[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2014016118A - Continuous sintering furnace - Google Patents

Continuous sintering furnace Download PDF

Info

Publication number
JP2014016118A
JP2014016118A JP2012154536A JP2012154536A JP2014016118A JP 2014016118 A JP2014016118 A JP 2014016118A JP 2012154536 A JP2012154536 A JP 2012154536A JP 2012154536 A JP2012154536 A JP 2012154536A JP 2014016118 A JP2014016118 A JP 2014016118A
Authority
JP
Japan
Prior art keywords
muffle
furnace
cooling
continuous sintering
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012154536A
Other languages
Japanese (ja)
Inventor
Tomoyuki Kohida
智之 小比田
Yukitoshi Owada
幸利 大和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP2012154536A priority Critical patent/JP2014016118A/en
Publication of JP2014016118A publication Critical patent/JP2014016118A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Tunnel Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a continuous sintering furnace which sufficiently and uniformly cools an entire muffle, inhibits the deposition of salt components, and improves the cooling efficiency in a structure where the muffle is cooled by contact of a coolant.SOLUTION: A continuous sintering furnace passes a workpiece W through a dewaxing part 20, a sintered part 30, and a cooling part 40 using transfer means 50 to sinter the workpiece W. In the continuous sintering furnace, a spiral fin 43 is provided on an outer surface of a muffle 42 in the cooling part 40 formed by disposing a furnace shell 41 around the muffle 42 and thereby forms a cooling passage 44, which spirally extends along a periphery of the muffle 42 from the transfer upstream side toward the downstream side, between the muffle 42 and the furnace shell 41. A coolant is flowed in the cooling passage 44 to cool the muffle 42 and an atmosphere in the muffle 42.

Description

本発明は、所定形状に成形された圧粉体を連続的に搬送しながら焼結処理を行う連続焼結炉に関する。   The present invention relates to a continuous sintering furnace that performs a sintering process while continuously conveying a green compact formed into a predetermined shape.

原料粉末を所定形状に圧縮成形した圧粉体を焼結して得る粉末冶金製品の焼結工程は、圧粉体に含まれる潤滑剤の除去を行う予備工程としての脱ろう工程、所定の温度で加熱する本工程である焼結工程、焼結体を冷却する予後工程である冷却工程を必要としている。これらの工程を実施する炉として、ワークをメッシュベルトで搬送しながら各工程を行う脱ろう部、焼結部、冷却部が連続して設けられた連続焼結炉が用いられている(特許文献1等)。   The sintering process of the powder metallurgy product obtained by sintering the green compact obtained by compression molding the raw material powder into a predetermined shape is a dewaxing process as a preliminary process for removing the lubricant contained in the green compact, a predetermined temperature This requires a sintering process, which is the main process of heating in step 1, and a cooling process, which is a prognostic process for cooling the sintered body. As a furnace for carrying out these processes, a continuous sintering furnace in which a dewaxing section, a sintering section, and a cooling section for performing each process while conveying a work with a mesh belt are continuously used is used (Patent Literature). 1).

この種の連続焼結炉においては、ワークに所望の特性を与えるため、脱ろう部および焼結部では、それぞれ適正な雰囲気ガスの供給および加熱が行われ、この後、冷却部で非酸化、非脱炭の状態が保持され得る温度以下まで冷却される。   In this type of continuous sintering furnace, in order to give desired characteristics to the workpiece, in the dewaxing part and the sintering part, an appropriate atmosphere gas is supplied and heated, respectively. It cools below to the temperature which can maintain a non-decarburized state.

図5はメッシュベルト式の連続焼結炉における冷却部の構造の一例を示している。この連続焼結炉は、炉殻41内にマッフル42が挿入されて炉体10が構成され、マッフル42とマッフル42を覆う炉殻41との間の空間が、冷却水を流通させる冷却通路49として形成されている。炉殻41およびマッフル42はいずれも金属製であり、図5(c)に示すようにマッフル42内の炉内搬送路の底部には、搬送方向の上流側から下流側(図5(a),(b)で左側から右側)に沿って延びる複数のスキッド46が設けられ、スキッド46上を、ワークWが載置される搬送手段(メッシュベルト)50が摺動して移動するよう構成されている。   FIG. 5 shows an example of the structure of the cooling section in the mesh belt type continuous sintering furnace. In this continuous sintering furnace, a muffle 42 is inserted into a furnace shell 41 to form the furnace body 10, and a cooling passage 49 through which cooling water flows is provided between the muffle 42 and the furnace shell 41 covering the muffle 42. It is formed as. Both the furnace shell 41 and the muffle 42 are made of metal, and as shown in FIG. 5 (c), the bottom of the in-furnace transport path in the muffle 42 is located downstream from the upstream side in the transport direction (FIG. 5 (a)). , (B), a plurality of skids 46 extending from the left side to the right side) are provided, and a conveying means (mesh belt) 50 on which the workpiece W is placed slides and moves on the skid 46. ing.

炉体10内の冷却通路49には、搬送上流側の端部に設けられた給水口491から冷却水が供給され、冷却水は、冷却通路49を下流側に流れ、搬送下流側の端部に設けられた排水口492から排水される。冷却通路49を流れる冷却水によってマッフル42内の温度が冷却され、ワークWは冷却されたマッフル42内の雰囲気に接触することで搬送中に冷却される。   Cooling water is supplied to a cooling passage 49 in the furnace body 10 from a water supply port 491 provided at an end portion on the upstream side of the conveyance. The cooling water flows downstream through the cooling passage 49, and an end portion on the downstream side of the conveyance portion It drains from the drainage port 492 provided in the. The temperature in the muffle 42 is cooled by the cooling water flowing through the cooling passage 49, and the workpiece W is cooled during conveyance by coming into contact with the cooled atmosphere in the muffle 42.

