JP2014020190A - Method for excavating methane hydrate - Google Patents
Method for excavating methane hydrate Download PDFInfo
- Publication number
- JP2014020190A JP2014020190A JP2012171468A JP2012171468A JP2014020190A JP 2014020190 A JP2014020190 A JP 2014020190A JP 2012171468 A JP2012171468 A JP 2012171468A JP 2012171468 A JP2012171468 A JP 2012171468A JP 2014020190 A JP2014020190 A JP 2014020190A
- Authority
- JP
- Japan
- Prior art keywords
- methane
- gas
- methane hydrate
- excavating
- umbrella
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Drilling And Exploitation, And Mining Machines And Methods (AREA)
Abstract
Description
超音波によるメタンガスを採取する。 Collect methane gas by ultrasound.
メタンハイレートの採掘方法は加熱法、減圧法などが知られている。 As a method for mining methane high rate, a heating method, a decompression method, and the like are known.
従来の方法は海底を掘削する必要がある、掘削地点を多く必要とする。 Conventional methods require a large number of excavation points, which require excavation of the seabed.
超音波振動子で海底に超音波を発生させる、傘型ガス収集機を設置する。 An umbrella-type gas collector that generates ultrasonic waves on the sea floor with an ultrasonic transducer will be installed.
超音波振動子の超音波が海底数メートルから発生したメタンガスを傘型ガス収集機に集める。 Methane gas generated from a few meters of the sea floor is collected in an umbrella-type gas collector by ultrasonic waves from an ultrasonic transducer.
本発明の実施形態について図面で説明する。図1、1は超音波振動子をを海底に設置する、2は傘型ガス収集機、3はパイプでガスを送る。 Embodiments of the present invention will be described with reference to the drawings. 1 and 1 set ultrasonic transducers on the sea floor, 2 is an umbrella-type gas collector, and 3 is a pipe for sending gas.
1 超音波振動子
2 傘形ガス収集機
3 パイプ1 Ultrasonic vibrator 2 Umbrella type gas collector 3 Pipe
超音波によるメタンガスを採取する。 Collect methane gas by ultrasound.
メタンハイドレートの採掘方法は加熱法、減圧法などが知られている。 Known methods for mining methane hydrate include heating and decompression.
従来の方法は海底を掘削する必要がある、掘削地点を多く必要とする。 Conventional methods require a large number of excavation points, which require excavation of the seabed.
超音波振動子で海底に超音波を発生させる、笠型ガス収集機を設置する。 Installed a gas collector that generates ultrasonic waves on the sea floor using an ultrasonic transducer.
超音ぱ振動子の超音波が海底数メートルから発生したメタンガスを笠型ガス収集機に集める。 The ultrasonic wave from the ultrasonic transducer collects the methane gas generated from a few meters of the seabed in a shade gas collector.
本発明の実施形態について図面で説明する。図1,1は超音波振動子を海底に設置する、2は笠型ガス収集機、3はパイプでガスを送る。 Embodiments of the present invention will be described with reference to the drawings. In FIGS. 1 and 1, an ultrasonic vibrator is installed on the seabed, 2 is a gas collector and 3 is a pipe for sending gas.
