[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2014086243A - Paste for forming an electroconductive film, electroconductive film, method for manufacturing an electroconductive film, and article - Google Patents

Paste for forming an electroconductive film, electroconductive film, method for manufacturing an electroconductive film, and article Download PDF

Info

Publication number
JP2014086243A
JP2014086243A JP2012233769A JP2012233769A JP2014086243A JP 2014086243 A JP2014086243 A JP 2014086243A JP 2012233769 A JP2012233769 A JP 2012233769A JP 2012233769 A JP2012233769 A JP 2012233769A JP 2014086243 A JP2014086243 A JP 2014086243A
Authority
JP
Japan
Prior art keywords
conductive film
paste
copper powder
mass
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012233769A
Other languages
Japanese (ja)
Inventor
Tokumitsu Kato
徳光 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Seimi Chemical Ltd
Original Assignee
AGC Seimi Chemical Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AGC Seimi Chemical Ltd filed Critical AGC Seimi Chemical Ltd
Priority to JP2012233769A priority Critical patent/JP2014086243A/en
Publication of JP2014086243A publication Critical patent/JP2014086243A/en
Pending legal-status Critical Current

Links

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Paints Or Removers (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a paste for forming an electroconductive film capable of reducing the volume resistivity of the electroconductive film, an electroconductive film having an improved electroconductivity, a method for manufacturing the electroconductive film, and an article possessing the electroconductive film.SOLUTION: The paste used is a paste including 15-40 parts.mass of a resin binder with respect to 100 parts.mass of a copper powder wherein, on an occasion where the paste is heated and cured at 100 to 300°C, the density of the copper powder and the shrinkage rate of paste components excluding the solvent volume content are respectively 4.0-6.5 g/cmand 10-30 vol.%.

Description

本発明は、導電膜形成用ペースト、該ペーストを用いて作製した導電膜及び該導電膜の製造方法、並びに該導電膜を有する物品に関する。   The present invention relates to a conductive film-forming paste, a conductive film produced using the paste, a method for producing the conductive film, and an article having the conductive film.

所望のパターンの電気配線膜、電極膜などの導電膜を有する物品を製造する方法としては、従来、基板上に、金属粒子を含む金属ペーストを所望の配線パターン状に塗布し、焼成する方法が知られている。たとえばプリント基板の製造には、銀ペーストが汎用されている。しかし、銀ペーストを焼成して形成される導電膜は、イオンマイグレーションを起こしやすい問題がある。イオンマイグレーションは、短絡などの不具合の原因となるため、電子機器の信頼性を考慮して、銀ペーストよりもイオンマイグレーションが起こりにくい銅ペーストを用いることが検討されている。
例えば、銅粉末とレゾール型フェノール樹脂を主成分とし、さらに脂環式第2級アミンなどを含む導電性ペースト(特許文献1)や、銅粉末、熱硬化性樹脂及びセピオライトを含む導電性銅ペースト組成物(特許文献2)が提案されている。
さらに、所定の酸、還元剤及び脂肪酸の水溶液で処理した銅又は銅合金からなる導電粉を用いた導電性ペースト(特許文献3)や、所定の粒度分布を有する樹枝状銅粉、熱硬化性樹脂、有機カルボン酸及びキレート剤を含む導電性銅ペースト(特許文献4)が提案されている。
As a method for manufacturing an article having a conductive film such as an electric wiring film or an electrode film having a desired pattern, there is a conventional method in which a metal paste containing metal particles is applied on a substrate in a desired wiring pattern and fired. Are known. For example, silver paste is widely used for manufacturing printed circuit boards. However, a conductive film formed by baking a silver paste has a problem that ion migration is likely to occur. Since ion migration causes problems such as a short circuit, in consideration of the reliability of electronic equipment, it has been studied to use a copper paste that is less susceptible to ion migration than silver paste.
For example, a conductive paste (Patent Document 1) containing copper powder and a resol type phenol resin as main components and further containing an alicyclic secondary amine or the like, or a conductive copper paste containing copper powder, a thermosetting resin and sepiolite A composition (Patent Document 2) has been proposed.
Furthermore, conductive paste (Patent Document 3) using conductive powder made of copper or copper alloy treated with an aqueous solution of a predetermined acid, reducing agent and fatty acid, dendritic copper powder having a predetermined particle size distribution, thermosetting A conductive copper paste (Patent Document 4) containing a resin, an organic carboxylic acid and a chelating agent has been proposed.

特開平5−128911号公報JP-A-5-128911 特開平10−283842号公報Japanese Patent Laid-Open No. 10-283842 特開2007−184143号公報JP 2007-184143 A 特開2008−130301号公報JP 2008-130301 A

上記のとおり、ペーストの導電性を向上させるために、さまざまな検討がされているが、導電膜に加工した際における銅粉の充填性やペーストの収縮率という観点では全く検討がされていないため、得られた導電膜の導電性は不十分なものであった。
そこで、本発明では、銅粉の充填性とペーストの収縮率という観点から、原料に使用する銅粉の物性、ペーストの組成、導電膜の加工条件などを検討し、銅粉の充填性を向上させ、導電膜の体積抵抗率を減少できる導電膜形成用ペースト、及び導電性が向上した導電膜を提供することを目的とする。
As described above, various studies have been made to improve the conductivity of the paste, but no study has been made in terms of copper powder filling properties and paste shrinkage when processed into a conductive film. The conductivity of the obtained conductive film was insufficient.
Therefore, in the present invention, from the viewpoint of copper powder filling properties and paste shrinkage, the physical properties of the copper powder used in the raw material, the composition of the paste, the processing conditions of the conductive film, etc. are studied, and the copper powder filling properties are improved. An object of the present invention is to provide a conductive film forming paste capable of reducing the volume resistivity of the conductive film and a conductive film with improved conductivity.

