[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2014029331A - 中央固定ポストを有するクラスiiコリオリ振動ロッキングモードジャイロスコープ - Google Patents

中央固定ポストを有するクラスiiコリオリ振動ロッキングモードジャイロスコープ Download PDF

Info

Publication number
JP2014029331A
JP2014029331A JP2013140430A JP2013140430A JP2014029331A JP 2014029331 A JP2014029331 A JP 2014029331A JP 2013140430 A JP2013140430 A JP 2013140430A JP 2013140430 A JP2013140430 A JP 2013140430A JP 2014029331 A JP2014029331 A JP 2014029331A
Authority
JP
Japan
Prior art keywords
resonator
gyroscope
electrodes
vibration
pickoff
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013140430A
Other languages
English (en)
Inventor
Robert E Stewart
イー.ステュワート ロバート
Michael D Bulatowicz
デー.ブラトウィクス マイケル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northrop Grumman Guidance and Electronics Co Inc
Original Assignee
Northrop Grumman Guidance and Electronics Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northrop Grumman Guidance and Electronics Co Inc filed Critical Northrop Grumman Guidance and Electronics Co Inc
Publication of JP2014029331A publication Critical patent/JP2014029331A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5705Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using masses driven in reciprocating rotary motion about an axis
    • G01C19/5712Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using masses driven in reciprocating rotary motion about an axis the devices involving a micromechanical structure

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Gyroscopes (AREA)
  • Pressure Sensors (AREA)

Abstract

【課題】ライフサイクルコストを実質的に減少させ、衝撃抵抗を増加させ、低い出力雑音及び大きなダイナミックレンジを有し、宇宙衛星等の要求の厳しい用途に適する共振器ジャイロスコープを提供する。
【解決手段】共振器ジャイロスコープ100は、中央ポスト174と、中央ポスト174に結合した共振器150と、共振器150に結合した振動板160と、を備え、振動板160及び中央ポスト174のうちの少なくとも一方は、振動板160の平面内の軸176、180における共振器150の回転に適応する。駆動運動が起こる駆動軸180は、検知軸176に直交し、また同様に、入力軸115に直交する。
【選択図】図1

