JP2014086388A - Battery pack and manufacturing method thereof - Google Patents
Battery pack and manufacturing method thereof Download PDFInfo
- Publication number
- JP2014086388A JP2014086388A JP2012236852A JP2012236852A JP2014086388A JP 2014086388 A JP2014086388 A JP 2014086388A JP 2012236852 A JP2012236852 A JP 2012236852A JP 2012236852 A JP2012236852 A JP 2012236852A JP 2014086388 A JP2014086388 A JP 2014086388A
- Authority
- JP
- Japan
- Prior art keywords
- group
- current collector
- electrode current
- secondary battery
- collector foil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Battery Mounting, Suspending (AREA)
- Connection Of Batteries Or Terminals (AREA)
- Secondary Cells (AREA)
Abstract
Description
本発明は、組電池に関し、より詳しくは、並置された2個以上の電池モジュールの電極間の接合部の体積を低減することにより出力密度を向上させた組電池及びその製造方法に関する。 The present invention relates to an assembled battery, and more particularly, to an assembled battery in which the output density is improved by reducing the volume of a junction between electrodes of two or more battery modules arranged side by side, and a method for manufacturing the assembled battery.
電解質が固体電解質から成る全固体二次電池は、電池内に可燃性の有機溶媒を用いないので、安全装置の簡素化が図れ、製造コストや生産性に優れると考えられている。さらに、近年、ハイブリッド自動車等の需要が高まるにつれて、全固体二次電池について、より高いエネルギー密度及び出力密度と、より小型化を図ることが求められている。例えば、特許文献1には、集電箔を薄くすることにより、電流容量を小さくせずに蓄電素子の小型化を図ることが記載されている。より高い出力密度を得るには、正極及び負極集電箔をより薄くすることが必要である(例えば、特許文献1参照)。正極集電箔及び負極集電箔を有する複数の二次電池セルを絶縁体を介して積層して成る複数の電池モジュールを並置し直列に接続することによって、高いエネルギー密度及び高い出力密度を有する組電池を得ることが可能である。 An all-solid secondary battery in which the electrolyte is a solid electrolyte does not use a flammable organic solvent in the battery. Therefore, it is considered that the safety device can be simplified and the manufacturing cost and productivity are excellent. Furthermore, in recent years, as the demand for hybrid vehicles and the like increases, it is required to achieve higher energy density and output density and further miniaturization of all solid state secondary batteries. For example, Patent Document 1 describes that by reducing the thickness of the current collector foil, the power storage element can be reduced in size without reducing the current capacity. In order to obtain a higher output density, it is necessary to make the positive electrode and the negative electrode current collector foil thinner (see, for example, Patent Document 1). It has high energy density and high output density by juxtaposing and connecting a plurality of battery modules formed by stacking a plurality of secondary battery cells having a positive electrode current collector foil and a negative electrode current collector foil via an insulator. An assembled battery can be obtained.
しかし、図1(a)及び(b)に示されているように、電池モジュール内の複数の二次電池セル(素電池)(110、120)の端部から延在する複数の正極集電箔(又は負極集電箔)の延在部(111、112、113)と、隣接する電池モジュール内の複数の二次電池セルの端部から延在する複数の負極集電箔(又は正極集電箔)の延在部(121、122、123)とを、交互に重ね合わせた状態で接合する場合には、正極集電箔及び負極集電箔の延在部の長さを、隣接する電池モジュールとの接合部(境界部)により近い位置にある集電箔延在部ほど短くする必要があるため(すなわち、延在部111の長さ<延在部112の長さ<延在部113の長さ、及び延在部121の長さ<延在部122の長さ<延在部123の長さ)、正極集電箔と負極集電箔とを交互に重ね合わせて接合することは困難であり、生産性に劣るという問題があった。特に、より高いエネルギー密度を得るために二次電池セルの数をより多くするほど交互に重ね合わせて接合することは困難である。正極集電箔及び負極集電箔の延在部の長さを全て同じにして、正極集電箔及び負極集電箔を交互に重ね合わせて接合することも考えられるが、それらの集電箔延在部を交互に重ね合わせる際に、隣接する電池モジュール間の接合部側にある集電箔延在部がより外側にある延在部から圧迫されることにより折れ曲がりや皺が生じたりするため、集電箔が損傷する原因となりうる点で問題があった。さらに、複数の二次電池セルの端部から延在する複数の正極集電箔(又は負極集電箔)の延在部の長さが異なる場合でも同じ場合でも、隣接する電池モジュール内の複数の二次電池セルの端部から延在する複数の負極集電箔(又は正極集電箔)の延在部と交互に重ね合わせる集電箔延在部の数が多くなるほど、図1(c)に示されているように、二次電池セルの端部からの正極集電箔と負極集電箔の接合部の高さ(h)が高くなり、それに応じて接合部の嵩高さが増加し、集電箔電極間の接合部の体積が大きくなる結果、出力密度が低下するという問題があった。
However, as shown in FIGS. 1 (a) and 1 (b), a plurality of positive current collectors extending from the ends of a plurality of secondary battery cells (unit cells) (110, 120) in the battery module. A plurality of negative electrode current collector foils (or positive electrode current collectors) extending from the extending portions (111, 112, 113) of the foil (or negative electrode current collector foils) and end portions of the plurality of secondary battery cells in the adjacent battery modules In the case where the extending portions (121, 122, 123) of the electric foil) are joined in an alternately superposed state, the lengths of the extending portions of the positive current collecting foil and the negative current collecting foil are adjacent to each other. Because the current collector foil extending portion that is closer to the junction (boundary portion) with the battery module needs to be shorter (that is, the length of the extending
上記の従来技術の課題を鑑み、本発明は、容易に大容量化を実現することができ、出力密度が改善され、高い生産性で製造可能な組電池及びその製造方法を提供することを目的とする。 In view of the above-described problems of the conventional technology, an object of the present invention is to provide an assembled battery that can easily realize a large capacity, has an improved output density, and can be manufactured with high productivity, and a manufacturing method thereof. And
本発明によれば、一実施態様において、直列に接続された2個以上の電池モジュールを含む組電池であって、
各電池モジュールは第1群〜第N群(Nは2以上の整数)の複数の二次電池セルを含み、第1群〜第N群の複数の二次電池セルは、それぞれ、厚み方向に順に積層した正極集電箔、正極層、固体電解質層、負極層及び負極集電箔を含み、各二次電池セルの正極集電箔及び負極集電箔は、それぞれ、互いに反対側の2つの端部からそれぞれ外側に延在する延在部を有し、
各電池モジュールの第1群〜第N群の複数の二次電池セルの各群において、複数の二次電池は電気絶縁層を介して積層されていて積層体を形成しており、さらに、第1群〜第N群の複数の二次電池セルの積層体は電気絶縁層を介して積層されており、
各電池モジュールにおいて、第1群〜第N群の複数の二次電池セルの正極集電箔及び負極集電箔の延在部の位置が第1群〜第N群間で互いに異なり、
任意の隣り合う2つの電池モジュールにおいて、一方の電池モジュールにおける第1群〜第N群の複数の二次電池セルの正極集電箔及び負極集電箔の延在部が、それぞれ、当該延在部に対して重なり合う位置に存在する他方の電池モジュールにおける第1群〜第N群の複数の二次電池セルの極性の異なる複数の集電箔の延在部に接続されていることを特徴とする組電池が提供される。
According to the present invention, in one embodiment, an assembled battery including two or more battery modules connected in series,
Each battery module includes a plurality of secondary battery cells of the first group to the Nth group (N is an integer of 2 or more), and the plurality of secondary battery cells of the first group to the Nth group are respectively in the thickness direction. A positive electrode current collector foil, a positive electrode layer, a solid electrolyte layer, a negative electrode layer, and a negative electrode current collector foil, which are laminated in order, each of the positive electrode current collector foil and the negative electrode current collector foil of each secondary battery cell, Each having an extending portion extending outward from the end portion;
In each group of the plurality of secondary battery cells of each of the first group to the Nth group of each battery module, the plurality of secondary batteries are stacked via an electrical insulating layer to form a stacked body, A stack of a plurality of secondary battery cells of Group 1 to Group N is stacked via an electrical insulating layer,
In each battery module, the positions of the extending portions of the positive electrode current collector foil and the negative electrode current collector foil of the plurality of secondary battery cells of the first group to the N group are different from each other between the first group to the N group,
In any two adjacent battery modules, the extension portions of the positive electrode current collector foil and the negative electrode current collector foil of the plurality of secondary battery cells of the first group to the Nth group in one battery module are respectively extended. A plurality of secondary battery cells of the first group to the N-th group in the other battery module existing at a position overlapping with the portion are connected to the extending portions of the current collector foils having different polarities, An assembled battery is provided.
