[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2014020211A - 筒内噴射式エンジンの燃料噴射制御装置 - Google Patents

筒内噴射式エンジンの燃料噴射制御装置 Download PDF

Info

Publication number
JP2014020211A
JP2014020211A JP2012156515A JP2012156515A JP2014020211A JP 2014020211 A JP2014020211 A JP 2014020211A JP 2012156515 A JP2012156515 A JP 2012156515A JP 2012156515 A JP2012156515 A JP 2012156515A JP 2014020211 A JP2014020211 A JP 2014020211A
Authority
JP
Japan
Prior art keywords
injection
fuel
engine
control device
injections
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2012156515A
Other languages
English (en)
Inventor
Takashi Okamoto
多加志 岡本
Shigeru Nishida
茂 西田
Yoshinobu Arihara
儀信 有原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2012156515A priority Critical patent/JP2014020211A/ja
Publication of JP2014020211A publication Critical patent/JP2014020211A/ja
Abandoned legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

【課題】ペネトレーションが過度に長くならないような最適な分割噴射回数を設定し得、PM排出量及びオイル希釈量の増大を抑制することができるとともに、燃費・排気性能等を向上させることのできる筒内噴射式エンジンの燃料噴射制御装置を提供する。
【解決手段】エンジン温度が所定温度以下のとき、一燃焼サイクル中に噴射すべき総噴射量が多くなるに従って、あるいは、一燃焼サイクル中に必要とされる総噴射パルス幅が大きくなるに従って、一燃焼サイクル中における分割噴射回数を増やす。
【選択図】図10

