他面に前記ディフレクタアングル12よりも突出する前記突出部15を形成している。   As described above, in the first embodiment, a curved surface having the same curvature as the inner surface of the outer cylinder nozzle 8 is formed on one surface of the staying portion forming member 14 rotatably provided in the recess 13. The protrusion 15 is formed on the other surface so as to protrude from the deflector angle 12.

前記火炉2の温度が低いボイラの起動時(冷缶起動時)には、前記滞留部形成部材14の他面を前記燃料導通空間11内に露出させることで、前記突出部15により前記微粉炭混合流18を滞留させて前記滞留部16を形成し、プラズマにより形成される高温領域に多量の微粉炭(高濃度微粉炭混合流)を通過させることができるので、微粉炭の着火安定性を向上させることができ、微粉炭の安定した着火性を得ることができる。   When the boiler having a low temperature in the furnace 2 is started (when the cold can is started), the pulverized coal is caused to protrude by the projecting portion 15 by exposing the other surface of the stay portion forming member 14 in the fuel conduction space 11. Since the mixed flow 18 is retained to form the retaining portion 16, and a large amount of pulverized coal (high concentration pulverized coal mixed flow) can be passed through a high temperature region formed by plasma, the ignition stability of the pulverized coal is improved. It can be improved, and stable ignitability of pulverized coal can be obtained.

又、前記火炉2の温度が充分に上昇した状態では、駆動手段(図示せず)により前記回転駆動軸10を介して前記滞留部形成部材14を回転させ、前記滞留部形成部材14の一面を前記燃料導通空間11内に露出させることで、前記微粉炭混合流18を偏流のない均一な旋回流とすることができ、前記火炉2内に形成される火炎の安定性を向上させることができる。   When the temperature of the furnace 2 is sufficiently increased, the staying part forming member 14 is rotated by the driving means (not shown) via the rotary drive shaft 10 so that one surface of the staying part forming member 14 is moved. By exposing in the fuel conduction space 11, the pulverized coal mixed flow 18 can be a uniform swirling flow without uneven flow, and the stability of the flame formed in the furnace 2 can be improved. .

次に図3、図4(A)(B)に於いて、本発明の第2の実施例に於ける微粉炭バーナ1について説明する。尚、図3、図4(A)(B)中、図1、図2(A)(B)中と同等のものには同符号を付し、その説明を省略する。   Next, the pulverized coal burner 1 according to the second embodiment of the present invention will be described with reference to FIGS. 3, 4A and 4B. In FIGS. 3, 4A, and B, the same components as those in FIGS. 1 and 2A and 2B are denoted by the same reference numerals, and the description thereof is omitted.

第2の実施例では、外筒ノズル8内面のディフレクタアングル12のうちの1つと、該ディフレクタアングル12に隣接するディフレクタアングル12との間(図示では最頂部のディフレクタアングル12と、該ディフレクタアングル12に隣接するディフレクタアングル12との間)には、軸方向に所定の長さを有する例えば半円柱状の凹溝33が形成されている。該凹溝33には該凹溝33と同形状の滞留部形成部材34が、軸心方向に挿脱可能に設けられ、該滞留部形成部材34にはスライド軸30が連結される。該スライド軸30は、前記ウインドボックス5を貫通し、前記スライド軸30の軸端には進退駆動手段(図示せず)が設けられている。又、前記凹溝33先端の近傍にプラズマトーチ19の先端が位置する様該プラズマトーチ19が配設されている。   In the second embodiment, between one of the deflector angles 12 on the inner surface of the outer cylinder nozzle 8 and the deflector angle 12 adjacent to the deflector angle 12 (the topmost deflector angle 12 and the deflector angle 12 in the figure). For example, a semi-cylindrical concave groove 33 having a predetermined length in the axial direction is formed between the deflector angle 12 and the adjacent deflector angle 12. A retaining portion forming member 34 having the same shape as the recessed groove 33 is provided in the recessed groove 33 so as to be insertable / removable in the axial direction, and the slide shaft 30 is connected to the retaining portion forming member 34. The slide shaft 30 passes through the window box 5, and advancing / retreating drive means (not shown) is provided at the shaft end of the slide shaft 30. The plasma torch 19 is disposed so that the tip of the plasma torch 19 is positioned in the vicinity of the tip of the concave groove 33.