上記の課題を解決する本発明は、以下の態様を有する。
(1)銅粉100質量部に対して、15〜40質量部の樹脂バインダを含むペーストであり、該ペーストを100〜300℃で熱処理した後における、銅粉の密度が4.0〜6.5g/cmで、ペーストの溶剤体積分を除く成分の収縮率が10〜30体積%である導電膜形成用ペースト。
(2)ペースト中に含まれる樹脂成分が、銅粉100質量部に対して、6〜28質量部である上記(1)に記載の導電膜形成用ペースト。
(3)銅粉の平均アスペクト比が2.5〜6である上記(1)又は(2)に記載の導電膜形成用ペースト。
(4)銅粉の10%粒径が2.0〜4.0μm、50%粒径が4.0〜8.0μm及び90%粒径が7.0〜14.0μmである上記(1)〜(3)のいずれか一つに記載の導電膜形成用ペースト。
(5)銅粉と樹脂バインダを含む導電膜であって、導電膜に含まれる銅粉の密度が4.0〜6.5g/cmであり、かつ銅粉と樹脂バインダを含むペーストを熱処理して導電膜を成形する工程における、該ペーストの溶剤体積分を除く成分の収縮率が10〜30体積%である導電膜。
(6)導電膜の厚さが10〜50μmである上記(5)に記載の導電膜。
(7)体積抵抗率が50μΩ・cm以下である上記(5)又は(6)に記載の導電膜。
(8)基材上に上記(5)〜(7)のいずれか一つに記載の導電膜が形成された物品。
(9)銅粉100質量部に対して、15〜40質量部の樹脂バインダを混合して得られるペーストを熱処理して得られる導電膜の製造方法であって、該導電膜の銅粉の密度が4.0〜6.5g/cm、かつ熱処理の前後におけるペーストの溶剤体積分を除く成分の収縮率が10〜30体積%である導電膜の製造方法。
The present invention for solving the above problems has the following aspects.
(1) A paste containing 15 to 40 parts by mass of a resin binder with respect to 100 parts by mass of copper powder, and the density of the copper powder after heat treatment of the paste at 100 to 300 ° C. is 4.0 to 6. A conductive film forming paste having a shrinkage rate of 10 to 30% by volume at 5 g / cm 3 and excluding the solvent volume of the paste.
(2) The conductive film forming paste according to (1), wherein the resin component contained in the paste is 6 to 28 parts by mass with respect to 100 parts by mass of the copper powder.
(3) The conductive film forming paste according to (1) or (2), wherein the copper powder has an average aspect ratio of 2.5 to 6.
(4) The copper powder having a 10% particle size of 2.0 to 4.0 μm, a 50% particle size of 4.0 to 8.0 μm, and a 90% particle size of 7.0 to 14.0 μm (1) The paste for electrically conductive film formation as described in any one of-(3).
(5) A conductive film containing copper powder and a resin binder, wherein the density of the copper powder contained in the conductive film is 4.0 to 6.5 g / cm 3 and the paste containing the copper powder and the resin binder is heat treated. Then, in the step of forming the conductive film, the conductive film has a shrinkage rate of 10 to 30% by volume of the component excluding the solvent volume of the paste.
(6) The electrically conductive film as described in said (5) whose thickness of an electrically conductive film is 10-50 micrometers.
(7) The conductive film according to (5) or (6), wherein the volume resistivity is 50 μΩ · cm or less.
(8) An article in which the conductive film according to any one of (5) to (7) is formed on a substrate.
(9) A method for producing a conductive film obtained by heat-treating a paste obtained by mixing 15 to 40 parts by mass of a resin binder with respect to 100 parts by mass of copper powder, the density of the copper powder of the conductive film Of 4.0 to 6.5 g / cm 3 , and the shrinkage ratio of components excluding the solvent volume of the paste before and after the heat treatment is 10 to 30% by volume.