Description

本発明は、燃料を各気筒の燃焼室内に直接噴射する筒内噴射式エンジンの制御装置に係り、特に、エンジンの運転状態に基づいて一燃焼サイクル中に複数回の燃料噴射(分割噴射)を行う筒内噴射式エンジンの燃料噴射制御装置に関する。
近年、環境保全の観点から自動車の排出ガスに含まれる一酸化炭素(CO)、炭化水素(HC)、窒素酸化物(NOx)等の排出ガス物質の削減や燃料消費量の削減、並びにエンジン出力の向上等を図ることを主目的として、車載用の筒内噴射式エンジンが実用に供されている。この筒内噴射式エンジンは、気筒毎に配備された電磁弁の形態をとる燃料噴射弁(インジェクタとも呼ばれる)により、燃料を各気筒の燃焼室内に直接噴射するものである。
筒内噴射式エンジンでは、燃料噴射の仕方によっては、燃焼室内を移動する燃料噴霧がピストンの冠面や、シリンダボア壁面に付着する。
シリンダボア壁面に付着、残留した燃料量が多いと、点火されるまでの間に完全に気化できないことがあり、サイクル毎にトルク変動が発生したり、未燃ガスが増大する傾向がある。そのため、例えば特許文献1には、シリンダボア壁面温度が低い場合に、燃料がピストン冠面上に広がって気化しやすくなるように吸気行程における燃料噴射弁からの燃料噴射タイミングを変更する技術が開示されている。
また、例えば特許文献2には、燃料噴射量(以下、噴射量と略すことがある)が少ない噴霧の方が、噴射量の多い噴霧よりも噴霧の到達距離、すなわちペネトレーションが短くなる性質を利用し、一燃焼サイクル中に複数回の燃料噴射を実行して1回あたりの燃料噴射量を小さくすることで、シリンダボア壁面への燃料付着を低減し、かつ、エンジンの運転状態の変化に対し、先行噴射と後行噴射との間隔(噴射間隔)を概略クランク角度一定に保つ、すなわち、低回転ほど噴射間隔を長く、高回転ほど噴射間隔を短くすることで、噴霧を分散させる技術が開示されている。
一方、例えば特許文献3には、噴射量の線形性悪化を抑制するため、一燃焼サイクルあたり複数回に分割して燃料噴射を行うに際し、一燃焼サイクルにおける噴射量補正量を複数回に分割された燃料噴射のうちの一部に対して部分補正を行う技術が開示されている。
また、ピストン冠面やシリンダボア壁面に付着、残留した燃料量が多いと、粒子状物質、いわゆるパティキュレートマター(以下PM)の排出粒子数(PN)及びエンジンオイルへの燃料溶け込み量(オイル希釈量)が増大する。特に、ピストン冠面に付着した燃料量が多いとPM排出粒子数が増大する傾向にある。
特開2009-102997号公報 特開2002-161790号公報 特開2009-191768号公報
上記した如くの筒内噴射式エンジンにおいて分割噴射を行う場合、燃料噴射弁から噴射された燃料噴霧のペネトレーション(到達距離)を短くすることにより、燃料のピストン冠面付着量が減り、PM排出量及びオイル希釈量の増大を抑制することができる。ペネトレーションは噴射量が多くなるほど、長くなる。このため、加速時のように燃料噴射量が増大する条件では、分割噴射を行っても分割回数が少ない場合にはピストン冠面付着量が増える可能性がある。
一方、エンジンが高温のときは、低温のときに比べ、燃料が気化されやすくなって噴霧のペネトレーションが短くなるため、無理に分割噴射を行わなくても(1回のみの噴射で)ピストン冠面付着量の増大を抑えることができる。分割噴射を過剰な回数行った場合には、燃料噴射弁駆動電流増加による燃費の悪化、燃料噴射弁駆動音の増加、燃料噴射弁の耐久性悪化による排気性能の悪化等を招く可能性がある。また、過度にペネトレーションを短くすると、筒内における燃料と吸入空気の混合気均質度が悪化し、燃焼性悪化の可能性がある。
本発明は,このような事情に鑑みてなされたもので、その目的とするところは、エンジンの運転状態に応じて、ペネトレーションが過度に長くならないような最適な分割噴射回数を設定し得、PM排出量及びオイル希釈量の増大を抑制することができるとともに、燃費・排気性能等を向上させることのできる筒内噴射式エンジンの燃料噴射制御装置を提供することにある。
かかる目的を達成すべく、本発明に係る筒内噴射式エンジンの燃料噴射制御装置は、基本的には、エンジンの運転状態に基づいて一燃焼サイクル中に任意回数の分割噴射を行うもので、エンジン温度が所定温度以下のとき、一燃焼サイクル中に噴射すべき総噴射量が多くなるに従って、あるいは、一燃焼サイクル中に必要とされる総噴射パルス幅が大きくなるに従って、一燃焼サイクル中における噴射回数を増やすことを特徴としている。
本発明によれば、エンジン温度が所定温度以下のとき、一燃焼サイクル中の総噴射量あるいは総噴射パルス幅が大きくなるに従って、分割噴射回数を増加するようにされるので、ペネトレーションが長くならないようにでき、これにより、ピストン冠面の燃料付着量を低減できて、PM排出量及びオイル希釈量の増加を抑えることができるとともに、燃費・排気性能悪化を抑えることができる。その結果、燃焼の安定化が図られ、排気性能及び燃費性能が改善される。
上記した以外の、課題、構成、及び効果は、以下の実施形態により明らかにされる。
本発明に係る燃料噴射制御装置の一実施形態を、それが適用された車載用筒内噴射式エンジンと共に示す概略構成図。 本発明の一実施形態における高圧燃料ポンプ周りの構成を示す概略図。 本発明の一実施形態におけるエンジン制御ユニットの入出力関係を示すブロック線図。 燃料噴射弁に対する通電開始後からの経過時間と噴射された燃料噴霧のペネトレーションとの関係を示す図。 噴射パルス幅とペネトレーションの最大値との関係を示す図。 (A)は燃料噴射弁から噴射された燃料噴霧の指向方向等の説明に供される図、(B)は吸気行程での燃料噴射弁の噴射口からピストン冠面又はシリンダボア壁面までの最短距離とクランク角度との関係を示す図。 本発明の一実施形態における燃料噴射制御の制御内容の一例を示す機能ブロック図。 本発明の一実施形態における、n回分割噴射時の説明に供されるタイムチャート。 図7の分割噴射回数設定手段703で行われる処理手順の一例を示すフローチャート。 図9のステップ904(低温時分割噴射回数演算)の詳細な処理手順の一例を示すフローチャート。 図9のステップ904(低温時分割噴射回数演算)の詳細な処理手順の他の例を示すフローチャート。 図9のステップ905(高温時分割噴射回数演算)の詳細な処理手順の一例を示すフローチャート。 図9のステップ905(高温時分割噴射回数演算)の詳細な処理手順の他の例を示すフローチャート。 本発明の一実施形態の動作及び作用効果を従来例と比較して説明するために供されるタイムチャート。
