[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2014034371A - 車両用空調装置 - Google Patents

車両用空調装置 Download PDF

Info

Publication number
JP2014034371A
JP2014034371A JP2012178342A JP2012178342A JP2014034371A JP 2014034371 A JP2014034371 A JP 2014034371A JP 2012178342 A JP2012178342 A JP 2012178342A JP 2012178342 A JP2012178342 A JP 2012178342A JP 2014034371 A JP2014034371 A JP 2014034371A
Authority
JP
Japan
Prior art keywords
heat exchanger
temperature
average value
defrosting
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012178342A
Other languages
English (en)
Inventor
Isao Tsunoda
功 角田
Kazuma Ichikawa
和馬 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2012178342A priority Critical patent/JP2014034371A/ja
Priority to EP13177642.9A priority patent/EP2695758B1/en
Priority to CN201310317806.9A priority patent/CN103568782B/zh
Priority to US13/950,705 priority patent/US9707930B2/en
Publication of JP2014034371A publication Critical patent/JP2014034371A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • B60S1/023Cleaning windscreens, windows or optical devices including defroster or demisting means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/0073Control systems or circuits characterised by particular algorithms or computational models, e.g. fuzzy logic or dynamic models
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3205Control means therefor
    • B60H1/321Control means therefor for preventing the freezing of a heat exchanger
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00961Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising means for defrosting outside heat exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3255Cooling devices information from a variable is obtained related to temperature
    • B60H2001/3261Cooling devices information from a variable is obtained related to temperature of the air at an evaporating unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/002Defroster control
    • F25D21/006Defroster control with electronic control circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

【課題】着霜有無を正確に判定できる車両用空調装置を提供する。
【解決手段】熱交換媒体を圧縮するコンプレッサと、コンプレッサから吐出された熱交換媒体と車室内に導入される空調空気との熱交換を行う室内熱交換器と、室内熱交換器から吐出された熱交換媒体と室外の空気との熱交換を行う室外熱交換器と、を備えた車両用空調装置であって、外気温度Tamと室外熱交換器の出口温度Toutとの温度差Tnを算出するとともに(S10)、温度差Tnの平均値Ax,Ayを算出し(S14)、平均値の変化量Ay−Axが第1所定値dA1以上の場合に(S18)、室外熱交換器に付着した霜を溶かす除霜運転を実施する。
【選択図】図5