本発明によれば、導電膜中の銅粉の充填性が高く、導電膜の体積抵抗率を減少させられる導電膜形成用ペースト、及び導電性が向上した導電膜、並びに導電性が向上した導電膜を有する物品を提供できる。
本発明の導電膜形成用ペースト、及び導電膜が上記した効果を奏するかについては、必ずしも明らかではないが、次のように推定される。導電膜の体積抵抗率は、使用する銅粉の粒度分布及び形状、ペーストに含まれる樹脂バインダの種類、ペーストの組成、さらには導電膜の形成条件などの非常に多くの因子の影響を受ける。そこで、ペーストの収縮率という観点に基づき、これらの因子を最適化することにより、体積抵抗率が非常に低く、導電率が極めて高い導電膜を作製できると推定される。すなわち、ペーストの収縮率を指標にして、これらの多数の因子を制御し、最適な条件に調節して、バインダの硬化収縮力をより促進させることで、ペースト中の銅粉の粒子同士を高度に収縮させ、導電膜中の銅粉の粒子同士の接触面積を増加させ、銅粉の密度を十分に大きくでき、その結果、体積抵抗率が低く、導電率が極めて高い導電膜が得られると推定される。
ADVANTAGE OF THE INVENTION According to this invention, the filling property of the copper powder in a conductive film is high, the conductive film formation paste which can reduce the volume resistivity of a conductive film, the conductive film which improved electroconductivity, and the electroconductivity which improved electroconductivity Articles having membranes can be provided.
Whether the conductive film-forming paste of the present invention and the conductive film have the effects described above is not necessarily clear, but is estimated as follows. The volume resistivity of the conductive film is affected by numerous factors such as the particle size distribution and shape of the copper powder used, the type of resin binder contained in the paste, the composition of the paste, and the conductive film formation conditions. Therefore, it is estimated that a conductive film having a very low volume resistivity and an extremely high conductivity can be produced by optimizing these factors based on the viewpoint of the shrinkage rate of the paste. In other words, by using the shrinkage rate of the paste as an index, many of these factors are controlled, adjusted to the optimum conditions, and the hardening shrinkage force of the binder is further promoted, so that the particles of copper powder in the paste are highly advanced. The contact area between the copper powder particles in the conductive film can be increased, and the density of the copper powder can be sufficiently increased. As a result, a conductive film having a low volume resistivity and a very high conductivity can be obtained. Presumed.

<導電膜形成用ペースト>
本発明の導電膜形成用ペーストは、銅粉100質量部に対して、15〜40質量部の樹脂バインダを含む組成物である。なかでも、該ペーストに含まれる樹脂バインダは、銅粉100質量部に対して、18〜30質量部が好ましく、20〜25質量部がより好ましい。樹脂バインダの量が15質量部以上であれば、ペーストの流動性が良好となる。また樹脂バインダの量が40質量部以下であれば、導電膜に加工した際に、加工時の加熱による生成する樹脂バインダの熱分解物によって銅粉の粒子間の接触が妨げられることがなく、銅粉の粒子同士の接触面積が増えて、導電率が高い導電膜が得られる。
<Paste for conductive film formation>
The conductive film forming paste of the present invention is a composition containing 15 to 40 parts by mass of a resin binder with respect to 100 parts by mass of copper powder. Especially, 18-30 mass parts is preferable with respect to 100 mass parts of copper powder, and, as for the resin binder contained in this paste, 20-25 mass parts is more preferable. If the amount of the resin binder is 15 parts by mass or more, the fluidity of the paste will be good. If the amount of the resin binder is 40 parts by mass or less, when processed into a conductive film, contact between the copper powder particles is not hindered by the thermal decomposition product of the resin binder generated by heating during processing, The contact area between the copper powder particles increases, and a conductive film having high conductivity is obtained.

また、本発明の導電膜形成用ペーストに含まれる銅粉は、該ペーストを熱処理した際に、4.0〜6.5g/cmの密度となる銅粉であり、熱処理した後のペーストに含まれる銅粉の密度は、なかでも4.5〜6.5g/cmが好ましく、5.0〜6.5g/cmがより好ましい。
この銅粉の密度は、次のようにして測定される。まず、ガラス基板上に、ライン状のパターンを形成するように、導電膜形成用ペーストを塗布した後、150℃で30分間熱処理して、導電膜を作製する。具体的には、下記の式1のように、仕込んだ銅粉の質量Wを仕込んだ樹脂バインダの質量Bと前記Wの合計で割った値「W/(B+W)」に、塗装したペーストの質量Pをかけて求まった値を導電膜の体積Vで割ることで求められる。
銅粉の密度=P×(W/(B+W))/V (式1)
W:仕込んだ銅粉の質量、B:仕込んだ樹脂バインダの質量、P:塗装したペーストの質量、V:導電膜の体積
The copper powder contained in the conductive film forming paste of the present invention is a copper powder having a density of 4.0 to 6.5 g / cm 3 when the paste is heat-treated. the density of the copper powder contained, inter alia preferably 4.5~6.5g / cm 3, more preferably 5.0~6.5g / cm 3.
The density of this copper powder is measured as follows. First, a conductive film forming paste is applied on a glass substrate so as to form a line pattern, and then heat-treated at 150 ° C. for 30 minutes to produce a conductive film. Specifically, as shown in the following formula 1, the mass of the prepared copper powder is divided into the value “W / (B + W)” obtained by dividing the mass B of the prepared resin binder by the total of the mass B of the resin binder and W. It is obtained by dividing the value obtained by multiplying the mass P by the volume V of the conductive film.
Copper powder density = P × (W / (B + W)) / V (Formula 1)
W: Mass of prepared copper powder, B: Mass of prepared resin binder, P: Mass of coated paste, V: Volume of conductive film

