[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2014094699A - Non-pneumatic tire - Google Patents

Non-pneumatic tire Download PDF

Info

Publication number
JP2014094699A
JP2014094699A JP2012248270A JP2012248270A JP2014094699A JP 2014094699 A JP2014094699 A JP 2014094699A JP 2012248270 A JP2012248270 A JP 2012248270A JP 2012248270 A JP2012248270 A JP 2012248270A JP 2014094699 A JP2014094699 A JP 2014094699A
Authority
JP
Japan
Prior art keywords
tire
blocks
circumferential direction
block
tire circumferential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012248270A
Other languages
Japanese (ja)
Other versions
JP6081776B2 (en
Inventor
Hisafumi Takahashi
尚史 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2012248270A priority Critical patent/JP6081776B2/en
Publication of JP2014094699A publication Critical patent/JP2014094699A/en
Application granted granted Critical
Publication of JP6081776B2 publication Critical patent/JP6081776B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Tires In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a non-pneumatic tire that can reduce a peak level of noise, and can disperse a peak frequency.SOLUTION: A non-pneumatic tire T has a support structure SS including: an inside annular part 1; an outside annular part 2 concentrically provided outside the inside annular part 1; and a plurality of connection parts 3 connecting the inside annular part 1 with the outside annular part 2, and each provided in the tire circumferential direction CD, independently. In the non-pneumatic tire, the support structure SS is equally divided into n pieces of blocks (n is an integer of 2 or more) in the tire circumferential direction CD, and the n pieces of blocks are made up of the blocks of at least two kinds or more made different from each other in thickness tk in the tire circumferential direction of the connection part 3 included in each block or in interval Lk between the connection parts.

Description

本発明は、タイヤ構造部材として、車両からの荷重を支持する支持構造体を備える非空気圧タイヤ(non−pneumatic tire)に関するものであり、好ましくは空気入りタイヤの代わりとして使用することができる非空気圧タイヤに関するものである。   The present invention relates to a non-pneumatic tire provided with a support structure that supports a load from a vehicle as a tire structural member, and preferably a non-pneumatic tire that can be used as a substitute for a pneumatic tire. It relates to tires.

空気入りタイヤは、荷重の支持機能、接地面からの衝撃吸収能、および動力等の伝達能(加速、停止、方向転換)を有し、このため、多くの車両、特に自転車、オートバイ、自動車、トラックに採用されている。   The pneumatic tire has a load supporting function, a shock absorbing ability from the ground contact surface, and a transmission ability (acceleration, stop, change of direction) such as power. For this reason, many vehicles, particularly bicycles, motorcycles, automobiles, It is used in trucks.

特に、これらの能力は自動車、その他のモーター車両の発展に大きく貢献した。更に、空気入りタイヤの衝撃吸収能力は、医療機器や電子機器の運搬用カート、その他の用途でも有用である。   In particular, these capabilities greatly contributed to the development of automobiles and other motor vehicles. Furthermore, the impact absorbing ability of pneumatic tires is useful for medical equipment and electronic equipment transport carts and other applications.

従来の非空気圧タイヤとしては、例えばソリッドタイヤ、スプリングタイヤ、クッションタイヤ等が存在するが、空気入りタイヤの優れた性能を有していない。例えば、中実ゴム構造のソリッドタイヤおよびクッションタイヤは、接地部分の圧縮によって荷重を支持するが、この種のタイヤは重くて、堅く、空気入りタイヤのような衝撃吸収能力はない。そのため、ソリッドタイヤおよびクッションタイヤは、乗り心地性能が重視される乗用車用には採用されていなかった。   Conventional non-pneumatic tires include, for example, solid tires, spring tires, cushion tires, and the like, but do not have the superior performance of pneumatic tires. For example, solid tires and cushion tires having a solid rubber structure support a load by compressing the contact portion, but this type of tire is heavy and stiff, and does not have a shock absorbing ability like a pneumatic tire. Therefore, solid tires and cushion tires have not been adopted for passenger cars where ride comfort performance is important.

下記特許文献1には、タイヤに加わる荷重を支持する補強環状バンドと、この補強環状バンドとホイールまたはハブとの間で張力によって荷重力を伝達する複数のウェブスポークを有することで、衝撃吸収能力と耐久性を向上させた非空気圧タイヤが記載されている。   The following Patent Document 1 includes a reinforcing annular band that supports a load applied to a tire, and a plurality of web spokes that transmit a load force by tension between the reinforcing annular band and a wheel or a hub. And non-pneumatic tires with improved durability.

また、下記特許文献2には、環状の外周部材と内周部材との間を径方向に連結するフィンを周方向に間隔をあけて間欠的に配列したスポーク構造体を、タイヤ幅方向に複数の帯域に区分した構成にすると共に、隣接する帯域間でフィンの位置を周方向に互いにずらした非空気圧タイヤが記載されている。   Patent Document 2 below discloses a plurality of spoke structures in the tire width direction in which fins that are radially connected between an annular outer peripheral member and an inner peripheral member are intermittently arranged in the circumferential direction. And a non-pneumatic tire in which fin positions are shifted from each other in the circumferential direction between adjacent bands.

特許文献1の非空気圧タイヤでは、ウェブスポーク同士の間隔は略一定であると推定される。また、特許文献2の非空気圧タイヤでも、各帯域において、フィン同士の間隔は略一定であると推定される。これらのように、同一形状のウェブスポーク又はフィンがタイヤ周方向に沿って等間隔で設けられた場合、タイヤ転動時に一定の周期で打撃音が発生して、その次数成分の騒音が発生し、その次数成分以外の周波数では騒音があまり発生しないため、結果的に騒音が目立ってしまう。   In the non-pneumatic tire of Patent Document 1, it is estimated that the distance between web spokes is substantially constant. Further, even in the non-pneumatic tire of Patent Document 2, it is estimated that the interval between the fins is substantially constant in each band. As described above, when web spokes or fins having the same shape are provided at equal intervals along the tire circumferential direction, a striking sound is generated at a constant period during tire rolling, and noise of the order component is generated. Since noise is not generated much at frequencies other than the order component, the noise becomes conspicuous as a result.

特表2005−500932号公報Special Table 2005-500932 Publication 特開2008−55928号公報JP 2008-55928 A

そこで、本発明の目的は、騒音のピークレベルを低下させ、かつピーク周波数を分散させることができる非空気圧タイヤを提供することにある。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a non-pneumatic tire that can reduce the peak level of noise and disperse the peak frequency.

上記目的は、下記の如き本発明により達成できる。
即ち、本発明の非空気圧タイヤは、内側環状部と、その内側環状部の外側に同心円状に設けられた外側環状部と、前記内側環状部と前記外側環状部とを連結し、タイヤ周方向に各々独立して設けられた複数の連結部とを備える支持構造体を有する非空気圧タイヤにおいて、
前記支持構造体は、タイヤ周方向にn個(nは2以上の整数)のブロックに等分割されており、
n個のブロックが、各ブロックに含まれる連結部のタイヤ周方向厚み又は連結部同士の間隔を互いに異ならせた少なくとも2種類以上のブロックで構成されていることを特徴とする。
The above object can be achieved by the present invention as described below.
That is, the non-pneumatic tire of the present invention connects the inner annular portion, the outer annular portion concentrically provided outside the inner annular portion, the inner annular portion and the outer annular portion, and the tire circumferential direction. A non-pneumatic tire having a support structure including a plurality of connecting portions provided independently of each other,
The support structure is equally divided into n blocks (n is an integer of 2 or more) in the tire circumferential direction,
The n blocks are composed of at least two or more types of blocks in which the thickness in the tire circumferential direction of the connecting portion included in each block or the interval between the connecting portions is different from each other.