本発明の組電池においては、集電箔の各電池モジュールを構成する複数の二次電池セル(素電池)の互いに反対側の2つの端部からそれぞれ外側に延在する正極集電箔及び負極集電箔の延在部を、電池モジュール間で直列に接合したときに全て重なり合うように各端部の同じ位置からセルの外側に向けて延在させるのではなく、各電池モジュールを構成する複数の二次電池セルをN個(Nは2以上の整数)の群に分割し、分割数(N)に対応して、各電池モジュールにおいて、第1群〜第N群の複数の二次電池セルの正極集電箔及び負極集電箔の延在部の位置が第1群〜第N群間で互いに異なるように(すなわち電池モジュール間で直列に接合したときに第1群〜第N群間で重なり合わないように)、互いに反対側の2つの端部の互いに異なるN箇所からそれぞれ外側に延在する延在部を設け、任意の隣り合う2つの電池モジュールにおける極性の異なる集電箔同士を接続することにより電池モジュールの電極間の接合部の体積を減少でき、それにより組電池の出力密度を増加させることができる。 In the assembled battery of the present invention, a positive current collector foil and a negative electrode extending outward from two opposite ends of a plurality of secondary battery cells (unit cells) constituting each battery module of the current collector foil The extending portions of the current collector foil do not extend from the same position of each end toward the outside of the cell so that they all overlap when they are joined in series between the battery modules, but a plurality of components constituting each battery module The secondary battery cells are divided into N groups (N is an integer of 2 or more), and a plurality of secondary batteries of the first group to the Nth group are provided in each battery module corresponding to the number of divisions (N). The positions of the extending portions of the positive electrode current collector foil and the negative electrode current collector foil of the cell are different from each other between the first group to the Nth group (that is, the first group to the Nth group when joined in series between the battery modules). Different from each other at the two opposite ends. By providing an extending portion extending outward from each of the N locations, the volume of the joint between the electrodes of the battery module can be reduced by connecting current collecting foils having different polarities in any two adjacent battery modules, Thereby, the output density of the assembled battery can be increased.
本発明のさらに別の実施態様によれば、直列に接続された2個以上の電池モジュールを含む組電池の製造方法であって、
直列に接続された2個以上の電池モジュールを含む組電池の製造方法であって、
(A)各二次電池セルが、厚み方向に順に積層した正極集電箔、正極層、固体電解質層、負極層及び負極集電箔を含み、正極集電箔及び負極集電箔が、それぞれ、各二次電池セルの互いに反対側の2つの端部からそれぞれ外側に延在する延在部を有する第1群〜第N群(Nは2以上の整数)の複数の二次電池セル(ここで、第1群〜第N群の複数の二次電池セルの正極集電箔及び負極集電箔の延在部の位置が第1群〜第N群間で互いに異なる)を、各電池モジュールに対して各1組ずつ用意し、
(B)前記第1群〜第N群の複数の二次電池セルの各群において、複数の二次電池セルを電気絶縁層を介して積層して積層体を形成し、得られた第1群〜第N群の二次電池セルの積層体を電気絶縁層を介して積層して電池モジュールを形成し、
(C)上記(A)及び(B)工程を1回以上繰り返すことにより2個以上の電池モジュールを用意し、
(D)任意の隣り合う電池モジュールにおいて、一方の電池モジュールにおける第1群〜第N群の複数の二次電池セルの正極集電箔及び負極集電箔の延在部を、それぞれ、当該延在部に対して重なり合う位置に存在する他方の電池モジュールにおける第1群〜第N群の複数の二次電池セルの極性の異なる複数の集電箔の延在部と接続することにより2個以上の電池モジュールを直列に接続すること、
を含む、組電池の製造方法が提供される。
According to still another embodiment of the present invention, there is provided a method of manufacturing a battery pack including two or more battery modules connected in series,
A method of manufacturing an assembled battery including two or more battery modules connected in series,
(A) Each secondary battery cell includes a positive electrode current collector foil, a positive electrode layer, a solid electrolyte layer, a negative electrode layer, and a negative electrode current collector foil that are sequentially stacked in the thickness direction. , A plurality of secondary battery cells in the first group to the Nth group (N is an integer of 2 or more) each having an extending portion extending outward from two opposite ends of each secondary battery cell. Here, the positions of the extending portions of the positive electrode current collector foil and the negative electrode current collector foil of the plurality of secondary battery cells in the first group to the N group are different from each other in the first group to the N group). Prepare one set for each module,
(B) In each group of the plurality of secondary battery cells of the first group to the Nth group, a plurality of secondary battery cells are stacked via an electrical insulating layer to form a stacked body, and the first obtained A battery module is formed by laminating a stack of secondary battery cells of group N to group N via an electrical insulating layer,
(C) Prepare two or more battery modules by repeating the steps (A) and (B) at least once,
(D) In any adjacent battery module, the extension portions of the positive electrode current collector foil and the negative electrode current collector foil of the plurality of secondary battery cells of the first group to the Nth group in one battery module are respectively Two or more by connecting with the extension part of several current collector foil from which the polarity of the several secondary battery cell of the 1st group-N group in the other battery module which exists in the position which overlaps with an existing part differs Connecting battery modules in series,
A method for manufacturing an assembled battery is provided.
本発明によれば、隣り合う任意の2つの電池モジュール間を直列に接続する際に接合部の位置を分散させることにより、生産性が向上し、また、接合部の位置を分散させることにより電池モジュールの電極間の接合部の体積を減少させることができるため、出力密度を増加させることができる。さらに、接合部の位置を分散させることにより、電池モジュール内の二次電池セルの数を増加させることができる。そのため、本発明によれば、容易に大容量化を実現することができ、高い出力密度を有する組電池を高い生産性で得ることが可能である。 According to the present invention, the productivity is improved by dispersing the positions of the joints when connecting any two adjacent battery modules in series, and the battery is obtained by dispersing the positions of the joints. Since the volume of the junction between the electrodes of the module can be reduced, the power density can be increased. Furthermore, the number of secondary battery cells in the battery module can be increased by dispersing the positions of the joints. Therefore, according to the present invention, the capacity can be easily increased, and an assembled battery having a high output density can be obtained with high productivity.