また、熱処理した本発明の導電膜形成用ペーストにおいて、溶剤体積分を除く成分の収縮率は10〜30体積%であり、なかでも12〜30体積%が好ましく、15〜30体積%がより好ましい。
本発明で規定する収縮率とは、熱処理の前後におけるペーストの溶剤体積分を除く成分の収縮率(本明細書において、体積収縮率、又は収縮率ということがある)であり、その収縮率は次のようして測定される。具体的には、下記の式2のように、導電膜の体積Vを、ペーストの体積Vpからペーストに含まれる溶剤体積分Vsを差し引いた「Vp−Vs」で割った値「V/(Vp−Vs)」を求める。次いで、1から「V/(Vp−Vs)」を引いた後、100をかけることで求められる。
収縮率=(1−(V/(Vp−Vs)))×100 (式2)
V:導電膜の体積、Vp:ペーストの体積、Vs:ペーストに含まれる溶剤体積分
In the heat-treated conductive film-forming paste of the present invention, the shrinkage ratio of the components excluding the solvent volume is 10 to 30% by volume, preferably 12 to 30% by volume, more preferably 15 to 30% by volume. .
The shrinkage rate defined in the present invention is the shrinkage rate of components excluding the solvent volume of the paste before and after heat treatment (in this specification, sometimes referred to as volume shrinkage rate or shrinkage rate), and the shrinkage rate is It is measured as follows. Specifically, as expressed by Equation 2 below, a value “V / (Vp) obtained by dividing the volume V of the conductive film by“ Vp−Vs ”obtained by subtracting the solvent volume Vs contained in the paste from the volume Vp of the paste. -Vs) ". Next, it is obtained by subtracting “V / (Vp−Vs)” from 1 and then multiplying by 100.
Shrinkage rate = (1− (V / (Vp−Vs))) × 100 (Formula 2)
V: Volume of conductive film, Vp: Volume of paste, Vs: Solvent volume contained in paste

本発明のペーストに含まれる銅粉において、10%粒径は2.0〜4.0μmが好ましく、2.0〜3.5μmがより好ましく、2.0〜3.0μmが特に好ましい。また、該銅粉の50%粒径は4.0〜8.0μmが好ましく、4.0〜7.0μmがより好ましく、4.0〜6.0μmが特に好ましい。さらに、該銅粉の90%粒径は7.0〜14.0μmが好ましく、7.0〜12.0μmがより好ましく、7.0〜10.0μmが特に好ましい。銅粉の粒径が小さいと、導電膜に加工した後の導電膜中の銅粉の充填性が向上して銅粉の粒子同士の接触面積が大きくなり、導電性の向上が期待できる。
なお、本発明において、銅粉の10%粒径、50%粒径及び90%粒径は、銅粉0.2gを溶媒中に分散させて測定試料を調製し、レーザー式回折散乱式粒度分布測定装置としてHORIBA社製 LA920を用いて測定した。溶媒にエタノールを使用し、測定試料に超音波をかけずに測定した。測定時の屈折率は、銅の測定条件に合わせて0.48〜2.6iとした。なお、本発明において、10%粒径、50%粒径及び90%粒径とは、体積基準で粒度分布を求め、全体積を100%とした累積カーブにおいて、その累積カーブが、それぞれ、10%となる体積基準累積10%径、50%となる体積基準累積50%径及び90%となる体積基準累積90%径を意味する。
In the copper powder contained in the paste of the present invention, the 10% particle size is preferably 2.0 to 4.0 μm, more preferably 2.0 to 3.5 μm, and particularly preferably 2.0 to 3.0 μm. The 50% particle size of the copper powder is preferably 4.0 to 8.0 μm, more preferably 4.0 to 7.0 μm, and particularly preferably 4.0 to 6.0 μm. Further, the 90% particle size of the copper powder is preferably 7.0 to 14.0 μm, more preferably 7.0 to 12.0 μm, and particularly preferably 7.0 to 10.0 μm. When the particle size of the copper powder is small, the filling property of the copper powder in the conductive film after being processed into a conductive film is improved, the contact area between the copper powder particles is increased, and an improvement in conductivity can be expected.
In the present invention, the 10% particle size, 50% particle size, and 90% particle size of the copper powder are prepared by dispersing 0.2 g of copper powder in a solvent to prepare a measurement sample, and laser diffraction diffraction scattering particle size distribution. It measured using LA920 by HORIBA as a measuring apparatus. Ethanol was used as a solvent, and measurement was performed without applying ultrasonic waves to the measurement sample. The refractive index at the time of measurement was 0.48 to 2.6i according to the measurement conditions of copper. In the present invention, the 10% particle size, 50% particle size, and 90% particle size are particle size distributions obtained on a volume basis, and the cumulative curve with an overall volume of 100% is 10%. The volume-based cumulative 10% diameter is 50%, the volume-based cumulative 50% diameter is 50%, and the volume-based cumulative 90% diameter is 90%.

また、本発明のペーストに含まれる銅粉において、平均アスペクト比は2.5〜6が好ましく、なかでも2.5〜5がより好ましく、2.5〜4がさらに好ましく、2.5〜3.5が特に好ましい。該銅粉の平均アスペクト比が大きいと、導電膜に加工した際の銅粉の粒子同士の接触面積が大きくなり、導電性が向上する傾向が見られる。なお、銅粉の粒子の形状は扁平型が好ましい。本発明において、平均アスペクト比は次のようにして測定される。まず走査型電子顕微鏡(以下、SEMという。)を用いて銅粉の粒子を観察し、その2000倍の倍率のSEM像から10個の銅粉の粒子を無作為に抽出する。それぞれの銅粉の粒子のSEM像において最も長い径を長軸とし、その垂直径を短軸として、長軸/短軸比(長軸を短軸で割った値)を求める。次いで、この10個の銅粉の粒子の長軸/短軸比の平均値を算出し、該平均値を平均アスペクト比とする。   Moreover, in the copper powder contained in the paste of the present invention, the average aspect ratio is preferably 2.5 to 6, more preferably 2.5 to 5, further preferably 2.5 to 4, and 2.5 to 3 .5 is particularly preferred. When the average aspect ratio of the copper powder is large, the contact area between the copper powder particles when processed into a conductive film is increased, and the conductivity tends to be improved. The shape of the copper powder particles is preferably flat. In the present invention, the average aspect ratio is measured as follows. First, copper powder particles are observed using a scanning electron microscope (hereinafter referred to as SEM), and 10 copper powder particles are randomly extracted from an SEM image at a magnification of 2000 times. The major axis / minor axis ratio (value obtained by dividing the major axis by the minor axis) is determined with the longest diameter in the SEM image of each copper powder particle as the major axis and the perpendicular diameter as the minor axis. Subsequently, the average value of the major axis / minor axis ratio of the ten copper powder particles is calculated, and the average value is taken as the average aspect ratio.