前記滞留部形成部材34は、図4(A)に示される様に、前記外筒ノズル8の内面と同一の曲率を有する曲面を有しており、前記進退駆動手段により前記凹溝33内に挿入された際には、前記外筒ノズル8の内面と前記滞留部形成部材34とが略面一となり、該滞留部形成部材34が前記外筒ノズル8の内面の一部となる様になっている。   As shown in FIG. 4A, the staying part forming member 34 has a curved surface having the same curvature as the inner surface of the outer cylinder nozzle 8, and is moved into the groove 33 by the advance / retreat driving means. When inserted, the inner surface of the outer cylinder nozzle 8 and the staying portion forming member 34 are substantially flush with each other, and the staying portion forming member 34 becomes a part of the inner surface of the outer tube nozzle 8. ing.

又、図4(B)に示される様に、該滞留部形成部材34が前記進退駆動手段により前記スライド軸30を介して前記凹溝33内から抜脱された際には、該凹溝33が燃料導通空間11内に露出する。露出した前記凹溝33内に微粉炭混合流18が流入することで、該微粉炭混合流18の一部が前記凹溝33内に滞留し、前記凹溝33内に微粉炭濃度が上昇した滞留部16が形成される様になっている。   Further, as shown in FIG. 4B, when the stay portion forming member 34 is pulled out from the groove 33 through the slide shaft 30 by the advance / retreat driving means, the groove 33 Are exposed in the fuel conduction space 11. As the pulverized coal mixed flow 18 flows into the exposed concave groove 33, a part of the pulverized coal mixed flow 18 stays in the concave groove 33, and the pulverized coal concentration increases in the concave groove 33. A staying portion 16 is formed.

火炉2内の温度が低いボイラ起動時に於いて、前記微粉炭バーナ1で微粉炭を燃焼させる際には、進退駆動手段(図示せず)により前記滞留部形成部材34を前記凹溝33から抜脱し、前記凹溝33内に前記滞留部16を形成する。   When pulverized coal is burned by the pulverized coal burner 1 when the boiler in the furnace 2 having a low temperature is started, the stay portion forming member 34 is removed from the concave groove 33 by advancing / retreating drive means (not shown). The retention portion 16 is formed in the concave groove 33.

該滞留部16の先端より噴出される高濃度の前記微粉炭混合流18と、前記プラズマトーチ19より噴出されるプラズマとを交差させることで、プラズマにより形成される高温領域を多量の微粉炭(高濃度微粉炭混合流)が通過することとなり、微粉炭の着火性が向上し、前記火炉2内の温度が低い場合であっても、微粉炭の安定した着火性を得ることができる。   By intersecting the high-concentration pulverized coal mixed flow 18 ejected from the tip of the staying portion 16 and the plasma ejected from the plasma torch 19, a high-temperature region formed by the plasma can be treated with a large amount of pulverized coal ( High-concentration pulverized coal mixed flow) passes, and the ignitability of the pulverized coal is improved. Even when the temperature in the furnace 2 is low, stable ignitability of the pulverized coal can be obtained.

又、前記火炉2内の温度が充分に上昇した際には、前記進退駆動手段により前記滞留部形成部材34を前記凹溝33内に挿入する。前記滞留部形成部材34が挿入されることで、該滞留部形成部材34が前記外筒ノズル8の内面と略面一となるので、前記微粉炭混合流18を偏流のない均一な旋回流とすることができ、前記火炉2内に形成される火炎の安定性を向上させることができる。   Further, when the temperature in the furnace 2 rises sufficiently, the stay portion forming member 34 is inserted into the concave groove 33 by the advance / retreat driving means. By inserting the stay portion forming member 34, the stay portion forming member 34 becomes substantially flush with the inner surface of the outer cylinder nozzle 8, so that the pulverized coal mixed flow 18 is made into a uniform swirling flow without uneven flow. The stability of the flame formed in the furnace 2 can be improved.

尚、第2の実施例では、前記滞留部形成部材34を前記凹溝33と同形状としているが、挿入時に該凹溝33を閉塞し、且つ前記外筒ノズル8の内面と略面一となれば他の形状であってもよい。   In the second embodiment, the retention portion forming member 34 has the same shape as the concave groove 33, but the concave groove 33 is closed when inserted and is substantially flush with the inner surface of the outer cylinder nozzle 8. Any other shape may be used.