本発明の非空気圧タイヤは、内側環状部と、その内側環状部の外側に同心円状に設けられた外側環状部と、内側環状部と外側環状部とを連結し、タイヤ周方向に各々独立して設けられた複数の連結部とを備える支持構造体を有している。支持構造体は、タイヤ周方向にn個のブロックに等分割されており、各ブロックには連結部が含まれている。n個のブロックは、各ブロックに含まれる連結部のタイヤ周方向厚み又は連結部同士の間隔を互いに異ならせた少なくとも2種類以上のブロックで構成されているため、タイヤ転動時に常に一定の周期で連結部による打撃が発生せず、連結部の打撃によるエネルギーが様々な周波数の騒音を発生させるのに使用される。これにより、一定の周期で連結部による打撃が発生し、連結部の打撃によるエネルギーが特定の周波数の騒音を発生させるのに使用される場合に比べ、本発明の非空気圧タイヤは、騒音のピークレベルを低下できる。また、本発明の非空気圧タイヤは、様々な周波数の騒音を発生させるため、騒音のピーク周波数を分散させることができ、騒音が目立ちにくくなる。   The non-pneumatic tire of the present invention connects an inner annular portion, an outer annular portion concentrically provided outside the inner annular portion, an inner annular portion and an outer annular portion, and is independent of each other in the tire circumferential direction. And a plurality of connecting portions provided. The support structure is equally divided into n blocks in the tire circumferential direction, and each block includes a connecting portion. The n blocks are composed of at least two types of blocks in which the tire circumferential thickness of the connecting portions included in each block or the interval between the connecting portions are different from each other, so that a constant cycle is always provided during tire rolling. Thus, no damage is generated by the connecting portion, and the energy generated by hitting the connecting portion is used to generate noise of various frequencies. As a result, the non-pneumatic tire of the present invention has a noise peak compared to the case where the hitting by the connecting portion occurs at a constant period and the energy by hitting the connecting portion is used to generate noise of a specific frequency. The level can be lowered. In addition, since the non-pneumatic tire of the present invention generates noise of various frequencies, the peak frequency of noise can be dispersed, and the noise is less noticeable.

本発明にかかる非空気圧タイヤにおいて、各ブロックに含まれる連結部のタイヤ周方向厚みを合計した合計厚みのそれぞれが、全ブロックのうち最小の合計厚みと最大の合計厚みとの平均値の±(n×2)%以内であることが好ましい。各ブロックに含まれる連結部をこのように設定することで、ブロック間の剛性差や質量差が小さくなるため、タイヤ周方向の剛性を略均一とし、ユニフォミティを良好に保った状態で、騒音のピークレベルを低下させ、かつピーク周波数を分散させることができる。   In the non-pneumatic tire according to the present invention, the total thickness obtained by totaling the tire circumferential direction thicknesses of the connecting portions included in each block is ± (average of the minimum total thickness and the maximum total thickness among all blocks. It is preferably within n × 2)%. By setting the connection part included in each block in this way, the rigidity difference and mass difference between the blocks are reduced, so that the rigidity in the tire circumferential direction is made substantially uniform and the uniformity is kept in good condition. The peak level can be lowered and the peak frequency can be dispersed.

本発明にかかる非空気圧タイヤにおいて、任意のブロックの合計厚みは、この任意ブロックの合計厚みと、任意ブロックとタイヤ軸を挟んで対面する対面ブロックの合計厚みとの平均値の±n%以内であることが好ましい。この構成によれば、タイヤ軸を挟んで対面するブロック同士の剛性差や質量差が小さくなるため、タイヤのユニフォミティを良好に保った状態で、騒音のピークレベルを低下させ、かつピーク周波数を分散させることができる。   In the non-pneumatic tire according to the present invention, the total thickness of the arbitrary blocks is within ± n% of the average value of the total thickness of the arbitrary blocks and the total thickness of the facing blocks facing each other across the tire shaft. Preferably there is. According to this configuration, the difference in rigidity and mass between blocks facing each other across the tire shaft is reduced, so that the peak level of noise is reduced and the peak frequency is dispersed while maintaining good tire uniformity. Can be made.

本発明にかかる非空気圧タイヤにおいて、各ブロックに含まれる連結部の数は、タイヤ全体の連結部の総数をnで除した値の2倍よりも少ないことが好ましい。この構成によれば、ブロック間の剛性差や質量差が小さくなるため、タイヤ周方向の剛性を略均一とし、ユニフォミティを良好に保った状態で、騒音のピークレベルを低下させ、かつピーク周波数を分散させることができる。   In the non-pneumatic tire according to the present invention, the number of connecting portions included in each block is preferably less than twice the value obtained by dividing the total number of connecting portions of the entire tire by n. According to this configuration, the rigidity difference and mass difference between the blocks are reduced, so that the tire circumferential direction rigidity is made substantially uniform, the uniformity is kept good, the noise peak level is lowered, and the peak frequency is reduced. Can be dispersed.

本発明にかかる非空気圧タイヤにおいて、連結部のタイヤ周方向厚みは、各ブロック内で全て同じであることが好ましい。また、本発明にかかる非空気圧タイヤにおいて、各ブロックに含まれる複数の連結部は、等間隔で配置されていることが好ましい。これらの構成によれば、各ブロック内で剛性が均一化するため、タイヤ周方向の剛性を略均一とし、ユニフォミティを良好に保った状態で、騒音のピークレベルを低下させ、かつピーク周波数を分散させることができる。   In the non-pneumatic tire according to the present invention, it is preferable that the tire circumferential thickness of the connecting portion is the same in each block. Moreover, in the non-pneumatic tire according to the present invention, it is preferable that the plurality of connecting portions included in each block are arranged at equal intervals. According to these configurations, the rigidity is uniform in each block, so that the rigidity in the tire circumferential direction is substantially uniform, the noise level is reduced and the peak frequency is dispersed while maintaining good uniformity. Can be made.

本発明の非空気圧タイヤの一例を示す正面図Front view showing an example of the non-pneumatic tire of the present invention 支持構造体を構成する任意のブロックの一例を示す正面図The front view which shows an example of the arbitrary blocks which comprise a support structure 支持構造体を構成する任意のブロックの一例を示す正面図The front view which shows an example of the arbitrary blocks which comprise a support structure 他の実施形態に係る非空気圧タイヤを示す正面図Front view showing a non-pneumatic tire according to another embodiment 他の実施形態に係る非空気圧タイヤを示す側面図Side view showing a non-pneumatic tire according to another embodiment

以下、本発明の実施の形態について、図面を参照しながら説明する。初めに、本発明の非空気圧タイヤTの構成を説明する。図1は、非空気圧タイヤの一例を示す正面図である。ここで、Oはタイヤ軸を、Hはタイヤ断面高さを、それぞれ示している。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. First, the configuration of the non-pneumatic tire T of the present invention will be described. FIG. 1 is a front view showing an example of a non-pneumatic tire. Here, O indicates a tire shaft, and H indicates a tire cross-sectional height.

本発明の非空気圧タイヤTは、車両からの荷重を支持する支持構造体SSを有するものである。本発明の非空気圧タイヤTは、このような支持構造体SSを備えるものであればよく、その支持構造体SSの外側(外周側)や内側(内周側)に、トレッドに相当する部材、補強層、車軸やリムとの適合用部材などを備えていてもよい。   The non-pneumatic tire T of the present invention has a support structure SS that supports a load from a vehicle. The non-pneumatic tire T of the present invention only needs to be provided with such a support structure SS, and a member corresponding to a tread on the outer side (outer peripheral side) or inner side (inner peripheral side) of the support structure SS, A reinforcing layer, a member for fitting with an axle or a rim, and the like may be provided.

本実施形態の非空気圧タイヤTは、図1の正面図に示すように、支持構造体SSが、内側環状部1と、その外側に同心円状に設けられた外側環状部2と、内側環状部1と外側環状部2とを連結し、タイヤ周方向CDに各々独立して設けられた複数の連結部3とを備えている。   As shown in the front view of FIG. 1, the non-pneumatic tire T of the present embodiment includes an inner annular portion 1, an outer annular portion 2 provided concentrically on the outer side, and an inner annular portion. 1 and the outer annular portion 2 are connected, and a plurality of connecting portions 3 provided independently in the tire circumferential direction CD are provided.