本発明の導電膜形成用ペーストに含まれる樹脂バインダとしては特に限定されないが、なかでも熱硬化性樹脂が好ましい。熱硬化性樹脂としては、具体的には、フェノール樹脂、ジアリルフタレート樹脂、不飽和アルキド樹脂、エポキシ樹脂、尿素樹脂、メラミン樹脂、ウレタン樹脂、ビスマレイドトリアジン樹脂、シリコーン樹脂及び熱硬化性アクリル樹脂からなる群から選ばれる少なくとも1種が好ましく、なかでも、尿素樹脂、メラミン樹脂、エポキシ樹脂及びフェノール樹脂からなる群から選ばれる少なくとも1種がより好ましく、フェノール樹脂が特に好ましい。   Although it does not specifically limit as a resin binder contained in the paste for electrically conductive film formation of this invention, A thermosetting resin is preferable especially. Specific examples of the thermosetting resin include phenol resin, diallyl phthalate resin, unsaturated alkyd resin, epoxy resin, urea resin, melamine resin, urethane resin, bismaleide triazine resin, silicone resin and thermosetting acrylic resin. Preferably, at least one selected from the group consisting of: at least one selected from the group consisting of urea resin, melamine resin, epoxy resin and phenol resin is more preferable, and phenol resin is particularly preferable.

樹脂バインダは、樹脂成分の他に、さらに溶剤などを含むことができる。樹脂バインダが樹脂成分以外の成分を含む場合、樹脂バインダに含まれる樹脂成分は、ペーストに含まれる銅粉100質量部に対して、6〜28質量部が好ましく、なかでも7〜23質量部がより好ましく、8〜20質量部が特に好ましい。樹脂バインダに含まれる溶剤の量は、導電膜の形成に適した粘度となる範囲であればよい。具体的な溶剤の量は、ペーストに含まれる銅粉100質量部に対して、5〜20質量部が好ましく、なかでも5〜18質量部がより好ましく、6〜15質量部が特に好ましい。樹脂バインダに溶剤が含まれると、樹脂成分の一部が溶解し、導電膜形成用ペーストの流動性が向上するため、好ましい。
樹脂バインダに含まれる樹脂成分と溶剤の量は次のようにして求めた。まず、所定量の液状の樹脂バインダをガラス板に塗布し150℃で30分間、熱処理して、硬化した樹脂バインダを得た。次いで、得られた樹脂バインダの質量を液状の樹脂バインダの質量で除することで、樹脂バインダの樹脂成分を求めた。また、熱処理の前後で減少した変化した量を溶剤の量とした。
The resin binder can further contain a solvent in addition to the resin component. When the resin binder contains a component other than the resin component, the resin component contained in the resin binder is preferably 6 to 28 parts by mass, and more preferably 7 to 23 parts by mass with respect to 100 parts by mass of the copper powder contained in the paste. More preferably, 8-20 mass parts is especially preferable. The amount of the solvent contained in the resin binder may be in a range that provides a viscosity suitable for forming the conductive film. The specific amount of the solvent is preferably 5 to 20 parts by mass, more preferably 5 to 18 parts by mass, and particularly preferably 6 to 15 parts by mass with respect to 100 parts by mass of the copper powder contained in the paste. When the resin binder contains a solvent, part of the resin component is dissolved, and the fluidity of the conductive film forming paste is improved, which is preferable.
The amounts of the resin component and the solvent contained in the resin binder were determined as follows. First, a predetermined amount of a liquid resin binder was applied to a glass plate and heat treated at 150 ° C. for 30 minutes to obtain a cured resin binder. Next, the resin component of the resin binder was determined by dividing the mass of the obtained resin binder by the mass of the liquid resin binder. Moreover, the changed amount which decreased before and after heat processing was made into the amount of solvent.

樹脂バインダに含まれる溶剤としては、シクロヘキサノン、シクロヘキサノール、テルピネオール、エチレングリコール、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコール、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート及びプロピレングリコ−ルモノエチルエ−テルからなる群から選ばれる少なくとも1種が好ましく、なかでもエチレングリコ−ル、エチレングリコ−ルモノエチルエ−テル、ジエチレングリコ−ル及びプロピレングリコ−ルモノエチルエ−テルからなる群から選ばれる少なくとも1種がより好ましく、ジエチレングリコールモノエチルエーテルが特に好ましい。   Solvents contained in the resin binder include cyclohexanone, cyclohexanol, terpineol, ethylene glycol, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, diethylene glycol, diethylene glycol monoethyl ether, At least one selected from the group consisting of diethylene glycol monobutyl ether, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate and propylene glycol monoethyl ether is preferred, and among them, ethylene glycol, ethylene glycol monoethyl ether, diethylene glycol And professional Renguriko - monoethyl - more preferably at least one selected from the group consisting of ether, diethylene glycol monoethyl ether is especially preferred.