Description

本発明は、車両用空調装置に関するものである。
電気自動車では、車室内の暖房にエンジンの冷却水を利用することができないため、ヒートポンプサイクルを利用した車両用空調装置が採用されている。
この車両用空調装置では、暖房運転中に熱交換媒体が室外熱交換器で吸熱するので、外気温度が非常に低い場合には、室外熱交換器の表面に着霜が生じる場合がある。着霜が生じると、熱伝達率が低下して吸熱不足になるので、車室内の暖房が不十分になるという問題がある。
そこで、外気温度センサで検出した外気温度と、室外器温度センサで検出した室外熱交換器の温度との温度差に基づいて、着霜状態を判定し、除霜制御を開始するヒートポンプ式空調装置が知られている(例えば、特許文献1参照)。
特開2000−283611号公報
一般に、着霜により室外熱交換器が吸熱不足になると、前記温度差が大きくなる。
しかしながら、外気温度や室外熱交換器の温度が急激に(一時的または局所的に)変化した場合でも前記温度差が大きくなるので、従来の空調装置では着霜有無が正確に判定できないという問題がある。
なお、室外熱交換器の性能低下による前記温度差の増加は、着霜だけでなく外気温度の低下や車速の低下(風通りの悪化)でも発生する。そのため、着霜有無を正確に判定するには外気温度や車速なども考慮する必要があり、前記温度差だけでは着霜有無を正確に判定できないという問題がある。着霜有無を正確に判定するには、除霜制御を開始する前記温度差の閾値を外気温度や車速ごとに持ち換える必要があり、車両ごとに膨大なテストデータが必要になる。
そこで本発明は、着霜有無を正確に判定できる車両用空調装置の提供を課題とする。
(1)上記課題を解決するために、本発明の車両用空調装置は、熱交換媒体を圧縮するコンプレッサ(例えば、実施形態でのコンプレッサ21)と、前記コンプレッサから吐出された前記熱交換媒体と車室内に導入される空調空気との熱交換を行う室内熱交換器(例えば、実施形態での室内コンデンサ16)と、前記室内熱交換器から吐出された前記熱交換媒体と室外の空気との熱交換を行う室外熱交換器(例えば、実施形態での室外熱交換器24)と、を備えた車両用空調装置(例えば、実施形態での車両用空調装置10)であって、室外の空気の温度(例えば、実施形態での外気温度Tam)と前記室外熱交換器の温度(例えば、実施形態での出口温度Tout)との温度差(例えば、実施形態での温度差Tn)の平均値(例えば、実施形態での平均値Ax,Ay)を算出し、前記平均値の変化量(例えば、実施形態での変化量Ay−Ax)が第1所定値(例えば、実施形態での第1所定値dA1)以上の場合に、前記室外熱交換器に付着した霜を溶かす除霜運転を実施することを特徴とする。
この構成によれば、前記温度差の平均値を算出するので、外気温度や室外熱交換器の温度が急激に変化した場合に着霜したと誤判断するのを防止することができる。なお、室外熱交換器の性能低下による前記温度差の増加は、着霜だけでなく外気温度の低下や車速の低下でも発生する。ただし、外気温度の低下や車速の低下の場合には前記温度差の増加率が限定的であるのに対して、着霜の場合には(着霜が進行するので)前記温度差の増加率が大きくなる。そこで、前記温度差の平均値の変化量が第1所定値以上の場合に、室外熱交換器に着霜したと判断することで、着霜有無を正確に判断することができる。
(2)(1)に記載の車両用空調装置であって、前記車両で消費されるバッテリー残量が所定残量未満と判断された場合には、前記平均値の変化量が前記第1所定値よりも大きい第2所定値(例えば、実施形態での第2所定値dA2)以上の場合に、前記除霜運転を実施してもよい。
この構成によれば、除霜頻度が低くなるので、電力消費量を抑制してバッテリー残量を節約することができる。また、除霜頻度が低くなると車室内に冷風を供給する機会が少なくなるので、乗員の快適性を確保することができる。
なお、バッテリー残量が所定残量未満の場合には、バッテリー充電のため短時間後に車両の運転を停止することが予想される。除霜頻度を低くすると着霜状態のまま車両用空調装置を使用することになるが、短時間であればその悪影響を最小限に留めることができる。しかも、車両の運転停止後には車室内に乗員がいなくなるので、長時間の除霜運転により念入りに除霜を行っても、乗員の快適性を阻害することがない。
本発明によれば、前記温度差の平均値を算出するので、外気温度や室外熱交換器の温度が急激に変化した場合に着霜したと誤判断するのを防止することができる。また、前記温度差の平均値の変化量が第1所定値以上の場合に、室外熱交換器に着霜したと判断することで、着霜有無を正確に判断することができる。
実施形態に係る車両用空調装置の構成図である。 (A)は車両用空調装置の暖房モード運転の状態を示す図であり、(B)は冷房モード運転の状態を示す図である。 車両用空調装置の除湿暖房モード運転の状態を示す図である。 車両用空調装置の除霜運転の状態を示す図であり、(A)はホットガス運転の状態であり、(B)は除霜用冷房運転の状態である。 第1実施形態における車両用空調装置の除霜運転方法の第1フローチャートである。 第1実施形態における車両用空調装置の除霜運転方法の第2フローチャートである。 第1実施形態における除霜開始判断の説明図である。 除霜運転のタイミングチャートである。 第2実施形態における車両用空調装置の除霜運転方法の第1フローチャートである。 第2実施形態における除霜開始判断の説明図である。 第3実施形態における車両用空調装置の除霜運転方法の第1フローチャートである。 第3実施形態における除霜開始判断の説明図である。
以下、本発明の一実施形態に係る車両用空調装置について添付図面を参照しながら説明する。
(車両用空調装置)
本実施形態による車両用空調装置10は、例えば車両駆動源としての内燃機関を具備していない電動車両などに搭載され、ヒートポンプサイクルにより除湿暖房モード運転を実行可能な空調装置であって、図1に示すように、通風ダクト11の上流側に設けられた空気導入口11aから下流側に設けられた空気吹出口11bに向かい、順次、導入口開閉ドア12と、送風機13と、エバポレータ14と、ダンパー15と、室内コンデンサ16と、を備えて構成されている。
さらに、車両用空調装置10は、エバポレータ14および室内コンデンサ16を備えるヒートポンプサイクル17と、制御装置18と、エバポレータセンサ19と、を備えて構成されている。
通風ダクト11の空気導入口11aは、内気(車室内空気)および外気(車室外空気)を車両用空調装置10の内部に導入可能に設けられている。
通風ダクト11の空気吹出口11bは、車両用空調装置10の内部から車室内へ空調空気を送風可能に設けられている。
導入口開閉ドア12は、例えば制御装置18の制御により開閉制御され、通風ダクト11内部への内気(車室内空気)および外気(車室外空気)の導入量を変更可能に設けられている。
送風機13は、例えば制御装置18の制御により印加される駆動電圧に応じて駆動し、空気導入口11aから導入された空気(内気および外気)を通風ダクト11の上流側から下流側の空気吹出口11bに向かい、つまりエバポレータ14および室内コンデンサ16に向けて送風する。
エバポレータ(室内熱交換器)14は、内部に流入した低圧の熱交換媒体と車室内雰囲気との熱交換を行ない、例えば、熱交換媒体が蒸発する際の吸熱によって、通風ダクト11内のエバポレータ14を通過する空気を冷却する。
ダンパー15は、例えば制御装置18の制御により駆動するモータ(図示略)によって回動可能とされ、送風機13の送風によってエバポレータ14を通過した空気の風量のうち、室内コンデンサ16に導入される風量と、室内コンデンサ16を迂回して車室内へ排出される風量との風量割合を、開度(例えば、室内コンデンサ16に向かう通風経路に対する開度)によって調整する。
室内コンデンサ16は、内部に流入した高温かつ高圧の熱交換媒体によって放熱可能であって、例えば、通風ダクト11内の室内コンデンサ16に導入される空気を加熱する。
ヒートポンプサイクル17は、例えば、コンプレッサ21と、室内コンデンサ16と、暖房用膨張弁22と、冷房用電磁弁23と、室外熱交換器24と、三方弁25と、気液分離器26と、冷房用膨張弁27と、除湿用電磁弁28と、を備えて構成されている。
コンプレッサ21は、例えば制御装置18の制御により駆動するモータ(図示略)の駆動力によって駆動し、気液分離器26から気相の熱交換媒体を吸入し、この熱交換媒体を圧縮して、高温かつ高圧の熱交換媒体を室内コンデンサ16に吐出する。
室内コンデンサ16は、第1流路31によって室外熱交換器24に接続されており、この第1流路31の室内コンデンサ16と室外熱交換器24との間には、暖房用膨張弁22と、冷房用電磁弁23とが並列に配置されている。
暖房用膨張弁22は、いわゆる絞り弁であって、室内コンデンサ16から排出された熱交換媒体を膨張させ、低温かつ低圧で気液2相の噴霧状の熱交換媒体を室外熱交換器24に吐出する。
冷房用電磁弁23は、室内コンデンサ16と室外熱交換器24との間において室内コンデンサ16側の第1分岐管32aおよび室外熱交換器24側の第2分岐管32bを介して暖房用膨張弁22を迂回する迂回流路32に設けられ、例えば制御装置18により開閉制御される。
例えば、冷房用電磁弁23は、暖房モード運転または除湿暖房モード運転の実行時には閉状態とされ、冷房モード運転の実行時には開状態とされる。
これにより、例えば、暖房モード運転または除湿暖房モード運転の実行時には、室内コンデンサ16から排出された熱交換媒体は暖房用膨張弁22を通過して低温かつ低圧の状態で室外熱交換器24に流入する。
一方、冷房モード運転の実行時には、室内コンデンサ16から排出された熱交換媒体は冷房用電磁弁23を通過して高温の状態で室外熱交換器24に流入する。
室外熱交換器24は、例えば室外側のコンデンサであって、内部に流入した熱交換媒体と車室外雰囲気との熱交換を行なう。また室外熱交換器24の温度を計測する温度センサが設けられている。具体的には、室外熱交換器24の出口から流出した熱交換媒体の温度を計測する出口温度センサ24Tが、室外熱交換器24の下流側に設けられている。なお室外熱交換器24の温度を計測する温度センサとして、室外熱交換器24の表面温度を計測する温度センサを設けてもよい。
例えば、室外熱交換器24は、暖房モード運転または除湿暖房モード運転の実行時には、内部に流入する低温かつ低圧の熱交換媒体によって車室外雰囲気から吸熱可能であって、例えば、車室外雰囲気からの吸熱によって熱交換媒体を昇温する。
一方、冷房モード運転の実行時には、内部に流入する高温の熱交換媒体によって車室外雰囲気へと放熱可能であって、例えば車室外雰囲気への放熱およびコンデンサーファン24aの送風によって熱交換媒体を冷却する。