支持構造体SSは、タイヤ周方向CDにn個(nは2以上の整数)のブロックB1,B2,・・・,Bnに等分割されている。すなわち、支持構造体SSは、2個以上のブロックで構成される。なお、ブロック数nは4〜40が好ましく、8〜30がより好ましい。ブロック数nが4よりも少ないと、ピーク周波数を効果的に分散させることができず、ブロック数nが40よりも多いと、ブロックの周方向長さが短くなるため、連結部3同士の間隔も短くなり、連結部3が撓んだとき容易に自己接触してしまう。本実施形態では、支持構造体SSが、4個のブロックB1,B2,B3,B4に4分割されている例を示す。   The support structure SS is equally divided into n (n is an integer of 2 or more) blocks B1, B2,..., Bn in the tire circumferential direction CD. That is, the support structure SS is composed of two or more blocks. In addition, 4-40 are preferable and, as for the number n of blocks, 8-30 are more preferable. When the number of blocks n is less than 4, the peak frequency cannot be effectively dispersed. When the number of blocks n is more than 40, the circumferential length of the blocks is shortened. When the connecting portion 3 is bent, it easily contacts itself. In the present embodiment, an example in which the support structure SS is divided into four blocks B1, B2, B3, and B4 is shown.

内側環状部1は、ユニフォミティを向上させる観点から、厚みが一定の円筒形状であることが好ましい。また、内側環状部1の内周面には、車軸やリムとの装着のために、嵌合性を保持するための凹凸等を設けるのが好ましい。   The inner annular portion 1 is preferably a cylindrical shape having a constant thickness from the viewpoint of improving uniformity. Moreover, it is preferable to provide the inner peripheral surface of the inner annular portion 1 with irregularities or the like for maintaining fitting properties for mounting with an axle or a rim.

内側環状部1の厚みは、連結部3に力を十分伝達しつつ、軽量化や耐久性の向上を図る観点から、タイヤ断面高さHの1〜20%が好ましく、2〜10%がより好ましい。   The thickness of the inner annular portion 1 is preferably 1 to 20% of the tire cross-section height H and more preferably 2 to 10% from the viewpoint of reducing weight and improving durability while sufficiently transmitting force to the connecting portion 3. preferable.

内側環状部1の内径は、非空気圧タイヤTを装着するリムや車軸の寸法などに併せて適宜決定される。ただし、一般の空気入りタイヤの代替を想定した場合、250〜500mmが好ましく、330〜440mmがより好ましい。   The inner diameter of the inner annular portion 1 is appropriately determined in accordance with the rim on which the non-pneumatic tire T is mounted and the dimensions of the axle. However, when an alternative to a general pneumatic tire is assumed, 250 to 500 mm is preferable, and 330 to 440 mm is more preferable.

内側環状部1のタイヤ軸方向の幅は、用途、車軸の長さ等に応じて適宜決定されるが、一般の空気入りタイヤの代替を想定した場合、100〜300mmが好ましく、130〜250mmがより好ましい。   The width of the inner annular portion 1 in the tire axial direction is appropriately determined according to the application, the length of the axle, and the like. However, when an alternative to a general pneumatic tire is assumed, 100 to 300 mm is preferable, and 130 to 250 mm is preferable. More preferred.

内側環状部1の引張モジュラスは、連結部3に力を十分伝達しつつ、軽量化や耐久性の向上、装着性を図る観点から、5〜180000MPaが好ましく、7〜50000MPaがより好ましい。なお、本発明における引張モジュラスは、JIS K7312に準じて引張試験を行い、10%伸び時の引張応力から算出した値である。   The tensile modulus of the inner annular portion 1 is preferably 5 to 180000 MPa, more preferably 7 to 50000 MPa, from the viewpoint of reducing weight, improving durability, and wearing properties while sufficiently transmitting force to the connecting portion 3. The tensile modulus in the present invention is a value calculated from a tensile stress at 10% elongation by conducting a tensile test according to JIS K7312.

本発明における支持構造体SSは、弾性材料で成形されるが、支持構造体SSを製造する際に、一体成形が可能となる観点から、内側環状部1、外側環状部2、及び連結部3は、補強構造を除いて基本的に同じ材質とすることが好ましい。   The support structure SS in the present invention is formed of an elastic material. However, the inner ring portion 1, the outer ring portion 2, and the connection portion 3 are used from the viewpoint of enabling integral molding when the support structure SS is manufactured. Are preferably basically the same material except for the reinforcing structure.

本発明における弾性材料とは、JIS K7312に準じて引張試験を行い、10%伸び時の引張応力から算出した引張モジュラスが、100MPa以下のものを指す。本発明の弾性材料としては、十分な耐久性を得ながら、適度な剛性を付与する観点から、好ましくは引張モジュラスが5〜100MPaであり、より好ましくは7〜50MPaである。母材として用いられる弾性材料としては、熱可塑性エラストマー、架橋ゴム、その他の樹脂が挙げられる。   The elastic material in the present invention refers to a material having a tensile modulus calculated from a tensile stress at 10% elongation by a tensile test according to JIS K7312 and 100 MPa or less. The elastic material of the present invention preferably has a tensile modulus of 5 to 100 MPa, more preferably 7 to 50 MPa from the viewpoint of imparting adequate rigidity while obtaining sufficient durability. Examples of the elastic material used as the base material include thermoplastic elastomers, crosslinked rubbers, and other resins.

熱可塑性エラストマーとしては、ポリエステルエラストマー、ポリオレフィンエラストマー、ポリアミドエラストマー、ポリスチレンエラストマー、ポリ塩化ビニルエラストマー、ポリウレタンエラストマー等が例示される。架橋ゴム材料を構成するゴム材料としては、天然ゴムの他、スチレンブタジエンゴム(SBR)、ブタジエンゴム(BR)、イソプレンゴム(IIR)、ニトリルゴム(NBR)、水素添加ニトリルゴム(水添NBR)、クロロプレンゴム(CR)、エチレンプロピレンゴム(EPDM)、フッ素ゴム、シリコンゴム、アクリルゴム、ウレタンゴム等の合成ゴムが例示される。これらのゴム材料は必要に応じて2種以上を併用してもよい。   Examples of the thermoplastic elastomer include polyester elastomer, polyolefin elastomer, polyamide elastomer, polystyrene elastomer, polyvinyl chloride elastomer, polyurethane elastomer and the like. Rubber materials constituting the crosslinked rubber material include natural rubber, styrene butadiene rubber (SBR), butadiene rubber (BR), isoprene rubber (IIR), nitrile rubber (NBR), hydrogenated nitrile rubber (hydrogenated NBR). And synthetic rubbers such as chloroprene rubber (CR), ethylene propylene rubber (EPDM), fluorine rubber, silicon rubber, acrylic rubber, and urethane rubber. These rubber materials may be used in combination of two or more as required.

その他の樹脂としては、熱可塑性樹脂、又は熱硬化性樹脂が挙げられる。熱可塑性樹脂としては、ポリエチレン樹脂、ポリスチレン樹脂、ポリ塩化ビニル樹脂などが挙げられ、熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂、ポリウレタン樹脂、シリコン樹脂、ポリイミド樹脂、メラミン樹脂などが挙げられる。   Examples of other resins include thermoplastic resins and thermosetting resins. Examples of the thermoplastic resin include polyethylene resin, polystyrene resin, and polyvinyl chloride resin, and examples of the thermosetting resin include epoxy resin, phenol resin, polyurethane resin, silicon resin, polyimide resin, and melamine resin.

上記の弾性材料のうち、成形・加工性やコストの観点から、好ましくは、ポリウレタン樹脂が用いられる。なお、弾性材料としては、発泡材料を使用してもよく、上記の熱可塑性エラストマー、架橋ゴム、その他の樹脂を発泡させたもの使用可能である。   Of the above elastic materials, a polyurethane resin is preferably used from the viewpoint of moldability / workability and cost. In addition, as an elastic material, you may use a foaming material, and what used said thermoplastic elastomer, crosslinked rubber, and other resin foamed can be used.