本発明の導電膜形成用ペーストは、必要に応じて、各種添加剤などをさらに含んでもよい。添加剤としては、レベリング剤、カップリング剤、粘度調整剤及び酸化防止剤などが挙げられる。   The conductive film forming paste of the present invention may further contain various additives as required. Examples of the additive include a leveling agent, a coupling agent, a viscosity modifier, and an antioxidant.

導電膜形成用ペーストを作製するにあたり、銅粉と樹脂バインダの混合は、金属ペーストの製造に用いられている公知の方法が使用できる。また、混合の際に加熱してもよく、さらに、必要により、窒素ガス又はアルゴンなどの不活性ガスの雰囲気下で混合してもよい。不活性ガスの存在下で混合すると銅粉の酸化を抑制でき、体積抵抗率が低く、導電性が高い導電膜が得られる傾向があるため好ましい。   In preparing the conductive film forming paste, the copper powder and the resin binder can be mixed by a known method used for producing a metal paste. Moreover, you may heat in the case of mixing, and also may mix in the atmosphere of inert gas, such as nitrogen gas or argon, as needed. Mixing in the presence of an inert gas is preferable because oxidation of copper powder can be suppressed, and a conductive film having low volume resistivity and high conductivity tends to be obtained.

<導電膜>
本発明の導電膜は、銅粉と樹脂バインダを混合して得られるペーストを熱処理することで得られる。具体的には、直方体型の金型に手摺りスキ−ジを用いて、ガラス基板上にペーストを塗布して、導電膜を作製する。
熱処理の温度及び時間は、導電膜に求められる特性に応じて、適宜選択できる。具体的には、熱処理の温度は、100〜300℃が好ましく、なかでも120〜200℃がより好ましく、130〜170℃が特に好ましい。熱処理の温度が100℃以上の場合、樹脂の硬化が進行しやすくなる。熱処理の温度が300℃以下の場合、導電膜を形成する基材としてプラスチックフィルムが使用できるため好ましい。また、熱処理の時間は、5分〜12時間が好ましく、なかでも10分〜10時間がより好ましく、15分〜6時間が特に好ましい。熱処理の方法としては、温風加熱、熱輻射などが挙げられる。
本発明の導電膜形成用ペーストは、熱処理することにより、該ペーストに含まれる樹脂バインダの樹脂成分が分解して、樹脂の分子が架橋したポリマーが形成される。また、熱処理により、該ペーストに含まれる溶剤は気化して除去されるため、得られる導電膜中には溶剤はほぼ残らない。
導電膜を形成する雰囲気は、特に限定されず、空気中及び酸素が少ない窒素中などが例示されるが、製造設備が単純なことから、空気中が好ましい。
<Conductive film>
The electrically conductive film of this invention is obtained by heat-processing the paste obtained by mixing copper powder and a resin binder. Specifically, a conductive film is produced by applying a paste on a glass substrate using a handrail squeegee to a rectangular parallelepiped mold.
The temperature and time of the heat treatment can be appropriately selected according to the characteristics required for the conductive film. Specifically, the temperature of the heat treatment is preferably 100 to 300 ° C, more preferably 120 to 200 ° C, and particularly preferably 130 to 170 ° C. When the temperature of the heat treatment is 100 ° C. or higher, the resin is easily cured. When the temperature of heat processing is 300 degrees C or less, since a plastic film can be used as a base material which forms an electrically conductive film, it is preferable. The heat treatment time is preferably 5 minutes to 12 hours, more preferably 10 minutes to 10 hours, and particularly preferably 15 minutes to 6 hours. Examples of the heat treatment include hot air heating and heat radiation.
When the conductive film-forming paste of the present invention is heat-treated, the resin component of the resin binder contained in the paste is decomposed to form a polymer in which resin molecules are crosslinked. Further, since the solvent contained in the paste is evaporated and removed by the heat treatment, almost no solvent remains in the obtained conductive film.
The atmosphere in which the conductive film is formed is not particularly limited, and examples thereof include air and nitrogen with little oxygen. However, air is preferable because the manufacturing equipment is simple.

