[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2014005497A - Highly corrosion resistant austenitic stainless steel - Google Patents

Highly corrosion resistant austenitic stainless steel Download PDF

Info

Publication number
JP2014005497A
JP2014005497A JP2012141565A JP2012141565A JP2014005497A JP 2014005497 A JP2014005497 A JP 2014005497A JP 2012141565 A JP2012141565 A JP 2012141565A JP 2012141565 A JP2012141565 A JP 2012141565A JP 2014005497 A JP2014005497 A JP 2014005497A
Authority
JP
Japan
Prior art keywords
steel
value
corrosion resistance
workability
austenitic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012141565A
Other languages
Japanese (ja)
Inventor
Takashi Hosoda
孝 細田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2012141565A priority Critical patent/JP2014005497A/en
Publication of JP2014005497A publication Critical patent/JP2014005497A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a highly corrosion resistant austenitic stainless steel capable of being machined without damaging its anticorrosion resistance and mechanical properties.SOLUTION: The steel contains C:0.001 to 0.100%, Si:0.01 to 2.00%, Mn:0.01 to 2.00%, S:≤0.0100%, Ni:5.0 to 25.0%, Cr:5.0 to 35.0%, Mo:2.0 to 10.00%, Cu:0.10 to 5.00%, Ti:0.001 to 0.010%, Al:0.001 to 0.050%, N:0.001 to 0.500%, Ca:0.0001 to 0.0200%, B:0.0001 to 0.0100% and the balance consisting of Fe with inevitable impurities and satisfies component formulae of the steel including fn1=[Cr]+3.3[Mo]+16[N]=35.0 to 60.0, fn2=8.4[C]+30.8[N]+5.0[B]+17.3[Mo]+2.5[Si]+1.7[Mn]=70 to 200, fn3=([Ca]/[S])+([B]×10)=1.0 to 12.0 and the like.

Description

本発明は、化学プラント用部材や配管や海水を用いた熱交換器などに使用されて、各種の腐食環境下で優れた耐食性を有すると共に、熱間および冷間での加工性にも優れた、高耐食オーステナイト系ステンレス鋼に関する。   The present invention is used for chemical plant members, piping, heat exchangers using seawater, and the like, and has excellent corrosion resistance in various corrosive environments, and is also excellent in hot and cold workability. And high corrosion-resistant austenitic stainless steel.

Cr、CuやあるいはMoを含むオーステナイト系ステンレス鋼は、多くの腐食環境下において優れた耐食性を示す。しかし、これらのステンレス鋼は、加工性においては、熱間、冷間での変形抵抗が高く、延性が低いため、設備負荷が大きい上に、熱間や冷間での加工時に割れやキズが発生しやすく、加工寸法の制限や歩留りの悪化が生じ、生産性を阻害している。   Austenitic stainless steel containing Cr, Cu or Mo exhibits excellent corrosion resistance in many corrosive environments. However, these stainless steels have high hot and cold deformation resistance and low ductility in terms of workability, so the equipment load is large and cracks and scratches occur during hot and cold processing. It tends to occur, resulting in limited processing dimensions and deterioration in yield, impeding productivity.

高Moかつ高Nの高耐食オーステナイト系ステンレス鋼で、Bを利用して熱間加工性の改善を試みている(例えば、特許文献1参照。)。しかし、この文献には、Bが耐食性や冷間加工性に及ぼす影響については言及されていない。したがって、このステンレス鋼では、耐食性および冷間加工性を阻害する硬質介在物の生成を抑制する合金設計が必要と考える。   It is a high corrosion resistance austenitic stainless steel with high Mo and high N and attempts to improve hot workability using B (see, for example, Patent Document 1). However, this document does not mention the influence of B on corrosion resistance and cold workability. Therefore, in this stainless steel, an alloy design that suppresses the formation of hard inclusions that hinder corrosion resistance and cold workability is considered necessary.

特許第2716937号公報Japanese Patent No. 2716937

米国の規格であるUNS S31254などの高Moオーステナイト系ステンレス鋼は、CrやCuやNを含み、その化学組成から硫酸、燐酸、硝酸、海水などの多くの腐食環境において優れた耐食性を有し、さらに高強度でもある。そこで、この高Moオーステナイト系ステンレス鋼は化学プラント用の部材や配管や海水を用いた熱交換器などに使用されている。しかし、加工性においては、このUNS S31254などの高Moオーステナイト系ステンレス鋼はSUS304などの汎用オーステナイト系ステンレス鋼と比べて、変形抵抗が高く、延性が低いため、設備負荷が大きい上に、熱間や冷間での加工時に割れやキズが発生しやすく、加工寸法の制限や歩留りの悪化が生じ、生産性を阻害している。   High Mo austenitic stainless steels such as UNS S31254, which is an American standard, contain Cr, Cu, and N, and have excellent corrosion resistance in many corrosive environments such as sulfuric acid, phosphoric acid, nitric acid, and seawater due to their chemical composition, It is also high strength. Therefore, this high Mo austenitic stainless steel is used for chemical plant members, piping, heat exchangers using seawater, and the like. However, in terms of workability, high Mo austenitic stainless steel such as UNS S31254 has higher deformation resistance and lower ductility than general-purpose austenitic stainless steel such as SUS304. In addition, cracks and scratches are likely to occur during cold or cold processing, resulting in limited processing dimensions and deterioration in yield, impeding productivity.

そこで、本発明が解決しようとする課題は、優れた耐食性や機械的性質を損なうことなく、熱間加工および冷間加工を容易に実施できる高耐食オーステナイト系ステンレス鋼を提供することである。   Therefore, the problem to be solved by the present invention is to provide a highly corrosion-resistant austenitic stainless steel that can easily perform hot working and cold working without impairing excellent corrosion resistance and mechanical properties.