Description

本発明は包括的には共振器ジャイロスコープに関し、より詳細には、クラスIIコリオリ振動ジャイロスコープであるロッキングモードジャイロスコープに関する。
クラスIIコリオリ振動ジャイロスコープ(Coriolis Vibratory Gyroscope:CVG)は、動作のレート測定閉ループモードで動作すると、ジャイロスコープの入力軸の回りの回転の角速度に関する情報を与え、全角度開ループ動作モードで動作すると、角度変位に関する情報を与えるセンサーである。
CVGは、クラスIジャイロスコープとクラスIIジャイロスコープとに細分される。クラスI CVGの例は、チューニングフォークジャイロスコープである。クラスII CVGの例は、ベル型又は半球状共振器ジャイロスコープである。クラスII CVGは、その入力軸に対して幾何学的に対称であり、主弾性軸の振動について縮退したすなわちほぼ同一の共振周波数を有する。
コリオリ加速度は、回転を検知するために振動ジャイロスコープによって使用される。コリオリ加速度は、入力軸の回りの回転の角速度と入力軸に直交する軸に沿う共振器の速度とのクロス積に比例する。多くの用途について、振動ジャイロスコープは、非常に小型にすることができ、微小機械加工式電気機械システム(Micro-machined Electro-Mechanical Systems:MEMS)技術を使用して大量にバッチ作製され得る。
閉ループモードで動作するクラスII CVG振動ジャイロスコープでは、ジャイロスコープのレートバイアス及び直交位相(quadrature)レート誤差の極性が不変のままである間に、駆動軸及び検知軸が交換されると、ジャイロスコープのスケールファクタの極性が反転する。クラスII CVGのこの特性は、ジャイロスコープのバイアス及び直交位相レート誤差の自己較正を可能にする。
本明細書で述べるロッキングモードジャイロは、平衡がとられていない。現在の設計の平衡をとることは、少なくとも第2の共振器の付加によって達成され得る。巨視的スケールCVGは、ライフサイクルコストを実質的に減少させ、衝撃抵抗を増加させた。CVGは、全角度開ループモードで動作すると、低い出力雑音及び大きなダイナミックレンジを有し、宇宙衛星等の要求の厳しい用途に適する。
実施の形態の一組では、共振器ジャイロスコープが、
中央ポストと、
中央ポストに結合した共振器と、
共振器に結合した振動板と、を備え、
中央ポスト及び振動板のうちの少なくとも一方は、振動板の平面内の軸における共振器の運動に適応する。
実施の形態の別の組によれば、共振器ジャイロスコープが、
中央ポストと、
中央ポストに結合した概ね円柱形の共振器と、
共振器に結合した振動板と、
共振器の第1の振動を引起す第1のフォーサー構成要素と、
振動板の平面内の軸における第1の振動の振幅を検知する第1のピックオフ構成要素であって、第2の振動が共振器上のコリオリ力によって共振器内に誘起され、
第2の振動は、第1の振動に実質的に直交する、第1のピックオフ構成要素と、
第2の振動を実質的にゼロにさせる第2のフォーサー構成要素と、
第2の振動の振幅を検知する第2のピックオフ構成要素と、を備える。
実施の形態の更に別の組によれば、共振器ジャイロスコープが、
上部カバー及び下部カバーのうちの少なくとも一方を備えるケースと、
ケースに固定された中央ポストと、
中央ポストに結合された概ね円柱形の共振器であって、ケースに閉囲される、概ね円柱形の共振器と、
共振器を中央ポストに結合する振動板と、を備え、
上部カバー及び下部カバーのうちの少なくとも一方は、ほぼ等間隔に配置される8つの電極を備え、電極のうちの少なくとも1つは、ロッキングモードで共振器を駆動するように構成された制御エレクトロニクスに結合され、制御エレクトロニクスは、ロッキングモードに直交する検知モードの振幅を実質的にゼロにするように更に構成され、
振動板は、振動板の平面内の軸における共振器の振動に適応する。
クラスIIコリオリ振動ロッキングモードジャイロスコープの一実施態様の切欠き分解図である。 クラスIIコリオリ振動ロッキングモードジャイロスコープの一実施態様の駆動軸に沿う断面図である。 クラスIIコリオリ振動ロッキングモードジャイロスコープの一実施態様の検知軸に沿う断面図である。 ロッキングモードジャイロスコープ用の閉ループ制御エレクトロニクスの簡略化したブロック図である。
添付図面は、種々の代表的な実施形態をより完全に記述するために使用されることになり、また、本明細書で開示する代表的な実施形態及びその利点をよりよく理解するために当業者によって使用され得る視覚的表現を提供する。これらの図面では、同様の参照符号は対応する要素を識別する。
本発明は、多くの異なる形態の実施形態が可能であるが、本開示が本発明の原理の例示として考えられ、示され述べられる特定の実施形態に本発明を限定することを意図されないという理解で、1つ又は複数の特定の実施形態が、図面に示されており、本明細書で詳細に述べられるであろう。以下の説明及び図面の幾つかの図において、同様の参照符号は、図面の幾つかの図において同じ、類似の、又は対応する部分を述べるために使用される。
ジャイロスコープは、動作原理に基づいて2つのカテゴリに分割され得る。第1のカテゴリにはコリオリベースジャイロスコープが存在し、コリオリベースジャイロスコープは、入力軸に垂直な速度成分を有する回転フレーム内で動く検知本体に作用する力を測定することによって角速度を検知する。検知本体の運動は、スピニングホイールの場合のように連続的か、又はチューニングフォーク若しくはベルの場合のように振動的であるとすることができる。第2のカテゴリにはサニャック(Sagnac)ベースジャイロスコープが存在し、サニャックベースジャイロスコープは、逆伝搬する光信号の伝送時間において光の速度が一定であることによる差を測定することによって角速度を検知する。この相対論的作用は、リングレーザージャイロスコープにおいて逆伝搬光信号の周波数の分割又は光ファイバジャイロスコープにおいて逆伝搬光信号の位相差をもたらす。
コリオリ振動ジャイロスコープ(Coriolis Vibratory Gyroscopes:CVG)は、クラスIジャイロスコープとクラスIIジャイロスコープとに更に細分される。クラスI CVGの例は、チューニングフォークジャイロスコープである。クラスII CVGの例は、ベル型又は半球状共振器ジャイロスコープである。クラスII CVGは、その入力軸に対して幾何学的に対称であり、主弾性軸に沿う振動について縮退したすなわちほぼ同一の共振周波数を有する。
ジャイロスコープは、制御エレクトロニクスを備える。制御エレクトロニクスは、検知要素の共振振動をほぼその自然共振周波数に制御し、また、振動の振幅を制御する。
ジャイロスコープは、閉ループ又は開ループで動作し得る。開ループの場合、ジャイロスコープが回転するにつれて、駆動軸の配向が、ケースを遅らせることになる。閉ループモード及び開ループモードは、異なる方法でこの現象に対処する。
ジャイロスコープが閉ループモードで動作するとき、ジャイロスコープ制御エレクトロニクスに含まれるフォースリバランスサーボループは、回復力を導入して、検知軸における共振器の運動をゼロにする。検知軸ピックオフ信号は、駆動軸の位相に対して正弦成分と余弦成分とに分割される。これらの成分が使用されて、共振器の角速度と直交位相運動の両方がゼロにされ、それにより、結合した振動が検知軸において実質的にゼロにされる。サーボループは、結合した振動を検知軸において実質的にゼロにするために振動の適切な振幅、周波数、及び位相をフォーサー電極が提供することを可能にすることによって、直交方向の結合振動が実質的にゼロにされることを可能にする制御信号を増幅し、変調し、フィードバックする。駆動周波数位相ロックループ(Phase Lock Loop:PLL)の制御ループとして知られる第2のサーボループは、共振器の自然共振周波数及び振動をほぼ維持する。
開ループ動作では、ジャイロスコープは、入力角速度に応答するため、そのゼロ位置からはずれて動作することを許容される。開ループモードでは、ケースに対する共振器の相対的な運動は、共振器が共振周波数でパラメータ的に駆動されるため追跡される。駆動信号の振幅及び周波数は、2つの軸に沿う適切なフィードバックによって調整される。
駆動軸は、角回転速度の検知がそれに沿って起こる検知軸に直交する。駆動軸及び検知軸はともに、入力軸に直交する。
CVGのフォースリバランス信号は、2つの成分に分割され得る交流電圧である。第1の成分は、振動する共振器の速度と同位相であり、入力角速度に比例する振幅を有する。第2の成分は、共振器の変位と同位相であり、第1の成分と90度位相がずれる、すなわち、直交する。同位相角速度信号及び直交位相信号の大きさは、ジャイロスコープが開ループモードで運転されるときのジャイロスコープピックオフ出力の復調によって、又は、閉ループ動作の場合のフィードバックの正弦位相及び余弦位相の振幅によって導出される。位相は、共振器用の駆動信号に対して決定される。開ループジャイロの場合の復調の位相誤差又は閉ループジャイロの場合の再変調の位相誤差は、直交位相信号の一部分が、角速度と解釈され、ジャイロスコープバイアス誤差に寄与するようにさせる。