以下、本発明の実施の形態を、図面を参照しながら説明する。
図1は、本発明に係る燃料噴射制御装置の一実施形態を、それが適用された車載用筒内噴射式エンジンと共に示す概略構成図である。
図示例の筒内噴射式エンジン1は、例えば4気筒(#1、#2、#3、#4)からなり、各気筒207b内に供給される空気は、エアクリーナ202の入口部から取り入れられ、空気流量計(エアフロセンサ)203を通り、吸入空気量を制御する電制スロットル205aが収容されたスロットルボディ205を通ってコレクタ206に入る。このコレクタ206に吸入された空気は、エンジン1の各気筒207bに接続された各吸気管201(吸気マニホルド及び吸気ポート)に分配された後、各気筒207b内に摺動自在に嵌挿されたピストン207a上方に画成される燃焼室207cに導かれる。また、前記エアフロセンサ203からは、前記吸入空気量に応じた信号がエンジン制御ユニット101に供給される。さらに、前記スロットルボディ205には、電制スロットル205aの開度を検出するスロットルセンサ204が取り付けられており、該センサ204からの信号もエンジン制御ユニット101に出力されるようになっている。
一方、燃料噴射弁254に燃料を供給する燃料供給系は次のような構成となっている(図2も参照)。すなわち、ガソリン等の燃料は、燃料タンク250から低圧燃料ポンプ251により一次加圧されて燃圧レギュレータ252により一定の圧力(例えば0.3MPa)に調圧されるとともに、後述する高圧燃料ポンプ209でより高い圧力(例えば5MPaや10MPa)に2次加圧され、コモンレール253を介して各気筒207bに設けられている燃料噴射弁254から燃焼室207c内に噴射される。
燃焼室207c内に噴射された燃料は、点火コイル222から高電圧が印加される点火プラグ208が発するスパークにより点火される。なお、本実施例においては、燃料噴射弁254は燃焼室207cの側方から噴射するサイド噴射方式をとるものとされているが、燃焼室207cの真上から噴射するセンター噴射方式としてもよい。
エンジン1のクランク軸207dに添設されたクランク角センサ216は、クランク軸207dの回転位置を表す角度信号をエンジン制御ユニット101に出力する。また、エンジン1は、吸気弁225及び排気弁226の開閉タイミングを変更可能な可変動弁機構を備えており、排気側カム軸に添設されたカム角センサ211は、前記カム軸の回転位置を表す角度信号をエンジン制御ユニット101に出力するとともに、排気側カム軸の回転に伴って回転する高圧燃料ポンプ駆動カム200の回転位置を表す角度信号をもエンジン制御ユニット101に出力する。
なお、本実施例においては、4気筒の筒内噴射式エンジン1を例にとって説明しているが、3気筒や6気筒等、他の気筒数のエンジンとしてもよい。
図2は、前記高圧燃料ポンプ209周りの構成を示している。燃料タンク250内の燃料は、前述したように低圧ポンプ251により吸入されて吐出され、プレッシャレギュレータ252によって一定の圧力に調圧された状態で高圧燃料ポンプ209の燃料導入口に導かれる。燃料導入口側には燃料導入量を調節するための高圧ポンプソレノイド弁209aが設けられている。高圧ポンプソレノイド弁209aはノーマルクローズ型であり、非通電時に閉弁し、通電時には開弁する。低圧ポンプ251によって供給された燃料は、エンジン制御ユニット101によって高圧ポンプソレノイド弁209aを制御することによって吸入量を調節され、ポンプ駆動カム200によって駆動されるピストンを備えた加圧室209bにて加圧され、燃料吐出口からコモンレール253に圧送される。燃料吐出口には、下流側の高圧燃料を加圧室に逆流させないために吐出弁(逆止弁)209cが設けられている。
コモンレール253には、燃圧センサ256が設けられるとともに、コモンレール253内の燃料温度(燃温)を検出する燃温センサ257が配備されている。
図3は、エンジン制御ユニット101の入出力関係を示す。エンジン制御ユニット101は、A/D変換器を含むI/OLSI101a、CPU101b等から構成され、アクセサリ、イグニッションON、スタータONを示すキースイッチ401の信号、アクセル開度センサ402、ブレーキスイッチ403、車速センサ404、エアフロセンサ203、スロットルセンサ204、カム角センサ211、クランク角センサ216、水温センサ217、空燃比センサ218、燃圧センサ256、燃温センサ257、油温センサ219、吸気温センサ258を含む各種センサ等からの信号を入力として取り込み、所定の演算処理を実行し、演算結果として算出された各種の制御信号を出力し、アクチュエータである電制スロットル205a、高圧ポンプソレノイド209a、点火コイル222、低圧燃料ポンプ251、各気筒(#1、#2、#3、#4)の燃料噴射弁254等に所定の制御信号を供給し、コモンレール内燃圧制御、燃料噴射制御(噴射量、一燃焼サイクルでの噴射回数、噴射時期の制御)、及び点火時期制御等を実行するものである。