発明者は、優れた耐食性および機械的性質を有し、熱間加工性および冷間加工性の悪化の原因である材料自体の高い変形抵抗と低い延性、並びに熱間加工での低オーバーヒート温度や低融点化合物の析出および冷間加工でのAlN、TiNおよびBNといった硬質介在物の析出による割れやキズの発生などを抑制する高耐食オーステナイト系ステンレス鋼を鋭意研究して開発した。   The inventor has excellent corrosion resistance and mechanical properties, high deformation resistance and low ductility of the material itself, which is a cause of deterioration of hot workability and cold workability, and low overheating temperature in hot work. Highly corrosion-resistant austenitic stainless steel that suppresses the generation of cracks and scratches due to precipitation of low melting point compounds and precipitation of hard inclusions such as AlN, TiN and BN during cold working has been researched and developed.

上記の課題を解決するための本発明の手段は、質量%で、C:0.001〜0.100%、Si:0.01〜2.00%、Mn:0.01〜2.00%、S:0.0100%以下、Ni:5.0〜25.0%、Cr:5.0〜35.0%、Mo:2.0〜10.00%、Cu:0.10〜5.00%、Ti:0.001〜0.010%、Al:0.001〜0.050%、N:0.001〜0.500%、Ca:0.0001〜0.0200%、B:0.0001〜0.0100%を含有し、残部Feおよび不可避不純物からなる鋼である。
そして、この鋼の化学成分からなる関係を規定する計算式の、
fn1=[Cr]+3.3[Mo]+16[N]=35.0〜60.0
fn2=8.4[C]+30.8[N]+5.0[B]+17.3[Mo]+2.5[Si]+1.7[Mn]=70〜200
fn3=([Ca]/[S])+([B]×103)=1.0〜12.0
fn4=100[N]×(1.3[B]+0.5[Al]+0.3[Ti])≦0.60
を満足することを特徴とする高耐食オーステナイト系ステンレス鋼である。
Means of the present invention for solving the above-mentioned problems are, in mass%, C: 0.001 to 0.100%, Si: 0.01 to 2.00%, Mn: 0.01 to 2.00%. , S: 0.0100% or less, Ni: 5.0-25.0%, Cr: 5.0-35.0%, Mo: 2.0-10.00%, Cu: 0.10-5. 00%, Ti: 0.001 to 0.010%, Al: 0.001 to 0.050%, N: 0.001 to 0.500%, Ca: 0.0001 to 0.0200%, B: 0 It is steel which contains 0.0001-0.0100% and consists of remainder Fe and inevitable impurities.
And the calculation formula that defines the relationship consisting of the chemical components of this steel,
fn1 = [Cr] +3.3 [Mo] +16 [N] = 35.0-60.0
fn2 = 8.4 [C] +30.8 [N] +5.0 [B] +17.3 [Mo] +2.5 [Si] +1.7 [Mn] = 70 to 200
fn3 = ([Ca] / [S]) + ([B] × 10 3 ) = 1.0 to 12.0
fn4 = 100 [N] × (1.3 [B] +0.5 [Al] +0.3 [Ti]) ≦ 0.60
It is a highly corrosion resistant austenitic stainless steel characterized by satisfying

ここで、本発明の高耐食オーステナイト系ステンレス鋼のFeを除く化学成分の範囲の限定理由および計算式の値の限定理由を以下に説明する。なお、%は質量%を示す。   Here, the reason for limiting the range of chemical components excluding Fe and the reason for limiting the value of the calculation formula of the highly corrosion-resistant austenitic stainless steel of the present invention will be described below. In addition,% shows the mass%.

C:0.001〜0.100%
Cは、固溶強化を図るために必要な元素である。このためには、Cは0.001%以上必要である。しかし、Cが0.100%を超えると、CrとCr炭化物を形成し、鋼の耐粒界腐食性が低下し、また、鋼材の融点を下げて変形抵抗を上げるために、熱間加工性および冷間加工性が低下する。そこで、Cは0.001〜0.100%とする。
C: 0.001 to 0.100%
C is an element necessary for solid solution strengthening. For this purpose, C needs to be 0.001% or more. However, when C exceeds 0.100%, Cr and Cr carbide are formed, and the intergranular corrosion resistance of the steel is lowered. Also, the hot workability is increased in order to lower the melting point of the steel material and increase the deformation resistance. And cold workability falls. Therefore, C is 0.001 to 0.100%.

Si:0.01〜2.00%
Siは、製造時に脱酸剤として添加される元素である。このためには、Cは0.01%以上必要である。しかし、Siが2.00%を超えると、鋼材の延性を低下させる。そこで、Siは0.01〜2.00%とする。
Si: 0.01 to 2.00%
Si is an element added as a deoxidizer during production. For this purpose, C needs to be 0.01% or more. However, if Si exceeds 2.00%, the ductility of the steel material is lowered. Therefore, Si is set to 0.01 to 2.00%.

Mn:0.01〜2.00%
Mnは、S固定による熱間加工性の改善の効果を得るためと、鋼のγ相の安定化のために必要な元素である。このためには、Mnは0.01%以上必要である。しかし、Mnが2.00%超えてもこれらの効果は飽和する。そこで、Mnは0.01〜2.00%とする。
Mn: 0.01 to 2.00%
Mn is an element necessary for obtaining the effect of improving hot workability by S fixation and for stabilizing the γ phase of steel. For this purpose, Mn is required to be 0.01% or more. However, even if Mn exceeds 2.00%, these effects are saturated. Therefore, Mn is set to 0.01 to 2.00%.

S:0.0100%以下
Sは添加しなくとも良い元素である。しかし、Sが0.0100%を超えると、低融点硫化物の生成による鋼材の熱間加工性を悪化する。そこで、Sは0.0100%以下とする。
S: 0.0100% or less S is an element that does not need to be added. However, when S exceeds 0.0100%, the hot workability of the steel material due to the formation of low melting point sulfide is deteriorated. Therefore, S is set to 0.0100% or less.