三方弁25は、室外熱交換器24から流出した熱交換媒体を気液分離器26または冷房用膨張弁27に切り換えて吐出するように、室外熱交換器24と、気液分離器26側の合流管33と、冷房用膨張弁27側の第3分岐管34とに接続され、例えば制御装置18により切換制御される。
例えば、三方弁25は、暖房モード運転または除湿暖房モード運転の実行時には、室外熱交換器24から流出した熱交換媒体を気液分離器26側の合流管33の流入口(図示略)に吐出する。
一方、冷房モード運転の実行時には、室外熱交換器24から流出した熱交換媒体を冷房用膨張弁27側の第3分岐管34に吐出する。
気液分離器26は、合流管33の流出口(図示略)とコンプレッサ21の吸入口(図示略)との間に接続され、合流管33の流出口から流出した熱交換媒体の気液を分離し、気相の熱交換媒体をコンプレッサ21に吸入させる。
冷房用膨張弁27は、いわゆる絞り弁であって、第3分岐管34とエバポレータ14の流入口(図示略)との間に接続され、例えば制御装置18によって制御される弁開度に応じて、第3分岐管34から流出した熱交換媒体を膨張させ、低温かつ低圧で気液2相の噴霧状の熱交換媒体をエバポレータ14に吐出する。
エバポレータ14は、冷房用膨張弁27と合流管33との間に接続され、第3分岐管34に接続された流入口(図示略)と、合流管33の流入口(図示略)に接続された流出口(図示略)とを備えている。
除湿用電磁弁28は、第1流路31の室内コンデンサ16と第1分岐管32aとの間に設けられた第4分岐管35によって第1流路31から分岐して第3分岐管34に接続される第2流路36に設けられ、例えば制御装置18により開閉制御される。
例えば、除湿用電磁弁28は、暖房モード運転または冷房モード運転の実行時には閉状態とされ、除湿暖房モード運転の実行時には開状態とされる。
これにより、例えば、暖房モード運転または冷房モード運転の実行時には、室内コンデンサ16から排出された熱交換媒体は、第4分岐管35を通過し第1流路31のみを流通して室外熱交換器24に向かう。
一方、除湿暖房モード運転の実行時には、室内コンデンサ16から排出された熱交換媒体は第4分岐管35において第1流路31と第2流路36とに分岐し、一方は第1流路31を流通して室外熱交換器24に向かい、他方は第2流路36を流通して除湿用電磁弁28と第3分岐管34とを通過して冷房用膨張弁27に向かう。
制御装置18は、例えば、適宜のスイッチ(図示略)などを介して操作者により入力された指令信号と、エバポレータセンサ19から出力された検出結果の信号となどに基づき、車両用空調装置10の運転を制御し、暖房モード運転と冷房モード運転と除湿暖房モード運転との切り換えを制御する。
エバポレータセンサ19は、例えば、通風ダクト11内のエバポレータ14の下流側の位置に配置され、エバポレータ14を通過した空気の温度を検出し、検出結果の信号を制御装置18に出力する。
本実施の形態による車両用空調装置10は上記構成を備えており、次に、車両用空調装置10の動作について説明する。
(暖房モード運転)
先ず、車両用空調装置10の暖房モード運転時においては、例えば図2(A)に示すように、ダンパー15はエバポレータ14を通過した空気を室内コンデンサ16に導入するように開状態とされ、冷房用電磁弁23および除湿用電磁弁28は閉状態とされ、三方弁25は室外熱交換器24を合流管33の流入口に接続する。
これにより、コンプレッサ21から吐出された高温かつ高圧の熱交換媒体は、室内コンデンサ16における放熱によって通風ダクト11内の空気を加熱する。
そして、熱交換媒体は、暖房用膨張弁22によって膨張させられて気液2相(液相リッチ)の噴霧状とされ、次に、室外熱交換器24において車室外雰囲気から吸熱して気液2相(気相リッチ)の噴霧状で三方弁25と合流管33とを通過して気液分離器26に流入する。
そして、熱交換媒体は、気液分離器26において気液分離され、気相の熱交換媒体はコンプレッサ21に吸入される。
(冷房モード運転)
また、車両用空調装置10の冷房モード運転時においては、例えば図2(B)に示すように、ダンパー15はエバポレータ14を通過した空気が室内コンデンサ16を迂回するように閉状態とされ、冷房用電磁弁23は開状態かつ除湿用電磁弁28は閉状態とされ、三方弁25は室外熱交換器24を第3分岐管34に接続する。
これにより、コンプレッサ21から吐出された高温かつ高圧の熱交換媒体は、室内コンデンサ16と冷房用電磁弁23とを通過して、室外熱交換器24において車室外雰囲気へと放熱して、三方弁25と第3分岐管34とを通過して冷房用膨張弁27に流入する。
そして、熱交換媒体は、冷房用膨張弁27によって膨張させられて気液2相(液相リッチ)の噴霧状とされ、次に、エバポレータ14における吸熱によって通風ダクト11内の空気を冷却する。
そして、気液2相(気相リッチ)の熱交換媒体は、合流管33を通過して気液分離器26に流入し、気液分離器26において気液分離され、気相の熱交換媒体はコンプレッサ21に吸入される。
(除湿暖房モード運転)
また、車両用空調装置10の除湿暖房モード運転時においては、例えば図3に示すように、ダンパー15はエバポレータ14を通過した空気を室内コンデンサ16に導入するように開状態とされ、冷房用電磁弁23は閉状態かつ除湿用電磁弁28は開状態とされ、三方弁25は室外熱交換器24を合流管33の流入口に接続する。
これにより、コンプレッサ21から吐出された高温かつ高圧の熱交換媒体は、室内コンデンサ16における放熱によって通風ダクト11内の空気(つまりエバポレータ14を通過した空気)を加熱する。
そして、熱交換媒体は、第4分岐管35において第1流路31と第2流路36とに分岐し、一方は第1流路31を流通して室外熱交換器24に向かい、他方は第2流路36を流通して除湿用電磁弁28と第3分岐管34とを通過して冷房用膨張弁27に向かう。
すなわち、一方の熱交換媒体は、第4分岐管35から暖房用膨張弁22に流入し、暖房用膨張弁22によって膨張させられて気液2相(液相リッチ)の噴霧状とされ、次に、室外熱交換器24において車室外雰囲気から吸熱して気液2相(気相リッチ)の噴霧状で三方弁25と合流管33とを通過して気液分離器26に流入する。
また、他方の熱交換媒体は、第4分岐管35から冷房用膨張弁27に流入し、冷房用膨張弁27によって膨張させられて気液2相(液相リッチ)の噴霧状とされ、次に、エバポレータ14における吸熱によって通風ダクト11内の空気を露点まで冷却することで除湿して、気液2相(気相リッチ)の状態で合流管33を通過して気液分離器26に流入する。
(除霜運転)
上述した車両用空調装置の暖房モード運転時には、室外熱交換器24において外気から吸熱するので、室外熱交換器24に着霜が生じる場合がある。着霜が生じると、室外熱交換器24の熱伝達率が低下して吸熱不足になるので、車室内の暖房が不十分になる。そこで、暖房モード運転中に室外熱交換器24に着霜したと判断したとき、除霜運転を行う。実施形態の除霜運転では、除霜用冷房運転とホットガス運転とを切り換えて実施する。
図4は車両用空調装置の除霜運転の状態を示す図であり、(A)はホットガス運転の状態であり、(B)は除霜用冷房運転の状態である。
(ホットガス運転)
図4(A)に示すホットガス運転は、図2(A)に示す暖房モード運転に類似するが、以下の点で異なっている。暖房モード運転では、暖房用膨張弁22を小口径で開弁し、コンプレッサ21で圧縮された熱交換媒体を膨張させて室外熱交換器24に流入させ、室外熱交換器24で吸熱させる。これに対してホットガス運転では、暖房用膨張弁22を大口径で開弁し、コンプレッサ21で圧縮された熱交換媒体(ホットガス)をそのまま室外熱交換器24に流入させ、室外熱交換器24で放熱させる。
コンプレッサ21が熱交換媒体を圧縮する際に、コンプレッサ21自体が発熱し、その熱が熱交換媒体に伝達されて熱交換媒体の温度が上昇する。温度上昇した熱交換媒体(ホットガス)は、室内コンデンサ16に流入して放熱し、通風ダクト11内の空気を加熱する。これにより、車室内に温風が供給される。
室内コンデンサ16から流出した熱交換媒体は、暖房用膨張弁22を通過して室外熱交換器24に流入する。ホットガス運転では、暖房用膨張弁22を大口径で開弁しているので、熱交換媒体が暖房用膨張弁22で膨張せず、そのまま室外熱交換器24に流入する。この熱交換媒体は室外熱交換器24で吸熱せずに放熱するので、室外熱交換器24の除霜を行うことができる。
室外熱交換器24から流出した熱交換媒体は、気液分離器26を通過してコンプレッサ21に戻り、循環する。
(除霜用冷房運転)
図4(B)に示す除霜用冷房運転は、図2(B)に示す冷房モード運転とほとんど同じである。いずれの運転も、コンプレッサ21で圧縮された熱交換媒体が、室外熱交換器24に流入して放熱し、さらにエバポレータ14に流入して吸熱する。このように除霜用冷房運転では、熱交換媒体が室外熱交換器24で放熱するので、室外熱交換器24の除霜を行うことができる。
除霜用冷房運転と冷房モード運転とは以下の点で異なっている。冷房モード運転では、通風ダクト11に導入されエバポレータ14を通過した空気が室内コンデンサ16を迂回するように、ダンパー15を閉状態としている。これに対して除霜用冷房運転では、エバポレータ14を通過した空気が室内コンデンサ16を通過するように、ダンパー15を開状態としている。
除霜用冷房運転では、冷房モード運転と同様にエバポレータ14における吸熱によって通風ダクト11内の空気を冷却するので、暖房モード運転時に比べて車室内に供給される空気の温度が低下することになる。一方、コンプレッサ21で圧縮され室内コンデンサ16に流入した熱交換媒体は、室内コンデンサ16を通過する空気に対して放熱する。そこで本実施形態の除霜用冷房運転では、エバポレータ14を通過した空気が室内コンデンサ16を通過するように、ダンパー15を開状態としている。これにより、車室内に供給される空気の温度低下が抑制されるので、乗員の不快感を軽減することができる。
(車両用空調装置の除霜運転方法、第1実施形態)
第1実施形態における車両用空調装置の除霜運転方法について説明する。
図5は第1実施形態における車両用空調装置の除霜運転方法の第1フローチャートであり、図6は第2フローチャートである。車両用空調装置の除霜運転方法は、図5に示すように、暖房モード運転の状態からスタートし(S5)、除霜開始判断(S110)を実施する。さらに図6に示すように、除霜運転(S20)および除霜終了判断(S30)を実施する。
(除霜開始判断)
図5に示すように、室外熱交換器24に着霜したか否か(除霜が必要か否か)の除霜開始判断を行う(S110)。まず温度差計測回数nの初期値を1に設定し(S4)、外気温度と室外熱交換器の温度との温度差Tnの計測を開始する。具体的には、外気温度センサ(不図示)により外気温度Tamを測定し、制御装置18に出力する(S6)。また出口温度センサ24Tにより室外熱交換器24の出口温度Toutを測定し、制御装置18に出力する(S8)。次に制御装置18は、外気温度Tamと室外熱交換器24の出口温度Toutとの温度差Tnを算出する(S10)。