弾性材料で一体成形された支持構造体SSは、内側環状部1、外側環状部2、及び連結部3が、補強繊維により補強されていることが好ましい。   In the support structure SS integrally formed of an elastic material, the inner annular portion 1, the outer annular portion 2, and the connecting portion 3 are preferably reinforced by reinforcing fibers.

補強繊維としては、長繊維、短繊維、織布、不織布などの補強繊維が挙げられるが、長繊維を使用する形態として、タイヤ軸方向に配列される繊維とタイヤ周方向に配列される繊維とから構成されるネット状繊維集合体を使用するのが好ましい。   Examples of the reinforcing fibers include reinforcing fibers such as long fibers, short fibers, woven fabrics, and non-woven fabrics. As a form using long fibers, fibers arranged in the tire axial direction and fibers arranged in the tire circumferential direction It is preferable to use a net-like fiber assembly composed of:

補強繊維の種類としては、例えば、レーヨンコード、ナイロン−6,6等のポリアミドコード、ポリエチレンテレフタレート等のポリエステルコード、アラミドコード、ガラス繊維コード、カーボンファイバー、スチールコード等が挙げられる。   Examples of the types of reinforcing fibers include rayon cords, polyamide cords such as nylon-6,6, polyester cords such as polyethylene terephthalate, aramid cords, glass fiber cords, carbon fibers, and steel cords.

本発明では、補強繊維を用いる補強の他、粒状フィラーによる補強や、金属リング等による補強を行うことが可能である。粒状フィラーとしては、カーボンブラック、シリカ、アルミナ等のセラミックス、その他の無機フィラーなどが挙げられる。   In the present invention, in addition to reinforcement using reinforcing fibers, it is possible to perform reinforcement with a granular filler or reinforcement with a metal ring or the like. Examples of the particulate filler include ceramics such as carbon black, silica, and alumina, and other inorganic fillers.

外側環状部2の形状は、ユニフォミティを向上させる観点から、厚みが一定の円筒形状であることが好ましい。外側環状部2の厚みは、連結部3からの力を十分伝達しつつ、軽量化や耐久性の向上を図る観点から、タイヤ断面高さHの1〜20%が好ましく、2〜10%がより好ましい。   The shape of the outer annular portion 2 is preferably a cylindrical shape with a constant thickness from the viewpoint of improving uniformity. The thickness of the outer annular portion 2 is preferably 1 to 20% of the tire cross-section height H, and preferably 2 to 10% from the viewpoint of reducing weight and improving durability while sufficiently transmitting the force from the connecting portion 3. More preferred.

外側環状部2の内径は、その用途等応じて適宜決定される。ただし、一般の空気入りタイヤの代替を想定した場合、420〜750mmが好ましく、480〜680mmがより好ましい。   The inner diameter of the outer annular portion 2 is appropriately determined according to its use. However, when an alternative to a general pneumatic tire is assumed, 420 to 750 mm is preferable, and 480 to 680 mm is more preferable.

外側環状部2のタイヤ軸方向の幅は、用途等に応じて適宜決定されるが、一般の空気入りタイヤの代替を想定した場合、100〜300mmが好ましく、130〜250mmがより好ましい。   Although the width | variety of the tire axial direction of the outer side annular part 2 is suitably determined according to a use etc., when substitution of a general pneumatic tire is assumed, 100-300 mm is preferable and 130-250 mm is more preferable.

外側環状部2の引張モジュラスは、図1に示すように外側環状部2の外周に補強層7が設けられている場合には、内側環状部1と同程度に設定できる。このような補強層7を設けない場合には、連結部3からの力を十分伝達しつつ、軽量化や耐久性の向上を図る観点から、5〜180000MPaが好ましく、7〜50000MPaがより好ましい。   The tensile modulus of the outer annular portion 2 can be set to the same level as that of the inner annular portion 1 when the reinforcing layer 7 is provided on the outer periphery of the outer annular portion 2 as shown in FIG. In the case where such a reinforcing layer 7 is not provided, 5 to 180000 MPa is preferable, and 7 to 50000 MPa is more preferable from the viewpoint of reducing weight and improving durability while sufficiently transmitting the force from the connecting portion 3.

外側環状部2の引張モジュラスを高める場合、弾性材料を繊維等で補強した繊維補強材料が好ましい。外側環状部2を補強繊維により補強することで、外側環状部2とベルト層などとの接着も十分となる。   When the tensile modulus of the outer annular portion 2 is increased, a fiber reinforced material obtained by reinforcing an elastic material with fibers or the like is preferable. By reinforcing the outer annular portion 2 with the reinforcing fiber, adhesion between the outer annular portion 2 and the belt layer becomes sufficient.

連結部3は、内側環状部1と外側環状部2とを連結するものであり、両者の間に適当な間隔を置いて、タイヤ周方向CDに各々が独立するように複数設けられる。   The connecting portion 3 connects the inner annular portion 1 and the outer annular portion 2, and a plurality of connecting portions 3 are provided so as to be independent from each other in the tire circumferential direction CD with an appropriate interval therebetween.

図2及び図3は、支持構造体SSを構成する任意のブロックBkの一例を示している(ただし、1≦k≦n)。各ブロックには、少なくとも1個以上の連結部3が含まれるようにする。このブロックBkには、4個の連結部3が含まれている。また、各ブロックに含まれる連結部3の数は、タイヤ全体の連結部3の総数をnで除した値の2倍よりも少ない。各ブロックに含まれる連結部3の数は、1〜20個が好ましく、1〜15個がより好ましい。   2 and 3 show an example of an arbitrary block Bk constituting the support structure SS (where 1 ≦ k ≦ n). Each block includes at least one connecting portion 3. This block Bk includes four connecting portions 3. Further, the number of connecting portions 3 included in each block is less than twice the value obtained by dividing the total number of connecting portions 3 of the entire tire by n. 1-20 pieces are preferable and, as for the number of the connection parts 3 contained in each block, 1-15 pieces are more preferable.

図2に示すように、連結部3が外側環状部2の内周部2aと連結される部分での厚みを、ブロックBkに含まれる連結部3のタイヤ周方向厚みtkと定める。本発明において、連結部3のタイヤ周方向厚みは、各ブロック内で全て同じであることが好ましい。図2の例では、ブロックBk内の全ての連結部3のタイヤ周方向厚みtkが等しい。   As shown in FIG. 2, the thickness at the portion where the connecting portion 3 is connected to the inner peripheral portion 2a of the outer annular portion 2 is defined as the tire circumferential direction thickness tk of the connecting portion 3 included in the block Bk. In this invention, it is preferable that the tire circumferential direction thickness of the connection part 3 is the same all within each block. In the example of FIG. 2, the tire circumferential direction thickness tk of all the connection parts 3 in the block Bk is equal.

図3に示すように、隣り合う連結部3の中心が外側環状部2の内周部2aとそれぞれ交差する点3a同士のタイヤ周方向に沿った長さを、連結部3同士の間隔Lkと定める。本発明において、各ブロックに含まれる複数の連結部3は、等間隔で配置されていることが好ましい。図3の例では、全ての連結部3同士の間隔Lkが等しい。連結部3同士の間隔Lkは、例えば10〜50mmである。また、連結部3のタイヤ周方向厚みtkは、連結部3同士の間隔Lkの10%以上かつ50%以下とするのが好ましい。   As shown in FIG. 3, the length along the tire circumferential direction between the points 3 a where the centers of the adjacent connecting portions 3 intersect with the inner peripheral portion 2 a of the outer annular portion 2 is expressed as an interval Lk between the connecting portions 3. Determine. In this invention, it is preferable that the some connection part 3 contained in each block is arrange | positioned at equal intervals. In the example of FIG. 3, the intervals Lk between all the connecting portions 3 are equal. The space | interval Lk between the connection parts 3 is 10-50 mm, for example. Moreover, it is preferable that the tire circumferential direction thickness tk of the connection part 3 shall be 10% or more and 50% or less of the space | interval Lk between the connection parts 3. FIG.