本発明の実施形態によれば、ジャイロスコープは、共振器を含み、共振器は、中央のケース固定式弾性ポストに共振器を結合する振動板によって支持される。好ましくは、振動板は振動板を備える。好ましくは、振動板は弾性がある。共振器は、上部カバー及び下部カバーを有するケース内に閉囲され、ケースは、本発明の実施形態によれば、誘電的に絶縁された電極を含む。本発明の実施形態によれば、電極は、共振器の端面に面し、容量性ピックオフ電極及びフォーサー電極を備える。本発明の実施形態によれば、少なくとも1つのフォーサー電極は、ピックオフ電極に対角線状に対向する。本発明の実施形態によれば、少なくとも1つのピックオフ電極は、フォーサー電極に対角線状に対向する。そのため、共振器は、ピックオフ電極及びフォーサー電極の一セットを使用して、振動板の平面内の軸において、その基本自然周波数に実質的に等しい周波数かつ固定振幅で振動するようにさせられ得る。したがって、第1の振動の大きさに関するフィードバックが、フォーサー構成要素に提供され、第1の振動のフォーサー構成要素による調節を可能にする。
本発明の実施形態によれば、適切に選択された慣性モーメントを有する共振器の使用と組合せた、共振器を弾性中央ポストに結合するための弾性振動板の使用は、増大した信号対雑音比(Signal-to-Noise Ratio:SNR)をもたらす場合がある。大きなピックオフキャパシタンスもまた、本発明の実施形態による増大したSNRに寄与する場合がある。大きなフォーサー電極キャパシタンスもまた、本発明の実施形態による増大したSNRに寄与する場合がある。さらに、ロッキングモードジャイロスコープは、MEMSバッチ処理を使用して作製され得る。
共振器の入力軸に平行な軸の回りでのジャイロスコープの回転に応答して、共振器のロッキング運動は、振動板の平面内の直交軸におけるロッキング運動に結合される。この結合したロッキング運動は、容量性ピックオフによって検出され得る。
そのため、ジャイロスコープが開ループモードで動作する実施形態では、ピックオフ電極の測定信号は、角度変位に比例し得る。代替的に、直交モードのピックオフは、制御エレクトロニクスに信号を提供することができ、その信号は、その後、フォーサー電極に送信され、フォーサー電極によって使用されて、静電力を使用して直交モードの振幅を実質的にゼロにする。駆動されるロッキングモード周波数及び直交モード周波数は、駆動軸及び検知軸に対して約45度の軸において負の静電ばねを生成する電圧をチューニング電極に印加することによって、密接に整合され得る。ジャイロスコープの出力信号は、その後、直交位相成分を実質的に全く持たず、ジャイロスコープのケースの角速度に比例することになる。
本発明の実施形態によれば、ロッキングモードジャイロスコープ(RMG)は、クラスII CVGであり、クラスII CVGは、RMGが、ジャイロスコープのバイアスの自己較正、直交位相、及びおそらくはスケールファクタのために構成されることを可能にする。本発明の実施形態によれば、RMGは、小型で低電力で低コストのジャイロスコープを提供し、バイアス安定性及び再現性は、タクティカルグレードの慣性測定装置(Inertial Measurement Units:IMU)及び慣性航法システム(Inertial Navigation Systems:INS)について1度/時間未満である。
本発明の実施形態によれば、RMG共振器は、中央のケース固定式ポストに結合された振動板によって支持される。本発明の実施形態によれば、共振器は振動板に結合される。本発明の実施形態によれば、共振器は、誘電的に絶縁された電極を含む、上部カバー及び下部カバーを有するケース内に閉囲される。本発明の実施形態によれば、これらの電極は、共振器の端面に面し、容量性ピックオフ電極及びフォーサー電極を形成する。
ジャイロスコープは、共振器の第1の振動をもたらすために共振器に結合したフォーサー構成要素を備える。共振器の入力軸の回りの成分を有する角速度及び第1の振動は、共振器上にコリオリ力を誘起する。コリオリ力は、共振器の第2の振動を引起す。第2の振動は第1の振動に実質的に直交する。例えば、第2の振動は、検知軸において起こる。
入力軸の回りのジャイロスコープの回転に応答して、共振器のロッキング運動は、振動板の平面内の直交軸における運動に結合される。この結合したロッキング運動は、容量性ピックオフ電極によって検出され得る。そのため、ジャイロスコープが全角度の開ループモードで動作するとき、ピックオフ電極の分解された信号は、ジャイロスコープの角度変位に比例し得る。代替的に、直交モードのピックオフは、静電力を使用して直交モードの振幅を実質的にゼロにする信号を制御エレクトロニクスに提供し得る。駆動されるロッキングモード周波数及び直交モード周波数は、チューニング電極に印加される電圧を使用して密接に整合され得る。静電力信号は、直交位相成分を実質的に全く持たず、そしてジャイロスコープの角速度に比例し得る。両方の場合に、実施形態は、共振器のほぼ基本ロッキングモード共振周波数の駆動される振動、基本ロッキングモード共振周波数のほぼ高調波の駆動される振動、及び、基本ロッキングモード共振周波数のほぼ低調波の駆動される振動を伴い得る。
RMGは、振動板及び堅牢な中央ポストを備えるサスペンションを使用する。RMGはまた、適切に選択された慣性モーメントを有する共振器を使用して、ロッキングモード周波数より少なくとも約3〜5倍高い面外並進共振周波数を持ちながら、ほぼ所望のロッキングモード周波数を提供する。しかし、ロッキングモード周波数及び並進周波数は、減衰効果、2つのモードの互いに対する干渉、及び他の望ましくない結果をもたらし得るため、ほぼ整数倍であるべきでない。
共振器を備えるジャイロスコープを始動させるため、共振器に結合したフォーサー電極は、共振器の第1の振動を引起す。入力軸の回りの共振器の角速度は、共振器上のコリオリ力を誘起する。コリオリ力は、共振器の第2の振動を引起す。第2の振動は第1の振動に実質的に直行する。第2の振動は、振動板の平面内の検知軸176内にある。第1の振動は、駆動方向の駆動振動を含み、第2の振動は、直交する検知方向のコリオリ力誘起振動を含む。フォーサー構成要素は、共振器において第1の振動を引起し、ピックオフ構成要素は、振動の振幅及び振動の位相の少なくとも一方を測定する。ピックオフ構成要素は、共振器上のコリオリ力によって振動する共振器において誘起される第2の振動を検知し、フォーサー構成要素は、第2の振動の振幅を実質的にゼロにする。
図1は、クラスIIコリオリ振動ロッキングモードジャイロスコープ(RMG)100の一実施態様の切欠き分解図である。RMG100は、上部電極組立体105A、下部電極組立体105B、上部電極絶縁体125A、下部電極絶縁体125B、上部共振器絶縁体135A、下部共振器絶縁体135B、及び共振器組立体110を備える。好ましくは、上部電極絶縁体125Aは、酸化物上部電極絶縁体125Aである。好ましくは、下部電極絶縁体125Bは、酸化物下部電極絶縁体125Bである。好ましくは、上部共振器絶縁体135Aは、熱成長した上部酸化物層135Aである。好ましくは、下部共振器絶縁体135Bは、熱成長した下部酸化物層135Bである。RMG100は、入力軸115の回りに円柱対称である。
上部電極組立体105Aは、上部カバー120A、上部電極絶縁体125A、上部ガードリング130A、及び上部共振器絶縁体135Aを備える。好ましくは、上部電極絶縁体125Aは二酸化シリコンを含む。好ましくは、上部共振器絶縁体135Aは、共振器150を上部電極140A〜140Hから分離し、上部電極140A〜140H用の容量性ギャップを確立する。好ましくは、上部共振器絶縁体135Aは、二酸化シリコン層を備える。
作製中、上部電極組立体105A内に含まれるハンドル層及びデバイス層は、パターニングされエッチングされ、それにより、上部カバー120A、上部電極140A〜140H、及び上部ガードリング130Aを形成する。
下部電極組立体105Bは、下部カバー120B、下部電極絶縁体125B、下部ガードリング130B、及び下部共振器絶縁体135Bを備える。好ましくは、下部電極絶縁体125Bは二酸化シリコンを含む。好ましくは、下部共振器絶縁体135Bは、共振器150を下部電極140I〜140Pから分離し、下部電極140I〜140P用の容量性ギャップを確立する。好ましくは、下部共振器絶縁体135Bは、二酸化シリコン層を備える。
作製中、下部電極組立体105B内に含まれるハンドル層及びデバイス層は、パターニングされエッチングされ、それにより、下部カバー120B、下部電極140I〜140P、及び下部ガードリング130Bを形成する。
上部電極組立体105Aのデバイス層は、8つの上部電極140A〜140Hを備える。8つの上部電極140A〜140Hは、好ましくは、入力軸115上で芯出しされた近似円内でほぼ等しい距離だけ分離されるように配列される。作製中、上部電極組立体105A内に含まれるデバイス層は、パターニングされエッチングされ、それにより、8つの上部電極140A〜140H及び上部ガードリング130Aを形成する。上部電極絶縁体125Aは、上部電極140A〜140H及び上部ガードリング130Aを上部カバー120Aから絶縁する。
下部電極組立体105Bのデバイス層は、8つの下部電極140I〜140Pを備える。8つの下部電極140I〜140Pは、好ましくは、入力軸115上で芯出しされた近似円内でほぼ等しい距離だけ分離されるように配列される。作製中、下部電極組立体105B内に含まれるデバイス層は、パターニングされエッチングされ、それにより、8つの
下部電極140I〜140P及び下部ガードリング130Bを形成する。下部電極絶縁体125Bは、下部電極140I〜140P及び下部ガードリング130Bを下部カバー120Bから絶縁する。
共振器組立体110は、共振器150、振動板160、ハウジング172、及び中央ポスト174を備える。共振器150は、上部共振器半分150A及び下部共振器半分150Bを備える。振動板は、上部振動板160A及び下部振動板160Bを備える。ハウジング172は、上部ハウジング172A及び下部ハウジング172Bを備える。中央ポスト174は、上部カバー120Aから下部カバー120Bまで延在する。中央ポスト174は、上部中央ポストセクション174A及び下部中央ポストセクション174Bを備える。