暖房モード運転では、室外熱交換器24で吸熱が行われる。ここで、室外熱交換器24に着霜した場合には、室外熱交換器24の熱伝達率が低下するので、熱交換媒体が外気から十分に吸熱できなくなる。この場合には、室外熱交換器24の出口温度Toutが外気温度Tamの付近まで上昇せず、両者間の温度差Tnが大きくなる。そのため、温度差Tnが大きいほど、室外熱交換器24に着霜した可能性が高くなる。
次に、温度差計測回数nの初期値を1に設定してから所定時間tが経過したか判断する(S12)。S12の判断がNoの場合は、S13で温度差計測回数nに1を加算して、S6以下で温度差の計測を継続する。一方、S12の判断がYesの場合はS14に進み、所定時間tの間に計測した温度差Tnの平均値Ayを算出する。
このように温度差Tnの平均値Ayを算出することにより、外気温度Tamや室外熱交換器の出口温度Toutが急激に(一時的または局所的に)変化した場合に着霜したと誤判断するのを防止することができる。
次に、今回算出した温度差平均値Ayと前回算出した温度差平均値Axとの差分が、第1所定値dA1以上か判断する(S18)。なお、今回初めて温度差平均値Ayを算出した場合には、S18の判断をNoとする。S18の判断がNoの場合は、S19に進んで今回算出した温度差平均値Ayを前回算出した温度差平均値Axに代入し、S4以下を繰り返す。一方、S18の判断がYesの場合は、室外熱交換器24に着霜したと判断して、除霜運転を開始する。
室外熱交換器24の性能低下による温度差Tnの増加は、着霜だけでなく外気温度の低下や車速の低下(風通りの悪化)でも発生する。そのため、温度差Tn(および温度差平均値Ay)だけで着霜有無を正確に判定するのは困難である。ただし、外気温度の低下や車速の低下の場合には温度差Tnの増加率が限定的であるのに対して、着霜の場合には(着霜の進行とともに)温度差Tnの増加率が大きくなる。そこで、今回算出した温度差平均値Ayと前回算出した温度差平均値Axとの差分の大きさ(温度差平均値の増加率、変化量)を評価することにより、着霜有無を正確に判断することができる。なお、着霜判断の閾値となる第1所定値dA1は予め実験等で求めておく。
図7は、第1実施形態における除霜開始判断の説明図である。図7のグラフは横軸が時間であり縦軸が温度差である。図7の例では、時刻t1〜t2の温度差平均値A2と時刻t0〜t1の温度差平均値A1との差分は第1所定値dA1より小さいが、時刻t2〜t3の温度差平均値A3と時刻t1〜t2の温度差平均値A2との差分が第1所定値dA1より大きくなっている。そこで、時刻t3において室外熱交換器24に着霜したと判断し、時刻t3〜t10で除霜運転を行っている。なお、除霜運転後の温度差平均値A11は除霜運転前の温度差平均値A3より小さくなっている。
(除霜運転)
次に図6に示すように、室外熱交換器24に付着した霜を溶かす除霜運転を行う(S20)。除霜運転は、最初にホットガス運転を実施し(S21)、次に除霜用冷房運転を実施し(S22)、次に再びホットガス運転を実施する(S24)。
最初に、ホットガス運転を実施する(S21)。
図8は除霜運転のタイミングチャートである。除霜開始判断が成立した時点で、暖房用膨張弁22の開度を小口径から大口径に増加させる。これにより、コンプレッサ21で圧縮された熱交換媒体が、暖房用膨張弁22で膨張されずに室外熱交換器24に流入する。その結果、熱交換媒体が室外熱交換器24で放熱するので、ホットガス運転による除霜が開始される。最初のホットガス運転は所定時間だけ行う。
なお、冷房用電磁弁23を閉弁し暖房用膨張弁22のみを大口径に開弁してホットガス運転を行うことで、コンプレッサ21により熱交換媒体が適度に圧縮されるので、ホットガスを効率的に生成することができる。
次に、除霜用冷房運転を実施する(S22)。具体的には図8に示すように、暖房用膨張弁22の開度を大口径に維持する。またホットガス運転の所定時間が経過する直前に、冷房用膨張弁27の開度を閉状態から開状態へと増加させる作業を開始する。次に、冷房用膨張弁27の開度増加中に、冷房用電磁弁23を閉状態から開状態に切り換える。また、三方弁25の流出口を暖房側(合流管33側)から冷房側(第3分岐管34側)に切り換える。これにより、コンプレッサ21で圧縮された熱交換媒体が、暖房用膨張弁22で膨張されずに室外熱交換器24に流入する。その結果、熱交換媒体が室外熱交換器24で放熱するので、除霜用冷房運転が開始される。除霜用冷房運転は所定時間だけ行う。
なお、冷房用電磁弁23または三方弁25の切り換えと同時に、冷房用膨張弁27の開度増加を開始してもよい。ただし、冷房用電磁弁23および三方弁25を切り換える前に、冷房用膨張弁27の開度増加を開始することで、冷房用膨張弁27の開度増加に時間がかかる場合でも、除霜用冷房運転を迅速に開始することができる。
次に、2回目のホットガス運転を実施する(S24)。具体的には図8に示すように、除霜用冷房運転の所定時間が経過する直前に、冷房用膨張弁27の開度を開状態から閉状態へと減少させる作業を開始する。次に、冷房用膨張弁27の開度減少中に、冷房用電磁弁23を開状態から閉状態に切り換える。また、三方弁25の流出口を冷房側(第3分岐管34側)から暖房側(合流管33側)に切り換える。これにより、室外熱交換器24から流出した熱交換媒体が、エバポレータ14を回避してコンプレッサ21に流入し、ホットガス運転が開始される。2回目のホットガス運転は、後述する除霜終了判断が成立するまで行う。
このように、ホットガス運転と除霜用冷房運転とを切り換えて除霜運転を行うことで、除霜運転を冷房運転のみで行う場合と比べて、車室内に冷風が供給されるのを抑制することができる。また吸熱した上で放熱する除霜用冷房運転では、吸熱しないで放熱するホットガス運転に比べて、放熱量が大きくなる。そのため、除霜運転をホットガス運転のみで行う場合と比べて、短時間で効率よく室外熱交換器の除霜を行うことができる。また、最初のホットガス運転によって、車室内に供給する空気の温度を下げることなく除霜を準備することができる。これにより霜の一部が解けるため、次の除霜用冷房運転の時間を短縮することが可能になり、車室内に冷風を供給する時間を短縮することができる。そして、2回目のホットガス運転を経て暖房モード運転に復帰するため、除霜運転から暖房モード運転への移行をスムーズに行うことができる。
なお本実施形態の除霜運転は、最初にホットガス運転を実施し、次に除霜用冷房運転を実施し、次に再びホットガス運転を実施して、暖房モード運転に復帰する構成としたが、除霜運転の内容はこれに限られない。例えば、最初に除霜用冷房運転を実施し、次にホットガス運転を実施して、暖房モード運転に復帰してもよいし、最初にホットガス運転を実施し、次に除霜用冷房運転を実施して、暖房モード運転に復帰してもよい。
(除霜終了判断)
次に図6に示すように、室外熱交換器24に付着した霜が除去されたか否かの除霜終了判断を行う(S30)。具体的には、除霜開始判断と同様に、外気温度センサ(不図示)により外気温度Tamを測定し、制御装置18に出力する(S32)。また出口温度センサ24Tにより室外熱交換器24の出口温度Toutを測定し、制御装置18に出力する(S34)。制御装置18は、外気温度Tamと室外熱交換器24の出口温度Toutとの差分の絶対値が、所定温度より小さいか判断する(S36)。S36の判断がNoの場合には、除霜が終了していないと判断し、S24に戻ってホットガス運転を継続する。
室外熱交換器24の霜が解けた場合には、室外熱交換器24の熱伝達率が向上して、外気からの吸熱が十分に行われる。そのため、室外熱交換器24の出口温度Toutが外気温度Tamに接近し、両者間の温度差が小さくなる。そこで、外気温度Tamと室外熱交換器24の出口温度Toutとの差分の絶対値が所定温度より小さい場合(S36の判断がYesの場合)には、室外熱交換器24の除霜が終了したと判断する。この場合には、図8に示すように、暖房用膨張弁22の開度を大口径から小口径に減少させ、ホットガス運転を終了する。
なお本実施形態の除霜終了判断では、外気温度Tamと室外熱交換器24の出口温度Toutとの温度差を評価したが、除霜終了判断の方法はこれに限られない。例えば、上述した除霜開始判断と同様に、温度差の平均値を評価してもよいし、温度差平均値の減少率を評価してもよい。
以上により、第1実施形態における車両用空調装置の除霜運転が終了し、暖房モード運転に復帰する。
以上に詳述したように、実施形態における車両用空調装置では、外気温度Tamと室外熱交換器24の出口温度Toutとの温度差Tnを算出するとともに、所定時間tにおける温度差Tnの平均値Ax,Ayを算出し、平均値の変化量Ay−Axが第1所定値dA1以上の場合に、室外熱交換器24に着霜したと判断して、室外熱交換器24に付着した霜を溶かす除霜運転を実施する構成とした。
この構成によれば、温度差Tnの平均値Ax,Ayを算出するので、外気温度Tamや室外熱交換器の出口温度Toutが急激に変化した場合や、温度センサの時定数差等によって、着霜したと誤判断するのを防止することができる。なお、室外熱交換器24の性能低下による温度差Tnの増加は、着霜だけでなく外気温度の低下や車速の低下でも発生する。ただし、外気温度の低下や車速の低下の場合には温度差Tnの増加率が限定的であるのに対して、着霜の場合には(着霜の進行とともに)温度差Tnの増加率が大きくなる。そこで、温度差平均値の変化量Ay−Axが第1所定値dA1以上の場合に、室外熱交換器24に着霜したと判断することで、着霜有無を正確に判断することができる。
上述したように、室外熱交換器の性能低下による温度差Tnの増加は、着霜だけでなく外気温度の低下や車速の低下でも発生する。そのため、温度差Tnだけで着霜有無を正確に判定するには、着霜有無を判断する温度差の閾値を外気温度や車速ごとに持ち換える必要があり、車両ごとに膨大なテストデータが必要になる。
これに対して本実施形態では、温度差平均値の変化量Ay−Axが第1所定値dA1以上の場合に着霜していることを確認するテストデータがあれば足りるので、着霜有無を正確に判定するためのテストデータを大幅に削減することができる。
(車両用空調装置の除霜運転方法、第2実施形態)
図9は第2実施形態における車両用空調装置の除霜運転方法の第1フローチャートである。第1実施形態では、除霜開始判断の閾値として第1所定値dA1のみを使用したが、第2実施形態では、バッテリー残量(以下、SOCと言う。)が所定残量未満の場合に、除霜開始判断の閾値を第2所定値dA2に持ち換える点で、第1実施形態とは異なっている。なお第1実施形態と同様の構成となる部分については、その説明を省略する。