次に、図面を参照して本発明を説明する。
図2は、本発明の一実施態様に従う組電池における各電池モジュール内に組み込まれる二次電池セルを模式的に示す分解斜視図である。図2に示すように、二次電池セル20は、厚み方向に積層した正極集電箔21、正極層22、固体電解質層23、負極層24及び負極集電箔25を含む。二次電池セル20において、正極集電箔21上に正極層22が設けされており、負極集電箔25上に負極層24が設けられている。正極集電箔21及び負極集電箔25は、それぞれ、延在部21a及び25aを有する。図2に示されている二次電池セル20において、正極集電箔の延在部21aと負極集電箔の延在部25aは二次電池セル20の互いに対角の位置に設けられている。延在部21a及び25aは、それぞれ、二次電池セルの互いに反対側の2つの端部の互いに異なる2つの箇所からそれぞれ外側に延在するのであれば、延在部21a及び25aの位置は互いに対角の位置に限られない。図2に示されている二次電池セル20において、正極集電箔21、正極層22、固体電解質層23、負極層24及び負極集電箔25の積層方向から見て、正極集電箔21及び負極集電箔25の各集電箔の延在部を除く領域は矩形である。
Next, the present invention will be described with reference to the drawings.
FIG. 2 is an exploded perspective view schematically showing a secondary battery cell incorporated in each battery module in the assembled battery according to one embodiment of the present invention. As shown in FIG. 2, the
図3は、正極集電箔21、正極層22、固体電解質層23、負極層24及び負極集電箔25を積層することにより形成された二次電池セル20を模式的に示す斜視図である。
FIG. 3 is a perspective view schematically showing the
図4(a)は、図2及び3に斜視図で示した態様の二次電池セルにおける正極集電箔21及び負極集電箔25を模式的に示す正面図である。図4(b)は、図4(a)に示したような正極集電箔21及び負極集電箔25とともに使用できる別の態様の正極集電箔及び負極集電箔を模式的に示す正面図である。正極集電箔31は延在部31aを有し、負極集電箔32は延在部32aを有する。正極集電箔21と正極集電箔31とは、延在部の位置が異なる。正極集電箔21では、延在部21aは一辺の片端部(図4(b)において左端部)に設けられているのに対し、正極集電箔31では、延在部31aは一辺の中央部に設けられている。同様に負極集電箔25では、延在部25aは一辺の片端部(図4(b)において右端部)に設けられているのに対し、正極集電箔32では、延在部32aは一辺の中央部に設けられている。
FIG. 4A is a front view schematically showing the positive electrode
延在部の位置が互いに異なる2つのタイプの正極集電箔と延在部の位置が互いに異なる2つのタイプの負極集電箔を使用して4つのタイプの二次電池セルを製造することができる。例えば、図2及び3に例示したような正極集電箔21と負極集電箔25の組み合わせの他に、正極集電箔21と負極集電箔32の組み合わせ、正極集電箔31と負極集電箔25の組み合わせ、及び正極集電箔31と負極集電箔32の組み合わせを使用して4つのタイプの二次電池セルを製造することができる。正極集電箔の延在部及び負極集電箔の延在部が、それぞれ、二次電池セルの互いに反対側の2つの端部の互いに異なる箇所からそれぞれ外側に延在するのであれば、任意の複数のタイプの集電箔を組み合わせて使用することができる。正極集電箔の延在部21a及び負極集電箔の延在部25aの位置が互いに同じである複数の二次電池セルを同一の群の複数の二次電池セルとし、同一の群の二次電池セルを、電気絶縁層を介して別の群の二次電池セルと積層して積層体を形成する。各電池モジュールには、第1群〜第N群(Nは2以上の整数)の複数の二次電池セルの積層体が設けられる。第1群〜第N群の複数の二次電池セルの積層体(第1群の複数の二次電池セルの積層体、第2群の複数の二次電池セルの積層体、・・・、第N群の複数の二次電池セルの積層体)は互いに電気絶縁層を介して積層される。第1群〜第N群の複数の二次電池セルの積層体を、図示していないが、さらにテープ等で位置合わせをした後にプレスをすることにより、電池モジュールを形成することができる。
Four types of secondary battery cells can be manufactured by using two types of positive electrode current collector foils having different extension portions and two types of negative electrode current collector foils having different extension portions. it can. For example, in addition to the combination of the positive electrode
上記方法により複数の電池モジュールを形成した後、電池モジュールを直列に接続する。図5及び6を参照して、2個の電池モジュールを直列に接続する場合を例にとり、本発明を説明する。図5及び6において、電池モジュールを直列に接続する方法を理解しやすくするため、2個の電池モジュール内の複数の二次電池セルの積層体のみが示されており、複数の二次電池セル間に配設されている電気絶縁層や、電池モジュールのその他の構成要素は省略されている。図5は、電池モジュールを接続する方法の一態様を模式的に示す概略斜視図である。図5に示す態様において、図4(a)に示したような一対の集電箔を使用して、各電池モジュールは2つの二次電池セル群から構成される。すなわち、図5に示す態様において、電池モジュール310は第1群の二次電池セル311、312、313と第2群の二次電池セル314、315、315を含み、電池モジュール320は第1群の二次電池セル321、322、323と第2群の二次電池セル324、325、326を含む。電池モジュール320の第1群の二次電池セル321、322、323及び第2群の二次電池セル324、325、326は、電池モジュール310の第1群の二次電池セル311、312、313及び第2群の二次電池セル314、315、315をそれらの積層方向を中心軸として180°回転させたものに対応する。
After forming a plurality of battery modules by the above method, the battery modules are connected in series. With reference to FIGS. 5 and 6, the present invention will be described with reference to an example in which two battery modules are connected in series. 5 and 6, in order to facilitate understanding of a method of connecting battery modules in series, only a stack of a plurality of secondary battery cells in two battery modules is shown, and a plurality of secondary battery cells are shown. The electrical insulation layer disposed between them and other components of the battery module are omitted. FIG. 5 is a schematic perspective view schematically showing one aspect of a method for connecting battery modules. In the embodiment shown in FIG. 5, each battery module is composed of two secondary battery cell groups using a pair of current collector foils as shown in FIG. That is, in the embodiment shown in FIG. 5, the
各電池モジュール内の同一群内の複数の二次電池セルの正極集電箔の延在部は二次電池セルの積層方向に互いに重なり合う位置にあり、同一群内の複数の二次電池セルの負極集電箔の延在部は二次電池セルの積層方向に互いに重なり合う位置にある。すなわち、図5では、電池モジュール310内の第1群の二次電池セル311、312、313のそれぞれの正極集電箔の延在部311a、312a、313aは二次電池セルの積層方向に互いに重なり合う位置にあり、負極集電箔の延在部311b、312b、313bは二次電池セルの積層方向に互いに重なり合う位置にある。第1群の二次電池セル311、312、313と同様に、電池モジュール310内の第2群の二次電池セル314、315、316のそれぞれの正極集電箔の延在部314a、315a、316aは二次電池セルの積層方向に互いに重なり合う位置にあり、負極集電箔の延在部314b、315b、316bは二次電池セルの積層方向に互いに重なり合う位置にある。電池モジュール310と同様に、電池モジュール320内の第1群の二次電池セル321、322、323のそれぞれの正極集電箔の延在部321a、322a、323aは二次電池セルの積層方向に互いに重なり合う位置にあり、負極集電箔の延在部321b、322b、323bは二次電池セルの積層方向に互いに重なり合う位置にある。第1群の二次電池セル321、322、323と同様に、第2群の二次電池セル324、325、326のそれぞれの正極集電箔の延在部324a、325a、326aは二次電池セルの積層方向に互いに重なり合う位置にあり、負極集電箔の延在部324b、325b、326bは二次電池セルの積層方向に互いに重なり合う位置にある。さらに、電池モジュール310内の第1群の二次電池セル311、312、313のそれぞれの正極集電箔の延在部311a、312a、313aは、電池モジュール320内の第1群の二次電池セル321、322、323のそれぞれの負極集電箔の延在部321b、322b、323bと重なり合う位置にあり、電池モジュール310内の第2群の二次電池セル314、315、316のそれぞれの正極集電箔の延在部314a、315a、316aは、電池モジュール320内の第2群の二次電池セル324、325、326のそれぞれの負極集電箔の延在部324b、325b、326bと重なり合う位置にある。図5では、接合される複数の正極集電箔の延在部と複数の負極集電箔の延在部との対が両端矢印線で示されている。