なお、I/OLSI101aには各燃料噴射弁254を駆動する駆動回路が設けられており、バッテリから供給される電圧を昇圧回路(図示しない)を用いて昇圧して供給し、IC(図示しない)によって電流制御することによって各燃料噴射弁254を駆動する。
次に、図4〜図6を用いて、燃料噴射弁254から噴射された燃料噴霧のペネトレーション(到達距離)について説明する。
図4は、所定の燃圧、所定の噴射パルス幅で、燃料噴射弁254から燃料を噴射した場合の、噴射開始後、すなわち通電開始後からの経過時間と噴射された燃料噴霧のペネトレーションとの関係を燃料温度が低温の場合と高温の場合をそれぞれ示している。通電開始直後は燃料噴射弁254の開弁遅れがあるため、ペネトレーションは0であり、所定時間経過後から除々にペネトレーションが伸びていく。ある時間を経過すると、噴射した燃料が気化するため、ペネトレーションは収束する(図の破線)。この場合のペネトレーションの最大値はPNT_maxとなっている。
また、燃料温度が高い場合、燃料の気化速度が速くなり、ペネトレーションは短くなる。
分割噴射を行った場合、1回の噴射当りの噴射量が少なくなるので、図5を用いて後述するように、ペネトレーションは短くなる。
ペネトレーションは、許容上限値Gaより長い場合は燃焼室内の燃料付着量が許容できなくなるほど増大する。一方、許容下限値Gbより短い場合は、燃料と混合気の混ざり(均質度)が許容できなくなるほど悪化して、燃焼が不安定になり、燃費・排気性能の悪化を招く可能性がある。
許容上限値Ga及び許容下限値Gbは、燃焼室のボア、ストローク等により決定される。
図5は、所定の背圧の環境下に対し、所定の燃圧で、燃料噴射弁254から燃料を噴射した場合の、噴射パルス幅とペネトレーションの最大値(図4のPNT_maxに相当する)との関係を示している。噴射パルス幅が短い場合、すなわち、噴射量が少ない場合はペネトレーションの最大値は小さく、噴射パルス幅が長い場合はペネトレーションの最大値は大きくなっている。ここで、Ti_minは、噴射量の線形性が保たれる使用可能最小噴射バルス幅であり、噴射パルス幅がTi_minのときのペネトレーションが最も小さくなっている。
図6(A)は、燃料噴射弁254から燃焼室207c内へ噴射された燃料噴霧の指向方向を示し、図6(B)は、ピストン207aが上死点(TDC)から下死点(BDC)へと移動する間(吸気行程)に、燃焼室207cへ、燃料噴射弁254から燃料を噴射した場合の、燃料噴射弁254の噴射口からピストン冠面またはシリンダボア壁面までの最短距離と吸気行程でのクランク角度[°CA]との関係を示している。図6では、簡単のため、燃料噴射弁254から燃料を一方向に噴射する場合が一例として描かれている。クランク角度が0(ピストン207aがTDC)にある場合、燃料噴射弁254の噴射口に最もピストン207aの冠面が接近しているため、最短距離は短く、クランク角度が進むにつれてピストン207aがTDCからBDCへと移動するため、除々に最短距離は伸びてゆく。クランク角度がCA_0以降となると、ピストン207aは燃料噴射弁254の噴射口からさらに遠ざかるが、シリンダボア壁面の方が燃料噴射弁254の噴射口に近くなるため、最短距離は一定となる。
ここで、例えば、燃料噴射弁254から噴射された燃料噴霧のペネトレーションが大きい場合、クランク角度CA_0よりも進角側(TDC側)で噴射したとき燃料はピストン冠面に到達し、クランク角度CA_0よりも遅角側(BDC側)で噴射したとき燃料はシリンダボア壁面に到達する。ただし、燃料噴射弁254から噴射された燃料噴霧のペネトレーションがp1の場合、クランク角度CA_p1以降に噴射を開始すれば、燃料噴霧はピストン冠面にもボア壁面にも到達しないこととなる。また例えば、燃料噴霧のペネトレーションがp2の場合、クランク角度CA_p2以降に噴射を開始すれば、燃料噴霧はピストン冠面にもボア壁面にも到達しないこととなる。
図6(B)は、幾何学的な距離を示しており、実際の燃焼においては燃焼室207c内の吸気流動の影響を受けるが、一燃焼サイクル中に噴射すべき燃料量(要求噴射量)を複数回に分割して燃料噴射を実行し、分割された各噴射パルス幅のペネトレーションに応じて噴射するクランク角度(噴射時期)を設定することによって、ピストン冠面やボア壁面に付着する燃料量を低減することが可能である。
なお、本実施例の燃料噴射弁254は、同一の噴射パルス幅のもとでは、燃料圧力が高いほど燃料噴射量が増大する特性を持ち、また、前記噴射パルス幅に対する噴射量の特性は、噴射パルス幅が所定値以上の領域では線形性が保たれ、前記所定値未満の噴射パルス幅になると噴射量が安定しない。そのため、通常、噴射パルス幅として使用できるのは、噴射量の線形性が保たれる前記所定値(使用可能最小噴射バルス幅)以上に制限される。また、燃料噴射量についても同様に、使用できるのは、線形性が保たれる所定量(使用可能最少噴射量)以上に制限される。
次に、本実施形態における燃料噴射制御(噴射量、一燃焼サイクルでの噴射回数、噴射時期の制御)の具体的内容について説明する。
図7は、上記燃料噴射制御を実行するための構成の一例を示す機能ブロック図である。本例では、総噴射パルス幅演算手段702と、分割噴射回数設定手段703と、各噴射パルス幅演算手段704と、各噴射時期演算手段705と、上限噴射回数演算手段706と、燃料噴射弁駆動手段707と、が備えられている。
総噴射パルス幅演算手段702では、当該燃焼サイクル(一燃焼サイクル)において必要とされる総噴射パルス幅BASEPULSを演算する。総噴射パルス幅BASEPULSは、エンジン回転数、吸入空気量、冷却水温、吸気温、空燃比等の運転状態に基づき演算される当該燃焼サイクルにおいて要求される総噴射量とコモンレール内の燃圧とから求められる。