図9に示すように除霜開始判断を行う(S120)。なおS14における温度差平均値Ayの算出までは、第1実施形態と同様に行う。次に第2実施形態では、SOCが所定残量以上か判断する(S15)。S15の判断がYesの場合にはS18に進み、第1実施形態と同様に第1所定値dA1を閾値として除霜開始判断を行う。一方、S15の判断がNoの場合にはS16に進む。S16では、今回算出した温度差平均値Ayと前回算出した温度差平均値Axとの差分Ay−Axが、第2所定値dA2以上か判断する。第2所定値dA2は、第1所定値dA1より大きい値である。なお、今回初めて温度差平均値Ayを算出した場合には、S18の判断をNoとする。S18の判断がNoの場合は、S19に進んで今回算出した温度差平均値Ayを前回算出した温度差平均値Axに代入し、S4以下を繰り返す。一方、S18の判断がYesの場合は、除霜運転を開始する。
図10は、第2実施形態における除霜開始判断の説明図である。図10における2つのグラフの横軸はいずれも時間であるが、図10(a)のグラフの縦軸は温度差であり、図10(b)のグラフの縦軸はSOCである。図10(b)に示すように、時刻tp以前はSOCが所定残量以上になっている(S15の判断がYes)。そこで図10(a)に示すように、時刻tp以前は、温度差平均値の差分と第1所定値dA1とを比較する(S18)。図10の例では、時刻t2(<tp)において、温度差平均値の差分A2−A1が第1所定値dA1より大きいことから、除霜運転を開始している。
一方、図10(b)の時刻tp以後は、SOCが所定残量未満になっている(S15の判断がNo)。そこで図10(a)に示すように、時刻tp以後は、温度差平均値の差分と第2所定値dA2とを比較する(S16)。第2所定値dA2は、第1所定値dA1より大きな値である。図10の例では、時刻t16(>tp)においてイグニッションスイッチがオフされ車両が運転を停止しているが、時刻tpからt16の間は温度差平均値の差分が第2所定値dA2を上回っていないので、除霜運転を開始していない。一方、図10(b)に示すように、車両が運転を停止してからバッテリーが充電されてSOCが上昇している。そして図10(a)に示すように、車両が運転を停止してから除霜運転が開始されている。
除霜運転を行うと車室内に冷風が供給されるため、除霜運転後の暖房モード運転の電力消費量が多くなる。第2実施形態では、SOCが所定残量未満の場合には温度差平均値の差分が第2所定値dA2(>dA1)以上の場合に除霜運転を開始するので、SOCが所定残量以上の場合に比べて除霜頻度が低くなる。その結果、電力消費量を抑制してSOCを節約することができる。
除霜運転を行うと車室内に冷風が供給されるため、除霜運転は短時間または低頻度で実施することが望ましい。温度差平均値の差分が第1所定値dA1(<dA2)以上の場合に除霜運転を開始すれば、着霜初期段階で除霜を行うことになり、除霜運転を短時間で終了することができる。一方、温度差平均値の差分が第2所定値dA2(>dA1)以上の場合に除霜運転を開始すれば、除霜頻度が低くなるので、車室内に冷風を供給する機会が少なくなる。したがって、後者の場合でも乗員の快適性を確保することができる。
なお、SOCが所定残量未満の場合には、バッテリー充電のため短時間後に車両の運転を停止することが予想される。除霜頻度を低くすると着霜状態のまま車両用空調装置を運転することになるが、短時間であればその悪影響を最小限に留めることができる。しかも、車両の運転停止後には車室内に乗員がいなくなるので、長時間の除霜運転により念入りに除霜を行っても、乗員の快適性を阻害することがない。
なおS15の所定残量は、着霜状態のまま車両用空調装置を運転することによる悪影響が許容できる時間内に、SOCが下限値付近まで低下してバッテリー充電のため車両が運転停止することになる残量に設定することが望ましい。この所定残量は予め実験等で求めておく。
図9に示す除霜開始判断(S120)の後は、図6に示す第1実施形態と同様に除霜運転(S20)および除霜終了判断(S30)を行う。
以上により、第2実施形態における車両用空調装置の除霜運転が終了し、暖房モード運転に復帰する。
以上に詳述したように、第2実施形態における車両用空調装置では、SOCが所定残量未満と判断された場合には、平均値の変化量Ay−Axが第1所定値dA1よりも大きい第2所定値dA2以上の場合に、除霜運転を実施する構成とした。
この構成によれば、除霜頻度が低くなるので、電力消費量を抑制してSOCを節約することができる。また、除霜頻度が低くなると車室内に冷風を供給する機会が少なくなるので、乗員の快適性を確保することができる。
(車両用空調装置の除霜運転方法、第3実施形態)
図11は第2実施形態における車両用空調装置の除霜運転方法の第1フローチャートである。第1実施形態では、所定時間ごとに温度差の平均値を算出し、平均値の変化量を評価したが、第3実施形態では、温度差の移動平均値を算出し、移動平均値と規準平均値との差分を評価する点で、第1実施形態とは異なっている。なお第1実施形態と同様の構成となる部分については、その説明を省略する。
図11に示すように除霜開始判断を行う(S130)。なおS10における温度差Tnの算出までは、第1実施形態と同様に行う。次に第3実施形態では、温度差Tnの平均値の算出が初回であるか判断する(S40)。S40の判断がYesの場合はS42に進み、所定時間taが経過したか判断する。S42の判断がNoの場合は、S43で温度差計測回数nに1を加算して、S6以下で温度差の計測を継続する。一方、S42の判断がYesの場合はS44に進み、所定時間taの間に計測した温度差Tnの平均値Axを、初回の平均値として算出する。この平均値Axは、次述する移動平均値Ayとの差分を算出する基準平均値となる。その後、S43で温度差計測回数nに1を加算して、S6以下で温度差の計測を継続する。
一方、S40の判断がNoの場合はS50に進み、温度差Tnの移動平均値Ayを算出する。移動平均値Ayは、直近の所定時間tbの間に計測した温度差Tnの平均値である。この所定時間tbは、上述した所定時間taと同じでもよいし異なってもよい。
次に、今回算出した移動平均値Ayと基準平均値Axとの差分が、第1所定値dA1以上か判断する(S52)。この第1所定値dA1は、第1実施形態の第1所定値dA1と同じでもよいし異なってもよい。S52の判断がNoの場合はS54に進み、基準平均値Axを算出(更新)してから所定時間tcが経過したか判断する。この所定時間tcは、上述した所定時間taと同じでもよいし異なってもよい。S54の判断がNoの場合は、S43で温度差計測回数nに1を加算し、S6以下で温度差を計測し、S50で新たな移動平均値Ayを算出する。
一方、S54の判断がYesの場合はS56に進み、今回算出した移動平均値Ayを基準平均値Axに代入することで、基準平均値Axを更新する。その後、S43で温度差計測回数nに1を加算し、S6以下で温度差を計測し、S50で新たな移動平均値Ayを算出し、S52で新たな移動平均値Ayと更新された基準平均値Axとの差分を評価する。
そして、S52の判断がYesの場合は除霜運転を開始する。すなわち、図11に示す除霜開始判断(S130)を終了し、図6に示す第1実施形態と同様に除霜運転(S20)および除霜終了判断(S30)を行う。以上により、第3実施形態における車両用空調装置の除霜運転が終了し、暖房モード運転に復帰する。
図12は、第3実施形態における除霜開始判断の説明図である。図12のグラフは横軸が時間であり、縦軸が温度差である。除霜開始判断の開始から所定時間taが経過した時刻t1で、所定時間taの間に計測した温度差Tnの平均値MA1を算出する。図12のグラフでは温度差が単調増加しているので、所定時間taの略中間時刻の温度差が平均値MA1となっている。この平均値MA1が初回の基準平均値となる。
時刻t1の後、直近の所定時間tbの間に計測した温度差Tnの移動平均値MA2を連続して算出する。そして、移動平均値MA2と基準平均値MA1との差分を算出し、第1所定値dA1と比較する。
図12では、初回の基準平均値MA1を算出した時刻t1から所定時間tcが経過しても、移動平均値MA2と基準平均値MA1との差分が第1所定値dA1より小さくなっている。この場合には、所定時間tcが経過した時刻t2での移動平均値MA2を新たな基準平均値とすることで、基準平均値を更新する。基準平均値を更新してから所定時間tcが経過するまでは、移動平均値MA3と更新後の基準平均値MA2との差分を算出し、第1所定値dA1と比較する。
そして図12では、時刻t3から所定時間tcが経過する前に、時刻t4´で算出した移動平均値MA4´と基準平均値MA3との差分が、第1所定値dA1より大きくなっている。そこで、この時刻t4´から除霜運転を開始している。
以上に詳述したように、第3実施形態における車両用空調装置では、外気温度Tamと室外熱交換器の出口温度Toutとの温度差Tnの移動平均値Ayを算出し、移動平均値Ayと基準平均値Axとの差分Ay−Axが第1所定値dA1以上の場合に、室外熱交換器に着霜したと判断し、除霜運転を実施する構成とした。
ヒートポンプサイクルを利用した車両用空調装置では、室外熱交換器に着霜し始めると、吸熱量を確保するため室外熱交換器の表面温度を下げようとするので、ますます着霜が進行する。これにより、外気温度Tamと室外熱交換器の出口温度Toutとの温度差Tnの増加率が大きくなる。そこで、移動平均値Ayと基準平均値Axとの差分Ay−Axが第1所定値dA1以上の場合に、室外熱交換器に着霜したと判断することで、着霜有無を正確に判断することができる。しかも、移動平均値Ayを用いて逐次着霜有無を判断するので、除霜を迅速に開始することができる。
また第3実施形態では、所定時間tcごとに算出した移動平均値を基準平均値として、基準平均値を更新する構成とした。これにより、所定時間tcにおける温度差の増加率を評価できるので、着霜有無を正確に判断することができる。
なお、本発明の技術的範囲は上述した実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において、上述した実施形態に種々の変更を加えたものを含む。すなわち、上述した実施形態の構成はほんの一例に過ぎず、適宜変更が可能である。
例えば、第3実施形態では移動平均値と基準平均値との差分を評価したが、今回算出した移動平均値と直前に算出した移動平均値との差分を評価してもよい。
Ax,Ay…平均値 dA1…第1所定値 dA2…第2所定値 Tam…外気温度 Tout…出口温度 Tn…温度差 t…所定時間 10…車両用空調装置 14…エバポレータ(室内熱交換器) 21…コンプレッサ 24…室外熱交換器