さらに、ブロックBkのタイヤ周方向両端から最も近い連結部3までの間隔は、連結部3同士の間隔Lkの半分とするのが好ましい。これにより、ブロックBk内に複数の連結部3がバランスよく配置される。このとき、間隔Lkは、ブロックBkでの外側環状部2の内周部2aのタイヤ周方向長さを、ブロックBkに含まれる連結部3の数(この例では4)で除した値となる。   Furthermore, it is preferable that the distance from the both ends in the tire circumferential direction of the block Bk to the nearest connecting portion 3 is half of the interval Lk between the connecting portions 3. Thereby, the some connection part 3 is arrange | positioned with sufficient balance in the block Bk. At this time, the interval Lk is a value obtained by dividing the length in the tire circumferential direction of the inner peripheral portion 2a of the outer annular portion 2 in the block Bk by the number of connecting portions 3 included in the block Bk (4 in this example). .

本発明では、n個のブロックB1,B2,・・・,Bnが、各ブロックに含まれる連結部3のタイヤ周方向厚み又は連結部3同士の間隔を互いに異ならせた少なくとも2種類以上のブロックで構成されている。なお、ブロックの種類は、(ブロック数n/2)+1以下とする。ブロック数に対してブロックの種類が多すぎると、製作コストが嵩むため、10種類以下が好ましい。本実施形態では、4個のブロックB1〜B4は、後述のように3種類のブロックで構成されている。   In the present invention, n blocks B1, B2,..., Bn have at least two or more types of blocks in which the thickness in the tire circumferential direction of the connecting portion 3 included in each block or the interval between the connecting portions 3 is different from each other. It consists of The type of block is (number of blocks n / 2) +1 or less. When there are too many types of blocks with respect to the number of blocks, the manufacturing cost increases, so 10 or less types are preferable. In the present embodiment, the four blocks B1 to B4 are configured by three types of blocks as described later.

図1に示すブロックB1には、タイヤ周方向厚みt1の連結部3が間隔L1を置いて等間隔に12個含まれる。ブロックB2には、タイヤ周方向厚みt2の連結部3が間隔L2を置いて等間隔に8個含まれる。ブロックB3には、タイヤ周方向厚みt3の連結部3が間隔L3を置いて等間隔に12個含まれる。ブロックB4には、タイヤ周方向厚みt4の連結部3が間隔L4を置いて10個含まれる。   In the block B1 shown in FIG. 1, twelve connecting portions 3 having a tire circumferential direction thickness t1 are included at equal intervals with an interval L1. The block B2 includes eight connecting portions 3 having a tire circumferential direction thickness t2 at equal intervals with an interval L2. The block B3 includes twelve connecting portions 3 having a tire circumferential direction thickness t3 at regular intervals with an interval L3. The block B4 includes ten connecting portions 3 having a tire circumferential thickness t4 at an interval L4.

本実施形態では、タイヤ周方向厚みt1、タイヤ周方向厚みt2、タイヤ周方向厚みt4は互いに異なり、タイヤ周方向厚みt1とタイヤ周方向厚みt3は等しい。すなわち、ブロックB1,B2,B3,B4は、各ブロックに含まれる連結部3のタイヤ周方向厚みを互いに異ならせた3種類のブロックで構成されている。   In the present embodiment, the tire circumferential thickness t1, the tire circumferential thickness t2, and the tire circumferential thickness t4 are different from each other, and the tire circumferential thickness t1 and the tire circumferential thickness t3 are equal. That is, the blocks B1, B2, B3, and B4 are composed of three types of blocks in which the thicknesses in the tire circumferential direction of the connecting portion 3 included in each block are different from each other.

また、本実施形態では、間隔L1、間隔L2、間隔L4は互いに異なり、間隔L1と間隔L3は等しい。すなわち、ブロックB1,B2,B3,B4は、各ブロックに含まれる連結部3の連結部3同士の間隔を互いに異ならせた3種類のブロックで構成されている。   In the present embodiment, the interval L1, the interval L2, and the interval L4 are different from each other, and the interval L1 and the interval L3 are equal. That is, the blocks B1, B2, B3, and B4 are configured by three types of blocks in which the intervals between the connecting portions 3 of the connecting portions 3 included in each block are different from each other.

このように、本実施形態では、4個のブロックB1〜B4が、各ブロックに含まれるタイヤ周方向厚み及び連結部3同士の間隔を互いに異ならせた3種類のブロックで構成されている。その結果、タイヤ転動時に連結部3の打撃によるエネルギーが様々な周波数の騒音を発生させるのに使用されるため、騒音のピークレベルを低下でき、かつ騒音のピーク周波数を分散させることができる。   Thus, in this embodiment, the four blocks B1 to B4 are configured by three types of blocks in which the tire circumferential thickness included in each block and the interval between the connecting portions 3 are different from each other. As a result, energy generated by striking the connecting portion 3 during rolling of the tire is used to generate noise having various frequencies, so that the peak level of noise can be reduced and the peak frequency of noise can be dispersed.

本発明では、各ブロックに含まれる連結部3のタイヤ周方向厚みを合計した合計厚みのそれぞれが、全ブロックのうち最小の合計厚みと最大の合計厚みとの平均値の±(n×2)%以内であることが好ましい。各ブロックに含まれる連結部3をこのように設定することで、ブロック間の剛性差や質量差が小さくなるため、タイヤ周方向CDの剛性を略均一とし、ユニフォミティを良好に保った状態で、騒音のピークレベルを低下させ、かつピーク周波数を分散させることができる。   In the present invention, the total thickness obtained by summing the tire circumferential direction thicknesses of the connecting portions 3 included in each block is ± (n × 2) of the average value of the minimum total thickness and the maximum total thickness among all the blocks. % Is preferable. By setting the connecting portion 3 included in each block in this way, the rigidity difference and mass difference between the blocks are reduced, so that the rigidity in the tire circumferential direction CD is substantially uniform, and the uniformity is kept good, The peak level of noise can be reduced and the peak frequency can be dispersed.

図1の実施形態において、ブロックB1に含まれる連結部3のタイヤ周方向厚みt1を合計した合計厚みをT1(=t1×12)、ブロックB2に含まれる連結部3のタイヤ周方向厚みt2を合計した合計厚みをT2(=t2×8)、ブロックB3に含まれる連結部3のタイヤ周方向厚みt3を合計した合計厚みをT3(=t3×12)、ブロックB4に含まれる連結部3のタイヤ周方向厚みt4を合計した合計厚みをT4(=t4×10)とする。このとき、例えば、合計厚みT1は、合計厚みT1〜T4のうち最小の合計厚みと合計厚みT1〜T4のうち最大の合計厚みとの平均値の±8(=4×2)%以内となるように設定される。合計厚みT2,T3,T4についても同様に設定される。   In the embodiment of FIG. 1, the total thickness T1 (= t1 × 12) of the tire circumferential direction thickness t1 of the connecting portion 3 included in the block B1 is T1, and the tire circumferential direction thickness t2 of the connecting portion 3 included in the block B2 is The total thickness is T2 (= t2 × 8), the total thickness t3 of the connecting portions 3 included in the block B3 is T3 (= t3 × 12), and the total thickness of the connecting portions 3 included in the block B4. The total thickness of the tire circumferential direction thickness t4 is T4 (= t4 × 10). At this time, for example, the total thickness T1 is within ± 8 (= 4 × 2)% of the average value of the minimum total thickness among the total thicknesses T1 to T4 and the maximum total thickness among the total thicknesses T1 to T4. Is set as follows. The total thicknesses T2, T3, and T4 are set similarly.