The extending portions of the positive electrode current collector foils of the plurality of secondary battery cells in the same group in each battery module are in positions overlapping each other in the stacking direction of the secondary battery cells, and the plurality of secondary battery cells in the same group The extending part of the negative electrode current collector foil is at a position where they overlap each other in the stacking direction of the secondary battery cells. That is, in FIG. 5, the extending
図6は、電池モジュールを接続する方法の別の態様を模式的に示す概略斜視図である。図5に示した態様と同様に、図6において、電池モジュールを直列に接続する方法を理解しやすくするため、2個の電池モジュール内の複数の二次電池セルの積層体のみが示されており、複数の二次電池セル間に配設されている電気絶縁層や、電池モジュールのその他の構成要素は省略されている。図6では、電池モジュール310内の第1群の二次電池セル311、312、313のそれぞれの正極集電箔の延在部311a、312a、313aは二次電池セルの積層方向に互いに重なり合う位置にあり、負極集電箔の延在部311b、312b、313bは二次電池セルの積層方向に互いに重なり合う位置にある。第1群の二次電池セル311、312、313と同様に、電池モジュール310内の第2群の二次電池セル314、315、316のそれぞれの正極集電箔の延在部314a、315a、316aは二次電池セルの積層方向に互いに重なり合う位置にあり、負極集電箔の延在部314b、315b、316bは二次電池セルの積層方向に互いに重なり合う位置にある。電池モジュール310と同様に、電池モジュール330内の第1群の二次電池セル331、332、333のそれぞれの正極集電箔の延在部331a、332a、333aは二次電池セルの積層方向に互いに重なり合う位置にあり、負極集電箔の延在部331b、332b、333bは二次電池セルの積層方向に互いに重なり合う位置にある。第1群の二次電池セル331、332、333と同様に、第2群の二次電池セル334、335、336のそれぞれの正極集電箔の延在部(図示せず)は二次電池セルの積層方向に互いに重なり合う位置にあり、負極集電箔の延在部334b、335b、336bは二次電池セルの積層方向に互いに重なり合う位置にある。さらに、電池モジュール310内の第1群の二次電池セル311、312、313のそれぞれの正極集電箔の延在部311a、312a、313aは、電池モジュール330内の第2群の二次電池セル334、335、336のそれぞれの負極集電箔の延在部334b、335b、336bと重なり合う位置にあり、電池モジュール310内の第2群の二次電池セル314、315、316のそれぞれの正極集電箔の延在部314a、315a、316aは、電池モジュール330内の第1群の二次電池セル331、332、333のそれぞれの負極集電箔の延在部331b、332b、333bと重なり合う位置にある。図6では、接合される複数の正極集電箔の延在部と複数の負極集電箔の延在部との対が両端矢印線で示されている。
FIG. 6 is a schematic perspective view schematically showing another aspect of the method for connecting the battery modules. Similar to the embodiment shown in FIG. 5, in FIG. 6, only a stack of a plurality of secondary battery cells in two battery modules is shown in order to facilitate understanding of a method of connecting battery modules in series. In addition, the electrical insulation layer disposed between the plurality of secondary battery cells and other components of the battery module are omitted. In FIG. 6, the extending
一の電池モジュール内の複数の二次電池セルから延在する正極集電箔の延在部及び負極集電箔の延在部をそれぞれ別の電池モジュール内の複数の二次電池セルから延在する負極集電箔の延在部及び正極集電箔の延在部と接合する際、図1(c)に示したように複数の正極集電箔の延在部と複数の負極集電箔の延在部とを交互に重ね合わせて接合しても、複数の正極集電箔の延在部の束と複数の負極集電箔の延在部の束とを重ね合わせて接合してもよい。接合する双方の二次電池セルの1層目と1層目、2層目と2層目、・・・、n層目とn層目とを接合することで電流の流れがスムーズになるという理由から、複数の正極集電箔の延在部と複数の負極集電箔の延在部とを交互に重ね合わせて接合することが好ましい。複数の正極集電箔の延在部と複数の負極集電箔の延在部とを交互に重ね合わせて接合する際に、接合部の密着性を高めるために、100μm〜1mm程度の厚みの銅板などを接合しようとする延在部間に配置してしてもよい。 The extension part of the positive electrode current collector foil and the extension part of the negative electrode current collector foil extending from a plurality of secondary battery cells in one battery module respectively extend from a plurality of secondary battery cells in another battery module When joining with the extended part of the negative electrode current collector foil and the extended part of the positive electrode current collector foil, as shown in FIG. 1C, the extended part of the plurality of positive electrode current collector foils and the plurality of negative electrode current collector foils Or a plurality of positive electrode current collector foils and a plurality of negative electrode current collector foil bundles may be overlapped and joined together. Good. It is said that the flow of current becomes smooth by joining the first layer, the first layer, the second layer, the second layer, ..., the nth layer and the nth layer of both the secondary battery cells to be joined. For the reason, it is preferable that the extending portions of the plurality of positive electrode current collector foils and the extending portions of the plurality of negative electrode current collector foils are alternately overlapped and joined. In order to enhance the adhesiveness of the joint portion when the extension portions of the plurality of positive electrode current collector foils and the extension portions of the plurality of negative electrode current collector foils are alternately overlapped and joined, the thickness of about 100 μm to 1 mm You may arrange | position between the extension parts which are going to join a copper plate.
一の電池モジュール内の複数の二次電池セルから延在する正極集電箔の延在部と別の電池モジュール内の複数の二次電池セルから延在する負極集電箔の延在部とを接合する方法としては、例えば、超音波溶接、スポット溶接などが挙げられる。中でも、接合面積を広くとることができ、接合部の抵抗をできるだけ低く抑えることができるという理由から、超音波溶接が好ましい。超音波溶接により接合する場合に、接合部の密着性を高めるために、100μm〜1mm程度の厚みの銅板などを溶接部の延在部間に挿入した後に超音波溶接してもよい。 An extension part of a positive electrode current collector foil extending from a plurality of secondary battery cells in one battery module, and an extension part of a negative electrode current collector foil extending from a plurality of secondary battery cells in another battery module; Examples of the method of joining are ultrasonic welding and spot welding. Among these, ultrasonic welding is preferable because the bonding area can be widened and the resistance of the bonding portion can be kept as low as possible. When joining by ultrasonic welding, in order to improve the adhesiveness of a joining part, you may ultrasonically weld after inserting the copper plate etc. of thickness of about 100 micrometers-1 mm between the extension parts of a welding part.