特開2001−303105号公報JP 2001-303105 A

上記冷却部においては、炉内の内側であって比較的高熱のマッフル42の外面に接触する冷却水が連続的に交換、すなわち速やかに流れていないと、マッフル42の外面に過熱が生じ、冷却水が部分的に沸騰する場合がある。冷却水が沸騰すると、冷却水中に含まれるカルシウムやマグネシウムといった塩成分が析出する現象が、マッフル42の外面で生じる。このような塩成分は冷却水よりも熱伝導率が小さく、析出温度は60〜70℃程度と水の沸点よりも低いため、析出は促進されて凝固し拡大する傾向にあり、マッフル42の外面に付着して冷却水による熱交換効率(冷却効率)の低下や、炉内温度分布の乱れを引き起こす。   In the cooling section, if the cooling water in contact with the outer surface of the relatively high heat muffle 42 inside the furnace is continuously exchanged, that is, if it does not flow quickly, overheating occurs on the outer surface of the muffle 42 and cooling is performed. The water may partially boil. When the cooling water boils, a phenomenon in which salt components such as calcium and magnesium contained in the cooling water precipitate occurs on the outer surface of the muffle 42. Such a salt component has a lower thermal conductivity than cooling water, and the precipitation temperature is about 60 to 70 ° C., which is lower than the boiling point of water. Therefore, precipitation tends to accelerate and solidify and expand, and the outer surface of the muffle 42 The heat exchange efficiency (cooling efficiency) due to the cooling water decreases and the temperature distribution in the furnace is disturbed.

図5に示した従来の冷却部では、冷却通路49は炉殻41とマッフル42との間に空けられた単なる空間である。このため、冷却水は図5(b)の矢印Aのように給水口491から排水口492に向けてある程度直線的に流れ、主たる流路は抵抗の少ない部分に限定的となり、流路以外であって例えば給水口491および排水口492から比較的遠い部分では、冷却水に流れが生じにくく流速が低くなりやすい。このような流速が低い部分では冷却水の温度が上昇し、上記塩成分が析出しやすくなる。マッフル42の外面での塩成分の析出は、上記のように冷却効率の低下や炉内温度分布の乱れを引き起こすほかに、部分的な冷却水の高温化によりマッフル42が熱変形してしまうといった不具合も生じる。   In the conventional cooling section shown in FIG. 5, the cooling passage 49 is a simple space opened between the furnace shell 41 and the muffle 42. For this reason, the cooling water flows in a straight line from the water supply port 491 toward the drain port 492 as indicated by an arrow A in FIG. 5B, and the main flow path is limited to a portion with low resistance. Thus, for example, in a portion relatively far from the water supply port 491 and the drain port 492, it is difficult for the cooling water to flow, and the flow velocity tends to be low. In such a portion where the flow velocity is low, the temperature of the cooling water rises and the salt component tends to precipitate. The precipitation of the salt component on the outer surface of the muffle 42 causes the cooling efficiency to be lowered and the temperature distribution in the furnace to be disturbed as described above, and the muffle 42 is thermally deformed due to partial increase in the temperature of the cooling water. Problems also arise.

冷却通路49内での塩成分の発生は、供給前にイオン交換を行って冷却水の塩成分を予め除去したり、冷却通路49を洗浄するフラッシングを行ったりする対策があり、さらに、冷却部以外の炉内高温ガスを回収して熱交換器で冷却し、その冷却ガスを用いるといった手段もあるが、いずれも手間がかかったり、構造の複雑化・高コスト化を招く。また、冷却水が直線的に流れると、例えば最短流路を流れる冷却水は、マッフル42によって十分に加熱されないまま、すなわち熱交換を十分果たせないまま排水されてしまい、これによっても冷却効率の低下が生じる。   The generation of the salt component in the cooling passage 49 includes measures such as performing ion exchange before supply to remove the salt component of the cooling water in advance, or performing flushing to wash the cooling passage 49, and There are other means such as collecting the high-temperature gas in the furnace, cooling it with a heat exchanger, and using the cooling gas, but all of this takes time, increases the complexity and cost of the structure. Further, when the cooling water flows linearly, for example, the cooling water flowing through the shortest flow path is drained without being sufficiently heated by the muffle 42, that is, without sufficiently exchanging heat, and this also decreases the cooling efficiency. Occurs.

本発明は上記事情に鑑みてなされたものであり、その主たる目的は、冷却水の接触でマッフルを冷却する構造において、マッフル全体を十分、かつ均一に冷却することにより塩成分の析出を抑制することができ、その結果、冷却部によるワークの冷却効率を向上させることができる連続焼結炉を提供することにある。   The present invention has been made in view of the above circumstances, and its main purpose is to suppress precipitation of salt components by cooling the entire muffle sufficiently and uniformly in a structure in which the muffle is cooled by contact with cooling water. As a result, it is to provide a continuous sintering furnace capable of improving the cooling efficiency of the workpiece by the cooling unit.