Ni:5.0〜25.0%
Niは、鋼のγ相の安定化に有効な元素である。このためには、Niは5.0%以上必要である。しかし、Niは高価な稀少な金属であるので、25%を超えるとコストを上げる。そこで、Niは5.0〜25.0%とする。
Ni: 5.0-25.0%
Ni is an element effective for stabilizing the γ phase of steel. For this purpose, Ni needs to be 5.0% or more. However, since Ni is an expensive rare metal, if it exceeds 25%, the cost increases. Therefore, Ni is set to 5.0 to 25.0%.

Cr:5.0〜35.0%
Crは、耐食性の向上に必須の元素である。このためには、Crは5.0%以上が必要である。しかし、Crは35.0%を超えて含有されると、鋼の融点を下げ、変形抵抗を上げるために、鋼材の熱間加工性および冷間加工性が低下する。そこで、Crは5.0〜35.0%とする。
Cr: 5.0-35.0%
Cr is an essential element for improving the corrosion resistance. For this purpose, Cr needs to be 5.0% or more. However, if Cr is contained in an amount exceeding 35.0%, the hot workability and cold workability of the steel material are lowered in order to lower the melting point of the steel and increase the deformation resistance. Therefore, Cr is set to 5.0 to 35.0%.

Mo:2.0〜10.00%
Moは、耐食性の向上に必須の元素である。このためには、Moは2.0%以上が必要である。しかし、Moは10.00%を超えて含有されると、鋼の融点を下げ、変形抵抗を上げるために、鋼材の熱間加工性および冷間加工性を低下させ、さらに、コストを上げる。そこで、Moは2.0〜10.00%とする。好ましくは4.0〜8.00%である。
Mo: 2.0-10.00%
Mo is an element essential for improving the corrosion resistance. For this purpose, Mo needs to be 2.0% or more. However, if Mo is contained in an amount exceeding 10.00%, in order to lower the melting point of the steel and increase the deformation resistance, the hot workability and cold workability of the steel material are lowered, and the cost is further increased. Therefore, Mo is set to 2.0 to 10.00%. Preferably it is 4.0 to 8.00%.

Cu:0.10〜5.00%
Cuは、耐食性の向上に必須の元素であり、さらにγ相の安定化に必要な元素である。このためには、Cuは0.10%以上が必要である。しかし、Cuは5.00%を超えると鋼の熱間加工性を低下させ、コストをあげる。そこで、Cuは0.10〜5.00%とする。
Cu: 0.10 to 5.00%
Cu is an element essential for improving the corrosion resistance, and further an element necessary for stabilizing the γ phase. For this purpose, Cu needs to be 0.10% or more. However, if Cu exceeds 5.00%, the hot workability of the steel is lowered and the cost is increased. Therefore, Cu is made 0.10 to 5.00%.

Ti:0.001〜0.010%
Tiは、C固定による耐食性を向上する元素であり、TiCやTiNの生成によるピン止め効果により、結晶粒微細化による強度および靱性の向上に寄与する。このためには、Tiは0.001%以上が必要である。しかし、Tiは0.010%を超えると、多量のTiNを生成させ、耐食性を悪化させると共に冷間加工での割れや疵の発生起点となる。また、鋼材の融点を下げ、変形抵抗を上げるため、熱間加工性や冷間加工性を悪化する。そこで、Tiは0.001〜0.010%とする。
Ti: 0.001 to 0.010%
Ti is an element that improves the corrosion resistance by C fixation, and contributes to the improvement of strength and toughness by crystal grain refinement by the pinning effect by the generation of TiC and TiN. For this purpose, Ti needs to be 0.001% or more. However, if Ti exceeds 0.010%, a large amount of TiN is produced, which deteriorates corrosion resistance and becomes a starting point of cracks and flaws in cold working. Moreover, since the melting point of the steel material is lowered and the deformation resistance is increased, hot workability and cold workability are deteriorated. Therefore, Ti is made 0.001 to 0.010%.

Al:0.001〜0.050%
Alは、製鋼時の脱酸材として添加する元素であり、また、AlNの生成によるピン止め効果により結晶粒微細化による強度、靱性の向上に寄与する元素である。このためには、Alは0.001%以上が必要である。しかし、Alは0.050%を超えて含有してもその効果は飽和し、コストを上げることとなり、さらに、多量のAlNを生成して耐食性を悪化させると共に、冷間加工での割れや疵の発生起点となる。そこで、Alは0.001〜0.050%とする。好ましくは0.005〜0.030%である。
Al: 0.001 to 0.050%
Al is an element added as a deoxidizer during steelmaking, and is an element that contributes to improvement in strength and toughness due to grain refinement due to the pinning effect caused by the formation of AlN. For this purpose, Al is required to be 0.001% or more. However, even if Al is contained in excess of 0.050%, the effect is saturated and the cost is increased. Furthermore, a large amount of AlN is generated to deteriorate the corrosion resistance, and cracks and wrinkles in cold work are caused. Is the starting point of Therefore, Al is made 0.001 to 0.050%. Preferably it is 0.005 to 0.030%.

N:0.001〜0.500%
Nは、γ相を安定化し、耐食性の向上を図る元素である。このためには、Nは0.001%以上が必要である。しかし、Nは0.500%を超えて含有すると、窒化物の生成により鋼材の熱間加工性が悪化する。そこで、Nは0.001〜0.500%とする。好ましくは0.050〜0.300%である。
N: 0.001 to 0.500%
N is an element that stabilizes the γ phase and improves corrosion resistance. For this purpose, N is required to be 0.001% or more. However, if N exceeds 0.500%, the hot workability of the steel material deteriorates due to the formation of nitrides. Therefore, N is set to 0.001 to 0.500%. Preferably it is 0.050 to 0.300%.