作製中、共振器150、振動板160、及びハウジング172は、共振器組立体110から形成される。共振器組立体110は、2つのシリコンウェハー、上部共振器組立体ウェハー110A、及び下部共振器組立体110Bを備える。上部共振器組立体110Aは、上部共振器絶縁体135A、上部共振器半分150A、上部振動板160A、上部ハウジング172A、及び上部中央ポストセクション174Aを備える。下部共振器組立体110Bは、下部共振器絶縁体135B、下部共振器半分150B、下部振動板160B、下部ハウジング172B、及び下部中央ポストセクション174Bを備える。
上部共振器組立体ウェハー173A及び下部共振器組立体ウェハー173Bはそれぞれ、パターニングされエッチングされて、共振器組立体110の半分を形成する。共振器150をハウジング172から分離する環状ギャップは、上部共振器組立体173Aを下部共振器組立体173Bにボンディングする前は未エッチングのままである。上部共振器組立体173A及び下部共振器組立体173Bのボンディングに続いて、共振器150と上部ハウジング172Aとの間の環状ギャップがエッチングされる。共振器150Bと下部ハウジング172Bとの間の環状ギャップは未エッチングのままである。共振器組立体110は、上部電極組立体105Aに直接ボンディングされる(融解ボンディングされるとしても知られる)。共振器150Bと下部ハウジング172Bとの間の環状ギャップはエッチングされ、共振器組立体110及び上部電極組立体105Aは、下部電極組立体105Bに直接ボンディングされる。これによって、RMG100の作製及び組立てが終了する。
中央ポスト174は、ジャイロスコープ100を貫通して垂直に延び、上部カバー120A及び上部電極絶縁体125Aに接続され、上部ガードリング130A及び上部共振器絶縁体135Aの中央を通過し、振動板160及び下部共振器絶縁体135Bに接続され、下部ガードリング130B及び下部電極絶縁体125Bの中央を通過し、下部カバー120Bに接続される。好ましくは、中央ポスト174は、上部絶縁体135Aと135Bとの間に存在する部分で可撓性があり、他の所では剛性がある中央ポスト174である。共振器150は、好ましくは平面構成を有する。共振器150は、好ましくは概ね円柱形の共振器150である。代替の実施形態によれば、共振器150は、概ね長方形の共振器150であり得る。代替の実施形態によれば、共振器150は、概ね正方形の共振器150であり得る。代替の実施形態によれば、共振器150は、入力軸の回りに対称であり、かつ、概ね円柱形でない、概ね長方形でない、又は概ね正方形でない他の形状を有し得る。上部電極組立体105A及び下部電極組立体105Bにボンディングされたハウジング172は、共振器105の高Q共振に必要とされる真空格納容器を提供する。上部共振器絶縁体135Aは、共振器150と上部電極140A〜140Hとの間に容量性ギャップを確立し、上部ガードリング130Aをハウジング172から絶縁する。下部共振器絶縁体135Bは、共振器150と下部電極140I〜140Pとの間に容量性ギャップを確立し、下部ガードリング130Bをハウジング172から絶縁する。
共振器150は、振動板160によって中央ポスト174に結合される。好ましくは、中央ポスト174は、上部カバー組立体105Aに上部中央ポスト固定点175Aでボンディングされる。好ましくは、中央ポスト174は、下部カバー組立体105Bに下部中央ポスト固定点175Bでボンディングされる。好ましくは、振動板160は弾性がある。好ましくは、振動板160は、共振器150を支持する振動板160である。好ましくは、振動板160は、共振器150を中央ポスト174に結合する。好ましくは、中央ポスト174は弾性がある。好ましくは、中央ポスト174及び振動板160は、共振器150にほぼ同期して撓み、振動板160の平面内の軸において振動する。入力軸115は、共振器150の平面に直交する。
振動板160は、振動板160の平面内の検知軸176において共振器150の運動に適応する。駆動運動が起こる駆動軸180は、検知軸176に直交し、また同様に、入力軸115に直交する。ロッキングモード共振周波数は、共振器150の慣性モーメント、及び、サスペンション、すなわち中央ポスト174及び振動板160の角度運動のばね定数に基づいて決定される。関心の並進モードについての共振周波数は、共振器150の質量と、サスペンション、すなわち中央ポスト174及び振動板160の並進運動のばね定数とに基づいて決定される。
好ましくは、振動板160は、中央ポスト174と、上部電極組立体105Aと、下部電極組立体105Bを通ってハウジング172に結合される。好ましくは、振動板160は、中央ポスト174を通してハウジング172に機械的に取付けられる。
上部電極組立体105Aは上部電極140A〜140Hを備える。下部電極組立体105Bは下部電極140I〜140Pを備える。電極140A〜140Pは、共振器150の端面に面する。
好ましくは、上部電極140A〜140H及び下部電極140I〜140Pはそれぞれ、4つのチューニング電極を備える。好ましくは、上部電極140A〜140H及び下部電極140I〜140Pはそれぞれ、2つのピックオフ電極を備える。好ましくは、上部電極140A〜140H及び下部電極140I〜140Pはそれぞれ、2つのフォーサー電極を備える。
チューニング電極を構成する交互の上部電極140A〜140Hは、同様にチューニング電極を構成する対応する交互の下部電極140I〜140Pに対角線状に対向する。初期命名規則は任意であるが、この例では、上部電極140B、140D、140F、及び140Hはチューニング電極を構成する。同様に、下部電極140J、140L、140N、及び140Pはチューニング電極を構成する。
DC電圧は、チューニング電極140B、140D、140F、140H、140J、140L、140N、及び140Pに印加されて、直交位相を制御し、それを実質的に削除する。チューニング電極140B、140D、140F、140H、140J、140L、140N、及び140Pは、2つの主弾性軸の共振周波数、その結果、検知軸176と駆動軸180の共振周波数を実質的に等しくさせる適切な負の静電ばねを導入することによって、直交位相の実質的な削除を達成する。
上部電極140E及び140Gはピックオフ電極を構成し、上部電極140A及び140Cはフォーサー電極を構成する。同様に、下部電極140I及び140Kはピックオフ電極を構成し、下部電極140M及び140Oはフォーサー電極を構成する。上部ピックオフ電極の少なくとも一方は、下部ピックオフ電極に対角線状に対向し、上部フォーサー電極の少なくとも一方は、下部フォーサー電極に対角線状に対向する。好ましくは、各上部ピックオフ電極は、下部ピックオフ電極に対角線状に対向し、各上部フォーサー電極は、下部フォーサー電極に対角線状に対向する。好ましくは、ピックオフ電極の1つ又は複数は、容量性ピックオフ電極を備える。
初期命名規則は任意であるが、この例では、上部電極140A及び140Cは、フォーサー電極を構成し、同様にフォーサー電極を構成する下部電極140M及び140Oにそれぞれ対角線状に対向する。上部電極140E及び140Gは、ピックオフ電極を構成し、同様にピックオフ電極を構成する下部電極140I及び140Kにそれぞれ対角線状に対向する。
フォーサー電極140A及び140Mの少なくとも一方は、制御エレクトロニクス(図示せず)に結合され、制御エレクトロニクスは、適切な電圧を提供して、駆動軸180において共振器150の振動のほぼ一定の振幅を維持する。好ましくは、制御エレクトロニクスは、静電力を使用して、ほぼ共振周波数かつ特定の振幅のロッキングモードで共振器150を駆動する。例えば、フォーサー電極140A、140M、及び制御エレクトロニクスは、フォーサー電極140A及び140Mに電圧を印加することによって、ほぼ基本共振周波数かつ特定の振幅のロッキングモードで共振器150を駆動する。約100ボルトのバイアス電圧が共振器150に印加される。
ピックオフ電極140E及び140Iの少なくとも一方は、共振器150の振動の位相、方向、及び振幅の少なくとも1つを検知する。ピックオフ電極140E及び140Iの少なくとも一方は、共振器150の振動の位相、方向、及び振幅の少なくとも1つに関する情報を制御エレクトロニクスに提供する。好ましくは、制御エレクトロニクスは、少なくとも一方のピックオフ電極140E及び140Iによって提供される情報を使用して、ほぼ共振周波数かつ特定の振幅のロッキングモードで共振器150を駆動する。
好ましくは、制御エレクトロニクスは、制御エレクトロニクスが結合されるピックオフ電極140G及び140Kの少なくとも一方によって提供される、共振器150の振動の方向及び振幅の少なくとも1つを使用して、検知軸176における直交振動モードの直交位相成分の振幅を実質的にゼロにするために信号が印加されることに関する命令を、チューニング電極140B、140D、140F、140H、140J、140L、140N、及び140Pのうちの1つ又は複数に提供する。
図2は、クラスIIコリオリ振動ロッキングモードジャイロスコープ100の共振駆動の一実施態様の駆動軸180に沿う断面200の図である。対角線状に対向するフォーサー電極140A及び140M並びに対角線状に対向するピックオフ電極140E及び140Iが示されている。デバイスの機能に実質的に影響を及ぼすことなく共振器150から材料が除去され、円柱体積210が生成される。その理由は、その材料が、駆動軸180と検知軸176との間のエネルギーを結合するコリオリ力にほとんど寄与しないからである。