本発明の連続焼結炉は、ワークの炉内搬送路が貫通する炉体の搬送上流側から下流に向けて、脱ろう部、焼結部、冷却部が連続して設けられ、ワークを炉内搬送路に沿って搬送する搬送手段を有する連続焼結炉において、前記冷却部は、前記炉体として、前記炉内搬送路が内部に形成された金属製のマッフルと、該マッフルを覆って配設される炉殻とを有し、さらに前記マッフルと前記炉殻との間に、搬送上流側から下流側に向かい該マッフルの周囲に沿って螺旋状に延びる冷却通路が形成され、該冷却通路に冷却水が流通されることを特徴とする。   The continuous sintering furnace of the present invention is provided with a dewaxing part, a sintering part, and a cooling part continuously from the upstream side to the downstream side of the furnace body through which the workpiece conveyance path passes, and In a continuous sintering furnace having a conveying means for conveying along an inner conveying path, the cooling section covers the muffle as a furnace body, and a metal muffle formed inside the furnace conveying path. A cooling passage extending spirally along the periphery of the muffle from the upstream side to the downstream side is formed between the muffle and the furnace shell. Cooling water is circulated through the passage.

本発明の連続焼結炉によれば、冷却水はマッフルの周囲に形成された冷却通路に沿って螺旋状に流れ、これによりマッフルが冷却される。冷却通路が螺旋状に規定されることによって冷却水の流速がほぼ均一になるため、マッフルの周囲の大部分に冷却通路を形成することにより、マッフル全体を十分、かつ均一に冷却することができる。その結果、冷却水の沸騰に伴う塩成分の析出を抑制することができ、したがって塩成分の析出による冷却効率の低下といった従来の問題を解消し、冷却効率を向上させることができる。   According to the continuous sintering furnace of the present invention, the cooling water spirally flows along the cooling passage formed around the muffle, thereby cooling the muffle. Since the cooling passage is defined in a spiral shape, the flow rate of the cooling water becomes substantially uniform. By forming the cooling passage in the most part of the periphery of the muffle, the entire muffle can be cooled sufficiently and uniformly. . As a result, it is possible to suppress the precipitation of the salt component accompanying the boiling of the cooling water, thus eliminating the conventional problems such as a decrease in the cooling efficiency due to the precipitation of the salt component, and improving the cooling efficiency.

本発明では、前記冷却通路が、前記マッフルの外面または前記炉殻の内面の少なくとも一方に設けられたフィンで構成されている形態を含む。   In this invention, the said cooling channel | path includes the form comprised with the fin provided in at least one of the outer surface of the said muffle, or the inner surface of the said furnace shell.

また、本発明では、前記マッフル内の底部には、前記搬送手段が搬送動作時に該搬送手段を摺動可能に支持する搬送方向に延びるスキッドが設けられており、前記搬送手段と前記スキッドとが同種の金属で構成されている形態を含む。スキッドと搬送手段が同種の金属で構成されている場合、高熱で冷却部に移動してきた搬送手段の熱がスキッドに伝達して凝着に近いいわゆる“ともずれ”を起こし、搬送不良になるおそれがある。しかしながら本発明においては、搬送手段を十分に冷却することができるため、ともずれが起こりにくく、安定した搬送が達成される。   In the present invention, a skid extending in a transport direction is provided at a bottom portion of the muffle so that the transport unit slidably supports the transport unit during a transport operation, and the transport unit and the skid are connected to each other. Including forms composed of the same kind of metal. If the skid and the transport means are made of the same type of metal, the heat of the transport means that has moved to the cooling section due to high heat is transferred to the skid, causing so-called "displacement" close to adhesion, which may result in poor transport. There is. However, in the present invention, since the conveying means can be sufficiently cooled, deviation hardly occurs and stable conveyance is achieved.

本発明によれば、冷却水の接触でマッフルを冷却する構造において、マッフル全体を十分、かつ均一に冷却することにより塩成分の析出を抑制することができ、その結果、冷却部によるワークの冷却効率を向上させることができる連続焼結炉が提供されるといった効果を奏する。   According to the present invention, in the structure in which the muffle is cooled by contact with cooling water, the precipitation of the salt component can be suppressed by sufficiently and uniformly cooling the entire muffle, and as a result, the workpiece is cooled by the cooling unit. There is an effect that a continuous sintering furnace capable of improving the efficiency is provided.

本発明の一実施形態に係る連続焼結炉を模式的に示す側断面図である。It is a sectional side view showing typically a continuous sintering furnace concerning one embodiment of the present invention. 一実施形態の冷却部の構造を示す三面図であり、(a)上面断面図、(b)側断面図、(c)横断面図である。It is a three-plane figure which shows the structure of the cooling part of one Embodiment, (a) Top surface sectional view, (b) Side sectional view, (c) Transverse sectional view. 一実施形態の冷却部の炉体を構成する炉殻の(a)側断面図、(b)横断面図である。It is the (a) sectional side view of the furnace shell which comprises the furnace body of the cooling unit of one Embodiment, (b) It is a cross-sectional view. 一実施形態の冷却部の炉体を構成するマッフルの(a)側断面図、(b)横断面図である。It is the (a) sectional side view of the muffle which comprises the furnace body of the cooling unit of one Embodiment, (b) It is a cross-sectional view. 従来の連続焼結炉の冷却部構造の一例を示す三面図であり、(a)上面断面図、(b)側断面図、(c)横断面図である。It is a three-plane figure which shows an example of the cooling part structure of the conventional continuous sintering furnace, (a) Top sectional drawing, (b) Side sectional view, (c) Transverse sectional drawing.