Ca:0.0001〜0.0200%
Caは、Sを固定し熱間加工性の改善に寄与する元素である。このためには、Caは0.0001%以上が必要である。しかし、Caは0.0200%を超えて含有されると、低融点化合物の生成により、鋼材の熱間加工性が悪化する。そこで、Caは0.0001〜0.0200%とする。
Ca: 0.0001 to 0.0200%
Ca is an element that fixes S and contributes to the improvement of hot workability. For this purpose, Ca needs to be 0.0001% or more. However, if Ca is contained in an amount exceeding 0.0200%, the hot workability of the steel material deteriorates due to the generation of a low melting point compound. Therefore, Ca is 0.0001 to 0.0200%.

B:0.0001〜0.0100%
Bは粒界偏析による粒界を強化する元素である。そのためには、Bは0.0001%以上が必要である。しかし、Bは0.0100%を超えて含有されると、鋼材のオーバーヒート温度を低下させ、窒化物の生成により、耐食性と冷間加工性が悪化する。そこで、Bは0.0001〜0.0100%とする。好ましくは0.0010〜0.0050%である。
B: 0.0001 to 0.0100%
B is an element that reinforces grain boundaries due to grain boundary segregation. For that purpose, B needs to be 0.0001% or more. However, if B is contained in an amount exceeding 0.0100%, the overheating temperature of the steel material is lowered, and the corrosion resistance and cold workability are deteriorated due to the formation of nitrides. Therefore, B is set to 0.0001 to 0.0100%. Preferably it is 0.0010 to 0.0050%.

fn1=[Cr]+3.3[Mo]+16[N]=35.0〜60.0
fn1の値は、鋼の耐孔食性の向上を示す値である。そのためには、fn1の値は35.0以上である必要がある。しかし、fn1の値が60.0を超えると、固溶強化の過剰により、強度過剰となって加工性が悪化して、生産性を阻害する。そこで、fn1の値は35.0〜60.0とする。好ましくは40.0〜55.0である。
fn1 = [Cr] +3.3 [Mo] +16 [N] = 35.0-60.0
The value of fn1 is a value indicating an improvement in pitting corrosion resistance of steel. For that purpose, the value of fn1 needs to be 35.0 or more. However, if the value of fn1 exceeds 60.0, due to excessive solid solution strengthening, the strength becomes excessive and workability deteriorates, and productivity is inhibited. Therefore, the value of fn1 is 35.0 to 60.0. Preferably it is 40.0-55.0.

fn2=8.4[C]+30.8[N]+5.0[B]+17.3[Mo]+2.5[Si]+1.7[Mn]=70〜200
fn2の値は、鋼の強度の上昇を示す値である。そのためには、fn2の値は70以上である必要がある。しかし、fn2の値が200を超えると、固溶強化の過剰により、強度過剰となって加工性が悪化して、生産性を阻害する。一方、fn2の値は70未満であると、強度が不足する。そこで、fn2の値は70〜200とする。好ましくは80〜140である。
fn2 = 8.4 [C] +30.8 [N] +5.0 [B] +17.3 [Mo] +2.5 [Si] +1.7 [Mn] = 70 to 200
The value of fn2 is a value indicating an increase in steel strength. For that purpose, the value of fn2 needs to be 70 or more. However, if the value of fn2 exceeds 200, due to excessive solid solution strengthening, the strength becomes excessive and workability deteriorates, and productivity is inhibited. On the other hand, if the value of fn2 is less than 70, the strength is insufficient. Therefore, the value of fn2 is set to 70 to 200. Preferably it is 80-140.

fn3=([Ca]/[S])+([B]×103)=1.0〜12.0
fn3の値は、鋼の熱間加工性の向上を示す値である。そのためには、fn3の値は1.0以上である必要がある。しかし、fn3の値が12.0を超えると、Sに対するCaの過剰添加により、鋼の熱間加工性を低下する。そこで、fn3の値は1.0〜12.0とする。好ましくは1.5〜10.0である。
fn3 = ([Ca] / [S]) + ([B] × 10 3 ) = 1.0 to 12.0
The value of fn3 is a value indicating an improvement in hot workability of steel. For that purpose, the value of fn3 needs to be 1.0 or more. However, if the value of fn3 exceeds 12.0, the hot workability of the steel decreases due to the excessive addition of Ca to S. Therefore, the value of fn3 is set to 1.0 to 12.0. Preferably it is 1.5-10.0.

fn4=100[N]×(1.3[B]+0.5[Al]+0.3[Ti])≦0.60
fn4の値は、鋼の耐食性および冷間加工性を示す値である。すなわち、fn4の値が0.60を超えると、窒化物の生成過剰により鋼の耐食性および冷間加工性を悪化する。そこで、fn4の値は0.60以下とする。好ましくは0.50以下である。
fn4 = 100 [N] × (1.3 [B] +0.5 [Al] +0.3 [Ti]) ≦ 0.60
The value of fn4 is a value indicating the corrosion resistance and cold workability of steel. That is, if the value of fn4 exceeds 0.60, the corrosion resistance and cold workability of steel deteriorate due to excessive formation of nitrides. Therefore, the value of fn4 is set to 0.60 or less. Preferably it is 0.50 or less.

上記の課題を解決するための手段としたことで、優れた耐食性や機械的性質を損なうことなく、熱間加工および冷間加工を容易に実施できる高耐食オーステナイト系ステンレス鋼が得られる。   By using the means for solving the above-mentioned problems, a highly corrosion-resistant austenitic stainless steel that can easily perform hot working and cold working without impairing excellent corrosion resistance and mechanical properties can be obtained.

本発明鋼と比較鋼について、fn1の値とfn2の値の関係による耐孔食性と鋼材の強度および加工性の関係を方眼紙に示すグラフである。It is a graph which shows in graph paper the relationship between the pitting corrosion resistance by the relationship between the value of fn1 and the value of fn2, the strength of steel, and workability about this invention steel and comparative steel. 本発明鋼と比較鋼について、fn3の値とfn4の値の関係による加工性および耐食性の関係を対数方眼紙に示すグラフである。It is a graph which shows on a logarithmic graph paper the relationship of workability and corrosion resistance by the relationship between the value of fn3 and the value of fn4 about this invention steel and comparative steel.