また、本発明では、任意のブロックの合計厚みは、この任意ブロックの合計厚みと、任意ブロックとタイヤ軸Oを挟んで対面する対面ブロックの合計厚みとの平均値の±n%以内であることが好ましい。例えば、図1の実施形態では、ブロックB1の合計厚みT1は、ブロックB1の合計厚みT1と、ブロックB1とタイヤ軸Oを挟んで対面するブロックB3の合計厚みT3との平均値の±4%以内となるように設定される。合計厚みT2,T3,T4についても同様に設定される。   In the present invention, the total thickness of the arbitrary block is within ± n% of the average value of the total thickness of the arbitrary block and the total thickness of the facing blocks facing each other across the tire axis O. Is preferred. For example, in the embodiment of FIG. 1, the total thickness T1 of the block B1 is ± 4% of the average value of the total thickness T1 of the block B1 and the total thickness T3 of the block B3 facing each other across the block B1 and the tire axis O. It is set to be within. The total thicknesses T2, T3, and T4 are set similarly.

なお、ブロック数nが奇数の場合、任意のブロックとタイヤ軸Oを挟んで対面するブロックは2つ存在する。このとき、上記対面ブロックの合計厚みは、上記任意ブロックとタイヤ軸方向を挟んで対面する2つのブロックの合計厚みの平均値で求められる。図4にブロック数nが5の場合の例を示す。この例では、支持構造体SSは、3種類のブロックで構成され、ブロックB1、ブロックB3、ブロックB4は互いに異なる形状であり、ブロックB1とブロックB2は同じ形状、ブロックB3とブロックB5は同じ形状となっている。ブロック数nが5の場合、ブロックB1とタイヤ軸Oを挟んで対面するブロックは、ブロックB3とブロックB4の2つ存在する。ブロックB1とタイヤ軸Oを挟んで対面する対面ブロックの合計厚みは、ブロックB3の合計厚みT3とブロックB4の合計厚みT4の平均値で求められる。   When the number of blocks n is an odd number, there are two blocks that face each other across the tire axis O. At this time, the total thickness of the facing block is obtained as an average value of the total thickness of the two blocks facing the arbitrary block with the tire axial direction interposed therebetween. FIG. 4 shows an example in which the number of blocks n is 5. In this example, the support structure SS is composed of three types of blocks, and the blocks B1, B3, and B4 have different shapes, the blocks B1 and B2 have the same shape, and the blocks B3 and B5 have the same shape. It has become. When the number of blocks n is 5, there are two blocks B3 and B4 that face each other across the block B1 and the tire axis O. The total thickness of the facing blocks facing each other across the block B1 and the tire axis O is obtained by an average value of the total thickness T3 of the block B3 and the total thickness T4 of the block B4.

タイヤ全体の連結部3の数としては、車両からの荷重を十分支持しつつ、軽量化、動力伝達の向上、耐久性の向上を図る観点から、10〜80個が好ましく、40〜60個がより好ましい。   The number of connecting portions 3 of the entire tire is preferably 10 to 80, and 40 to 60 from the viewpoint of reducing weight, improving power transmission, and improving durability while sufficiently supporting the load from the vehicle. More preferred.

個々の連結部3の形状としては、板状体、柱状体などが挙げられ、連結部3の断面形状は矩形となっている。これらの連結部3は、正面視断面において、半径方向又は半径方向から傾斜した方向に延びている。本発明では、正面視断面において、連結部3の延設方向が、半径方向±25°以内が好ましく、半径方向±15°以内がより好ましく、半径方向が最も好ましい。   Examples of the shape of each connecting portion 3 include a plate-like body and a columnar body, and the cross-sectional shape of the connecting portion 3 is rectangular. These connecting portions 3 extend in the radial direction or in a direction inclined from the radial direction in the front sectional view. In the present invention, in the front sectional view, the extending direction of the connecting portion 3 is preferably within ± 25 ° in the radial direction, more preferably within ± 15 ° in the radial direction, and most preferably in the radial direction.

連結部3のタイヤ周方向厚みは、内側環状部1および外側環状部2からの力を十分伝達しつつ、軽量化や耐久性の向上を図る観点から、タイヤ断面高さHの1〜30%が好ましく、1〜20%がより好ましい。   The thickness of the connecting portion 3 in the tire circumferential direction is 1 to 30% of the tire cross-section height H from the viewpoint of reducing the weight and improving the durability while sufficiently transmitting the force from the inner annular portion 1 and the outer annular portion 2. Is preferable, and 1 to 20% is more preferable.

連結部3のタイヤ軸方向の幅は、用途等に応じて適宜決定されるが、一般の空気入りタイヤの代替を想定した場合、100〜300mmが好ましく、130〜250mmがより好ましい。   The width of the connecting portion 3 in the tire axial direction is appropriately determined according to the use and the like, but is preferably 100 to 300 mm, and more preferably 130 to 250 mm when an alternative to a general pneumatic tire is assumed.

連結部3の引張モジュラスは、内側環状部1からの力を十分伝達しつつ、軽量化や耐久性の向上、横剛性の向上を図る観点から、5〜50MPaが好ましく、7〜20MPaがより好ましい。   The tensile modulus of the connecting portion 3 is preferably 5 to 50 MPa, more preferably 7 to 20 MPa from the viewpoint of reducing weight, improving durability, and improving lateral rigidity while sufficiently transmitting the force from the inner annular portion 1. .

本実施形態では、図1に示すように、支持構造体SSの外側環状部2の外側に、その外側環状部2の曲げ変形を補強する補強層7が設けられている例を示す。また、本実施形態では、図1に示すように、補強層7の更に外側にトレッドゴム8が設けられている例を示す。補強層7、トレッドゴム8としては、従来の空気入りタイヤのベルト層と同様のものを設けることが可能である。また、トレッドパターンとして、従来の空気入りタイヤと同様のパターンを設けることが可能である。   In this embodiment, as shown in FIG. 1, an example is shown in which a reinforcing layer 7 that reinforces bending deformation of the outer annular portion 2 is provided outside the outer annular portion 2 of the support structure SS. Moreover, in this embodiment, as shown in FIG. 1, the example in which the tread rubber 8 is provided in the further outer side of the reinforcement layer 7 is shown. As the reinforcing layer 7 and the tread rubber 8, it is possible to provide the same as the belt layer of the conventional pneumatic tire. Moreover, it is possible to provide the same pattern as a conventional pneumatic tire as a tread pattern.

[他の実施形態]
(1)前述の実施形態では、連結部3の断面形状が矩形となっている例を示したが、図5に示すように、連結部3の断面形状は、種々の形態をとることができる。例えば、図5(a)に示すような台形、図5(b)に示すような楕円形、図5(c)に示すような凹型、図5(d)に示すような三日月型などの断面形状とすることができる。図5(c)に示す凹型の場合、タイヤ軸方向の中央部の厚みは、両端部の10%以上であることが好ましい。また、図5(d)に示す三日月型の場合、タイヤ幅方向の両端部の厚みは、中央部の10%以上であることが好ましい。
[Other Embodiments]
(1) In the above-described embodiment, the example in which the cross-sectional shape of the connecting portion 3 is rectangular has been shown. However, as shown in FIG. 5, the cross-sectional shape of the connecting portion 3 can take various forms. . For example, a trapezoidal shape as shown in FIG. 5A, an oval shape as shown in FIG. 5B, a concave shape as shown in FIG. 5C, a crescent shape as shown in FIG. It can be a shape. In the case of the concave shape shown in FIG. 5C, the thickness of the central portion in the tire axial direction is preferably 10% or more of both end portions. In the case of the crescent moon shown in FIG. 5 (d), the thickness of both end portions in the tire width direction is preferably 10% or more of the central portion.