次に図5(A)(B)に於いて、本発明の第3の実施例に於ける微粉炭バーナ1について説明する。尚、図5(A)(B)中、図2(A)(B)中と同等のものには同符号を付し、その説明を省略する。   Next, a pulverized coal burner 1 according to a third embodiment of the present invention will be described with reference to FIGS. In FIGS. 5A and 5B, the same components as those in FIGS. 2A and 2B are denoted by the same reference numerals, and the description thereof is omitted.

第3の実施例では、外筒ノズル8内面のディフレクタアングル12,12間に、軸方向に所定の長さを有する例えば略矩形の凹部35が形成されている。該凹部35には、例えば略矩形の滞留部形成部材36が嵌合可能となっている。   In the third embodiment, a substantially rectangular concave portion 35 having a predetermined length in the axial direction is formed between the deflector angles 12 and 12 on the inner surface of the outer cylinder nozzle 8. For example, a substantially rectangular stay portion forming member 36 can be fitted into the recess portion 35.

該滞留部形成部材36は、前記外筒ノズル8の内面と平行な回転軸37を中心に回転可能となっており、駆動手段(図示せず)により前記滞留部形成部材36を回転させることで、該滞留部形成部材36が内筒ノズル9に向って燃料導通空間11内に突出する様になっている。   The stay portion forming member 36 is rotatable around a rotation shaft 37 parallel to the inner surface of the outer cylinder nozzle 8, and the stay portion forming member 36 is rotated by driving means (not shown). The stay portion forming member 36 projects into the fuel conduction space 11 toward the inner cylinder nozzle 9.

又、前記滞留部形成部材36は、図5(A)に示される様に、前記外筒ノズル8の内面と同一の曲率を有する曲面を有しており、前記駆動手段により前記回転軸37を介して回転され、前記凹部35に嵌合された際には、前記外筒ノズル8の内面と前記滞留部形成部材36とが略面一となり、該滞留部形成部材36が前記外筒ノズル8の内面の一部となる様になっている。   Further, as shown in FIG. 5A, the staying portion forming member 36 has a curved surface having the same curvature as the inner surface of the outer cylinder nozzle 8, and the rotating shaft 37 is moved by the driving means. The inner surface of the outer cylinder nozzle 8 and the retention portion forming member 36 are substantially flush with each other, and the retention portion forming member 36 is in contact with the outer cylinder nozzle 8. It becomes to become a part of the inside.

又、図5(B)に示される様に、該滞留部形成部材36が回転された際には、前記滞留部形成部材36が前記燃料導通空間11内に突出し、微粉炭混合流18が前記滞留部形成部材36に堰き止められることで、前記微粉炭混合流18の一部が滞留し、前記滞留部形成部材36に隣接して微粉炭濃度が上昇した滞留部16が形成される様になっている。   Further, as shown in FIG. 5B, when the staying portion forming member 36 is rotated, the staying portion forming member 36 protrudes into the fuel conduction space 11, and the pulverized coal mixed flow 18 is As part of the pulverized coal mixed stream 18 is retained by the stagnation of the stagnation part forming member 36, the stagnation part 16 having an increased pulverized coal concentration adjacent to the stagnation part forming member 36 is formed. It has become.

火炉2内の温度が低いボイラ起動時(冷缶起動時)に於いて、前記微粉炭バーナ1で微粉炭を燃焼させる際には、駆動手段(図示せず)により前記回転軸37を介して前記滞留部形成部材36を回転させ、前記燃料導通空間11内に突出させて前記滞留部形成部材36に隣接する前記滞留部16を形成する。   When pulverized coal is burned by the pulverized coal burner 1 at the time of boiler startup (at the time of cold can startup) where the temperature in the furnace 2 is low, it is driven via the rotary shaft 37 by driving means (not shown). The stay part forming member 36 is rotated and protruded into the fuel conduction space 11 to form the stay part 16 adjacent to the stay part forming member 36.