以下、図面を参照して本発明の一実施形態を説明する。
(1)連続焼結炉の基本構成
図1は一実施形態の連続焼結炉を示している。この連続焼結炉は、ワークWを水平方向に搬送するためのトンネル状の炉内搬送路11が内部に直線的に貫通形成された炉体10と、ワークWを炉内搬送路11の上流側から下流側(図1で左側から右側)に沿って搬送する搬送手段50を有している。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
(1) Basic Configuration of Continuous Sintering Furnace FIG. 1 shows a continuous sintering furnace according to an embodiment. This continuous sintering furnace includes a furnace body 10 in which a tunnel-shaped in-furnace conveyance path 11 for conveying a workpiece W in a horizontal direction is linearly formed inside, and an upstream of the in-furnace conveyance path 11. Conveying means 50 for conveying along the downstream side (from the left side to the right side in FIG. 1) is provided.

炉体10の上流端には装入口12が設けられ、下流端には排出口13が設けられている。搬送手段50は、この場合、エンドレスのメッシュベルトで構成されている。メッシュベルトは、装入口12から排出口13にわたる炉内搬送路11に沿って水平に架設された搬送部51と、排出口13から炉体10の下側を通って装入口12に戻る戻り部52とを有し、搬送部51が装入口1から排出口13に向かって所定速度で移動し、全体として回転するよう駆動される。   An inlet 12 is provided at the upstream end of the furnace body 10, and a discharge port 13 is provided at the downstream end. In this case, the conveying means 50 is composed of an endless mesh belt. The mesh belt includes a transport unit 51 horizontally installed along the in-furnace transport path 11 extending from the charging port 12 to the discharge port 13, and a return unit that returns from the discharge port 13 to the charging port 12 through the lower side of the furnace body 10. 52, and the transport unit 51 is driven to move from the loading port 1 toward the discharge port 13 at a predetermined speed and rotate as a whole.

炉体10は、ワークWの搬送上流側から下流に向けて、脱ろう部20、焼結部30、冷却部40が連続して一体的に設けられた構成を有しており、ワークWは、搬送手段50によって脱ろう部20、焼結部30、冷却部40の順に通過させられて焼結される。   The furnace body 10 has a configuration in which a dewaxing portion 20, a sintering portion 30, and a cooling portion 40 are continuously and integrally provided from the upstream side to the downstream side of the workpiece W. The dewaxing part 20, the sintering part 30, and the cooling part 40 are passed through the conveying means 50 in this order and sintered.

ワークWは、炉体10の装入口12から搬送手段50に載置されて、まず脱ろう部20に導入される。装入口12から搬送手段50に載置されるワークWは、原料粉末を所定形状に圧縮成形した圧粉体であり、ワークWは脱ろう部20において所定温度(例えば600〜750℃程度)に加熱される。ワークWは、脱ろう部20に配設された脱ろう温度に応じた図示せぬ加熱手段によって加熱される。脱ろう部20の加熱手段としては、カップバーナー、直火のガスバーナー、電気式ヒーター、ラジアントチューブバーナー等が挙げられる。   The workpiece W is placed on the conveying means 50 from the loading port 12 of the furnace body 10 and is first introduced into the dewaxing section 20. The workpiece W placed on the conveying means 50 from the loading port 12 is a green compact obtained by compression-molding raw material powder into a predetermined shape, and the workpiece W is brought to a predetermined temperature (for example, about 600 to 750 ° C.) in the dewaxing portion 20. Heated. The workpiece W is heated by a heating means (not shown) corresponding to the dewaxing temperature disposed in the dewaxing section 20. Examples of the heating means for the dewaxing section 20 include a cup burner, an open flame gas burner, an electric heater, a radiant tube burner, and the like.

脱ろう部20内には、脱ろう用ガス生成部21から脱ろう用ガスが導入される。脱ろう用ガスは、熱源として例えばプロパンやブタンなどの炭化水素ガスを不完全燃焼させたもので、脱ろう用ガス生成部21で生成される。脱ろう用ガス生成部21で生成された脱ろう用ガスは、脱ろう部20と焼結部30との間の境界部分に設けられた接続通路14に連通する配管22を通して、脱ろう部20内に供給される。   A dewaxing gas is introduced into the dewaxing unit 20 from a dewaxing gas generation unit 21. The dewaxing gas is obtained by incomplete combustion of a hydrocarbon gas such as propane or butane as a heat source, and is generated by the dewaxing gas generation unit 21. The dewaxing gas generated in the dewaxing gas generation unit 21 passes through a pipe 22 communicating with a connection passage 14 provided at a boundary portion between the dewaxing unit 20 and the sintering unit 30, and the dewaxing unit 20. Supplied in.