(2)本発明の他の実施形態として、内側環状部1と、その内側環状部1の外側に同心円状に設けられた中間環状部と、その中間環状部の外側に同心円状に設けられた外側環状部2と、内側環状部1と中間環状部とを連結し、タイヤ周方向CDに各々独立して設けられた複数の内側連結部と、外側環状部2と中間環状部とを連結し、タイヤ周方向CDに各々独立して設けられた複数の外側連結部とを備える支持構造体を有する非空気圧タイヤにおいて、前記支持構造体は、タイヤ周方向CDにn個(nは2以上の整数)のブロックに等分割されており、n個のブロックが、各ブロックに含まれる外側連結部のタイヤ周方向厚み又は外側連結部同士の間隔を互いに異ならせた少なくとも2種類以上のブロックで構成されているものでもよい。すなわち、本発明では、外側環状部2に連結される複数の外側連結部について、ブロック間でタイヤ周方向厚み又は連結部同士の間隔を異ならせばよく、複数の内側連結部については、形状、個数、配置等は特に限定されない。   (2) As another embodiment of the present invention, the inner annular portion 1, the intermediate annular portion provided concentrically outside the inner annular portion 1, and the concentric circle provided outside the intermediate annular portion The outer annular part 2, the inner annular part 1 and the intermediate annular part are connected, and a plurality of inner connecting parts provided independently in the tire circumferential direction CD, and the outer annular part 2 and the intermediate annular part are connected. In the non-pneumatic tire having a support structure including a plurality of outer connecting portions provided independently in the tire circumferential direction CD, the number of the support structures is n in the tire circumferential direction CD (n is 2 or more). (Integer) blocks, and n blocks are composed of at least two or more types of blocks in which the outer circumferential portion included in each block has different thickness in the tire circumferential direction or different intervals between the outer coupling portions. It may be what is done. That is, in the present invention, for the plurality of outer connecting portions connected to the outer annular portion 2, the tire circumferential thickness or the interval between the connecting portions may be different between the blocks, and the plurality of inner connecting portions are shaped, The number, arrangement, etc. are not particularly limited.

以下、本発明の構成と効果を具体的に示す実施例等について説明する。   Examples and the like specifically showing the configuration and effects of the present invention will be described below.

各実施例等に解析を実施し、周波数毎の騒音を算出した。解析方法は、タイヤ転動時において、連結部の存在する箇所が接地したときに発生する衝撃を計算し、周波数分析を実施した。評価方法は、比較例で騒音が発生する周波数領域に着目し、騒音の最大レベルについて調べた。   Each example was analyzed and noise for each frequency was calculated. The analysis method was to calculate the impact generated when the place where the connecting portion was in contact with the ground during rolling of the tire, and frequency analysis was performed. The evaluation method focused on the frequency region where noise was generated in the comparative example, and examined the maximum level of noise.

実施例1
表1に示す寸法および物性等にて、内側リング(内側環状部に相当)、中間リング(中間環状部に相当)、外側リング(外側環状部に相当)、内側スポーク(内側連結部に相当)、外側スポーク(外側連結部に相当)を備える支持構造体、その外周に設けられた3層の補強層、並びにトレッドゴムを備える非空気圧タイヤを作製し、上記性能を評価した。ブロック数は15、ブロックの種類は3種類とした。内側スポークと外側スポークは、同じ形状で、タイヤ周方向の同じ位置に設けた。評価結果を表1に併せて示す。
Example 1
Inner ring (corresponding to the inner annular part), intermediate ring (corresponding to the intermediate annular part), outer ring (corresponding to the outer annular part), inner spoke (corresponding to the inner connecting part) in the dimensions and physical properties shown in Table 1 A non-pneumatic tire including a support structure provided with outer spokes (corresponding to an outer connecting portion), three reinforcing layers provided on the outer periphery thereof, and tread rubber was evaluated. The number of blocks was 15, and the types of blocks were three. The inner and outer spokes have the same shape and are provided at the same position in the tire circumferential direction. The evaluation results are also shown in Table 1.

実施例2
表1に示す寸法および物性等にて、内側リング、中間リング、外側リング、内側スポーク、外側スポークを備える支持構造体、その外周に設けられた3層の補強層、並びにトレッドゴムを備える非空気圧タイヤを作製し、上記性能を評価した。実施例1に比べ、ブロック間でのタイヤ周方向厚みの差を大きくした。内側スポークと外側スポークは、同じ形状で、タイヤ周方向の同じ位置に設けた。評価結果を表1に併せて示す。
Example 2
Non-pneumatic pressure provided with inner ring, intermediate ring, outer ring, inner spoke, support structure provided with outer spoke, three layers of reinforcing layers provided on the outer periphery, and tread rubber in the dimensions and physical properties shown in Table 1 Tires were produced and the above performance was evaluated. Compared with Example 1, the difference in thickness in the tire circumferential direction between the blocks was increased. The inner and outer spokes have the same shape and are provided at the same position in the tire circumferential direction. The evaluation results are also shown in Table 1.

実施例3
表1に示す寸法および物性等にて、内側リング、中間リング、外側リング、内側スポーク、外側スポークを備える支持構造体、その外周に設けられた3層の補強層、並びにトレッドゴムを備える非空気圧タイヤを作製し、上記性能を評価した。実施例1に比べ、ブロック間でのタイヤ周方向厚みの差を大きくした。内側スポークと外側スポークは、同じ形状で、タイヤ周方向の同じ位置に設けた。評価結果を表1に併せて示す。
Example 3
Non-pneumatic pressure provided with inner ring, intermediate ring, outer ring, inner spoke, support structure provided with outer spoke, three layers of reinforcing layers provided on the outer periphery, and tread rubber in the dimensions and physical properties shown in Table 1 Tires were produced and the above performance was evaluated. Compared with Example 1, the difference in thickness in the tire circumferential direction between the blocks was increased. The inner and outer spokes have the same shape and are provided at the same position in the tire circumferential direction. The evaluation results are also shown in Table 1.

実施例4
表1に示す寸法および物性等にて、内側リング、中間リング、外側リング、内側スポーク、外側スポークを備える支持構造体、その外周に設けられた3層の補強層、並びにトレッドゴムを備える非空気圧タイヤを作製し、上記性能を評価した。実施例1に比べ、ブロック間でのタイヤ周方向厚みの差を大きくした。内側スポークと外側スポークは、同じ形状で、タイヤ周方向の同じ位置に設けた。評価結果を表1に併せて示す。
Example 4
Non-pneumatic pressure provided with inner ring, intermediate ring, outer ring, inner spoke, support structure provided with outer spoke, three layers of reinforcing layers provided on the outer periphery, and tread rubber in the dimensions and physical properties shown in Table 1 Tires were produced and the above performance was evaluated. Compared with Example 1, the difference in thickness in the tire circumferential direction between the blocks was increased. The inner and outer spokes have the same shape and are provided at the same position in the tire circumferential direction. The evaluation results are also shown in Table 1.

比較例1
表1に示す寸法および物性等にて、内側リング、中間リング、外側リング、内側スポーク、外側スポークを備える支持構造体、その外周に設けられた3層の補強層、並びにトレッドゴムを備える非空気圧タイヤを作製し、上記性能を評価した。複数の外側連結部は、タイヤ周方向厚みが一定で、等間隔に配置した。内側スポークと外側スポークは、同じ形状で、タイヤ周方向の同じ位置に設けた。評価結果を表1に併せて示す。
Comparative Example 1
Non-pneumatic pressure provided with inner ring, intermediate ring, outer ring, inner spoke, support structure provided with outer spoke, three layers of reinforcing layers provided on the outer periphery, and tread rubber in the dimensions and physical properties shown in Table 1 Tires were produced and the above performance was evaluated. The plurality of outer connecting portions have a constant tire circumferential thickness and are arranged at equal intervals. The inner and outer spokes have the same shape and are provided at the same position in the tire circumferential direction. The evaluation results are also shown in Table 1.

表1の結果から以下のことが分かる。実施例1〜4の非空気圧タイヤは、比較例1と比較して、騒音の最大レベルが小さくなった。実施例1〜4から、ブロック間でのタイヤ周方向厚みの差を大きくしたほうが良いことが分かる。   From the results in Table 1, the following can be understood. In the non-pneumatic tires of Examples 1 to 4, the maximum level of noise was smaller than that of Comparative Example 1. From Examples 1 to 4, it can be seen that it is better to increase the difference in thickness in the tire circumferential direction between the blocks.