発明の実施の形態について、表1および表2および図1および図2をそれぞれ参照して以下に説明する。   Embodiments of the invention will be described below with reference to Tables 1 and 2 and FIGS. 1 and 2, respectively.

表1に示す化学成分を含有し、残部Feおよび不可避不純物からなり、fn1〜4の値を有する、No.1〜13の発明鋼およびNo.14〜25の比較鋼に示す鋼を、VIM(真空誘導溶解)法により溶解して100kgのインゴットに鋳造した後、これらを1180℃に加熱し、径15mm、径18mm、径25mmの棒鋼にそれぞれ鍛伸した。   No. 1 containing the chemical components shown in Table 1, consisting of the remainder Fe and inevitable impurities, and having values of fn1-4. Invention steels 1 to 13 and No. After the steel shown in Comparative Steels 14-25 was melted by the VIM (Vacuum Induction Melting) method and cast into a 100 kg ingot, these were heated to 1180 ° C., and the steel bars were 15 mm, 18 mm and 25 mm in diameter, respectively. I trained.

Figure 2014005497
Figure 2014005497

さらに、表1の化学成分を含有する鋼材の熱間加工性を評価するため、径15mmの棒鋼からなる鋼材を1180℃で30分保持した後、水冷により焼入れする前熱処理(熱間加工時の加熱温度からの水冷による焼入れに相当)を実施した。次いで、この棒鋼から径8mm、長さ100mmの高温試験のグリーブル試験片を作製した。さらにグリーブル試験機を用いて、1180℃に加熱後、毎秒当たり50mmの引張速度で引張試験を行い、絞りと引張速度を測定した。この高温における引張試験による結果の評価として、表2に熱加工性である絞りと変形抵抗を示し、1180℃における絞りが75%以上、かつ変形抵抗が200MPa以下を満足するものを、熱間加工性が良好であるとして白丸で示した。一方、絞りが75%以上あるいは変形抵抗が200MPa以下のいずれかを満足しないもの、または両者を満足しないものを、熱間加工性が良好でないとして黒丸で示した。   Furthermore, in order to evaluate the hot workability of the steel materials containing the chemical components shown in Table 1, a steel material made of a steel bar having a diameter of 15 mm is held at 1180 ° C. for 30 minutes and then pre-heat treated (quenched during hot working) by quenching with water. Equivalent to quenching by water cooling from the heating temperature). Next, a greeble test piece for a high temperature test having a diameter of 8 mm and a length of 100 mm was produced from the steel bar. Furthermore, using a greeble tester, after heating to 1180 ° C., a tensile test was conducted at a tensile speed of 50 mm per second, and the drawing and the tensile speed were measured. As an evaluation of the results of this high temperature tensile test, Table 2 shows the hot workability drawing and deformation resistance, and those that satisfy the drawing at 1180 ° C. of 75% or more and the deformation resistance of 200 MPa or less. A white circle indicates that the property is good. On the other hand, those that do not satisfy either the drawing of 75% or more, the deformation resistance of 200 MPa or less, or those that do not satisfy both are indicated by black circles as hot workability is not good.

さらに、上記で得られた鋼材の冷間加工性を評価するために、上記の1180℃に加熱し、鍛伸した棒鋼のうち、径18mmの棒鋼を1150℃で15分保持した後、水冷により焼入れする前熱処理(固溶化処理に相当)を実施し、次いで、この棒鋼から径14mm、長さ21mmの据込み試験用試料を作製した。この試験用試料を用いて室温で据込み試験を行い、50%加工時の割れの有無と、50%加工時の変形抵抗を測定した。この冷間による据込み試験による結果の評価として、表2に冷間加工性である室温で50%加工時の割れの有無と変形抵抗を示し、割れが無く、かつ変形抵抗が1400MPa以下を満足するものを冷間加工性が良好であるとして白丸で示した。一方、割れが無く、かつ変形抵抗が1400MPa以下のいずれかを満足しないものまたは両者を満足しないものを冷間加工性が良好でないとして黒丸で示した。   Furthermore, in order to evaluate the cold workability of the steel material obtained above, among the steel bars heated to 1180 ° C. and forged, a steel bar having a diameter of 18 mm was held at 1150 ° C. for 15 minutes, and then water-cooled. Pre-heat treatment before quenching (corresponding to a solution treatment) was performed, and then a sample for upsetting test having a diameter of 14 mm and a length of 21 mm was produced from this steel bar. Using this test sample, an upsetting test was performed at room temperature, and the presence or absence of cracks during 50% processing and the deformation resistance during 50% processing were measured. As an evaluation of the results of the cold upsetting test, Table 2 shows the presence or absence of cracking and deformation resistance during 50% processing at room temperature, which is cold workability, and there is no cracking and the deformation resistance satisfies 1400 MPa or less. The white circles indicate that the cold workability is good. On the other hand, the case where there is no crack and the deformation resistance does not satisfy one of 1400 MPa or less, or the case where both do not satisfy both, is indicated by a black circle because the cold workability is not good.