同様に図2には、上部カバー120A、下部カバー120B、上部電極絶縁体125A、下部電極絶縁体125B、上部ガードリング130A、下部ガードリング130B、上部共振器絶縁体135A、下部共振器絶縁体135B、上部共振器半分150A、下部共振器半分150B、上部振動板160A、下部振動板160B、上部ハウジング172A、下部ハウジング172B、上部中央ポストセクション174A、及び下部中央ポストセクション174Bが示される。
コンデンサーは、フォーサー電極140Aと共振器150との間に形成される。同様に、コンデンサーは、フォーサー電極140Mと共振器150との間に形成される。コンデンサーは、ピックオフ電極140Eと共振器150との間に形成される。同様に、コンデンサーは、ピックオフ電極140Iと共振器150との間に形成される。
フォーサー電極140A及び140Mは、その基本自然周波数に実質的に等しい周波数かつ固定振幅で共振器150を駆動する方法に関してフォーサー電極140A及び140Mに指示する駆動信号を、制御エレクトロニクス(図示せず)から受信する。
共振器150は、実質的に非ゼロ電位を有する中央ポスト174に振動板160を通して接続される。共振器150の振動は、ピックオフ電極140E及び140I内でピックオフ信号を生成し、ピックオフ電極140E及び140Iは、ピックオフ信号を制御エレクトロニクスに送信する。ピックオフ信号は、共振器150の運動の周波数、位相、及び振幅に関する情報を制御エレクトロニクスに提供する。温度が変化するときの共振器150の共振周波数の変化は、本発明の実施形態に従って較正され、ジャイロスコープ100の変動する温度に合わせて調整するための熱的にモデル化された補正を適用するために使用され得る。
図3は、クラスIIコリオリ振動ロッキングモードジャイロスコープ100の一実施態様の共振器150の検知軸176に沿う断面300の図である。対角線状に対向するフォーサー電極140C及び140O並びに対角線状に対向するピックオフ電極140G及び140Kが示される。円柱体積210が、共振器150から除去される。円柱体積210を生成するために除去される材料は、デバイスの機能に実質的に影響を及ぼすことなく安全に除去され得る。その理由は、その材料が、駆動軸180と検知軸176との間のエネルギーを結合するコリオリ力にほとんど寄与しないからである。
同様に図3には、上部カバー120A、下部カバー120B、上部電極絶縁体125A、下部電極絶縁体125B、上部ガードリング130A、下部ガードリング130B、上部共振器絶縁体135A、下部共振器絶縁体135B、上部共振器半分150A、下部共振器半分150B、上部振動板160A、下部振動板160B、上部ハウジング172A、下部ハウジング172B、上部中央ポストセクション174A、及び下部中央ポストセクション174Bが示される。
コンデンサーは、フォーサー電極140Cと共振器150との間に形成される。同様に、コンデンサーは、フォーサー電極140Oと共振器150との間に形成される。コンデンサーは、ピックオフ電極140Gと共振器150との間に形成される。同様に、コンデンサーは、ピックオフ電極140Kと共振器150との間に形成される。
フォーサー電極140C及び140Oは、共振器150の検知モードの振幅を実質的にゼロにする方法に関してフォーサー電極140C及び140Oに指示する駆動信号を、制御エレクトロニクス(図示せず)から受信する。
共振器150は、実質的に非ゼロ電位を有する中央ポスト174に振動板160を通して接続される。共振器150の振動は、ピックオフ電極1 140G及び140K内でピックオフ信号を生成し、ピックオフ電極1 140G及び140Kは、ピックオフ信号を制御エレクトロニクスに送信する。ピックオフ信号は、共振器150の運動の周波数、位相、及び振幅に関する情報を制御エレクトロニクスに提供する。温度が変化するときの共振器150の共振周波数の変化は、本発明の実施形態に従って較正され、ジャイロスコープ100の変動する温度に合わせて調整するための熱的にモデル化された補正を適用するために使用され得る。
図4は、ロッキングモードジャイロスコープ100用の閉ループ制御エレクトロニクス410の簡略化したブロック図である。制御エレクトロニクス410は、4つのサーボループ420、430、440、及び450を備える。
サーボループ420は、駆動周波数PLL420である。駆動周波数PLL420は、共振器150が実質的にその基本共振周波数で振動することを保証する。
サーボループ430は、駆動振幅制御ループ430である。駆動振幅制御ループ430は、共振器150の運動の実質的に一定の振幅を維持する。
サーボループ440は、角速度制御ループ440である。角速度制御ループ440は、入力軸115の回りのロッキングモードジャイロスコープ100の回転の角速度の測定値を提供する。
サーボループ450は、直交位相制御ループ450である。直交位相制御ループ450は、直交位相の大きさの測定値を提供する。
ピックオフ電極140E及び140Iは、駆動周波数制御ループ420及び駆動振幅制御ループ430に結合し、駆動周波数制御ループ420及び駆動振幅制御ループ430は、ロッキングモードジャイロスコープ100の共振器150にフィードバックを提供して、周波数PLL制御ループ420を駆動し、振幅制御ループ430を駆動する。ピックオフ電極140E及び140Iからのピックオフ信号は、復調され、その正弦成分と余弦成分とに分離される。
ピックオフ信号は、復調され、比例利得及び積分利得で増幅される。駆動周波数PLL制御ループ420及び駆動振幅制御ループ430の出力は、その後、フォーサー電極140A及び140Mに印加される。フォーサー電極140A及び140Mは、駆動周波数PLL制御ループ420及び駆動振幅制御ループ430から適切な駆動信号を受信する。これらの駆動信号を使用して、フォーサー電極140A及び140Mは、その基本自然周波数に実質的に等しい周波数かつ固定変位振幅で共振器150を駆動する。
ピックオフ電極140G及び140Kは、ロッキングモードジャイロスコープ100の共振器150にフィードバックを提供する角速度制御ループ440及び直交位相制御ループ450に結合される。ピックオフ電極140G及び140Kからのピックオフ信号は、復調され、その正弦成分と余弦成分とに分離される。正弦成分は直交位相制御ループ450に送信され、余弦成分は角速度制御ループ440に送信される。
ピックオフ信号は、角速度制御ループ440及び直交位相制御ループ450によって比例利得及び積分利得で増幅される。ピックオフ信号は、角速度制御ループ440及び直交位相制御ループ450によって変調され、加算される。角速度制御ループ440及び直交位相制御ループ450の加算出力は、その後、フォーサー電極140C及び140Oに印加される。フォーサー電極140C及び140Oは、角速度制御ループ440及び直交位相制御ループ450から適切な駆動信号を受信する。これらの駆動信号を使用して、フォーサー電極140C及び140Oは、その基本自然周波数に実質的に等しい周波数で共振器150を駆動して、検知軸176における運動をゼロにする。
上記代表的な実施形態は、例示的な構成の或る特定の構成要素に関して述べられたが、他の代表的な実施形態が、異なる構成及び/又は異なる構成要素を使用して実装され得ることが当業者によって理解されるであろう。例えば、或る特定の作製ステップ及び或る特定の構成要素の順序は、本発明の機能を実質的に損なうことなく変更され得ることが当業者によって理解されるであろう。
例えば、デバイスは、フォーサー電極の不完全なセットを備え得る。例えば、4つのフォーサー電極の1つが欠け得る。別の例として、デバイスは、ピックオフ電極の不完全なセットを備え得る。例えば、4つのピックオフ183の1つが欠け得る。別の例として、上部と下部が反転し得る。すなわち、デバイスがひっくり返され得る。更に別の例として、共振器150は、ほぼ長方形であり得る。なお別の例として、共振器150は、ほぼ正方形でも、概ね円柱形でもない形状を有し得るが、入力軸の回りに対称である別の形状をとり得る。例えば、共振器150は、概ね円柱形でない、ほぼ正方形でない、またほぼ長方形でない、例えば円錐状の形状を有し得る。別の例として、デバイスは、電極の拡張セット、例えば図1に示すより多くの電極を備え得る。これらの考えられる付加的な電極は、例えば、上述したものと僅かに異なるフォーシング方式及びピックオフ方式で使用することができる。
本明細書で詳細に述べられた代表的な実施形態及び開示される主題は、制限としてではなく、例示及び例証として提示された。述べた実施形態の形態及び詳細において種々の変更を行うことができ、添付の特許請求の範囲内に留まる等価な実施形態をもたらすことが当業者によって理解されるであろう。例えば、或る特定の作製ステップ及び或る特定の構成要素の順序は、本発明の機能を実質的に損なうことなく変更され得ることが当業者によって理解されるであろう。例えば、上部電極組立体105Aは、下部電極組立体150Bを2つの共振器組立体ウェハー173A及び173Bにボンディングする前に、共振器組立体110に含まれる2つの共振器組立体ウェハー173A及び173Bにボンディングされ得る。
本発明の例示的な実施態様が、本明細書で詳細に示され述べられたが、種々の修正、付加、置換等を、本発明の趣旨から逸脱することなく行うことができ、したがって、これらが、以下の特許請求の範囲で規定される本発明の範囲内にあると考えられることが当業者に明らかであろう。