1 内側環状部
2 外側環状部
3 連結部
n ブロック数
tk タイヤ周方向厚み
Lk 連結部同士の間隔
SS 支持構造体
T 非空気圧タイヤ
DESCRIPTION OF SYMBOLS 1 Inner ring part 2 Outer ring part 3 Connection part n Block number tk Tire circumferential direction thickness Lk Space | interval of connection parts SS Support structure T Non-pneumatic tire

Claims (6)

内側環状部と、その内側環状部の外側に同心円状に設けられた外側環状部と、前記内側環状部と前記外側環状部とを連結し、タイヤ周方向に各々独立して設けられた複数の連結部とを備える支持構造体を有する非空気圧タイヤにおいて、
前記支持構造体は、タイヤ周方向にn個(nは2以上の整数)のブロックに等分割されており、
n個のブロックが、各ブロックに含まれる連結部のタイヤ周方向厚み又は連結部同士の間隔を互いに異ならせた少なくとも2種類以上のブロックで構成されていることを特徴とする非空気圧タイヤ。
An inner annular portion, an outer annular portion concentrically provided on the outer side of the inner annular portion, the inner annular portion and the outer annular portion are connected, and a plurality of independently provided in the tire circumferential direction. In a non-pneumatic tire having a support structure including a connecting portion,
The support structure is equally divided into n blocks (n is an integer of 2 or more) in the tire circumferential direction,
The non-pneumatic tire is characterized in that n blocks are composed of at least two or more types of blocks in which the thickness in the tire circumferential direction of the connecting portion included in each block or the interval between the connecting portions is different from each other.
各ブロックに含まれる連結部のタイヤ周方向厚みを合計した合計厚みのそれぞれが、全ブロックのうち最小の合計厚みと最大の合計厚みとの平均値の±(n×2)%以内であることを特徴とする請求項1に記載の非空気圧タイヤ。   Each of the total thicknesses of the tire circumferential direction thicknesses of the connecting portions included in each block is within ± (n × 2)% of the average value of the minimum total thickness and the maximum total thickness among all the blocks. The non-pneumatic tire according to claim 1. 任意のブロックの合計厚みは、この任意ブロックの合計厚みと、任意ブロックとタイヤ軸を挟んで対面する対面ブロックの合計厚みとの平均値の±n%以内であることを特徴とする請求項1又は2に記載の非空気圧タイヤ。   The total thickness of the arbitrary blocks is within ± n% of the average value of the total thickness of the arbitrary blocks and the total thickness of the facing blocks facing each other across the tire shaft. Or the non-pneumatic tire of 2. 各ブロックに含まれる連結部の数は、タイヤ全体の連結部の総数をnで除した値の2倍よりも少ないことを特徴とする請求項1〜3の何れか1項に記載の非空気圧タイヤ。   The non-pneumatic pressure according to any one of claims 1 to 3, wherein the number of connecting portions included in each block is less than twice the total number of connecting portions of the entire tire divided by n. tire. 連結部のタイヤ周方向厚みは、各ブロック内で全て同じであることを特徴とする請求項1〜4の何れか1項に記載の非空気圧タイヤ。   The non-pneumatic tire according to any one of claims 1 to 4, wherein the connecting portions have the same tire circumferential thickness in each block. 各ブロックに含まれる複数の連結部は、等間隔で配置されていることを特徴とする請求項1〜5の何れか1項に記載の非空気圧タイヤ。


The non-pneumatic tire according to any one of claims 1 to 5, wherein a plurality of connecting portions included in each block are arranged at equal intervals.


JP2012248270A 2012-11-12 2012-11-12 Non-pneumatic tire Active JP6081776B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012248270A JP6081776B2 (en) 2012-11-12 2012-11-12 Non-pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012248270A JP6081776B2 (en) 2012-11-12 2012-11-12 Non-pneumatic tire

Publications (2)

Publication Number Publication Date
JP2014094699A true JP2014094699A (en) 2014-05-22
JP6081776B2 JP6081776B2 (en) 2017-02-15

Family

ID=50938151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012248270A Active JP6081776B2 (en) 2012-11-12 2012-11-12 Non-pneumatic tire

Country Status (1)

Country Link
JP (1) JP6081776B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016074249A (en) * 2014-10-02 2016-05-12 住友ゴム工業株式会社 Airless tire
WO2020139574A1 (en) 2018-12-28 2020-07-02 Bridgestone Americas Tire Operations, Llc Non-pneumatic tire having reinforced support structure
WO2020141454A1 (en) * 2018-12-31 2020-07-09 Compagnie Generale Des Etablissements Michelin Improved spoke to compliant-band attachment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62295704A (en) * 1986-05-13 1987-12-23 ザ ユニロ−ヤル グツドリツチ タイヤ カンパニ− Low-vibration non-pneumatic type tire
JP2012035792A (en) * 2010-08-09 2012-02-23 Toyo Tire & Rubber Co Ltd Non-pneumatic tire
JP2012126379A (en) * 2010-12-13 2012-07-05 Hankook Tire Co Ltd Method for designing spoke of non-pneumatic tire

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62295704A (en) * 1986-05-13 1987-12-23 ザ ユニロ−ヤル グツドリツチ タイヤ カンパニ− Low-vibration non-pneumatic type tire
JP2012035792A (en) * 2010-08-09 2012-02-23 Toyo Tire & Rubber Co Ltd Non-pneumatic tire
JP2012126379A (en) * 2010-12-13 2012-07-05 Hankook Tire Co Ltd Method for designing spoke of non-pneumatic tire

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016074249A (en) * 2014-10-02 2016-05-12 住友ゴム工業株式会社 Airless tire
WO2020139574A1 (en) 2018-12-28 2020-07-02 Bridgestone Americas Tire Operations, Llc Non-pneumatic tire having reinforced support structure
EP3902690A4 (en) * 2018-12-28 2022-10-19 Bridgestone Americas Tire Operations, LLC Non-pneumatic tire having reinforced support structure
US11958322B2 (en) 2018-12-28 2024-04-16 Bridgestone Americas Tire Operations, Llc Non-pneumatic tire having reinforced support structure
WO2020141454A1 (en) * 2018-12-31 2020-07-09 Compagnie Generale Des Etablissements Michelin Improved spoke to compliant-band attachment
CN113260521A (en) * 2018-12-31 2021-08-13 米其林集团总公司 Improved spoke for attaching compliant belts

Also Published As

Publication number Publication date
JP6081776B2 (en) 2017-02-15

Similar Documents

Publication Publication Date Title
JP5221306B2 (en) Non-pneumatic tire
JP4674253B2 (en) Non-pneumatic tire
JP4530231B2 (en) Non-pneumatic tire
JP6092046B2 (en) Non-pneumatic tire
JP6099519B2 (en) Non-pneumatic tire
JP6378625B2 (en) Non-pneumatic tire
JP5436365B2 (en) Non-pneumatic tire
JP6013899B2 (en) Non-pneumatic tire
JP6964470B2 (en) Non-pneumatic tire
JP5972149B2 (en) Non-pneumatic tire
JP2011183894A (en) Non-pneumatic tire
JP5774905B2 (en) Non-pneumatic tire
JP6226734B2 (en) Non-pneumatic tire
JP6076704B2 (en) Non-pneumatic tire
JP2017007380A (en) Non-pneumatic tire
JP2016113106A (en) Non-pneumatic tire
JP5543846B2 (en) Non-pneumatic tire
JP6081776B2 (en) Non-pneumatic tire
JP6182452B2 (en) Non-pneumatic tire
JP6092045B2 (en) Non-pneumatic tire
JP6025498B2 (en) Non-pneumatic tire
JP6143660B2 (en) Non-pneumatic tire
JP2016199069A (en) Non-pneumatic tire
JP6351109B2 (en) Non-pneumatic tire
JP6045401B2 (en) Non-pneumatic tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170119

R150 Certificate of patent or registration of utility model

Ref document number: 6081776

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250