1 超音波振動子
2 笠型ガス収集機
3 パイプ1 Ultrasonic vibrator 2 Cap-shaped gas collector 3 Pipe
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012171468A JP2014020190A (en) | 2012-07-13 | 2012-07-13 | Method for excavating methane hydrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012171468A JP2014020190A (en) | 2012-07-13 | 2012-07-13 | Method for excavating methane hydrate |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014020190A true JP2014020190A (en) | 2014-02-03 |
Family
ID=50195398
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012171468A Pending JP2014020190A (en) | 2012-07-13 | 2012-07-13 | Method for excavating methane hydrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2014020190A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107100627A (en) * | 2017-04-10 | 2017-08-29 | 青岛海洋地质研究所 | Deep-sea hydrothermal metal sulfide mineral deposit original position implant system |
CN109723410A (en) * | 2019-03-24 | 2019-05-07 | 西南石油大学 | A kind of umbrella-type exploitation tool of gas hydrates solid state fluidizing exploitation |
CN113431583A (en) * | 2021-06-02 | 2021-09-24 | 上海交通大学 | Dynamic blocking device and method for sediment diffusion problem caused by submarine mining |
-
2012
- 2012-07-13 JP JP2012171468A patent/JP2014020190A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107100627A (en) * | 2017-04-10 | 2017-08-29 | 青岛海洋地质研究所 | Deep-sea hydrothermal metal sulfide mineral deposit original position implant system |
CN109723410A (en) * | 2019-03-24 | 2019-05-07 | 西南石油大学 | A kind of umbrella-type exploitation tool of gas hydrates solid state fluidizing exploitation |
CN113431583A (en) * | 2021-06-02 | 2021-09-24 | 上海交通大学 | Dynamic blocking device and method for sediment diffusion problem caused by submarine mining |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
GB2479848A (en) | Method and apparatus for measuring pore pressure beyond the casing | |
MX342049B (en) | Stimulation method. | |
EA201101493A1 (en) | A METHOD OF CREATING A CLEAR LIMITED HORIZONTAL VARIABLE N-V CURVE TO CONSTRUCT THE FIELD OF SPEEDS OF SEISMIC WAVES | |
EA201170389A3 (en) | A METHOD FOR SEPARATION OF PRESSURE FIELDS AND VERTICAL VELOCITY OF ASCENDING AND DROPPING WAVES ACCORDING TO DATA RECORDED BY PRESSURE SENSORS AND THREE-GUIDED SENSORS OF MOTION IN TOWLEDGE SECURITY | |
GB2498106A (en) | Frequency sweeping tubewave sources for liquid filled boleholes | |
JP2014020190A (en) | Method for excavating methane hydrate | |
MX363794B (en) | Removing ring down effects from sonic waveforms. | |
GB2497712A (en) | Radon migration of acoustic data | |
EP2881937A3 (en) | Ultrasonic diagnostic instrument and manufacturing method thereof | |
MX337267B (en) | Multi-level seismic source and method. | |
GB2480187B (en) | Method and apparatus for acoustic impedance and p-wave anisotropy measurements | |
GB201203006D0 (en) | Preserved-traveltime smoothing method and device | |
TR201900934T4 (en) | METHOD AND DEVICE FOR DETERMINING AND DETERMINING WORKING PARAMETERS OF A GEOTHERMAL PROBE. | |
WO2013028342A3 (en) | Completing underwater wells | |
Xuelian et al. | Experimental studies of linear phased-array transmitter acoustic logging in cased wells with scaled borehole models | |
GB2490621A (en) | Resonance method of finding permeability of rocks from parameters of radial waves | |
WO2013188093A3 (en) | Application of high intensity focused ultrasound to the displacement of drilling mud | |
Song et al. | Study of internal solitary waves shoaling by seismic oceanography method | |
Tauzin et al. | P-Wave Coda Correlation Analysis of the Structure of the Crust and Large Sedimentary Basins | |
CN202048941U (en) | Ultrasonic multiphase flow tester | |
Johnson et al. | Turbulent Sediment Suspension and Induced Ripple Dynamics Absent Mean Shear | |
Calantoni et al. | Observations of Morphodynamics During a Winter Storm at the Mouth of the Misa River | |
Mimi | Detection to the DepositFan Occurring in the Sun Moon Lake Using Geophysical Sonar Data | |
Zhang et al. | Near-bottom energy cascade from subinertial flows to ocean mixing in the northeastern South China Sea | |
Li et al. | Using Fault-Zone Trapped Waves from Teleseismic Earthquakes to Document Deep Structure of the Calico Fault in Mojave Desert |