Claims (41)

  1. 共振器ジャイロスコープであって、
    中央ポストと、
    前記中央ポストに結合した共振器と、
    前記共振器に結合した振動板と、を備え、
    前記中央ポスト及び前記振動板のうちの少なくとも一方は、前記振動板の平面内の軸における前記共振器の運動に適応する、共振器ジャイロスコープ。
  2. 前記共振器は概ね円柱形である、請求項1に記載のジャイロスコープ。
  3. 前記振動板は、前記共振器を前記中央ポストに結合する、請求項1に記載のジャイロスコープ。
  4. 前記振動板は弾性がある、請求項3に記載のジャイロスコープ。
  5. 前記中央ポストは弾性があり、ケースに固定される、請求項1に記載のジャイロスコープ。
  6. 前記ケースは、上部カバー及び下部カバーのうちの少なくとも一方を備える、請求項5に記載のジャイロスコープ。
  7. 1つ又は複数の電極が前記上部カバー及び前記下部カバーのうちの少なくとも一方に含まれる、請求項6に記載のジャイロスコープ。
  8. 前記電極のうちの少なくとも1つは制御エレクトロニクスに結合される、請求項7に記載のジャイロスコープ。
  9. 前記電極は、前記上部カバー及び前記下部カバーのうちの少なくとも一方の回りにほぼ等間隔に配置される、請求項7に記載のジャイロスコープ。
  10. 前記1つ又は複数の電極のうちの少なくとも1つは誘電的に絶縁される、請求項7に記載のジャイロスコープ。
  11. 前記1つ又は複数の電極のうちの少なくとも1つは前記共振器の端面に面する、請求項7に記載のジャイロスコープ。
  12. 前記電極のうちの少なくとも1つは、チューニング電極、ピックオフ電極、及びフォーサー電極のうちの少なくとも1つを構成する、請求項7に記載のジャイロスコープ。
  13. 前記チューニング電極は、前記上部カバー及び前記下部カバーのうちの少なくとも一方の回りに交互に存在する、請求項12に記載のジャイロスコープ。
  14. 前記上部カバー及び前記下部カバーのうちの少なくとも一方は、4つのフォーサー電極を備える、請求項12に記載のジャイロスコープ。
  15. 少なくとも1つのフォーサー電極は、ピックオフ電極に対角線状に対向する、請求項12に記載のジャイロスコープ。
  16. 前記ピックオフ電極のうちの少なくとも1つは、制御エレクトロニクスに結合される、請求項15に記載のジャイロスコープ。
  17. 前記制御エレクトロニクスは、該制御エレクトロニクスが結合される前記少なくとも1つのピックオフ電極によって提供される情報を使用して、前記共振器をロッキングモードで駆動する、請求項16に記載のジャイロスコープ。
  18. 前記制御エレクトロニクスは、該制御エレクトロニクスが結合される前記少なくとも1つのピックオフ電極によって提供される前記情報を使用して、前記フォーサー電極のうちの少なくとも1つにフィードバックを提供して、前記共振器を、ほぼロッキングモード共振周波数のロッキングモードで駆動する、請求項17に記載のジャイロスコープ。
  19. 前記制御エレクトロニクスは、静電力及び該制御エレクトロニクスが結合される前記少なくとも1つのピックオフ電極によって提供される前記情報を使用して、前記フォーサー電極のうちの少なくとも1つにフィードバックを提供して、前記共振器を、ほぼロッキングモード共振周波数かつ特定の振幅のロッキングモードで駆動する、請求項18に記載のジャイロスコープ。
  20. 前記共振器は、ほぼ前記共振器の基本ロッキングモード共振周波数で駆動される、請求項19に記載のジャイロスコープ。
  21. 前記共振器は、前記基本ロッキングモード共振周波数のほぼ高調波で駆動される、請求項19に記載のジャイロスコープ。
  22. 前記共振器は、前記基本ロッキングモード共振周波数のほぼ低調波で駆動される、請求項19に記載のジャイロスコープ。
  23. 閉ループモードで動作する、請求項1に記載のジャイロスコープ。
  24. 前記制御エレクトロニクスは、駆動周波数位相ロックループ(PLL)、駆動振幅制御ループ、直交位相制御ループ、及び角速度制御ループのうちの1つ又は複数を備える、請求項16に記載のジャイロスコープ。
  25. 前記上部カバー及び前記下部カバーのうちの少なくとも一方は、4つのピックオフ電極を備える、請求項12に記載のジャイロスコープ。
  26. 前記ピックオフ電極のうちの少なくとも1つは、前記共振器の振動の位相、方向、及び振幅のうちの少なくとも1つを検知する、請求項25に記載のジャイロスコープ。
  27. 前記ピックオフ電極のうちの少なくとも1つは、制御エレクトロニクスに結合される、請求項12に記載のジャイロスコープ。
  28. 前記制御エレクトロニクスに結合された前記ピックオフ電極のうちの少なくとも1つは、サーボに、前記共振器の振動の位相、方向、及び振幅のうちの少なくとも1つを提供する、請求項27に記載のジャイロスコープ。
  29. 前記制御エレクトロニクスは、静電力及び該制御エレクトロニクスが結合される前記少なくとも1つのピックオフ電極によって提供される情報を使用して、前記駆動されるロッキングモードに直交する検知モードの前記振幅を実質的にゼロにする、請求項28に記載のジャイロスコープ。
  30. 前記少なくとも1つのピックオフ電極はピックオフ信号を受信し、前記制御エレクトロニクスは、該ピックオフ信号を、前記駆動軸の位相に対して正弦成分と余弦成分に分割する、請求項29に記載のジャイロスコープ。
  31. 前記正弦成分及び前記余弦成分が使用されて、前記共振器の角速度と直交位相運動の両方を実質的にゼロにし、それにより、前記検知モードの前記振幅を実質的にゼロにする、請求項30に記載のジャイロスコープ。
  32. 前記中央ポストは、前記共振器とほぼ同期して撓む、請求項1に記載のジャイロスコープ。
  33. 自己較正が可能である、請求項1に記載のジャイロスコープ。
  34. 前記振動板は、前記中央ポストを通して前記ケースに結合される、請求項5に記載のジャイロスコープ。
  35. 開ループモードで動作することができる、請求項1に記載のジャイロスコープ。
  36. 閉ループモードで動作することができる、請求項1に記載のジャイロスコープ。
  37. 共振器ジャイロスコープであって、
    中央ポストと、
    前記中央ポストに結合した概ね円柱形の共振器と、
    前記共振器に結合した振動板と、
    前記共振器の第1の振動を引起す第1のフォーサー構成要素と、
    前記振動板の平面内の軸における第2の振動を検知する第1のピックオフ構成要素であって、前記第2の振動は、前記共振器上のコリオリ力によって前記共振器内に誘起され、
    前記第2の振動は、前記第1の振動に実質的に直交する、第1のピックオフ構成要素と、
    前記第2の振動を実質的にゼロにさせる第2のフォーサー構成要素と、
    前記第2の振動の振幅を検知する第2のピックオフ構成要素と、を備える、共振器ジャイロスコープ。
  38. 前記ピックオフ構成要素は、前記第2の振動を検知して、前記振動する共振器の前記振幅を測定する、請求項37に記載の共振器ジャイロスコープ。
  39. 前記第1の振動は、駆動方向への駆動振動を含み、
    前記第2の振動は、検知方向へのコリオリ力誘起振動を含む、請求項37に記載の共振器ジャイロスコープ。
  40. 前記第1のフォーサー構成要素は、振動の振幅及び振動の位相のうちの少なくとも一方を測定し、
    前記第1のピックオフ構成要素は、前記第2の振動の前記振幅を実質的にゼロにする、請求項37に記載の共振器ジャイロスコープ。
  41. 共振器ジャイロスコープであって、
    上部カバー及び下部カバーのうちの少なくとも一方を備えるケースと、
    前記ケースに固定された弾性中央ポストと、
    前記中央ポストに結合された概ね円柱形の共振器であって、前記ケースに閉囲される、概ね円柱形の共振器と、
    前記共振器を前記中央ポストに結合する振動板と、を備え、
    前記上部カバー及び前記下部カバーのうちの少なくとも一方は、ほぼ等間隔に配置される8つの電極を備え、前記電極のうちの少なくとも1つは、ロッキングモードで前記共振器を駆動するように構成された制御エレクトロニクスに結合され、該制御エレクトロニクスは、前記ロッキングモードに直交する検知モードの振幅を実質的にゼロにするように更に構成され、
    前記中央ポスト及び前記振動板は、該振動板の平面内の軸における前記共振器の運動に適応する、共振器ジャイロスコープ。
JP2013140430A 2012-07-13 2013-07-04 中央固定ポストを有するクラスiiコリオリ振動ロッキングモードジャイロスコープ Pending JP2014029331A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/549,012 2012-07-13
US13/549,012 US20140013845A1 (en) 2012-07-13 2012-07-13 Class ii coriolis vibratory rocking mode gyroscope with central fixed post