さらに、上記で得られた鋼材の耐食性を評価するために、上記の1180℃に加熱し、鍛伸した棒鋼のうち、径15mmの棒鋼を1150℃で15分保持した後、水冷により焼入れする前熱処理(固溶化処理に相当)を実施し、次いで、この棒鋼から径12mm、長さ21mmの腐食試験用試料を作製した。この試験用試料を用いてJISに規定されている65%硝酸による粒界腐食と、グリーンデス(green death)試験溶液による孔食試験に供した。
この中の粒界腐食に対して、65%硝酸粒界腐食試験:[JIS G0573に規定]として、沸騰した65%硝酸溶液に試験用試料を48時間浸漬して、これを5回繰り返して試験し、試験試料の腐食度(g/m2h)を測定し、これらの5回の平均値を腐食度として結果の評価として、表2に耐粒界腐食性を示し、腐食度0.50(g/m2h)以下を満足するものを耐粒界腐食性は良好であるとして白丸で示した。一方、腐食度0.50(g/m2h)を超えるものを耐粒界腐食性は良好でないとして黒丸で示した。
Furthermore, in order to evaluate the corrosion resistance of the steel material obtained as described above, among the steel bars heated to 1180 ° C. and forged, the steel bar having a diameter of 15 mm is held at 1150 ° C. for 15 minutes and then quenched by water cooling. A heat treatment (corresponding to a solution treatment) was performed, and then a corrosion test sample having a diameter of 12 mm and a length of 21 mm was produced from this steel bar. Using this test sample, it was subjected to intergranular corrosion with 65% nitric acid specified by JIS and pitting corrosion test with a green death test solution.
For the intergranular corrosion, a 65% nitric acid intergranular corrosion test: [as defined in JIS G0573] was performed by immersing the test sample in a boiling 65% nitric acid solution for 48 hours and repeating this test 5 times. Then, the corrosion degree (g / m 2 h) of the test sample was measured, and the average value of these five times was evaluated as the corrosion degree. As a result, the intergranular corrosion resistance was shown in Table 2, and the corrosion degree was 0.50. Those satisfying (g / m 2 h) or less are indicated by white circles as having good intergranular corrosion resistance. On the other hand, those with a corrosion degree exceeding 0.50 (g / m 2 h) are indicated by black circles because the intergranular corrosion resistance is not good.

さらに、グリーンデス試験溶液による孔食試験として、7%H2SO4溶液、3v%HCl溶液、1%CuCl2溶液、1%FeCl3・6H2Oの溶液からなるグリーンデス試験溶液を65℃に加熱した中に上記の径12mm、長さ21mmの試験片を24時間浸漬して腐食度(g/m2h)を測定し、腐食度が15.0(g/m2h)以下を満足するものを耐孔食性が良好であるとして白丸で示した。一方、腐食度15.0(g/m2h)を超えるものを耐孔食性は良好でないとして黒丸で示した。 Further, as a pitting corrosion test using the Green Death test solution, a Green Death test solution composed of a 7% H 2 SO 4 solution, 3 v% HCl solution, 1% CuCl 2 solution, 1% FeCl 3 .6H 2 O solution was applied at 65 ° C. The test piece having a diameter of 12 mm and a length of 21 mm was immersed for 24 hours while being heated to measure the corrosion degree (g / m 2 h), and the corrosion degree was 15.0 (g / m 2 h) or less. Those satisfying are indicated by white circles as having good pitting corrosion resistance. On the other hand, those having a corrosion degree exceeding 15.0 (g / m 2 h) are indicated by black circles because the pitting corrosion resistance is not good.

さらに、上記で得られた鋼材の機械的性質を評価するために、上記の1180℃に加熱し、鍛伸した棒鋼のうち、径25mmの棒鋼を1150℃で15分間保持した後、水冷により焼入れする前熱処理(固溶化処理に相当)を実施し、JISに規定する10号試験片に加工して、引張試験を行って、引張強さおよび伸びを測定した。この引張試験の結果の評価として、表2に機械的性質の引張強さおよび全伸びを示し、引張強さが650MPa以上でかつ全伸びが40%以上を機械的性質が良好であるとして白丸で示した。一方、強さが650MPa以上あるいは全伸びが40%以上のいずれかまたは両者を満足しないものを機械的性質が良好でないとして黒丸で示した。   Furthermore, in order to evaluate the mechanical properties of the steel material obtained above, the steel bar heated to 1180 ° C. and forged and stretched was held at 1150 ° C. for 15 minutes, and then quenched by water cooling. A pre-heat treatment (corresponding to a solution treatment) was performed, processed into a No. 10 test piece specified in JIS, a tensile test was performed, and tensile strength and elongation were measured. As an evaluation of the result of this tensile test, Table 2 shows the tensile strength and total elongation of the mechanical properties. The tensile strength is 650 MPa or more and the total elongation is 40% or more. Indicated. On the other hand, those with a strength of 650 MPa or more or a total elongation of 40% or more, or those not satisfying both, are indicated by black circles because mechanical properties are not good.