図5及び6に示したように、隣り合う任意の2つの電池モジュール間を直列に接続する際に接合部の位置を二箇所に分散させることによって、1箇所で接合する場合と比べて、電池モジュールの電極間の接合部の高さを約半分に減少させることができる。図5及び6に示した態様では、電池モジュール310及び320はそれぞれ6個の二次電池セルから構成され、6個の二次電池セルは第1群の3個の二次電池セルと第2群の3個の二次電池セルの2つの群に分けられているため、集電箔の延在部が同じ位置にある6個の二次電池セルから構成される2つの電池モジュール間を直列に接続する場合と比べて、各接合部の延在部の総厚みが半分になる。例えば、図4(b)に示したような正極集電箔31と負極集電箔32を使用して形成された2個の二次電池セルを第3の群の二次電池セルとして2組形成し、図5の二次電池セル313、314、323、324と置き換えることによって、接合部の位置を三箇所に分散させることができる。その結果、電池モジュールの電極間の接合部の高さを約3分の1に減少させることができる。上記のように、本発明によれば、電池モジュールの電極間の接合部の体積を大幅に低減することができ、電池モジュールを収容する電池ケースの体積を減少させることができる。その結果、組電池を小型化することができ、出力密度を向上させることができる。
As shown in FIGS. 5 and 6, when connecting two arbitrary adjacent battery modules in series, the positions of the joints are dispersed in two places, so that the batteries are joined in one place. The height of the junction between the electrodes of the module can be reduced by about half. 5 and 6, each of the
以下、本発明の組電池の製造方法の各工程について説明する。
(a)二次電池セルの作製
当該工程は、少なくとも正極集電箔、正極層、固体電解質層、負極層及び負極集電箔の積層体を含む二次電池セルを形成する工程である。正極集電箔及び負極集電箔が、それぞれ、各二次電池セルの互いに反対側の2つの端部からそれぞれ外側に延在する延在部を有する第1群〜第N群(Nは2以上の整数)の複数の二次電池セル(ここで、第1群〜第N群の複数の二次電池セルの正極集電箔及び負極集電箔の延在部の位置が第1群〜第N群間で互いに異なる)を、各電池モジュールに対して各1組ずつ用意する。正極集電箔、正極層、固体電解質層、負極層及び負極集電箔の積層体は、当該技術分野で知られている方法により形成することができる。例えば、当該積層体は、正極集電箔及び負極集電箔上にそれぞれ正極層及び負極層を形成し、正極層と負極層の間に固体電解質層に積層して積層方向にプレスすることにより形成することができ、あるいは、予め固体電解質層を形成し、固体電解質層の表面に、正極形成用材料及び負極形成用材料および正極集電箔及び負極集電箔をそれぞれ配置して積層方向にプレスすることにより形成することができる。
Hereinafter, each process of the manufacturing method of the assembled battery of this invention is demonstrated.
(A) Production of Secondary Battery Cell This step is a step of forming a secondary battery cell including a laminate of at least a positive electrode current collector foil, a positive electrode layer, a solid electrolyte layer, a negative electrode layer, and a negative electrode current collector foil. The positive electrode current collector foil and the negative electrode current collector foil each have first to Nth groups (N is 2) each having an extending portion extending outward from two opposite ends of each secondary battery cell. A plurality of secondary battery cells (the integers above) (here, the positions of the extending portions of the positive electrode current collector foil and the negative electrode current collector foil of the plurality of secondary battery cells of the first group to the Nth group are the first group to 1 set each for each battery module. The laminate of the positive electrode current collector foil, the positive electrode layer, the solid electrolyte layer, the negative electrode layer, and the negative electrode current collector foil can be formed by a method known in the technical field. For example, the laminate is formed by forming a positive electrode layer and a negative electrode layer on a positive electrode current collector foil and a negative electrode current collector foil, respectively, laminating a solid electrolyte layer between the positive electrode layer and the negative electrode layer, and pressing in the laminating direction. Alternatively, a solid electrolyte layer is formed in advance, and a positive electrode forming material, a negative electrode forming material, a positive electrode current collector foil, and a negative electrode current collector foil are respectively arranged on the surface of the solid electrolyte layer in the stacking direction. It can be formed by pressing.
正極集電箔及び負極集電箔としては、正極集電箔及び負極集電箔として機能できるものとして一般的に知られているものであれば特に限定されないが、正極集電箔の例としては、例えば、アルミニウム、ステンレス(SUS)、鉄などの材料から製造されたものを使用できる。負極集電箔の例としては、例えば、銅、ステンレス、鉄などの材料から製造されたものを使用できる。正極集電箔及び負極集電箔の厚さは、それら集電箔の構成材料や、組電池の意図する用途、電極合材との密着性や集電タブとの接合性などに応じて変えることができる。例えば、正極集電箔がアルミニウムから製造されたものである場合、正極集電箔の厚さは、典型的には5μm〜20μmである。負極集電箔が、銅から製造されたものである場合、負極集電箔の厚さは、典型的には5μm〜20μmである。 The positive electrode current collector foil and the negative electrode current collector foil are not particularly limited as long as they are generally known as those capable of functioning as the positive electrode current collector foil and the negative electrode current collector foil. For example, what was manufactured from materials, such as aluminum, stainless steel (SUS), and iron, can be used. As an example of negative electrode current collector foil, what was manufactured from materials, such as copper, stainless steel, and iron, can be used, for example. The thickness of the positive electrode current collector foil and the negative electrode current collector foil varies depending on the constituent material of the current collector foil, the intended use of the assembled battery, the adhesion with the electrode mixture, the bondability with the current collector tab, etc. be able to. For example, when the positive electrode current collector foil is manufactured from aluminum, the thickness of the positive electrode current collector foil is typically 5 μm to 20 μm. When the negative electrode current collector foil is manufactured from copper, the thickness of the negative electrode current collector foil is typically 5 μm to 20 μm.
二次電池セルの正極層は、正極層としての機能を有するものであれば特に限定されず、全固体二次電池において一般的に用いられているものと同様のものを用いることができる。二次電池セルの正極層は、正極活物質を含む正極形成用材料から形成される。正極形成用材料は、さらに、必要に応じて、他の固体材料(例えば、固体電解質(例えば硫化物系固体電解質、ポリマー電解質、酸化物系固体電解質)、導電助剤(例えばカーボンブラック、カーボンファイバーなど)、SUS粉、Ni粉など)を含んでもよい。正極活物質は特に限定されず、負極活物質の充放電電位や酸化還元電位と比べて貴な電位を示すものであればよい。正極活物質としては、例えば、LiCoO2、LiMnO2、Li2NiMn3O8、LiVO2、LiCrO2、LiFePO4、LiCoPO4、LiNiO2、LiNi1/3Co1/3Mn1/3O2などが挙げられる。正極活物質の形状は、粒子状であることが好ましい。正極活物質の平均粒径は、典型的には0.1μm〜20μm、好ましくは1μm〜10μmである。正極層における正極活物質の含有量は、典型的には、50〜80質量%である。導電助剤の具体例としては、例えばカーボンブラック(例えばアセチレンブラック、ケチェンブラックなど)、カーボンファイバーなどが挙げられる。バインダーとしては、化学的、電気的に安定なものであることが好ましく、具体例として、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)等のフッ素系バインダー成分、及び、スチレンブタジエンゴム(SBR)、ブタジエンゴム(BR)などのゴム系バインダー成分などが挙げられる。正極層におけるバインダーの含有量は、正極活物質等を安定に固定化できる限り、より少ないことが好ましく、正極層の総質量を基準として典型的には1〜10質量%である。正極層の厚みは、特に限定されないが、通常30μm〜100μmである。 The positive electrode layer of the secondary battery cell is not particularly limited as long as it has a function as a positive electrode layer, and the same as that generally used in all-solid secondary batteries can be used. The positive electrode layer of the secondary battery cell is formed from a positive electrode forming material containing a positive electrode active material. The positive electrode forming material may further include other solid materials (for example, solid electrolytes (for example, sulfide-based solid electrolytes, polymer electrolytes, oxide-based solid electrolytes)), conductive assistants (for example, carbon black, carbon fibers) as necessary. Etc.), SUS powder, Ni powder, etc.). The positive electrode active material is not particularly limited as long as it shows a noble potential as compared with the charge / discharge potential or oxidation-reduction potential of the negative electrode active material. Examples of the positive electrode active material include LiCoO 2 , LiMnO 2 , Li 2 NiMn 3 O 8 , LiVO 2 , LiCrO 2 , LiFePO 4 , LiCoPO 4 , LiNiO 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2. Etc. The shape of the positive electrode active material is preferably particulate. The average particle diameter of the positive electrode active material is typically 0.1 μm to 20 μm, preferably 1 μm to 10 μm. The content of the positive electrode active material in the positive electrode layer is typically 50 to 80% by mass. Specific examples of the conductive assistant include carbon black (for example, acetylene black and ketjen black), carbon fiber, and the like. The binder is preferably chemically and electrically stable. Specific examples thereof include fluorine-based binder components such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE), and styrene-butadiene rubber ( And rubber-based binder components such as SBR) and butadiene rubber (BR). The content of the binder in the positive electrode layer is preferably less as long as the positive electrode active material and the like can be stably fixed, and is typically 1 to 10% by mass based on the total mass of the positive electrode layer. Although the thickness of a positive electrode layer is not specifically limited, Usually, they are 30 micrometers-100 micrometers.