Publications (1)

Publication Number Publication Date
JP2014029331A true JP2014029331A (ja) 2014-02-13

Family

ID=48740966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013140430A Pending JP2014029331A (ja) 2012-07-13 2013-07-04 中央固定ポストを有するクラスiiコリオリ振動ロッキングモードジャイロスコープ

Country Status (3)

Country Link
US (1) US20140013845A1 (ja)
EP (1) EP2685210A3 (ja)
JP (1) JP2014029331A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160086748A (ko) * 2015-01-12 2016-07-20 더 보잉 컴파니 인-시투 바이어스 자가-교정을 갖는 고대역폭 코리올리 진동식 자이로스코프(cvg)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9109901B2 (en) * 2013-03-08 2015-08-18 Freescale Semiconductor Inc. System and method for monitoring a gyroscope
US20140260611A1 (en) * 2013-03-15 2014-09-18 Analog Devices, Inc. XY-Axis Gyroscopes with Electrode Configuration for Detecting Quadrature Errors and Out-of-Plane Sense Modes
JP6205222B2 (ja) * 2013-09-24 2017-09-27 株式会社エンプラス 点滴灌漑用チューブ
US10502568B2 (en) 2015-04-29 2019-12-10 General Electric Company Inertial sensing systems and methods of manufacturing the same
DE102021211583A1 (de) 2021-10-14 2023-04-20 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zur Detektion einer mechanischen Blockierung eines Drehratensensors und Drehratensensor