Claims (2)

  1. 熱交換媒体を圧縮するコンプレッサと、前記コンプレッサから吐出された前記熱交換媒体と車室内に導入される空調空気との熱交換を行う室内熱交換器と、前記室内熱交換器から吐出された前記熱交換媒体と室外の空気との熱交換を行う室外熱交換器と、を備えた車両用空調装置であって、
    室外の空気の温度と前記室外熱交換器の温度との温度差の平均値を算出し、前記平均値の変化量が第1所定値以上の場合に、前記室外熱交換器に付着した霜を溶かす除霜運転を実施することを特徴とする車両用空調装置。
  2. 請求項1に記載の車両用空調装置であって、
    前記車両で消費されるバッテリー残量が所定残量未満と判断された場合には、前記平均値の変化量が前記第1所定値よりも大きい第2所定値以上の場合に、前記除霜運転を実施することを特徴とする車両用空調装置。
JP2012178342A 2012-08-10 2012-08-10 車両用空調装置 Pending JP2014034371A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012178342A JP2014034371A (ja) 2012-08-10 2012-08-10 車両用空調装置
EP13177642.9A EP2695758B1 (en) 2012-08-10 2013-07-23 Air conditioner for vehicle
CN201310317806.9A CN103568782B (zh) 2012-08-10 2013-07-24 车辆用空调装置
US13/950,705 US9707930B2 (en) 2012-08-10 2013-07-25 Air conditioner for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012178342A JP2014034371A (ja) 2012-08-10 2012-08-10 車両用空調装置