分割噴射回数設定手段703では、エンジンの運転状態及びエンジン温度に基づいて一燃焼サイクルでの噴射回数DIVを気筒毎に設定する。ここでは、エンジンの運転状態に基づいて、分割噴射を行わない場合(分割回数が1回:1回のみ噴射)及び燃料噴射を行わない(分割回数が0回:燃料カット時等)場合と、分割噴射を行う場合(分割回数が2回以上)とが判定され、分割噴射を行う場合は、エンジンの運転状態(回転数や負荷など)及びエンジン温度、並びに、前記した使用可能最小噴射バルス幅又は使用可能最少噴射量に基づいて、一燃焼サイクルにおいて可能な分割噴射回数(以下、可能噴射回数と称す):DIVTIME_1cylからDIVTIME_mcyl(mはエンジンの気筒番号)を設定する。
より具体的には、前記可能噴射回数DIVTIMEは、例えば前記総噴射パルス幅BASEPULSを前記使用可能最小噴射バルス幅で除すことにより求められ(後で詳述)、前記エンジン温度が所定温度以下のとき(低温時)、一燃焼サイクル中に噴射すべき総噴射量が多くなるに従って、あるいは、一燃焼サイクル中に必要とされる総噴射パルス幅が大きくなるに従って、前記可能噴射回数DIVTIMEは増やされる。
また、上記のように可能噴射回数DIVTIMEを気筒毎に演算することにより、各気筒毎に配備された燃料噴射弁のペネトレーションの長さバラツキを吸収することが可能となり、特定気筒のみ過度にペネトレーションが短くなることや長くなることを防止することができる。
なお、前記エンジン温度は、具体的には燃料温度及び燃焼室内温度を指し、これらの温度ないしそれに相関する温度である燃温、水温、油温、吸気温等のうちの少なくとも一つが用いられてエンジン温度が求められる。
また、エンジン温度が前記所定温度より高いとき(高温時)の噴射回数については、後で、図9、図12、図13を用いて説明する。
各噴射パルス幅演算手段704では、分割噴射回数設定手段703で最終的に設定された噴射回数DIV(後述)に応じて各回の噴射パルス幅:PULS_1からPULS_n(nは分割噴射回数)を演算する。
各噴射時期演算手段705では、噴射パルス幅:PULS_1からPULS_n(nは分割噴射回数)及び運転状態を入力とし、噴射時期:IT_1からIT_n(nは分割噴射回数)を演算する。噴射時期:IT_1を吸気行程に設定することにより、混合時間の確保、燃料のピストン付着回避に有利である。
上限噴射回数演算手段706では、前記分割噴射回数の許容最大値である上限噴射回数DIVMAXを演算する。上限噴射回数DIVMAXの演算は、噴射パルス幅、噴射時期、回転数等を入力とし、燃料の混合時間を確保するため分割噴射時の噴射終了タイミングが規定値以上に遅くならないように設定する。より具体的には、前記分割噴射終了タイミングは圧縮上死点から一定期間以上前に設定される。
また、上限噴射回数DIVMAXの設定は、エンジン温度が上昇すればペネトレーションが短くなることを考慮し、分割噴射によりペネトレーションが過度に短くなることを防止する役割を持つ。
ここで、分割噴射回数設定手段703で最終的に設定される一燃焼サイクルでの最終噴射回数DIVは、エンジン温度が所定温度以下のとき(低温時)においては、前記可能噴射回数DIVTIMEが前記上限噴射回数DIVMAX以下の場合は、可能噴射回数DIVTIMEに設定され、前記可能噴射回数DIVTIMEが前記上限噴射回数DIVMAXを越えている場合は、上限噴射回数DIVMAXに設定される(最終噴射回数DIV等の設定は後でさらに詳述する)。
また、エンジン温度が所定温度以下より高いとき(高温時)においては、後述する図12のステップ1204において、横軸にエンジン回転数がとられ、縦軸に総噴射パルス幅がとられたマップから可能噴射回数DIVTIMEが設定され、該可能噴射回数DIVTIMEが最終噴射回数として用いられる(詳細は後述)。
燃料噴射弁駆動手段707では、各気筒に配備された燃料噴射弁254に、各噴射時期演算手段705で設定された各噴射時期IT_1〜nにて、各噴射パルス幅演算手段704で演算された各噴射パルス幅:PULS_1〜nを持つ駆動パルス信号を供給する。
このようにされることにより、料噴射弁から噴射された燃料噴霧のペネトレーションが予め設定された上下限範囲(図4のGa-Gb)内に収められる。
図8は、n回分割噴射時におけるタイムチャートを示す。分割噴射のうちの1回目噴射は、クランク角上に決められた基準点(本例の場合は吸入行程上死点)からクランク角センサによりIT_1[deg]経過したと判断されたときにPULS_1[us]間(噴射パルス幅)の噴射を行う。n番目の噴射も同様に基準点からIT_n[deg]経過したと判断されたときにPULS_n[us]間の噴射を行う。
図9は、図7の分割噴射回数設定手段703で行われる処理手順の一例を示すフローチャートである。図9のフローチャートで示されるルーチンは、割込み処理であり、例えば10ms周期または角度周期で繰り返し実行される。ステップ902において分割噴射が可能な条件か否かを判断する。ステップ902において分割噴射が許可されている場合、ステップ903においてエンジン温度が所定温度以下であるか否かを判断する。
所定温度以下の場合、ステップ904に進み、エンジン低温時における分割噴射回数演算を行う。
所定温度以上の場合、ステップ905に進み、エンジン高温時における分割噴射回数演算を行う。
図10は、図9のステップ904(低温時分割噴射回数演算)の詳細な処理手順の一例を示すフローチャートである。図10のフローチャートで示されるルーチンは、割込み処理であり、例えば10ms周期または角度周期で繰り返し実行される。ステップ1002において、当該燃焼サイクルにおいて要求される総噴射量を満たす総噴射パルス幅BASEPULSを読込む。ステップ1003では、燃料噴射弁が安定的な量を噴射できる(噴射量に線形性が保たれる)最小の駆動パルス幅である最小噴射パルス幅MINPULSを読込む。