該滞留部16の先端より噴出される高濃度の前記微粉炭混合流18と、前記プラズマトーチ19より噴出されるプラズマとを交差せることで、プラズマにより形成される高温領域を多量の微粉炭が通過することとなり、微粉炭の着火性が向上し、前記火炉2内の温度が低い場合であっても、微粉炭の安定した着火性を得ることができる。   By intersecting the high-concentration pulverized coal mixed flow 18 ejected from the tip of the staying portion 16 with the plasma ejected from the plasma torch 19, a large amount of pulverized coal is produced in a high temperature region formed by the plasma. Even if the ignitability of the pulverized coal is improved and the temperature in the furnace 2 is low, the stable ignitability of the pulverized coal can be obtained.

又、前記火炉2内の温度が充分に上昇した際には、前記駆動手段により前記回転軸37を介して前記滞留部形成部材36を回転させ、前記凹部35に嵌合させる。前記滞留部形成部材36が嵌合されることで、該滞留部形成部材36が前記外筒ノズル8の内面と略面一となるので、前記微粉炭混合流18を偏流のない均一な旋回流とすることができ、前記火炉2内に形成される火炎の安定性を向上させることができる。   Further, when the temperature in the furnace 2 rises sufficiently, the staying portion forming member 36 is rotated by the driving means via the rotating shaft 37 and is fitted in the recess 35. By fitting the staying part forming member 36, the staying part forming member 36 is substantially flush with the inner surface of the outer cylinder nozzle 8, so that the pulverized coal mixed flow 18 is uniformly swirled without drift. And the stability of the flame formed in the furnace 2 can be improved.

尚、第3の実施例では、前記滞留部形成部材36を略矩形としているが、前記凹部35との嵌合時には前記外筒ノズル8の内面と略面一となり、回転時には前記微粉炭混合流18を堰き止めて前記滞留部16を形成可能であれば他の形状であってもよい。   In the third embodiment, the staying portion forming member 36 is substantially rectangular. However, when the retaining portion forming member 36 is fitted to the concave portion 35, it is substantially flush with the inner surface of the outer cylinder nozzle 8, and at the time of rotation, the pulverized coal mixed flow is used. Other shapes may be used as long as the retaining portion 16 can be formed by damming 18.

又、第1の実施例〜第3の実施例に於いては、前記火炉2内の温度が低いボイラ起動時(冷缶起動時)であっても、安定して微粉炭を着火させることができるので、ボイラ起動時に前記火炉2の温度を上昇させる為の油バーナ等が不要となり、製作コスト、燃料コストの低減を図ることができる。   Further, in the first to third embodiments, the pulverized coal can be stably ignited even when the boiler 2 has a low temperature in the furnace 2 (when the cold can is started). Therefore, an oil burner or the like for raising the temperature of the furnace 2 at the time of starting the boiler is not necessary, and the production cost and fuel cost can be reduced.

又、第1の実施例〜第3の実施例に於いては、微粉炭の着火手段として前記プラズマトーチ19を用いる場合について説明したが、着火手段としてプラズマ以外の手段を用いる場合、或は褐炭等の低品位炭を燃焼させる場合に於いても、前記滞留部16を形成し、微粉炭濃度の上昇した領域を形成することで、着火安定性や前記火炉2内に形成される火炎の安定性の向上を図ることができる。   Further, in the first to third embodiments, the case where the plasma torch 19 is used as the igniting means of pulverized coal has been described. However, when means other than plasma are used as the igniting means, or brown coal Even in the case of burning low-grade coal such as the above, by forming the staying portion 16 and forming a region in which the pulverized coal concentration is increased, ignition stability and stability of the flame formed in the furnace 2 are improved. It is possible to improve the performance.

尚、第1の実施例〜第3の実施例に於いては、前記プラズマトーチ19を前記外筒ノズル8の周囲に前記ウインドボックス5を貫通させて設けているが、前記プラズマトーチ19はプラズマにより形成される高温領域を前記滞留部16にて濃度が上昇した前記微粉炭混合流18が通過する様に設ければよく、例えば前記プラズマトーチ19を傾斜させた状態で内筒ノズル9内に挿通しても良い。   In the first to third embodiments, the plasma torch 19 is provided around the outer cylinder nozzle 8 through the window box 5, but the plasma torch 19 is a plasma. The pulverized coal mixed flow 18 whose concentration has been increased in the staying portion 16 may be provided so as to pass through the inner cylinder nozzle 9 with the plasma torch 19 inclined, for example. It may be inserted.