ワークWは脱ろう部20を通過する間に、圧粉体の圧縮成形時に用いられたステアリン酸亜鉛や金属石けん等のろう状の潤滑剤成分が、熱分解されて除去、すなわち脱ろうされる。脱ろうによってワークWから生じる排気ガスは、脱ろう部20に設けられた排気筒23から外部に排出される。この排気ガスは、ワークWの昇温に伴う余剰の水分や潤滑剤の熱分解成分である酸化亜鉛の他に、すすを含むもので、焼結部30に侵入すると、ワークWの脱炭反応が過剰となって所望の強度が得られなかったり、外観に変質を来たしたりする有害ガスである。   While the workpiece W passes through the dewaxing portion 20, the wax-like lubricant components such as zinc stearate and metal soap used during compression molding of the green compact are thermally decomposed and removed, that is, dewaxed. . Exhaust gas generated from the workpiece W by dewaxing is discharged to the outside from an exhaust tube 23 provided in the dewaxing portion 20. This exhaust gas contains soot in addition to surplus moisture accompanying the temperature rise of the workpiece W and zinc oxide which is a thermal decomposition component of the lubricant. When the exhaust gas enters the sintered portion 30, the decarburization reaction of the workpiece W is performed. Is a harmful gas that cannot obtain the desired strength due to its excessive amount or changes its appearance.

搬送手段50の移動により脱ろう部20の炉内搬送路11を通過したワークWは、接続通路14を経て焼結部30に導入され、焼結部30で所定の焼結温度(例えば1100〜1200℃程度)に加熱される。焼結部30での加熱手段は図示していないが、加熱温度に応じた発熱体(例えば、ニクロム、カンタル、炭化珪素等)が選択されて焼結部30の炉体10内に適宜な密度で配設される。   The workpiece W that has passed through the in-furnace conveyance path 11 of the dewaxing section 20 by the movement of the conveyance means 50 is introduced into the sintering section 30 through the connection path 14, and a predetermined sintering temperature (for example, 1100 to 1100) in the sintering section 30. About 1200 ° C.). Although heating means in the sintered part 30 is not shown, a heating element (for example, nichrome, cantal, silicon carbide, etc.) corresponding to the heating temperature is selected and an appropriate density is set in the furnace body 10 of the sintered part 30. Arranged.

また、焼結部30内には、焼結用ガス源31から、焼結部30の下流端に接続された焼結用ガス導入管32を介して雰囲気ガスが導入され、この雰囲気ガスによって焼結部30内は所定圧力に保持される。   An atmosphere gas is introduced into the sintering portion 30 from a sintering gas source 31 through a sintering gas introduction pipe 32 connected to the downstream end of the sintering portion 30, and the atmosphere gas is used for sintering. The inside of the connection part 30 is maintained at a predetermined pressure.

焼結部30に導入する雰囲気ガスは、窒素ガス、水素ガス、アンモニア分解ガス、エキソサーミックガス(プロパン、ブタン、メタン等の炭化水素ガスと空気を発熱反応させた炭化水素変成ガス)、エンドサーミックガス(エキソサーミックガスと同じ原ガスで、空気/ガス比を低くして加熱分解したガス)等の還元性ガスあるいは非酸化性ガスが選択され、室温の状態で、なおかつ脱水して水分を低減した状態で、焼結用ガス導入管32から焼結部30内に導入される。焼結部30内に導入された雰囲気ガスは、焼結部30内の加熱手段33によって焼結温度程度まで加熱される。このため、焼結部30内の温度低下は生じないようになされている。また、焼結部30へ供給した雰囲気ガスの圧力によって、脱ろう部20からの焼結部30への有害ガスの侵入や、排出口13から冷却部40への外気の侵入が抑えられる。   The atmosphere gas to be introduced into the sintered part 30 is nitrogen gas, hydrogen gas, ammonia decomposition gas, exothermic gas (hydrocarbon modified gas obtained by exothermic reaction of hydrocarbon gas such as propane, butane, methane, etc.) and endothermic. Reducing gas or non-oxidizing gas such as gas (same raw gas as exothermic gas, gas decomposed by reducing the air / gas ratio) or non-oxidizing gas is selected and dehydrated at room temperature to reduce moisture In this state, the gas is introduced from the sintering gas introduction tube 32 into the sintered portion 30. The atmospheric gas introduced into the sintering part 30 is heated to the sintering temperature by the heating means 33 in the sintering part 30. For this reason, the temperature drop in the sintered part 30 does not occur. Moreover, the penetration of harmful gas from the dewaxing part 20 into the sintered part 30 and the entry of outside air from the discharge port 13 into the cooling part 40 are suppressed by the pressure of the atmospheric gas supplied to the sintered part 30.

ワークWが焼結部30内の炉内搬送路11を搬送されながら雰囲気ガス中で加熱され、焼結部30の終盤で焼結に必要な加熱処理が完了し、次いでワークWは冷却部40に導入される。そして冷却部40を通過することで、非酸化、非脱炭の状態が確保される温度以下(例えば200℃以下)まで冷却される。   The workpiece W is heated in the atmospheric gas while being conveyed through the in-furnace conveyance path 11 in the sintering unit 30, and the heat treatment necessary for sintering is completed at the final stage of the sintering unit 30, and then the workpiece W is cooled by the cooling unit 40. To be introduced. And by passing the cooling part 40, it cools to the temperature below the temperature (for example, 200 degrees C or less) in which the state of a non-oxidation and a non-decarburization is ensured.

冷却部40を通過して焼結処理が最終的に完了したワークWは排出口13から炉体10の外部に排出される。排出されたワークWは回収され、次の工程に移される。   The workpiece W that has passed through the cooling unit 40 and has been finally subjected to the sintering process is discharged from the discharge port 13 to the outside of the furnace body 10. The discharged work W is collected and moved to the next step.