金型の長さ、幅及び深さは適宜調節が可能であるが、長さは100mm、幅は10mmの条件で導電膜を作製した。これらのなかでも金型の深さは、作製する導電膜の厚さに関係するため、10〜100μmの深さの金型が好ましく使用され、なかでも15〜80μmがより好ましい。金型の深さが上記の範囲にあるとき、導電膜を薄く形成することができ、少量のペーストで導電率が高く、体積抵抗率の低い膜を効率良く量産できるため好ましい。従来のペーストにおいては、使用量を少なくし、薄い導電膜を作製すると体積抵抗率が高くなる傾向が見られた。
基材としては、ガラス基板、ポリイミドフィルム、ポリエステルフィルムなどのプラスチック基材、ガラス繊維強化複合材料の基板及びセラミックス基板からなる群から選ばれる少なくとも1種が好ましく、なかでも、ガラス基板及びガラス繊維強化エポキシ樹脂の基板がより好ましく、プリント配線板に使用されるガラス繊維強化エポキシ樹脂の基板が特に好ましい。
ペーストの塗布方法としては、スクリーン印刷、ロールコート法、エアナイフコート法、ブレードコート法、バーコート法、グラビアコート法、ダイコート法及びスライドコート法のいずれかの方法が好ましく使用できる。
The length, width and depth of the mold can be adjusted as appropriate, but a conductive film was produced under the conditions of a length of 100 mm and a width of 10 mm. Among these, since the depth of the mold is related to the thickness of the conductive film to be produced, a mold having a depth of 10 to 100 μm is preferably used, and more preferably 15 to 80 μm. When the depth of the mold is in the above range, it is preferable because the conductive film can be formed thin, and a film with high conductivity and low volume resistivity can be efficiently mass-produced with a small amount of paste. In conventional pastes, the volume resistivity tends to increase when the amount used is reduced and a thin conductive film is produced.
The substrate is preferably at least one selected from the group consisting of a glass substrate, a polyimide substrate, a plastic substrate such as a polyester film, a glass fiber reinforced composite material substrate and a ceramic substrate, and in particular, a glass substrate and a glass fiber reinforced material. Epoxy resin substrates are more preferable, and glass fiber reinforced epoxy resin substrates used for printed wiring boards are particularly preferable.
As a paste application method, any of screen printing, roll coating method, air knife coating method, blade coating method, bar coating method, gravure coating method, die coating method and slide coating method can be preferably used.

得られた導電膜に含まれる銅粉の密度は4.0〜6.5g/cmであり、熱処理の前後におけるペーストの溶剤体積分を除く成分の収縮率は10〜30体積%である。該ペーストの組成は、銅粉100質量部に対して、15〜40質量部の樹脂バインダを混合した組成が好ましい。
導電膜に含まれる銅粉の密度は4.0〜6.5g/cmであり、なかでも4.5〜6.5g/cmが好ましく、5.0〜6.5g/cmがより好ましい。
導電膜に含まれる銅粉の密度は、上記した式1と同様にして、すなわち、仕込んだ銅粉の質量Wを仕込んだ樹脂バインダの質量Bと前記Wの合計で割った値「W/(B+W)」に、塗装したペーストの質量Pをかけて求まった値を導電膜の体積Vで割ることで求められる。なお、本発明において、ペーストに含まれる銅粉の密度と導電膜に含まれる銅粉の密度は、計算式が同一であるために同じ値となる。
The density of the copper powder contained in the obtained conductive film is 4.0 to 6.5 g / cm 3 , and the shrinkage ratio of the components excluding the solvent volume of the paste before and after the heat treatment is 10 to 30% by volume. The composition of the paste is preferably a composition in which 15 to 40 parts by mass of a resin binder is mixed with 100 parts by mass of copper powder.
The density of the copper powder contained in the conductive film is 4.0~6.5g / cm 3, preferably among them 4.5~6.5g / cm 3, 5.0~6.5g / cm 3 Gayori preferable.
The density of the copper powder contained in the conductive film is the same as the above-described formula 1, that is, the value obtained by dividing the mass B of the prepared copper powder by the total of the mass B of the resin binder and the W. B + W) "multiplied by the mass P of the coated paste and divided by the volume V of the conductive film. In the present invention, the density of the copper powder contained in the paste and the density of the copper powder contained in the conductive film have the same value because the calculation formula is the same.

本発明の導電膜の体積抵抗率は50μΩ・cm以下が好ましく、なかでも25μΩ・cm以下がより好ましく、20μΩ・cm以下が特に好ましい。一方、導電膜の体積抵抗率は低いほど好ましいが、現実的には、銅の体積抵抗率が1乃至2μΩ・cmであることを考慮すると、2μΩ・cm以上が好ましく、3μΩ・cm以上がより好ましく、5μΩ・cm以上がより好ましい。
なお、本発明の導電膜の厚さは10〜50μmが好ましく、なかでも10〜40μmがより好ましく、10〜30μmが特に好ましい。本発明の導電膜は、その厚さをより薄くできることで、より少ないペースト量で、導電率が高く、体積抵抗率の低い導電膜を形成でき、生産性に優れるために好ましい。
導電膜の体積抵抗率及び厚さは、次のようにして測定される。まず、導電膜形成用ペーストをガラス基板上に塗布した後、150℃で30分間熱処理して、ライン状のパターンを形成した導電膜を作製した。この導電膜について、サ−フコム(東京精密製サ−フコムFLEX)を用いて、導電膜の幅、厚さ、長さを測定して、さらに、導電膜の抵抗値をHIOKI社製 ミリオーム ハイテスタ3540を用いて測定した。次いで、測定した導電膜の厚さ、長さ及び幅から導電膜の体積を求めて、測定した抵抗値を導電膜の体積で除することで、導電膜の体積抵抗率を求めた。
The conductive film of the present invention has a volume resistivity of preferably 50 μΩ · cm or less, more preferably 25 μΩ · cm or less, and particularly preferably 20 μΩ · cm or less. On the other hand, the volume resistivity of the conductive film is preferably as low as possible. However, in reality, considering that the volume resistivity of copper is 1 to 2 μΩ · cm, 2 μΩ · cm or more is preferable, and 3 μΩ · cm or more is more preferable. Preferably, 5 μΩ · cm or more is more preferable.
In addition, 10-50 micrometers is preferable, as for the thickness of the electrically conductive film of this invention, 10-40 micrometers is more preferable, and 10-30 micrometers is especially preferable. The conductive film of the present invention is preferable because the conductive film of the present invention can be made thinner so that a conductive film having a high electrical conductivity and a low volume resistivity can be formed with a smaller amount of paste and excellent in productivity.
The volume resistivity and thickness of the conductive film are measured as follows. First, a conductive film forming paste was applied on a glass substrate, and then heat treated at 150 ° C. for 30 minutes to produce a conductive film in which a line-shaped pattern was formed. About this electrically conductive film, the width | variety, thickness, and length of an electrically conductive film were measured using Surfcom (Surfcom FLEX by Tokyo Seimitsu), and also the resistance value of an electrically conductive film was made into HIROKI's Milliome High Tester 3540 It measured using. Next, the volume resistivity of the conductive film was determined by determining the volume of the conductive film from the measured thickness, length and width of the conductive film and dividing the measured resistance value by the volume of the conductive film.