Figure 2014005497
Figure 2014005497

図1は、本発明の特許請求の範囲の請求項における耐食オーステナイト系ステンレス鋼の、化学成分の関係を規定する式であるfn1を横軸にfn2を縦軸にとり、請求項に記載のfn1の値およびfn2の値の範囲で横軸と縦軸を区画して、鋼の耐孔食性と材料強度の関係を示すグラフである。このグラフにおける、横軸のfn1の値の35.0〜60.0および縦軸のfn2の値の70〜200の領域内が本発明の範囲であり、この範囲内に表1に示す実施例である発明鋼のNo.1〜13が総て含まれている。これらは、鋼の耐孔食性が優れているもの、すなわち上記の段落0035に記載の試験における、腐食度が15.0(g/m2h)以下を満足するものであり、さらに、材料強度が優れているもの、すなわち上記の段落0036に記載の引張試験における引張強さ650MPa以上を満足するものであり、したがって、表1の発明鋼のNo.1〜13を図1に白丸で示している。これに対して、本発明の範囲外である、図1における、横軸のfn1の値の35.0〜60.0の領域の範囲からおよび縦軸のfn2の値の70〜200の領域の範囲から、それぞれ外れる領域では、すなわち、横軸のfn1の値が35.0未満の領域では、耐孔食性が悪化しており、横軸のfn1の値が60.0を超える領域では、段落0023に記載したように、固溶強化の過剰により、強度過剰となって加工性を悪化している。また、縦軸のfn2の値が200を超える領域では固溶強化の過剰によって強度過剰で加工性を悪化しており、さらにfn2の値が70未満である領域では、強度が不足している。 FIG. 1 shows fn1 as a formula for defining the chemical component relationship of the corrosion-resistant austenitic stainless steel in the claims of the present invention, fn2 on the horizontal axis, and fn2 on the vertical axis. It is a graph which shows the relationship between the pitting corrosion resistance of steel and material strength, dividing a horizontal axis and a vertical axis | shaft in the range of the value and the value of fn2. In this graph, the range of 35.0 to 60.0 of the value of fn1 on the horizontal axis and the range of 70 to 200 of the value of fn2 on the vertical axis is the range of the present invention, and the examples shown in Table 1 are within this range. The invention steel No. 1 to 13 are all included. These have excellent pitting corrosion resistance of steel, that is, satisfy the degree of corrosion of 15.0 (g / m 2 h) or less in the test described in the above paragraph 0035. Is excellent, that is, it satisfies the tensile strength of 650 MPa or more in the tensile test described in paragraph 0036 above. 1 to 13 are indicated by white circles in FIG. On the other hand, from the range of the region of 35.0 to 60.0 of the value of fn1 on the horizontal axis and the region of 70 to 200 of the value of fn2 on the vertical axis in FIG. In areas outside the range, that is, in areas where the value of fn1 on the horizontal axis is less than 35.0, pitting corrosion resistance is deteriorated, and in areas where the value of fn1 on the horizontal axis exceeds 60.0, paragraphs As described in 0023, due to excessive solid solution strengthening, the strength becomes excessive and workability deteriorates. Further, in the region where the value of fn2 on the vertical axis exceeds 200, the workability deteriorates due to excessive strength due to excessive solid solution strengthening, and in the region where the value of fn2 is less than 70, the strength is insufficient.

図2は、本発明の特許請求の範囲の請求項における耐食オーステナイト系ステンレス鋼の、化学成分の関係を規定する式であるfn3を横軸にfn4を縦軸にとり、請求項に記載のfn3の値およびfn4の値の範囲で横軸と縦軸を区画して、鋼の熱間及び冷間の加工性と耐食性の関係を示すグラフである。このグラフにおける、横軸のfn3の値の1.0〜12.0および縦軸のfn4の値の0.60以下の領域内が本発明の範囲であり、この範囲内に表1に示す実施例である発明鋼のNo.1〜13が総て含まれている。これらは鋼の加工性および耐食性が優れているもの、すなわち上記の段落0034に記載の試験における、腐食度が0.50(g/m2h)以下を満足するものである。さらに、これらは材料強度が優れているもの、すなわち上記の段落0036に記載の引張試験における引張強さ650MPa以上を満足するものであり、したがって、表1の発明鋼のNo.1〜13を図1に白丸で示している。これに対して、本発明の範囲外である、図1における、横軸のfn3の値の1.0〜12.0の領域の範囲からおよび縦軸のfn4の値の0.60以下の領域の範囲から、それぞれ外れる領域では、すなわち、横軸のfn3の値が1.0未満および12.0超の領域で、かつ縦軸のfn4の値が0.60超の範囲では、耐食性及び冷間加工性が悪化しており、横軸のfn3の値が1.0未満および12.0超の領域では、段落0025に記載したように、Sに対するCaの過剰添加により、熱間加工性を悪化している。また、縦軸のfn4の値が0.60を超える領域では、窒化物の生成過剰により鋼の耐食性および冷間加工性が悪化している。 FIG. 2 shows fn3 as a formula for defining the chemical composition relationship of the corrosion-resistant austenitic stainless steel in the claims of the present invention, fn4 on the horizontal axis, and fn3 on the vertical axis. It is a graph which shows the relationship between hot workability and cold workability of steel, and corrosion resistance, dividing a horizontal axis and a vertical axis | shaft in the range of a value and the value of fn4. In this graph, the range of 1.0 to 12.0 of the value of fn3 on the horizontal axis and 0.60 or less of the value of fn4 on the vertical axis is the range of the present invention, and the implementation shown in Table 1 is within this range. No. of inventive steel as an example. 1 to 13 are all included. These have excellent workability and corrosion resistance of steel, that is, satisfy the corrosion degree of 0.50 (g / m 2 h) or less in the test described in the above paragraph 0034. Further, these materials are excellent in material strength, that is, satisfy the tensile strength of 650 MPa or more in the tensile test described in the above paragraph 0036. 1 to 13 are indicated by white circles in FIG. In contrast, in FIG. 1, which is outside the scope of the present invention, from the range of the region of 1.0 to 12.0 of the value of fn3 on the horizontal axis and the region of 0.60 or less of the value of fn4 on the vertical axis That is, in the regions deviating from the above ranges, that is, in the region where the value of fn3 on the horizontal axis is less than 1.0 and more than 12.0, and the value of fn4 on the vertical axis is more than 0.60, the corrosion resistance and cooling In the region where the value of fn3 on the horizontal axis is less than 1.0 and more than 12.0, the hot workability is reduced by excessive addition of Ca to S as described in paragraph 0025. It is getting worse. Further, in the region where the value of fn4 on the vertical axis exceeds 0.60, the corrosion resistance and cold workability of the steel are deteriorated due to excessive formation of nitrides.