固体電解質層は、固体電解質として機能することができる材料から構成されたものであれば特に限定されない。固体電解質層に用いられる固体電解質としては、全固体二次電池において一般的に用いられるものと同様のものを用いることができる。固体電解質の例としては、例えば、硫化物系固体電解質(例えばLi2S−P2S5、Li2S−SiS2、Li2S−GeS2、Li2S−Al2S3等を含むもの)、酸化物系固体電解質(例えばLiPON、LAGP、LATP)等が挙げられる。固体電解質層の厚みは、特に限定されないが、典型的には1μm〜100μmである。 The solid electrolyte layer is not particularly limited as long as it is made of a material that can function as a solid electrolyte. As the solid electrolyte used in the solid electrolyte layer, the same one as that generally used in an all-solid secondary battery can be used. Examples of solid electrolytes include, for example, sulfide-based solid electrolytes (for example, Li 2 S—P 2 S 5 , Li 2 S—SiS 2 , Li 2 S—GeS 2 , Li 2 S—Al 2 S 3). And oxide solid electrolytes (for example, LiPON, LAGP, LATP) and the like. The thickness of the solid electrolyte layer is not particularly limited, but is typically 1 μm to 100 μm.
二次電池セルの負極層は、負極活物質を含む負極形成用材料から形成される。負極形成用材料は、さらに、必要に応じて、他の固体材料(例えば、固体電解質(例えば硫化物系固体電解質、ポリマー電解質、酸化物系固体電解質)、導電助剤(例えばカーボンブラック、カーボンファイバーなど)、SUS粉、Ni粉など)を含んでもよい。負極活物質としては、例えば、金属In、金属Li、Si−Li合金、Sn−Li合金、SnO−Li系材料、黒鉛などが挙げられる。負極層の厚みは、特に限定されないが、典型的には10μm〜100μmである。 The negative electrode layer of the secondary battery cell is formed from a negative electrode forming material containing a negative electrode active material. The negative electrode forming material may further include other solid materials (for example, solid electrolytes (for example, sulfide-based solid electrolytes, polymer electrolytes, oxide-based solid electrolytes), conductive assistants (for example, carbon black, carbon fiber) as necessary. Etc.), SUS powder, Ni powder, etc.). Examples of the negative electrode active material include metal In, metal Li, Si—Li alloy, Sn—Li alloy, SnO—Li based material, and graphite. The thickness of the negative electrode layer is not particularly limited, but is typically 10 μm to 100 μm.
正極層及び負極層に使用できる固体電解質は、固体電解質としての機能を有するものであれば特に限定されない。固体電解質としては、全固体リチウム二次電池において一般的に用いられるものと同様のものを用いることができる。固体電解質の例としては、例えば、硫化物系固体電解質(例えばLi2S−P2S5、Li2S−SiS2、Li2S−GeS2、Li2S−Al2S3等を含むもの)、酸化物系固体電解質(例えばLiPON、LAGP、LATP)等が挙げられる。 The solid electrolyte that can be used for the positive electrode layer and the negative electrode layer is not particularly limited as long as it has a function as a solid electrolyte. As the solid electrolyte, those similar to those generally used in all solid lithium secondary batteries can be used. Examples of solid electrolytes include, for example, sulfide-based solid electrolytes (for example, Li 2 S—P 2 S 5 , Li 2 S—SiS 2 , Li 2 S—GeS 2 , Li 2 S—Al 2 S 3). And oxide solid electrolytes (for example, LiPON, LAGP, LATP) and the like.
(b)電池モジュールの作製
第1群〜第N群の複数の二次電池セルの各群において、複数の二次電池セルを電気絶縁層を介して積層して積層体を形成し、得られた第1群〜第N群の二次電池セルの積層体を電気絶縁層を介して積層して1個の電池モジュールを形成することができる。これらの工程を1回以上繰り返すことにより2個以上の電池モジュールを用意することができる。電池モジュールの作製のために、上記のように作製した複数の二次電池セルを、必要に応じて、ポリプロピレン、ポリエチレン、ポリエチレンテレフタレートなどの電気絶縁性材料フィルムなどの電気絶縁性外装材に個別に収容し積層してもよく、あるいは、外装材に収容せずに、複数の二次電池セルを電気絶縁層を介して積層してもよい。ただし、正極集電箔及び負極集電箔の延在部が二次電池セルの外側に延在することが必要である。複数の二次電池セルを、電気絶縁層を介して積層することにより得られた積層体を、次に、位置がずれないように配置してプレス(例えば、面プレス、ロールプレス、水圧プレス、及びこれらの方法において加熱を行う等の方法などによる)し、二次電池セル同士をプレスの圧力で接着させることにより電池モジュールを得ることができる。なお、「複数の二次電池セルを電気絶縁層を介して積層する」とは、複数の二次電池を個別に電気絶縁性材料フィルムなどの電気絶縁性外装材に収容し積層する場合も含む。
(B) Production of battery module In each group of a plurality of secondary battery cells of the first group to the Nth group, a plurality of secondary battery cells are stacked through an electrical insulating layer to form a laminate. In addition, a stack of secondary battery cells of the first group to the Nth group can be stacked via an electrical insulating layer to form one battery module. By repeating these steps once or more, two or more battery modules can be prepared. For the production of a battery module, a plurality of secondary battery cells produced as described above are individually applied to an electrically insulating exterior material such as an electrically insulating material film such as polypropylene, polyethylene, or polyethylene terephthalate as necessary. It may be housed and stacked, or a plurality of secondary battery cells may be stacked via an electrical insulating layer without being housed in the exterior material. However, it is necessary that the extending portions of the positive electrode current collector foil and the negative electrode current collector foil extend to the outside of the secondary battery cell. A laminated body obtained by laminating a plurality of secondary battery cells via an electrical insulating layer is then placed so as not to shift its position and pressed (for example, a surface press, a roll press, a hydraulic press, In addition, the battery module can be obtained by bonding the secondary battery cells to each other with a press pressure. Note that “stacking a plurality of secondary battery cells via an electrical insulating layer” includes a case where a plurality of secondary batteries are individually housed and stacked in an electrically insulating exterior material such as an electrically insulating material film. .