次に進むステップ1004において、可能噴射回数DIVTIMEを演算する。可能噴射回数DIVTIMEは、以下の式で演算される。
DIVTIME = 総噴射パルス幅BASEPULS/最小噴射パルス幅MINPULS ・・・・(式1)
式1による演算は、各運転状態で可能な最大分割噴射回数を示している。
続くステップ1005においては、可能噴射回数DIVTIMEと分割噴射回数の許容最大値である上限噴射回数DIVMAXとを比較する。可能噴射回数DIVTIMEが上限噴射回数DIVMAX以下の場合、可能噴射回数DIVTIMEを最終噴射回数DIVとする(ステップ1006)。
可能噴射回数DIVTIMEが上限噴射回数DIVMAXより大きい場合、DIVMAXを最終噴射回数DIVとする(ステップ1007)。
図11は、図9のステップ904(低温時分割噴射回数演算)の詳細な処理手順の他の例を示すフローチャートである。図11のフローチャートで示されるルーチンは、割込み処理であり、例えば10ms周期または角度周期で繰り返し実行される。ステップ1102において、当該燃焼サイクルにおいて要求される総噴射量BASEFUELを読込む。ステップ1103では、燃料噴射弁が安定的な量を噴射できる(線形性が保たれる)最少噴射量MINFUELを読込む。
次に進むステップ1104において、可能噴射回数DIVTIMEを演算する。可能噴射回数DIVTIMEは、以下の式で演算される。
DIVTIME = 総噴射量BASEFUEL/最小噴射量MINFUEL ・・・・(式2)
式2による演算は、各運転状態で可能な最大分割噴射回数を示している。
続くステップ1105においては、可能噴射回数DIVTIMEと分割噴射回数の許容最大値である上限噴射回数DIVMAXとを比較する。可能噴射回数DIVTIMEが上限噴射回数DIVMAX以下の場合、可能噴射回数DIVTIMEを最終噴射回数DIVとする(ステップ1106)。
可能噴射回数DIVTIMEが上限噴射回数DIVMAXより大きい場合、DIVMAXを最終噴射回数DIVとする(ステップ1107)。
図12は、図9のステップ905(高温時分割噴射回数演算)の詳細な処理手順の一例を示すフローチャートである。図12のフローチャートで示されるルーチンは、割込み処理であり、例えば10ms周期または角度周期で繰り返し実行される。ステップ1202において、総噴射パルス幅BASEPULSを読込む。ステップ1203では、エンジン回転数を読込む。エンジン回転数は、一燃焼サイクル当りの噴射可能期間及び燃焼室内の空気流動状態の指標となる。
ステップ1204において、横軸にエンジン回転数がとられ、縦軸に総噴射パルス幅がとられたマップから可能噴射回数DIVTIMEを演算(設定)し、該可能噴射回数DIVTIMEを最終噴射回数としてこのルーチンを終了する。ステップ1204のマップには、ペネトレーションが過度に短くならないような値が設定されている。そして、ペネトレーションが長くなく分割噴射が必要無い運転領域では、分割噴射をしないような値(例えば0又は1)が設定されている。これにより、例えば、エンジン温度が前記所定温度以上(高温時)、かつ、前記総噴射量BASEFUELが所定量以下の場合には、前記分割噴射が可能であっても該分割噴射が禁止される。
図13は、図9のステップ905(高温時分割噴射回数演算)の詳細な処理手順の他の例を示すフローチャートである。本例では、図12の総噴射パルス幅BASEPULSに代えて総噴射量BASEFUELを使用したもので、処理手順は図12に示されるフローチャートと略同様であるので割愛する。
なお、図12、図13に示されるエンジン高温時における分割噴射回数演算には、前記最小噴射パルス幅及び最少噴射量は用いられず、エンジン回転数が用いられている。
次に、本発明実施例の作用効果を図14を参照しながら説明する。図14は、エンジンが所定温度以下かつ分割噴射が行われる期間中の時点t1において噴射量増加要求が発生した場合の、(A)従来例と(B)本発明における、(a)燃料噴射量、(b)分割噴射回数、(c)ペネトレーション、(d)PM排出量&オイル希釈量の変化の概略を示すタイムチャートである。従来例では、分割噴射回数は変更されない。このため、噴射量増加によりペネトレーションが長くなって、燃料がピストン冠面に付着するようになり、PM排出量及びオイル希釈量の増加を招くこととなる。
それに対し、本発明実施例では、燃料噴射量が増加した場合、分割噴射回数が増加されるので、ペネトレーションが過度に長くはならず、そのため、ピストン冠面の燃料付着が抑制され、これにより、PM排出量及びオイル希釈量の増加が抑えられる。
つまり、本発明によれば、エンジンの運転状態に応じて、ペネトレーションが長くならないような最適な分割噴射回数が設定されるので、PM排出量及びオイル希釈量の増大が抑制されるとともに、燃費・排気性能悪化を抑えることができる。この結果、燃焼の安定化が図られ、排気性能及び燃費性能等が改善される。
以上、本発明の実施形態について詳述したが、本発明は前記実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱することなく設計において種々の変更ができるものである。
1…筒内噴射式エンジン
101…エンジン制御ユニット
200…ポンプ駆動カム
201…各吸気管
202…エアクリーナ
203…エアフロセンサ
204…スロットルセンサ
205…スロットルボディ
206…コレクタ
208…点火プラグ
209…高圧燃料ポンプ
211…カム角センサ
216…クランク角センサ
217…水温センサ
218…空燃比センサ
219…油温センサ
222…点火コイル
225…吸気弁
226…排気弁
250…燃料タンク
251…低圧燃料ポンプ
252…燃圧レギュレータ
253…コモンレール
254…燃料噴射弁
256…燃圧センサ
257…燃温センサ
258…吸気温センサ