以上が一実施形態の連続焼結炉の基本的な構成および作用である。次いで、本発明に係る冷却部40の構造について説明する。   The above is the basic configuration and operation of the continuous sintering furnace of one embodiment. Next, the structure of the cooling unit 40 according to the present invention will be described.

(2)冷却部の構造 (2) Structure of cooling unit

冷却部40は、図2に示すように、炉殻41内にマッフル42が挿入されて炉体10が構成されている。図3および図4は,それぞれ炉殻41およびマッフル42を示している。炉殻41およびマッフル42は、いずれも断面矩形状の筒体であり、例えばSS(一般構造用圧延鋼材)等の鉄材料によって形成されている。   As shown in FIG. 2, the cooling unit 40 includes a furnace body 10 in which a muffle 42 is inserted into a furnace shell 41. 3 and 4 show a furnace shell 41 and a muffle 42, respectively. Each of the furnace shell 41 and the muffle 42 is a cylindrical body having a rectangular cross section, and is formed of an iron material such as SS (rolled steel for general structure).

マッフル42内の空間が炉内搬送路11となっており、図2(c)に示すようにマッフル42の底部には、搬送方向に沿って延びる複数のスキッド46が幅方向に間隔をおいた状態で敷設されている。搬送手段50であるメッシュベルトは、スキッド46上を摺動して移動するようになされている。この場合、搬送手段50とスキッド46は同種の金属で構成されており、例えばSUS(各種ステンレス鋼)が用いられる。   A space in the muffle 42 serves as the in-furnace conveyance path 11, and a plurality of skids 46 extending along the conveyance direction are spaced apart in the width direction at the bottom of the muffle 42 as shown in FIG. 2 (c). Laid in state. The mesh belt as the conveying means 50 slides on the skid 46 and moves. In this case, the conveying means 50 and the skid 46 are made of the same kind of metal, and for example, SUS (various stainless steel) is used.

図4に示すように、マッフル42の外面には、該外面に沿って搬送上流側から下流側に向かうフィン43が螺旋状に形成されている。フィン43はマッフル42の外面に直角に立っており、適宜なピッチでマッフル42のほぼ全長にわたり設けられている。フィン43はマッフル42と一体成形、あるいはフィン43の素材を溶接によってマッフル42の外面に固着するなどの手段で、連続的に設けることができる。   As shown in FIG. 4, on the outer surface of the muffle 42, fins 43 are formed spirally along the outer surface from the upstream side to the downstream side. The fins 43 stand at right angles to the outer surface of the muffle 42 and are provided over the substantially entire length of the muffle 42 at an appropriate pitch. The fins 43 can be provided continuously by means of integral molding with the muffle 42 or by fixing the material of the fins 43 to the outer surface of the muffle 42 by welding.

図2に示すように、炉殻41内にマッフル42が挿入されて炉体10が構成された状態で、炉殻41とマッフル42との間には、フィン43によって仕切られた螺旋状の空間44が形成される。フィン43はマッフル42の外面に沿った矩形状に形成され、フィン43の先端は、炉殻41の内面に接触するか、もしくは炉殻41の内面との間に僅かな隙間が空く状態となる。   As shown in FIG. 2, a spiral space partitioned by fins 43 between the furnace shell 41 and the muffle 42 in a state where the muffle 42 is inserted into the furnace shell 41 and the furnace body 10 is configured. 44 is formed. The fins 43 are formed in a rectangular shape along the outer surface of the muffle 42, and the tips of the fins 43 are in contact with the inner surface of the furnace shell 41, or a slight gap is left between the inner surface of the furnace shell 41. .

螺旋状の空間44は、搬送上流側から下流側に向かいマッフル42の周囲に沿って螺旋状に延びるように形成されており、この空間44が、冷却水が流される冷却通路とされる。すなわち冷却部40における炉体10は搬送上流側から下流側に向かって螺旋状に延びる冷却通路44を有している。炉殻41の上流側の端部には冷却通路44に冷却水を導入する給水口441が設けられ、炉殻41の下流側の端部には冷却通路44の排水口442が設けられている。   The spiral space 44 is formed so as to extend spirally along the periphery of the muffle 42 from the transport upstream side to the downstream side, and this space 44 serves as a cooling passage through which cooling water flows. That is, the furnace body 10 in the cooling unit 40 has a cooling passage 44 that spirally extends from the transport upstream side to the downstream side. A water supply port 441 for introducing cooling water into the cooling passage 44 is provided at the upstream end of the furnace shell 41, and a drain outlet 442 of the cooling passage 44 is provided at the downstream end of the furnace shell 41. .

給水口441には図示せぬ冷却水導入管が接続され、排水口442には図示せぬ冷却水排水管が接続される。冷却部40の両端部には、炉殻41とマッフル42との間の開口を塞ぐ環状の閉塞板45が固着されており、冷却通路44は炉殻41とマッフル42との間で閉じた空間となっている。   A cooling water introduction pipe (not shown) is connected to the water supply port 441, and a cooling water drain pipe (not shown) is connected to the drain port 442. At both ends of the cooling unit 40, an annular closing plate 45 that closes the opening between the furnace shell 41 and the muffle 42 is fixed, and the cooling passage 44 is a space closed between the furnace shell 41 and the muffle 42. It has become.