各電池モジュールにおける複数の二次電池セルの配置は、直列に接続して組電池を作製する際に、任意の隣り合う電池モジュールにおいて、一方の電池モジュールにおける第1群〜第N群の複数の二次電池セルの正極集電箔及び負極集電箔の延在部が、それぞれ、他方の電池モジュールにおける第1群〜第N群の複数の二次電池セルの極性の異なる複数の集電箔の延在部と重なり合うように第1群〜第N群の組み合わせが選択される。第1群〜第N群の複数の二次電池セルの各群内に含まれる二次電池セルの形状及び個数、正極集電箔及び負極集電箔の延在部の形状、大きさ、位置などの選択は、上記のとおり、一方の電池モジュールにおける第1群〜第N群の複数の二次電池セルの正極集電箔及び負極集電箔の延在部が、それぞれ、当該延在部に対して重なり合う位置に存在する他方の電池モジュールにおける第1群〜第N群の複数の二次電池セルの極性の異なる複数の集電箔の延在部に接続される限り任意であることができるが、当業者は、複数の電池モジュールを直列に接続することにより得られる組電池がその性能を最大限発揮することができるよう選択することができる。 The arrangement of the plurality of secondary battery cells in each battery module is such that when an assembled battery is produced by connecting them in series, in any adjacent battery module, a plurality of first to N-th groups in one battery module. A plurality of current collector foils in which the positive electrode current collector foil and the negative electrode current collector foil of the secondary battery cell have different polarities of the plurality of secondary battery cells of the first group to the Nth group in the other battery module, respectively. A combination of the first group to the Nth group is selected so as to overlap with the extending portion. The shape and number of secondary battery cells included in each group of the plurality of secondary battery cells of the first group to the Nth group, the shape, size, and position of the positive electrode current collector foil and the extension part of the negative electrode current collector foil As described above, as described above, the extension portions of the positive electrode current collector foil and the negative electrode current collector foil of the plurality of secondary battery cells of the first group to the Nth group in one battery module are respectively the extension portions. As long as it is connected to the extending portions of the plurality of current collector foils having different polarities of the plurality of secondary battery cells of the first group to the Nth group in the other battery module existing at a position overlapping with respect to However, a person skilled in the art can select the assembled battery obtained by connecting a plurality of battery modules in series so that the performance can be maximized.
(c)組電池の作製
上記のように作製した複数の電池モジュールを直列に接続し、電池ケース内に収容することにより組電池を製造することができる。組電池の製造にあたり、例えば、まず、複数の電池モジュールを用意し、任意の隣り合う電池モジュールにおいて、各電池モジュール内の複数の二次電池セルの積層方向が同じになり、かつ、直列に接続すべき集電箔の延在部が重なり合うように並べて配置する。次に、上記のように、超音波溶接などの接合法により極性の異なる電極集電箔同士を接合して複数の電池モジュールを直列に接続する。任意の隣り合う電池モジュールにおいて、一方の電池モジュールにおける第1群〜第N群の複数の二次電池セルの正極集電箔及び負極集電箔の延在部を、それぞれ、当該延在部に対して重なり合う位置に存在する他方の電池モジュールにおける第1群〜第N群の複数の二次電池セルの極性の異なる複数の集電箔の延在部と接合することにより2個以上の電池モジュールを直列に接続することができる。直列に接続された複数の電池モジュールを、次に、最外層に位置する電池モジュールに、それぞれ正極集電タブと負極集電タブを接合し、集電タブの先端部が外部に突出するような配置でそれらの電池モジュールを外装(ラミネート材、缶など)部材で覆い内部を真空にすることにより組電池を得ることができる。
(C) Production of battery pack A battery pack can be produced by connecting a plurality of battery modules produced as described above in series and housing them in a battery case. In manufacturing the assembled battery, for example, first, a plurality of battery modules are prepared, and in any adjacent battery module, the stacking directions of the plurality of secondary battery cells in each battery module are the same and connected in series. They are arranged side by side so that the extending portions of the current collector foils to be overlapped. Next, as described above, the electrode current collector foils having different polarities are joined together by a joining method such as ultrasonic welding, and a plurality of battery modules are connected in series. In any adjacent battery module, the extension portions of the positive electrode current collector foil and the negative electrode current collector foil of the plurality of secondary battery cells of the first group to the Nth group in one battery module are respectively connected to the extension portions. Two or more battery modules by joining to the extending portions of the plurality of current collector foils having different polarities of the plurality of secondary battery cells of the first group to the Nth group in the other battery module existing at the overlapping position Can be connected in series. A plurality of battery modules connected in series, and then a positive current collecting tab and a negative current collecting tab are joined to the battery module located in the outermost layer, respectively, and the tip of the current collecting tab protrudes to the outside. An assembled battery can be obtained by covering those battery modules with an exterior (laminate, can, etc.) member and placing the inside in a vacuum.
本発明の組電池は、ハイブリッド自動車、電気自動車などの車両に搭載されるモーター用の電源として好適に使用できる。 The assembled battery of the present invention can be suitably used as a power source for a motor mounted on a vehicle such as a hybrid vehicle or an electric vehicle.
110、120 二次電池セル
111、112、113 集電箔延在部
121、122、123 集電箔延在部
20 二次電池セル
21 正極集電箔21
22 正極層
23 固体電解質層
24 負極層24
25 負極集電箔25
21a 正極集電箔の延在部
25a 負極集電箔の延在部
31 正極集電箔
31a 延在部
32 正極集電箔
32a 延在部
310、320、330 電池モジュール
311、312、313 第1群の二次電池セル
321、322、323 第1群の二次電池セル
314、315、316 第2群の二次電池セル
324、325、326 第2群の二次電池セル
311a、312a、313a 正極集電箔の延在部
314a、315a、316a 正極集電箔の延在部
311b、312b、313b 負極集電箔の延在部
314b、315b、316b 負極集電箔の延在部
321a、322a、323a 正極集電箔の延在部
324a、325a、326a 正極集電箔の延在部
321b、322b、323b 負極集電箔の延在部
324b、325b、326b 負極集電箔の延在部
331、332、333 第1群の二次電池セル
334、335、336 第2群の二次電池セル
331a、332a、333a 正極集電箔の延在部
331b、332b、333b 負極集電箔の延在部
334b、335b、336b 負極集電箔の延在部
110, 120
22
25 Negative electrode
21a Extension part of positive electrode
Claims (4)
各電池モジュールは第1群〜第N群(Nは2以上の整数)の複数の二次電池セルを含み、第1群〜第N群の複数の二次電池セルは、それぞれ、厚み方向に順に積層した正極集電箔、正極層、固体電解質層、負極層及び負極集電箔を含み、各二次電池セルの正極集電箔及び負極集電箔は、それぞれ、互いに反対側の2つの端部からそれぞれ外側に延在する延在部を有し、
各電池モジュールの第1群〜第N群の複数の二次電池セルの各群において、複数の二次電池は電気絶縁層を介して積層されていて積層体を形成しており、さらに、第1群〜第N群の複数の二次電池セルの積層体は電気絶縁層を介して積層されており、
各電池モジュールにおいて、第1群〜第N群の複数の二次電池セルの正極集電箔及び負極集電箔の延在部の位置が第1群〜第N群間で互いに異なり、
任意の隣り合う2つの電池モジュールにおいて、一方の電池モジュールにおける第1群〜第N群の複数の二次電池セルの正極集電箔及び負極集電箔の延在部が、それぞれ、当該延在部に対して重なり合う位置に存在する他方の電池モジュールにおける第1群〜第N群の複数の二次電池セルの極性の異なる複数の集電箔の延在部に接続されていることを特徴とする組電池。 An assembled battery including two or more battery modules connected in series,
Each battery module includes a plurality of secondary battery cells of the first group to the Nth group (N is an integer of 2 or more), and the plurality of secondary battery cells of the first group to the Nth group are respectively in the thickness direction. A positive electrode current collector foil, a positive electrode layer, a solid electrolyte layer, a negative electrode layer, and a negative electrode current collector foil, which are laminated in order, each of the positive electrode current collector foil and the negative electrode current collector foil of each secondary battery cell, Each having an extending portion extending outward from the end portion;
In each group of the plurality of secondary battery cells of each of the first group to the Nth group of each battery module, the plurality of secondary batteries are stacked via an electrical insulating layer to form a stacked body, A stack of a plurality of secondary battery cells of Group 1 to Group N is stacked via an electrical insulating layer,
In each battery module, the positions of the extending portions of the positive electrode current collector foil and the negative electrode current collector foil of the plurality of secondary battery cells of the first group to the N group are different from each other between the first group to the N group,
In any two adjacent battery modules, the extension portions of the positive electrode current collector foil and the negative electrode current collector foil of the plurality of secondary battery cells of the first group to the Nth group in one battery module are respectively extended. A plurality of secondary battery cells of the first group to the N-th group in the other battery module existing at a position overlapping with the portion are connected to the extending portions of the current collector foils having different polarities, Assembled battery.