1 微粉炭バーナ
2 火炉
6 ノズル本体
7 2次空気調整装置
8 外筒ノズル
9 内筒ノズル
11 燃料導通空間
12 ディフレクタアングル
13 凹溝
14 滞留部形成部材
15 突出部
16 滞留部
18 微粉炭混合流
19 プラズマトーチ
22 2次空気
25 3次空気
33 凹溝
34 滞留部形成部材
35 凹部
36 滞留部形成部材
DESCRIPTION OF SYMBOLS 1 Pulverized coal burner 2 Furnace 6 Nozzle body 7 Secondary air conditioner 8 Outer cylinder nozzle 9 Inner cylinder nozzle 11 Fuel conduction space 12 Deflector angle 13 Concave groove 14 Retention part forming member 15 Protrusion part 16 Retention part 18 Pulverized coal mixed flow 19 Plasma torch 22 Secondary air 25 Tertiary air 33 Concave groove 34 Retention part forming member 35 Recess 36 Retaining part forming member

Claims (4)

火炉に向って開口し、微粉炭と搬送用空気とが混合された微粉炭混合流を旋回させながら噴出する外筒ノズルと、該外筒ノズルの内部に該外筒ノズルと同心に設けられ補助燃焼用空気を噴出する内筒ノズルとを有するノズル本体と、該ノズル本体の周囲から燃焼用空気を噴出する2次空気調整装置と、プラズマを噴出するプラズマトーチとを具備し、前記外筒ノズルには内面の一部を形成する滞留部形成部材が変位可能に設けられ、該滞留部形成部材の変位により微粉炭濃度を上昇させる滞留部を形成し、該滞留部より噴出される前記微粉炭混合流にプラズマを噴出する様前記プラズマトーチが配設されたことを特徴とする微粉炭バーナ。   An outer cylinder nozzle that opens toward the furnace and spouts while swirling a pulverized coal mixed flow in which pulverized coal and transport air are mixed, and an auxiliary cylinder nozzle that is provided concentrically with the outer cylinder nozzle inside the outer cylinder nozzle The outer cylinder nozzle, comprising: a nozzle body having an inner cylinder nozzle for ejecting combustion air; a secondary air adjusting device for ejecting combustion air from the periphery of the nozzle body; and a plasma torch for ejecting plasma. A stagnation part forming member that forms a part of the inner surface is provided to be displaceable, a stagnation part that increases the pulverized coal concentration is formed by the displacement of the stagnation part forming member, and the pulverized coal ejected from the stagnation part A pulverized coal burner, characterized in that the plasma torch is disposed so as to eject plasma into a mixed flow. 前記外筒ノズルの内面に設けられた軸心方向に沿って延在する複数のディフレクタアングルと、前記外筒ノズルの内面に形成され前記滞留部形成部材が回転可能な半円柱状の凹溝とを更に具備し、前記滞留部形成部材は一面に前記外筒ノズルの内面と同一の曲率の曲面が形成され、他面に前記ディフレクタアングルよりも軸心に向って突出する突出部が形成された請求項1の微粉炭バーナ。   A plurality of deflector angles provided on the inner surface of the outer cylinder nozzle and extending along the axial direction; a semi-cylindrical groove formed on the inner surface of the outer cylinder nozzle and capable of rotating the stay portion forming member; Further, the stay portion forming member has a curved surface having the same curvature as the inner surface of the outer cylinder nozzle on one surface, and a projecting portion projecting toward the axial center from the deflector angle on the other surface. The pulverized coal burner according to claim 1. 前記外筒ノズルの内面に凹溝が更に形成され、該凹溝に前記滞留部形成部材が挿脱可能であり、前記滞留部形成部材の接触する部分と前記凹溝の接触する部分が同一である請求項1の微粉炭バーナ。   A concave groove is further formed on the inner surface of the outer cylinder nozzle, and the retention portion forming member can be inserted into and removed from the concave groove, and the portion where the retention portion forming member contacts and the portion where the concave groove contacts are the same. The pulverized coal burner according to claim 1. 前記外筒ノズルの内面に形成され前記滞留部形成部材が嵌合可能な凹部を更に具備し、前記滞留部形成部材は一面に前記外筒ノズルの内面と同一の曲率の曲面が形成されると共に回転可能であり、前記滞留部形成部材は回転することで前記内筒ノズルに向って突出する請求項1の微粉炭バーナ。   The concave portion is further formed on the inner surface of the outer cylinder nozzle and into which the retention portion forming member can be fitted. The retention portion forming member has a curved surface having the same curvature as the inner surface of the outer cylinder nozzle. The pulverized coal burner according to claim 1, wherein the pulverized coal burner is rotatable, and the stay forming member protrudes toward the inner cylinder nozzle by rotating.
JP2013024469A 2013-02-12 2013-02-12 Pulverized coal burner Active JP6070240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013024469A JP6070240B2 (en) 2013-02-12 2013-02-12 Pulverized coal burner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013024469A JP6070240B2 (en) 2013-02-12 2013-02-12 Pulverized coal burner