(3)冷却部の作用およびそれに伴う効果
上記一実施形態に係る連続焼結炉の冷却部40においては、給水口441から冷却通路44に導入された冷却水は、図2(a)の冷却通路44内の矢印のようにマッフル42の周囲に形成された冷却通路44に沿って搬送上流側から下流側に向かって螺旋状に流れ、排水口442から排水されていく。このように炉体10内を流れる冷却水がマッフル42の外面に接触することにより、マッフル42が冷却される。マッフル424が冷却されるに伴い、マッフル42内の雰囲気が冷却され、搬送手段50で搬送されているワークWが冷却されたマッフル42内の雰囲気に接触することで冷却される。
(3) Action of Cooling Section and Effects Accompanied With it In the cooling section 40 of the continuous sintering furnace according to the above-described embodiment, the cooling water introduced into the cooling passage 44 from the water supply port 441 is cooled in FIG. As indicated by the arrow in the passage 44, it flows spirally from the upstream side to the downstream side along the cooling passage 44 formed around the muffle 42, and is drained from the drain port 442. In this way, the cooling water flowing through the furnace body 10 contacts the outer surface of the muffle 42, whereby the muffle 42 is cooled. As the muffle 424 is cooled, the atmosphere in the muffle 42 is cooled, and the workpiece W conveyed by the conveying means 50 is cooled by coming into contact with the cooled atmosphere in the muffle 42.

炉殻41の内面とマッフル42の外面およびフィン43で仕切られた冷却通路44は、フィン43によって螺旋状に規定され、これにより冷却水の流速はほぼ均一になり、マッフル42の周囲で冷却水が部分的に滞留することが起こりにくい。また、冷却通路44は、マッフル42の外面のほぼ全面に形成されている。したがって、冷却通路44を流通する冷却水によってマッフル42全体が十分、かつ均一に冷却される。その結果、マッフル42に接触する冷却水が沸騰または高熱になることより塩成分が析出するといった不具合が抑制される。よって、塩成分の析出による冷却効率の低下といった従来の問題は解消され、冷却効率の向上が図られる。   The cooling passage 44 partitioned by the inner surface of the furnace shell 41, the outer surface of the muffle 42 and the fins 43 is spirally defined by the fins 43, whereby the cooling water flow velocity becomes substantially uniform, and the cooling water around the muffle 42 is cooled. Is less likely to stay partially. Further, the cooling passage 44 is formed on almost the entire outer surface of the muffle 42. Therefore, the entire muffle 42 is sufficiently and uniformly cooled by the cooling water flowing through the cooling passage 44. As a result, the problem that the salt component precipitates due to boiling or high heat of the cooling water contacting the muffle 42 is suppressed. Therefore, the conventional problem such as a decrease in cooling efficiency due to precipitation of the salt component is solved, and the cooling efficiency is improved.

また、本実施形態では、マッフル42内の底部に設けられたスキッド46と搬送手段50(メッシュベルト)が同種の金属で構成されている。このようにスキッド46と搬送手段50が同種の金属で構成されている場合、高熱で冷却部40に移動してきた搬送手段50の熱がスキッド46に伝達してともずれを起こし、搬送不良になるおそれがあることは前述した通りである。しかしながら本実施形態では冷却部40の冷却効率が高く、搬送手段50も十分に冷却することができる。したがってスキッド46と搬送手段50のともずれが起こりにくく、安定した搬送が達成される。   Moreover, in this embodiment, the skid 46 provided in the bottom part in the muffle 42 and the conveyance means 50 (mesh belt) are comprised with the same kind of metal. Thus, when the skid 46 and the conveyance means 50 are comprised with the same kind of metal, even if the heat | fever of the conveyance means 50 which moved to the cooling part 40 with high heat is transmitted to the skid 46, it will generate | occur | produce and will become conveyance defect. As described above, there is a fear. However, in this embodiment, the cooling efficiency of the cooling unit 40 is high, and the conveying unit 50 can be sufficiently cooled. Therefore, the skid 46 and the transport means 50 are not easily displaced, and stable transport is achieved.

なお、本発明は、冷却部40のマッフル42の周囲に螺旋状の冷却通路44を形成することを骨子とするものであり、連続焼結炉の搬送手段としてはメッシュベルトに限られず、ローラハース炉、プッシャ炉、ウォーキングビーム炉等の連続式の搬送手段を有する焼結炉であれば、適用可能である。   The present invention is based on the fact that a spiral cooling passage 44 is formed around the muffle 42 of the cooling unit 40, and the conveying means of the continuous sintering furnace is not limited to the mesh belt, but a roller hearth furnace. Any sintering furnace having continuous conveying means such as a pusher furnace or a walking beam furnace can be applied.

また、螺旋状の冷却通路44を形成する螺旋状のフィン43は、上記実施形態のようにマッフル42の外面に設ける形態に替えて、炉殻41の内面に設けてもよく、さらには、マッフル42の外面と炉殻41の内面の双方に設けることにより螺旋状の冷却通路44を形成するようにすることもできる。   Further, the spiral fins 43 that form the spiral cooling passage 44 may be provided on the inner surface of the furnace shell 41 instead of being provided on the outer surface of the muffle 42 as in the above-described embodiment. The spiral cooling passage 44 can be formed by providing both on the outer surface of 42 and the inner surface of the furnace shell 41.