(A)各二次電池セルが、厚み方向に順に積層した正極集電箔、正極層、固体電解質層、負極層及び負極集電箔を含み、正極集電箔及び負極集電箔が、それぞれ、各二次電池セルの互いに反対側の2つの端部からそれぞれ外側に延在する延在部を有する第1群〜第N群(Nは2以上の整数)の複数の二次電池セル(ここで、第1群〜第N群の複数の二次電池セルの正極集電箔及び負極集電箔の延在部の位置が第1群〜第N群間で互いに異なる)を、各電池モジュールに対して各1組ずつ用意し、
(B)前記第1群〜第N群の複数の二次電池セルの各群において、複数の二次電池セルを電気絶縁層を介して積層して積層体を形成し、得られた第1群〜第N群の二次電池セルの積層体を電気絶縁層を介して積層して電池モジュールを形成し、
(C)上記(A)及び(B)工程を1回以上繰り返すことにより2個以上の電池モジュールを用意し、
(D)任意の隣り合う電池モジュールにおいて、一方の電池モジュールにおける第1群〜第N群の複数の二次電池セルの正極集電箔及び負極集電箔の延在部を、それぞれ、当該延在部に対して重なり合う位置に存在する他方の電池モジュールにおける第1群〜第N群の複数の二次電池セルの極性の異なる複数の集電箔の延在部と接続することにより2個以上の電池モジュールを直列に接続すること、
を含む、組電池の製造方法。 A method of manufacturing an assembled battery including two or more battery modules connected in series,
(A) Each secondary battery cell includes a positive electrode current collector foil, a positive electrode layer, a solid electrolyte layer, a negative electrode layer, and a negative electrode current collector foil that are sequentially stacked in the thickness direction. , A plurality of secondary battery cells in the first group to the Nth group (N is an integer of 2 or more) each having an extending portion extending outward from two opposite ends of each secondary battery cell. Here, the positions of the extending portions of the positive electrode current collector foil and the negative electrode current collector foil of the plurality of secondary battery cells in the first group to the N group are different from each other in the first group to the N group). Prepare one set for each module,
(B) In each group of the plurality of secondary battery cells of the first group to the Nth group, a plurality of secondary battery cells are stacked via an electrical insulating layer to form a stacked body, and the first obtained A battery module is formed by laminating a stack of secondary battery cells of group N to group N via an electrical insulating layer,
(C) Prepare two or more battery modules by repeating the steps (A) and (B) at least once,
(D) In any adjacent battery module, the extension portions of the positive electrode current collector foil and the negative electrode current collector foil of the plurality of secondary battery cells of the first group to the Nth group in one battery module are respectively Two or more by connecting with the extension part of several current collector foil from which the polarity of the several secondary battery cell of the 1st group-N group in the other battery module which exists in the position which overlaps with an existing part differs Connecting battery modules in series,
A method for producing an assembled battery, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012236852A JP2014086388A (en) | 2012-10-26 | 2012-10-26 | Battery pack and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012236852A JP2014086388A (en) | 2012-10-26 | 2012-10-26 | Battery pack and manufacturing method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014086388A true JP2014086388A (en) | 2014-05-12 |
Family
ID=50789232
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012236852A Pending JP2014086388A (en) | 2012-10-26 | 2012-10-26 | Battery pack and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2014086388A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016013295A1 (en) * | 2014-07-22 | 2016-01-28 | 日産自動車株式会社 | Battery pack production method and production device |
CN110249478A (en) * | 2017-02-06 | 2019-09-17 | 三星Sdi株式会社 | Collecting system, battery module and vehicle for battery module |
CN110770956A (en) * | 2017-06-15 | 2020-02-07 | A123系统有限责任公司 | Stacked prismatic architecture for electrochemical cells |
JP2021150188A (en) * | 2020-03-19 | 2021-09-27 | 本田技研工業株式会社 | Solid-state battery cell |
US11342633B2 (en) | 2017-02-06 | 2022-05-24 | Samsung Sdi Co., Ltd. | Current collecting system for battery module, battery module, and vehicle |
-
2012
- 2012-10-26 JP JP2012236852A patent/JP2014086388A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016013295A1 (en) * | 2014-07-22 | 2016-01-28 | 日産自動車株式会社 | Battery pack production method and production device |
CN110249478A (en) * | 2017-02-06 | 2019-09-17 | 三星Sdi株式会社 | Collecting system, battery module and vehicle for battery module |
US11342633B2 (en) | 2017-02-06 | 2022-05-24 | Samsung Sdi Co., Ltd. | Current collecting system for battery module, battery module, and vehicle |
CN110249478B (en) * | 2017-02-06 | 2022-07-12 | 三星Sdi株式会社 | Current collecting system for battery module, battery module and vehicle |
CN110770956A (en) * | 2017-06-15 | 2020-02-07 | A123系统有限责任公司 | Stacked prismatic architecture for electrochemical cells |
JP2021150188A (en) * | 2020-03-19 | 2021-09-27 | 本田技研工業株式会社 | Solid-state battery cell |
JP7481138B2 (en) | 2020-03-19 | 2024-05-10 | 本田技研工業株式会社 | Solid-state battery cells |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6859059B2 (en) | Lithium-ion secondary battery and its manufacturing method | |
JP5425803B2 (en) | Electrode assembly and manufacturing method thereof, secondary battery, middle- or large-sized battery module | |
KR101150265B1 (en) | Stack/folding-typed electrode assembly of noble structure and method for preparation of the same | |
JP4661020B2 (en) | Bipolar lithium ion secondary battery | |
US20140154565A1 (en) | Electrode assembly, fabricating method of the electrode assembly and electrochemical cell containing the electrode assembly | |
JP2011165515A (en) | Square sealed secondary battery and method for manufacturing the same | |
JP4096718B2 (en) | Bipolar battery, bipolar battery manufacturing method, battery pack and vehicle | |
WO2011002064A1 (en) | Laminated battery | |
EP2757625A1 (en) | Electrode assembly, method for manufacturing electrode assembly, and electrochemical device comprising electrode assembly | |
JP2004134210A (en) | Lamination type battery, battery pack, and vehicle | |
JP4655593B2 (en) | Bipolar battery | |
WO2014188501A1 (en) | Nonaqueous electrolyte secondary cell | |
JP4670275B2 (en) | Bipolar battery and battery pack | |
JP2014086388A (en) | Battery pack and manufacturing method thereof | |
CN113316859A (en) | Laminated battery | |
JP5704251B2 (en) | Assembled battery and method of manufacturing the assembled battery | |
KR101387137B1 (en) | Electrode assembly and rechargeable battery with the same | |
CN112332043A (en) | Secondary battery and method for manufacturing same | |
JP4218400B2 (en) | Bipolar battery, bipolar battery manufacturing method, battery pack and vehicle | |
CN114156489A (en) | Battery with a battery cell | |
JP4055640B2 (en) | Bipolar battery, bipolar battery manufacturing method, battery pack and vehicle | |
JP2005317468A (en) | Bipolar electrode, method of manufacturing bipolar electrode, bipolar battery, battery pack and vehicle with these mounted thereon | |
KR101476523B1 (en) | Electrode of secondary battery | |
JP5526514B2 (en) | Bipolar battery and battery pack using the same | |
JP7323055B2 (en) | Electrode for power storage device, power storage device and secondary battery |