Publications (1)

Publication Number Publication Date
JP2014034371A true JP2014034371A (ja) 2014-02-24

Family

ID=48808256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012178342A Pending JP2014034371A (ja) 2012-08-10 2012-08-10 車両用空調装置

Country Status (4)

Country Link
US (1) US9707930B2 (ja)
EP (1) EP2695758B1 (ja)
JP (1) JP2014034371A (ja)
CN (1) CN103568782B (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104949385A (zh) * 2014-03-31 2015-09-30 汉拿伟世通空调有限公司 车用热泵系统
WO2018003352A1 (ja) * 2016-06-27 2018-01-04 株式会社デンソー 冷凍サイクル装置
JP2018194246A (ja) * 2017-05-19 2018-12-06 本田技研工業株式会社 空調装置
JP2019115126A (ja) * 2017-12-21 2019-07-11 本田技研工業株式会社 電動車両

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9925877B2 (en) * 2011-01-21 2018-03-27 Sanden Holdings Corporation Vehicle air conditioning apparatus
JP6223753B2 (ja) * 2013-09-04 2017-11-01 サンデンホールディングス株式会社 車両用空気調和装置
JP6499441B2 (ja) * 2014-12-24 2019-04-10 カルソニックカンセイ株式会社 車両用空調装置
JP6692678B2 (ja) * 2016-04-14 2020-05-13 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
CN107166644A (zh) * 2017-05-17 2017-09-15 青岛海尔空调器有限总公司 空调器除霜控制方法
CN107300240A (zh) * 2017-05-17 2017-10-27 青岛海尔空调器有限总公司 空调器除霜控制方法
JP6477802B2 (ja) * 2017-08-08 2019-03-06 ダイキン工業株式会社 冷凍装置
CN109269018A (zh) * 2018-09-28 2019-01-25 珠海格力电器股份有限公司 空调化霜模式的控制方法及装置
CN111189159B (zh) * 2018-11-14 2021-12-21 青岛海尔空调器有限总公司 一种空调及其防冻结的控制方法
CN111189164B (zh) * 2018-11-14 2021-10-29 青岛海尔空调器有限总公司 一种空调及其防冻结的控制方法
CN111189162B (zh) * 2018-11-14 2021-10-29 青岛海尔空调器有限总公司 一种空调及其防冻结的控制方法
CN111189161B (zh) * 2018-11-14 2021-12-21 青岛海尔空调器有限总公司 一种空调及其防冻结的控制方法
CN111189163B (zh) * 2018-11-14 2021-10-29 青岛海尔空调器有限总公司 一种空调及其防冻结的控制方法
CN111189170B (zh) * 2018-11-14 2022-04-15 青岛海尔空调器有限总公司 一种空调及其防冻结的控制方法
CN111189165B (zh) * 2018-11-14 2022-04-15 青岛海尔空调器有限总公司 一种空调及其防冻结的控制方法
CN111189184B (zh) * 2018-11-14 2021-12-21 青岛海尔空调器有限总公司 一种空调及其防冻结的控制方法
CN111189185B (zh) * 2018-11-14 2021-12-21 青岛海尔空调器有限总公司 一种空调及其防冻结的控制方法
CN111189169B (zh) * 2018-11-14 2021-11-23 青岛海尔空调器有限总公司 一种空调及其防冻结的控制方法
CN111189166B (zh) * 2018-11-14 2022-04-19 青岛海尔空调器有限总公司 一种空调及其防冻结的控制方法
CN111189160B (zh) * 2018-11-14 2022-06-14 青岛海尔空调器有限总公司 一种空调及其防冻结的控制方法
CN111189168B (zh) * 2018-11-14 2022-06-24 重庆海尔空调器有限公司 一种空调及其防冻结的控制方法
CN111189189B (zh) * 2018-11-14 2021-12-21 青岛海尔空调器有限总公司 一种空调及其防冻结的控制方法
CN111189190B (zh) * 2018-11-14 2022-03-29 青岛海尔空调器有限总公司 一种空调及其防冻结的控制方法
CN111189167B (zh) * 2018-11-14 2021-12-21 青岛海尔空调器有限总公司 一种空调及其防冻结的控制方法
KR20200129492A (ko) * 2019-05-08 2020-11-18 엘지전자 주식회사 전기자동차용 히트펌프 시스템 및 그 제어방법
JP2022052822A (ja) * 2020-09-24 2022-04-05 トヨタ自動車株式会社 車両用空調装置
CN112212465B (zh) * 2020-10-23 2021-12-14 珠海格力电器股份有限公司 空调机组防结霜控制方法、装置和空调系统
CN112389157B (zh) * 2020-11-20 2022-07-01 广州橙行智动汽车科技有限公司 空调控制方法、装置、车辆及存储介质
DE102021212314A1 (de) * 2021-11-02 2023-05-04 Volkswagen Aktiengesellschaft Verfahren zum Betreiben einer Wärmepumpe für ein Kraftfahrzeug und Wärmepumpe
FR3129326A1 (fr) * 2021-11-25 2023-05-26 Valeo Systemes Thermiques Procédé de déshumidification d’un habitacle d’un véhicule