Claims (11)

  1. エンジンの運転状態に基づいて一燃焼サイクル中に任意回数の分割噴射を行う筒内噴射式エンジンの燃料噴射制御装置であって、
    エンジン温度が所定温度以下のとき、一燃焼サイクル中に噴射すべき総噴射量が多くなるに従って、あるいは、一燃焼サイクル中に必要とされる総噴射パルス幅が大きくなるに従って、一燃焼サイクル中における噴射回数を増やすことを特徴とする筒内噴射式エンジンの燃料噴射制御装置。
  2. 前記エンジン温度を、エンジンの冷却水温度、燃料温度、油温度、吸気温度のうちの少なくとも一つを用いて求めることを特徴とする請求項1に記載の筒内噴射式エンジンの燃料噴射制御装置。
  3. 一燃焼サイクル中における噴射回数を、噴射量の線形性が保たれる最小噴射バルス幅、最少噴射量、及びエンジン回転数のうちの少なくとも一つを用いて設定することを特徴とする請求項1又は2に記載の筒内噴射式エンジンの燃料噴射制御装置。
  4. 一燃焼サイクル中における噴射回数についての上限回数を設定することを特徴とする請求項1から3のいずれかに記載の筒内噴射式エンジンの燃料噴射制御装置。
  5. 一燃焼サイクル中における噴射回数についての上限回数は、エンジン温度が高くなるに従って小さく設定することを特徴とする請求項4に記載の筒内噴射式エンジンの燃料噴射制御装置。
  6. 吸気行程中に前記分割噴射を行うことを特徴とする請求項1から5のいずれかに記載の筒内噴射式エンジンの燃料噴射制御装置。
  7. 前記分割噴射終了タイミングが圧縮上死点から一定期間以上前に設定されていることを特徴とする請求項1から6のいずれかに記載の筒内噴射式エンジンの燃料噴射制御装置。
  8. エンジン温度が前記所定温度以上、かつ、前記総噴射量が所定量以下の場合には、前記分割噴射が可能であっても該分割噴射を禁止することを特徴とする請求項1から7のいずれかに記載の筒内噴射式エンジンの燃料噴射制御装置。
  9. エンジン温度が前記所定温度以上の場合には、一燃焼サイクル中における噴射回数を、前記最小噴射パルス幅及び最少噴射量を用いないで設定することを特徴とする請求項3に記載の筒内噴射式エンジンの燃料噴射制御装置。
  10. 一燃焼サイクル中における噴射回数を気筒毎に設定することを特徴とする請求項1から9のいずれかに記載の筒内噴射式エンジンの燃料噴射制御装置。
  11. エンジンの運転状態に基づいて一燃焼サイクル中に任意回数の分割噴射を行う筒内噴射式エンジンの燃料噴射制御装置であって、
    燃料噴射弁から噴射された燃料噴霧のペネトレーションが予め設定された上下限範囲内に収まるように、一燃焼サイクル中における噴射回数を設定することを特徴とする筒内噴射式エンジンの燃料噴射制御装置。
JP2012156515A 2012-07-12 2012-07-12 筒内噴射式エンジンの燃料噴射制御装置 Abandoned JP2014020211A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012156515A JP2014020211A (ja) 2012-07-12 2012-07-12 筒内噴射式エンジンの燃料噴射制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012156515A JP2014020211A (ja) 2012-07-12 2012-07-12 筒内噴射式エンジンの燃料噴射制御装置