10…炉体
11…炉内搬送路
20…脱ろう部
30…焼結部
40…冷却部
41…炉殻
42…マッフル
43…フィン
44…冷却通路
46…スキッド
50…搬送手段
W…ワーク
DESCRIPTION OF SYMBOLS 10 ... Furnace body 11 ... In-furnace conveyance path 20 ... Dewaxing part 30 ... Sintering part 40 ... Cooling part 41 ... Furnace shell 42 ... Muffle 43 ... Fin 44 ... Cooling passage 46 ... Skid 50 ... Conveying means W ... Workpiece

Claims (3)

ワークの炉内搬送路が貫通する炉体の搬送上流側から下流に向けて、脱ろう部、焼結部、冷却部が連続して設けられ、ワークを炉内搬送路に沿って搬送する搬送手段を有する連続焼結炉において、
前記冷却部は、
前記炉体として、前記炉内搬送路が内部に形成された金属製のマッフルと、該マッフルを覆って配設される炉殻とを有し、
さらに前記マッフルと前記炉殻との間に、搬送上流側から下流側に向かい該マッフルの周囲に沿って螺旋状に延びる冷却通路が形成され、該冷却通路に冷却水が流通されることを特徴とする連続焼結炉。
A dewaxing section, sintering section, and cooling section are continuously provided from the upstream side to the downstream side of the furnace body through which the work path in the furnace passes, and the work is transported along the furnace path. In a continuous sintering furnace having means,
The cooling part is
As the furnace body, it has a metal muffle formed inside the furnace conveyance path, and a furnace shell disposed to cover the muffle,
Furthermore, a cooling passage extending spirally along the periphery of the muffle is formed between the muffle and the furnace shell from the upstream side to the downstream side, and cooling water is circulated through the cooling passage. A continuous sintering furnace.
前記冷却通路は、前記マッフルの外面または前記炉殻の内面の少なくとも一方に設けられたフィンで構成されていることを特徴とする請求項1に記載の連続焼結炉。   The continuous sintering furnace according to claim 1, wherein the cooling passage is configured by fins provided on at least one of an outer surface of the muffle and an inner surface of the furnace shell. 前記マッフル内の底部には、前記搬送手段が搬送動作時に該搬送手段を摺動可能に支持する搬送方向に延びるスキッドが設けられており、
前記搬送手段と前記スキッドとが同種の金属で構成されていることを特徴とする請求項1または2に記載の連続焼結炉。
A skid extending in the transport direction is provided at the bottom of the muffle so as to support the transport means in a slidable manner during the transport operation.
The continuous sintering furnace according to claim 1 or 2, wherein the conveying means and the skid are made of the same kind of metal.
JP2012154536A 2012-07-10 2012-07-10 Continuous sintering furnace Pending JP2014016118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012154536A JP2014016118A (en) 2012-07-10 2012-07-10 Continuous sintering furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012154536A JP2014016118A (en) 2012-07-10 2012-07-10 Continuous sintering furnace

Publications (1)

Publication Number Publication Date
JP2014016118A true JP2014016118A (en) 2014-01-30

Family

ID=50110964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012154536A Pending JP2014016118A (en) 2012-07-10 2012-07-10 Continuous sintering furnace

Country Status (1)

Country Link
JP (1) JP2014016118A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015114900A1 (en) 2014-01-30 2015-08-06 Jx日鉱日石エネルギー株式会社 Medicine for preventing ischemic diseases
CN108253783A (en) * 2018-03-07 2018-07-06 扬州伟达机械有限公司 A kind of small network band pre-burning stove

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015114900A1 (en) 2014-01-30 2015-08-06 Jx日鉱日石エネルギー株式会社 Medicine for preventing ischemic diseases
CN108253783A (en) * 2018-03-07 2018-07-06 扬州伟达机械有限公司 A kind of small network band pre-burning stove
CN108253783B (en) * 2018-03-07 2023-10-31 扬州伟达机械有限公司 Small mesh belt presintering furnace

Similar Documents

Publication Publication Date Title
JP2010513029A5 (en)
CN108779959B (en) Industrial furnace and heat utilization method thereof
KR102172275B1 (en) Furnace equipment and heat treatment method for heat treatment of metal strip
JP2014016118A (en) Continuous sintering furnace
JP2015229795A (en) Vacuum heat treatment system
US20150050610A1 (en) Sintering furnace with a gas removal device
KR20150110649A (en) Continuous heating furnace
JP5272706B2 (en) Iron powder heat treatment method and apparatus
JP2011122184A (en) Apparatus and method for producing reduced iron pellet using rotary hearth type reducing furnace
JP2022529619A (en) Methods and equipment for producing direct reducing metals
JP2014240720A (en) Mesh belt furnace for sintering
JP4074929B2 (en) Operation method of continuous heating furnace
JP2007177285A (en) Continuous sintering furnace
US2161746A (en) Apparatus for decomposing ammonia
JP2012506025A (en) Heat exchanger for an annealing furnace to exchange heat between two fluids
TWI557232B (en) Rapid heat transfer steel heat treatment system
CN104294017A (en) Continuous mesh belt quenching furnace capable of recovering waste heat
JP6997738B2 (en) Circulating non-ferrous metal melting furnace and non-ferrous metal melting method
KR101159661B1 (en) Combustion apparatus for gas of furnace
KR101466361B1 (en) Apparatus for recycleing activated carbon
Shatskikh et al. Optimization of the operation mode of regenerative heat exchangers
JP2009299143A (en) Induction heating device
KR20180074406A (en) Hydrogen reduction apparatus
CN103276167B (en) Quenching device of circular-section granular materials
JP7238248B2 (en) heat treatment furnace

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20140526