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5787550A (en) * 1980-11-19 1982-06-01 Hitachi Ltd Defrosting controller
JPS6111539A (ja) * 1984-06-12 1986-01-18 ヨ−ク・インタ−ナショナル・コ−ポレ−ション 熱ポンプの屋外コイル除霜用制御装置及び方法
JPS62252854A (ja) * 1986-03-17 1987-11-04 ダイキン工業株式会社 冷凍装置における除霜運転方法
JPS62299665A (ja) * 1986-06-20 1987-12-26 ダイキン工業株式会社 冷凍装置
JPH09203570A (ja) * 1996-01-26 1997-08-05 Sanden Corp 冷却装置の除霜制御装置
JPH10103818A (ja) * 1996-08-08 1998-04-24 Hitachi Ltd 空気調和装置
JPH11257719A (ja) * 1998-03-09 1999-09-24 Fujitsu General Ltd 空気調和機の制御方法およびその装置
JP2000283611A (ja) * 1999-03-30 2000-10-13 Denso Corp ヒートポンプ式空調装置
JP2004245479A (ja) * 2003-02-13 2004-09-02 Calsonic Kansei Corp 超臨界冷媒を用いた冷凍サイクルの着霜検出方法およびその方法を利用した除霜方法
JP2010236709A (ja) * 2009-03-30 2010-10-21 Japan Climate Systems Corp 車両用空調装置
JP2012030734A (ja) * 2010-08-02 2012-02-16 Tgk Co Ltd 車両用冷暖房装置
WO2012098966A1 (ja) * 2011-01-21 2012-07-26 サンデン株式会社 車両用空気調和装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4406133A (en) * 1980-02-21 1983-09-27 The Trane Company Control and method for defrosting a heat pump outdoor heat exchanger
US4618268A (en) * 1985-01-09 1986-10-21 Horner John A Method and apparatus for sensing average temperature
JPH0820239A (ja) * 1994-07-06 1996-01-23 Sanden Corp 電気自動車用エアコン装置における除霜運転制御装置
US5473306A (en) * 1994-10-24 1995-12-05 Adell; Robert Motor vehicle lighting system
KR0182534B1 (ko) * 1994-11-17 1999-05-01 윤종용 냉장고의 제상장치 및 그 제어방법
US5842355A (en) * 1995-03-22 1998-12-01 Rowe International, Inc. Defrost control system for a refrigerator
JPH1013818A (ja) * 1996-06-21 1998-01-16 Nec Corp 双方向無線ケーブルテレビジョンシステムにおける電話回線切替システム
US5765382A (en) * 1996-08-29 1998-06-16 Texas Instruments Incorporated Adaptive defrost system
US5797273A (en) * 1997-02-14 1998-08-25 Carrier Corporation Control of defrost in heat pump
US5727395A (en) * 1997-02-14 1998-03-17 Carrier Corporation Defrost control for heat pump
KR100225640B1 (ko) * 1997-06-27 1999-10-15 윤종용 공기조화기의 제상제어방법
JP6059860B2 (ja) * 2009-03-30 2017-01-11 株式会社日本クライメイトシステムズ 車両用空調装置
US20110017529A1 (en) * 2009-07-24 2011-01-27 A Truly Electric Car Company Truly electric car

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5787550A (en) * 1980-11-19 1982-06-01 Hitachi Ltd Defrosting controller
JPS6111539A (ja) * 1984-06-12 1986-01-18 ヨ−ク・インタ−ナショナル・コ−ポレ−ション 熱ポンプの屋外コイル除霜用制御装置及び方法
JPS62252854A (ja) * 1986-03-17 1987-11-04 ダイキン工業株式会社 冷凍装置における除霜運転方法
JPS62299665A (ja) * 1986-06-20 1987-12-26 ダイキン工業株式会社 冷凍装置
JPH09203570A (ja) * 1996-01-26 1997-08-05 Sanden Corp 冷却装置の除霜制御装置
JPH10103818A (ja) * 1996-08-08 1998-04-24 Hitachi Ltd 空気調和装置
JPH11257719A (ja) * 1998-03-09 1999-09-24 Fujitsu General Ltd 空気調和機の制御方法およびその装置
JP2000283611A (ja) * 1999-03-30 2000-10-13 Denso Corp ヒートポンプ式空調装置
JP2004245479A (ja) * 2003-02-13 2004-09-02 Calsonic Kansei Corp 超臨界冷媒を用いた冷凍サイクルの着霜検出方法およびその方法を利用した除霜方法
JP2010236709A (ja) * 2009-03-30 2010-10-21 Japan Climate Systems Corp 車両用空調装置
JP2012030734A (ja) * 2010-08-02 2012-02-16 Tgk Co Ltd 車両用冷暖房装置
WO2012098966A1 (ja) * 2011-01-21 2012-07-26 サンデン株式会社 車両用空気調和装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104949385A (zh) * 2014-03-31 2015-09-30 汉拿伟世通空调有限公司 车用热泵系统
CN104949385B (zh) * 2014-03-31 2017-08-25 翰昂汽车零部件有限公司 车用热泵系统
WO2018003352A1 (ja) * 2016-06-27 2018-01-04 株式会社デンソー 冷凍サイクル装置
JP2018194246A (ja) * 2017-05-19 2018-12-06 本田技研工業株式会社 空調装置
JP2019115126A (ja) * 2017-12-21 2019-07-11 本田技研工業株式会社 電動車両

Also Published As

Publication number Publication date
EP2695758A1 (en) 2014-02-12
CN103568782B (zh) 2016-08-17
EP2695758B1 (en) 2014-09-24
US9707930B2 (en) 2017-07-18
CN103568782A (zh) 2014-02-12
US20140041404A1 (en) 2014-02-13

Similar Documents

Publication Publication Date Title
JP2014034371A (ja) 車両用空調装置
US9494360B2 (en) Air conditioner for vehicle
EP2636548B1 (en) Heat pump system for vehicle
US9834063B2 (en) Heat pump system for vehicle
US10018401B2 (en) Vehicle heat pump with defrosting mode
JP4558060B2 (ja) 冷凍サイクル装置
JP5532095B2 (ja) 車両用空調装置
CN105555564A (zh) 热泵式车辆用空调系统以及其除霜方法
US11247533B2 (en) Vehicular air conditioning device
JP2011195021A (ja) 車両用ヒートポンプ装置
US20080229768A1 (en) Air Conditioner for Vehicle
CN102837579B (zh) 车辆用空调装置
JP5786476B2 (ja) 車両用空調装置
JP6459714B2 (ja) 制御装置及び車両用空調装置
JP2002120546A (ja) 車両用空調装置
JP2013241097A (ja) 車両用空調装置
JP6134290B2 (ja) 車両用空調装置
JP2009138709A (ja) 車両の制御装置
JP2013241094A (ja) 車両用空調装置
WO2017163687A1 (ja) 車両用空調装置および空調制御方法
JP6300272B2 (ja) 車両用空調装置
JP4942828B2 (ja) 車両の制御装置
JP4942827B2 (ja) 車両の制御装置
KR101461989B1 (ko) 차량용 히트 펌프 시스템 및 그 제어방법
JP2011012939A (ja) 車両用空調装置の制御方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140826

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150401