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11264729A (ja) * 1998-03-18 1999-09-28 Masaki Esashi 回転振動型角速度センサ及びその製造方法
JP2002510398A (ja) * 1998-03-14 2002-04-02 ビーエイイー システムズ パブリック リミテッド カンパニー 2軸ジャイロスコープ
JP2004354110A (ja) * 2003-05-27 2004-12-16 Matsushita Electric Works Ltd 半導体センサおよびその製造方法
JP2005530124A (ja) * 2001-08-09 2005-10-06 ザ・ボーイング・カンパニー 静電的整列および同調を有するクローバーリーフマイクロジャイロスコープ
JP2005283584A (ja) * 2004-03-27 2005-10-13 Robert Bosch Gmbh 駆動/検出手段、駆動ユニットおよび評価ユニットを有するセンサ
JP2006504108A (ja) * 2002-11-20 2006-02-02 ビ−エイイ− システムズ パブリック リミテッド カンパニ− 振動構造ジャイロスコープでのスケール係数変動を測定するための方法および装置
JP2007047166A (ja) * 2005-08-08 2007-02-22 Litton Syst Inc クラスiiコリオリ振動ジャイロスコープにおけるバイアス及び直角位相の減少
JP2010505102A (ja) * 2006-09-29 2010-02-18 コンチネンタル オートモーティヴ ゲゼルシャフト ミット ベシュレンクテル ハフツング 振動センサを用いてヨーレートを測定するための装置
JP2011002295A (ja) * 2009-06-17 2011-01-06 Toyota Motor Corp 角速度検出装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2543673B1 (fr) * 1983-04-01 1986-04-11 Sfim Appareil gyroscopique ou gyrometrique, notamment gyroaccelerometre, a suspension souple et sustentation electrostatique
US5894090A (en) * 1996-05-31 1999-04-13 California Institute Of Technology Silicon bulk micromachined, symmetric, degenerate vibratorygyroscope, accelerometer and sensor and method for using the same
DE69634571D1 (de) * 1996-07-10 2005-05-12 Wako Kk Drehgeschwindigkeitssensor
US5932803A (en) * 1997-08-01 1999-08-03 Litton Systems, Inc. Counterbalanced triaxial multisensor with resonant accelerometers
US6164134A (en) * 1999-01-29 2000-12-26 Hughes Electronics Corporation Balanced vibratory gyroscope and amplitude control for same
US6584845B1 (en) * 1999-02-10 2003-07-01 California Institute Of Technology Inertial sensor and method of use
US6443008B1 (en) * 2000-02-19 2002-09-03 Robert Bosch Gmbh Decoupled multi-disk gyroscope
US6595056B2 (en) * 2001-02-07 2003-07-22 Litton Systems, Inc Micromachined silicon gyro using tuned accelerometer
US6955084B2 (en) * 2001-08-10 2005-10-18 The Boeing Company Isolated resonator gyroscope with compact flexures
US6651500B2 (en) * 2001-10-03 2003-11-25 Litton Systems, Inc. Micromachined silicon tuned counterbalanced accelerometer-gyro with quadrature nulling
US6796179B2 (en) * 2002-05-17 2004-09-28 California Institute Of Technology Split-resonator integrated-post MEMS gyroscope
CN100483073C (zh) * 2003-08-05 2009-04-29 财团法人工业技术研究院 微型振动式双轴感测陀螺仪
US7360423B2 (en) * 2005-01-29 2008-04-22 Georgia Tech Research Corp. Resonating star gyroscope
US7543496B2 (en) * 2006-03-27 2009-06-09 Georgia Tech Research Corporation Capacitive bulk acoustic wave disk gyroscopes
US8056413B2 (en) * 2007-09-11 2011-11-15 Evigia Systems, Inc. Sensor and sensing method utilizing symmetrical differential readout
US7874209B2 (en) * 2008-01-08 2011-01-25 Northrop Grumman Guidance And Electronics Company, Inc. Capacitive bulk acoustic wave disk gyroscopes with self-calibration
US8156805B2 (en) * 2009-04-15 2012-04-17 Freescale Semiconductor, Inc. MEMS inertial sensor with frequency control and method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002510398A (ja) * 1998-03-14 2002-04-02 ビーエイイー システムズ パブリック リミテッド カンパニー 2軸ジャイロスコープ
JPH11264729A (ja) * 1998-03-18 1999-09-28 Masaki Esashi 回転振動型角速度センサ及びその製造方法
JP2005530124A (ja) * 2001-08-09 2005-10-06 ザ・ボーイング・カンパニー 静電的整列および同調を有するクローバーリーフマイクロジャイロスコープ
JP2006504108A (ja) * 2002-11-20 2006-02-02 ビ−エイイ− システムズ パブリック リミテッド カンパニ− 振動構造ジャイロスコープでのスケール係数変動を測定するための方法および装置
JP2004354110A (ja) * 2003-05-27 2004-12-16 Matsushita Electric Works Ltd 半導体センサおよびその製造方法
JP2005283584A (ja) * 2004-03-27 2005-10-13 Robert Bosch Gmbh 駆動/検出手段、駆動ユニットおよび評価ユニットを有するセンサ
JP2007047166A (ja) * 2005-08-08 2007-02-22 Litton Syst Inc クラスiiコリオリ振動ジャイロスコープにおけるバイアス及び直角位相の減少
JP2010505102A (ja) * 2006-09-29 2010-02-18 コンチネンタル オートモーティヴ ゲゼルシャフト ミット ベシュレンクテル ハフツング 振動センサを用いてヨーレートを測定するための装置
JP2011002295A (ja) * 2009-06-17 2011-01-06 Toyota Motor Corp 角速度検出装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160086748A (ko) * 2015-01-12 2016-07-20 더 보잉 컴파니 인-시투 바이어스 자가-교정을 갖는 고대역폭 코리올리 진동식 자이로스코프(cvg)
KR102487462B1 (ko) * 2015-01-12 2023-01-10 더 보잉 컴파니 인-시투 바이어스 자가-교정을 갖는 고대역폭 코리올리 진동식 자이로스코프(cvg)

Also Published As

Publication number Publication date
EP2685210A2 (en) 2014-01-15
EP2685210A3 (en) 2015-12-16
US20140013845A1 (en) 2014-01-16

Similar Documents

Publication Publication Date Title
JP5161440B2 (ja) 振動梁ジャイロスコープ、振動梁ジャイロスコープの駆動方法
JP3834397B2 (ja) レートセンサ
US5987986A (en) Navigation grade micromachined rotation sensor system
US10209270B2 (en) Inertial sensors
US8783103B2 (en) Offset detection and compensation for micromachined inertial sensors
JP4690652B2 (ja) マイクロ電子機械システム
EP1440321B1 (en) Angular rate sensor having a sense element constrained to motion about a single axis and flexibly attached to a rotary drive mass
US5392650A (en) Micromachined accelerometer gyroscope
US6481283B1 (en) Coriolis oscillating gyroscopic instrument
Cho High-Performance Micromachined Vibratory Rate-and Rate-Integrating Gyroscopes.
US10809061B2 (en) Vibratory gyroscope including a plurality of inertial bodies
JP2014029331A (ja) 中央固定ポストを有するクラスiiコリオリ振動ロッキングモードジャイロスコープ
CN102369414A (zh) 振动型微机械角速度传感器
JP2000346649A (ja) マイクロジャイロスコープ
US10436587B2 (en) Multi-mode coriolis vibratory gyroscopes having high order rotationally symmetric mechanical structure and 32 electrodes
JPH02129514A (ja) 角速度センサー
JPH0654235B2 (ja) 振動式角速度計
KR100203315B1 (ko) 2축 내비게이션 그레이드 마이크로머신드 회전 센서 시스템
Parajuli et al. Frequency modulated operation in a silicon MEMS gyroscope with quatrefoil suspension system
JPS60135815A (ja) マルチセンサ
CN108332731B (zh) 微机械单振子三轴陀螺仪
US20130333470A1 (en) Planar coriolis gyroscope
CN108332733B (zh) 微机械单振子三轴陀螺仪的驱动和检测装置
Chiu et al. Design, fabrication and performance characterizations of an integrated dual-axis tuning fork gyroscope
JPH11513803A (ja) 振り子振動ジャイロスコープ、ジャイロスコープ加速度計、マルチセンサーおよび振幅振動ジャイロスコープ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160823

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170314