Publications (2)

Publication Number Publication Date
JP2014153015A true JP2014153015A (en) 2014-08-25
JP6070240B2 JP6070240B2 (en) 2017-02-01

Family

ID=51575052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013024469A Active JP6070240B2 (en) 2013-02-12 2013-02-12 Pulverized coal burner

Country Status (1)

Country Link
JP (1) JP6070240B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110360548A (en) * 2019-08-01 2019-10-22 沈阳航空航天大学 Low-NOx combustor based on plasma excitation classification overheavy firing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03241208A (en) * 1990-02-15 1991-10-28 Central Res Inst Of Electric Power Ind Pulverized coal burner
JPH06249410A (en) * 1993-02-26 1994-09-06 Ishikawajima Harima Heavy Ind Co Ltd Pulverized coal burner
JPH1038216A (en) * 1996-07-22 1998-02-13 Ishikawajima Harima Heavy Ind Co Ltd Pulverized coal burner
JP2009192204A (en) * 2008-02-18 2009-08-27 Mitsubishi Heavy Ind Ltd Burner structure
JP2012112549A (en) * 2010-11-22 2012-06-14 Ihi Corp Pulverized coal burner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03241208A (en) * 1990-02-15 1991-10-28 Central Res Inst Of Electric Power Ind Pulverized coal burner
JPH06249410A (en) * 1993-02-26 1994-09-06 Ishikawajima Harima Heavy Ind Co Ltd Pulverized coal burner
JPH1038216A (en) * 1996-07-22 1998-02-13 Ishikawajima Harima Heavy Ind Co Ltd Pulverized coal burner
JP2009192204A (en) * 2008-02-18 2009-08-27 Mitsubishi Heavy Ind Ltd Burner structure
JP2012112549A (en) * 2010-11-22 2012-06-14 Ihi Corp Pulverized coal burner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110360548A (en) * 2019-08-01 2019-10-22 沈阳航空航天大学 Low-NOx combustor based on plasma excitation classification overheavy firing

Also Published As

Publication number Publication date
JP6070240B2 (en) 2017-02-01

Similar Documents

Publication Publication Date Title
JP6011073B2 (en) Burner
JP5678603B2 (en) Pulverized coal burner
JP6160105B2 (en) Pulverized coal burner
KR101254928B1 (en) Low nitrogen oxide burner
JP2009216281A (en) Burner for pulverized fuel
JP5786516B2 (en) Burner
JP2008202836A (en) Pulverized coal burner
NO130202B (en)
JP6056409B2 (en) Biomass burner
JP6070240B2 (en) Pulverized coal burner
JP5708119B2 (en) Pulverized coal burner
JP5245558B2 (en) Burner for fine fuel
ES2861319T3 (en) Low NOx combustion head burner
JP2012112582A (en) Pulverized fuel burning boiler device
JP6056413B2 (en) Burner
KR20120082647A (en) Low nitrogen oxide burner
JP5471713B2 (en) Pulverized coal burner
JP2008196741A (en) Pulverized coal burner
JP6314637B2 (en) Burner
JP6102544B2 (en) Coal burning burner
RU2246071C2 (en) Gas burner
JP6167546B2 (en) Pulverized coal burner
JP2012107789A (en) Low volatile fuel burner device
JP2023154262A (en) Burner
JP5678598B2 (en) Burner and oil spray tip manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161219

R151 Written notification of patent or utility model registration

Ref document number: 6070240

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250