Publications (1)

Publication Number Publication Date
JP2014020211A true JP2014020211A (ja) 2014-02-03

Family

ID=50195415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012156515A Abandoned JP2014020211A (ja) 2012-07-12 2012-07-12 筒内噴射式エンジンの燃料噴射制御装置

Country Status (1)

Country Link
JP (1) JP2014020211A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015175319A (ja) * 2014-03-17 2015-10-05 株式会社デンソー 内燃機関のpm検出装置
JP2016014323A (ja) * 2014-07-01 2016-01-28 株式会社デンソー 内燃機関の燃料噴射制御装置
JP2016053322A (ja) * 2014-09-03 2016-04-14 日立オートモティブシステムズ株式会社 内燃機関の制御装置
JP2018040371A (ja) * 2017-12-13 2018-03-15 株式会社デンソー 内燃機関の燃料噴射制御装置
US10724464B2 (en) 2015-11-12 2020-07-28 Denso Corporation Estimation device and control device for combustion system
JP2021161970A (ja) * 2020-03-31 2021-10-11 本田技研工業株式会社 内燃機関の制御装置
CN115142962A (zh) * 2022-07-11 2022-10-04 上海汽车集团股份有限公司 车辆发动机可变气门正时和喷油的控制方法、系统及车辆

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07229437A (ja) * 1994-02-18 1995-08-29 Nippondenso Co Ltd 内燃機関の燃料噴射制御装置
JPH1162680A (ja) * 1997-08-11 1999-03-05 Mitsubishi Motors Corp 筒内噴射型火花点火式内燃機関の制御装置
JP2002161790A (ja) * 2000-11-27 2002-06-07 Nissan Motor Co Ltd 直噴火花点火式内燃機関の燃焼制御装置
JP2002276402A (ja) * 2001-03-19 2002-09-25 Toyota Motor Corp 筒内噴射式内燃機関の燃料噴射制御装置
JP2009121416A (ja) * 2007-11-16 2009-06-04 Toyota Motor Corp 内燃機関
JP2009191767A (ja) * 2008-02-15 2009-08-27 Toyota Motor Corp 内燃機関の制御装置
JP2009191768A (ja) * 2008-02-15 2009-08-27 Toyota Motor Corp 内燃機関の燃料噴射制御装置
WO2011121771A1 (ja) * 2010-03-31 2011-10-06 トヨタ自動車株式会社 内燃機関の異常燃焼検出装置及び内燃機関の制御装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07229437A (ja) * 1994-02-18 1995-08-29 Nippondenso Co Ltd 内燃機関の燃料噴射制御装置
JPH1162680A (ja) * 1997-08-11 1999-03-05 Mitsubishi Motors Corp 筒内噴射型火花点火式内燃機関の制御装置
JP2002161790A (ja) * 2000-11-27 2002-06-07 Nissan Motor Co Ltd 直噴火花点火式内燃機関の燃焼制御装置
JP2002276402A (ja) * 2001-03-19 2002-09-25 Toyota Motor Corp 筒内噴射式内燃機関の燃料噴射制御装置
JP2009121416A (ja) * 2007-11-16 2009-06-04 Toyota Motor Corp 内燃機関
JP2009191767A (ja) * 2008-02-15 2009-08-27 Toyota Motor Corp 内燃機関の制御装置
JP2009191768A (ja) * 2008-02-15 2009-08-27 Toyota Motor Corp 内燃機関の燃料噴射制御装置
WO2011121771A1 (ja) * 2010-03-31 2011-10-06 トヨタ自動車株式会社 内燃機関の異常燃焼検出装置及び内燃機関の制御装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015175319A (ja) * 2014-03-17 2015-10-05 株式会社デンソー 内燃機関のpm検出装置
JP2016014323A (ja) * 2014-07-01 2016-01-28 株式会社デンソー 内燃機関の燃料噴射制御装置
JP2016053322A (ja) * 2014-09-03 2016-04-14 日立オートモティブシステムズ株式会社 内燃機関の制御装置
US10724464B2 (en) 2015-11-12 2020-07-28 Denso Corporation Estimation device and control device for combustion system
JP2018040371A (ja) * 2017-12-13 2018-03-15 株式会社デンソー 内燃機関の燃料噴射制御装置
JP2021161970A (ja) * 2020-03-31 2021-10-11 本田技研工業株式会社 内燃機関の制御装置
JP7119019B2 (ja) 2020-03-31 2022-08-16 本田技研工業株式会社 内燃機関の制御装置
CN115142962A (zh) * 2022-07-11 2022-10-04 上海汽车集团股份有限公司 车辆发动机可变气门正时和喷油的控制方法、系统及车辆
CN115142962B (zh) * 2022-07-11 2024-01-16 上海汽车集团股份有限公司 车辆发动机可变气门正时和喷油的控制方法、系统及车辆

Similar Documents

Publication Publication Date Title
EP2339158B1 (en) Control apparatus for direct injection type internal combustion engine
JP5809796B2 (ja) 内燃機関の燃料噴射制御装置
CN100580240C (zh) 用于内燃机的控制装置
CN100545436C (zh) 用于内燃机的控制设备
JP5278596B2 (ja) 内燃機関の燃焼制御装置
JP5392418B2 (ja) 内燃機関の着火遅れ期間推定装置及び着火時期制御装置
JP2005054615A (ja) 筒内噴射エンジンの燃料供給システム及び燃料供給方法
JP2009167821A (ja) 内燃機関の燃料噴射制御装置
JP2014020211A (ja) 筒内噴射式エンジンの燃料噴射制御装置
CN1989330B (zh) 用于内燃机的控制装置
US10436170B2 (en) Internal combustion engine control device and internal combustion engine control method
EP2511505B1 (en) Combustion control device
US20090177364A1 (en) Fuel injection control method for a direct injection spark ignition internal combustion engine
JP5703341B2 (ja) 筒内噴射式内燃機関の制御装置
JP5196028B2 (ja) 内燃機関の燃料噴射制御装置
JP5170317B2 (ja) 内燃機関の燃料噴射制御装置
JPWO2011036794A1 (ja) 内燃機関の制御装置
US20140261300A1 (en) Fuel injection control apparatus for internal combustion engine
JP2007032326A (ja) 内燃機関の制御装置
JP4470841B2 (ja) エンジンの制御装置
JP2013209935A (ja) 内燃機関の燃料噴射制御装置
JP2010048116A (ja) 筒内噴射式の内燃機関の燃料噴射制御装置
JPH11153023A (ja) ディーゼルエンジンの制御装置
JP2014148979A (ja) 筒内噴射式エンジンの制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150526

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20150728