Claims (1)

質量%で、C:0.001〜0.100%、Si:0.01〜2.00%、Mn:0.01〜2.00%、S:0.0100%以下、Ni:5.0〜25.0%、Cr:5.0〜35.0%、Mo:2.0〜10.00%、Cu:0.10〜5.00%、Ti:0.001〜0.010%、Al:0.001〜0.050%、N:0.001〜0.500%、Ca:0.0001〜0.0200%、B:0.0001〜0.0100%を含有し、残部Feおよび不可避不純物からなる鋼で、化学成分の関係が、
fn1=35.0〜60.0、
fn2=70〜200、
fn3=1.0〜12.0、
fn4≦0.60
をいずれも満足することを特徴とする高耐食オーステナイト系ステンレス鋼。
ただしfn1からfn4は次のとおりである。
fn1=[Cr]+3.3[Mo]+16[N]、
fn2=8.4[C]+30.8[N]+5.0[B]+17.3[Mo]+2.5[Si]+1.7[Mn]、
fn3=([Ca]/[S])+([B]×103)、
fn4=100[N]×(1.3[B]+0.5[Al]+0.3[Ti])
In mass%, C: 0.001 to 0.100%, Si: 0.01 to 2.00%, Mn: 0.01 to 2.00%, S: 0.0100% or less, Ni: 5.0 -25.0%, Cr: 5.0-35.0%, Mo: 2.0-10.00%, Cu: 0.10-5.00%, Ti: 0.001-0.010%, Al: 0.001 to 0.050%, N: 0.001 to 0.500%, Ca: 0.0001 to 0.0200%, B: 0.0001 to 0.0100%, the balance Fe and The steel is composed of inevitable impurities and the chemical composition is
fn1 = 35.0-60.0,
fn2 = 70-200,
fn3 = 1.0-12.0,
fn4 ≦ 0.60
High corrosion resistance austenitic stainless steel characterized by satisfying all of the above.
However, fn1 to fn4 are as follows.
fn1 = [Cr] +3.3 [Mo] +16 [N],
fn2 = 8.4 [C] +30.8 [N] +5.0 [B] +17.3 [Mo] +2.5 [Si] +1.7 [Mn]
fn3 = ([Ca] / [S]) + ([B] × 10 3 ),
fn4 = 100 [N] × (1.3 [B] +0.5 [Al] +0.3 [Ti])
JP2012141565A 2012-06-25 2012-06-25 Highly corrosion resistant austenitic stainless steel Pending JP2014005497A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012141565A JP2014005497A (en) 2012-06-25 2012-06-25 Highly corrosion resistant austenitic stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012141565A JP2014005497A (en) 2012-06-25 2012-06-25 Highly corrosion resistant austenitic stainless steel

Publications (1)

Publication Number Publication Date
JP2014005497A true JP2014005497A (en) 2014-01-16

Family

ID=50103482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012141565A Pending JP2014005497A (en) 2012-06-25 2012-06-25 Highly corrosion resistant austenitic stainless steel

Country Status (1)

Country Link
JP (1) JP2014005497A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018172709A (en) * 2017-03-31 2018-11-08 新日鐵住金ステンレス株式会社 Austenitic stainless steel, soldered structure, soldered structure component and exhaust gas heat exchange component
WO2021000768A1 (en) * 2019-07-02 2021-01-07 珠海国合融创科技有限公司 Austenitic stainless steel and preparation method therefor
CN113046626A (en) * 2019-12-26 2021-06-29 精工时计株式会社 Ornament and method for manufacturing ornament
CN115874117A (en) * 2022-12-10 2023-03-31 浙江丰业集团有限公司 Corrosion-resistant stainless steel pipe and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018172709A (en) * 2017-03-31 2018-11-08 新日鐵住金ステンレス株式会社 Austenitic stainless steel, soldered structure, soldered structure component and exhaust gas heat exchange component
WO2021000768A1 (en) * 2019-07-02 2021-01-07 珠海国合融创科技有限公司 Austenitic stainless steel and preparation method therefor
CN113046626A (en) * 2019-12-26 2021-06-29 精工时计株式会社 Ornament and method for manufacturing ornament
CN113046626B (en) * 2019-12-26 2023-06-06 精工时计株式会社 Ornament and method for manufacturing ornament
CN115874117A (en) * 2022-12-10 2023-03-31 浙江丰业集团有限公司 Corrosion-resistant stainless steel pipe and preparation method thereof
CN115874117B (en) * 2022-12-10 2024-04-02 浙江丰业集团有限公司 Corrosion-resistant stainless steel pipe and preparation method thereof

Similar Documents

Publication Publication Date Title
RU2716438C1 (en) Seamless high-strength pipe from stainless steel of oil-field range and method of its manufacturing
JP5924256B2 (en) High strength stainless steel seamless pipe for oil well with excellent corrosion resistance and manufacturing method thereof
JP5685198B2 (en) Ferritic-austenitic stainless steel
JP5446335B2 (en) Evaluation method of high strength stainless steel pipe for oil well
JP6056132B2 (en) Austenitic and ferritic duplex stainless steel for fuel tanks
CN102498225B (en) Ni-based alloy material
CN104411850B (en) Two phase stainless steel
JP5021901B2 (en) Austenitic and ferritic stainless steel with excellent intergranular corrosion resistance
KR101539520B1 (en) Duplex stainless steel sheet
KR20140064941A (en) Duplex stainless steel, duplex stainless steel slab, and duplex stainless steel material
JP4816642B2 (en) Low alloy steel
WO2016079920A1 (en) High-strength stainless steel seamless pipe for oil wells
JP5324149B2 (en) Corrosion resistant austenitic stainless steel
JP2010168646A (en) Seamless pipe of martensitic stainless steel for oil well pipe and process for producing the same
JP2014005497A (en) Highly corrosion resistant austenitic stainless steel
JP5726537B2 (en) Duplex stainless steel with excellent toughness
JP5977609B2 (en) Saving Ni-type austenitic stainless steel
JP2008156678A (en) High-strength bolt excellent in delayed fracture resistance and corrosion resistance
JP7046800B2 (en) New austenitic stainless steel alloy
JP4502131B2 (en) Duplex stainless steel with excellent hot workability
JP7333327B2 (en) new duplex stainless steel
JP7332258B2 (en) High-Ni corrosion-resistant alloy with excellent intergranular corrosion resistance and pitting corrosion resistance, as well as excellent hot workability and cold workability
JP5748216B2 (en) Corrosion resistant alloy with excellent workability
JPWO2021065262A1 (en) Stainless steel seamless steel pipe and its manufacturing method
JP4757561B2 (en) High manganese stainless steel with excellent stress corrosion cracking resistance