なお、本発明の導電膜が形成された物品とは、液晶ディスプレイ(LCD)及び薄膜センサーに用いられるガラス基板の薄膜デバイス上の配線や、太陽電池のセラミック基板上の素子の配線などが例示される。これらの分野において、薄膜デバイスや素子の作製に際しては、電気配線膜、電極膜などの導電膜の形成に使用できる。現在、これらの分野、特にLCD分野においては、大型化、高精細化が進んでおり、電気配線膜、電極膜などの導電膜には、信号の遅延を防止するために、非常に低い体積抵抗率が要求されている。本発明によれば、このような要求を達成する低い体積抵抗率の導電膜が形成される。   Examples of the article formed with the conductive film of the present invention include wiring on a thin film device of a glass substrate used for a liquid crystal display (LCD) and a thin film sensor, wiring of an element on a ceramic substrate of a solar cell, and the like. The In these fields, when manufacturing a thin film device or element, it can be used to form a conductive film such as an electric wiring film or an electrode film. At present, in these fields, particularly in the LCD field, larger size and higher definition are progressing, and conductive films such as electric wiring films and electrode films have a very low volume resistance in order to prevent signal delay. Rate is required. According to the present invention, a conductive film having a low volume resistivity that satisfies such requirements is formed.

以下、実施例により本発明を詳しく説明するが本発明はこれら実施例に限定されない。
〔例1〕 実施例
10%粒径が3.5μm、50%粒径が7.4μm、90%粒径が14.0μmであり、平均アスペクト比が2.8である1.00gの銅粉と、銅粉100質量部に対して12.8質量部のフェノール樹脂と9.2質量部のジエチレングリコールモノエチルエーテルを含む樹脂バインダを、銅粉100質量部に対し樹脂バインダ22質量部の割合で、乳鉢で3分間混練してペーストを得た。なお、使用した樹脂バインダは0.22gである。得られたペーストを、ガラス基板上に長さ100mm、幅10mm、深さ50μmの直方体型の金型に手摺りスキ−ジを用いて塗布した。塗装に使用したペーストの量は0.1568gであり、ペーストの体積は0.0433cmであった。なお、該ペーストに含まれる溶剤の体積は0.0128g/cmであった。次いで、ガラス基板とその上の塗布物を150℃で30分間、熱処理して、ガラス基板上に導電膜が形成された物品を得た。得られた導電膜の体積は0.0244g/cmであった。導電膜における銅粉の密度、収縮率、厚さ及び体積抵抗率を測定した。導電膜における銅粉の密度は、式1から、0.1568×(1.00/(1.00+0.22)/0.0244)=5.27g/cmであった。また、収縮率は、式2から、1−(0.0244/(0.0433−0.0128))×100=20体積%であった。
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these Examples.
Example 1 1.00 g of copper powder having a 10% particle size of 3.5 μm, a 50% particle size of 7.4 μm, a 90% particle size of 14.0 μm and an average aspect ratio of 2.8 And a resin binder containing 12.8 parts by mass of phenol resin and 9.2 parts by mass of diethylene glycol monoethyl ether with respect to 100 parts by mass of copper powder at a ratio of 22 parts by mass of resin binder to 100 parts by mass of copper powder. A paste was obtained by kneading in a mortar for 3 minutes. The used resin binder is 0.22 g. The obtained paste was applied to a rectangular parallelepiped mold having a length of 100 mm, a width of 10 mm, and a depth of 50 μm on a glass substrate using a handrail squeegee. The amount of paste used for painting was 0.1568 g and the paste volume was 0.0433 cm 3 . The volume of the solvent contained in the paste was 0.0128 g / cm 3 . Next, the glass substrate and the coated material thereon were heat-treated at 150 ° C. for 30 minutes to obtain an article in which a conductive film was formed on the glass substrate. The volume of the obtained conductive film was 0.0244 g / cm 3 . The density, shrinkage rate, thickness, and volume resistivity of the copper powder in the conductive film were measured. From the formula 1, the density of the copper powder in the conductive film was 0.1568 × (1.00 / (1.00 + 0.22) /0.0244) = 5.27 g / cm 3 . Further, the shrinkage rate was 1− (0.0244 / (0.0433−0.0128)) × 100 = 20% by volume from the formula 2.

〔例2〕 実施例
銅粉として、10%粒径2.3μm、50%粒径4.4μm、90%粒径7.7μmを有して、かつ平均アスペクト比が4.0である銅粉を用いて、ペーストの組成を銅粉100質量部に対して8.7質量部のフェノール樹脂と6.3質量部のジエチレングリコールモノエチルエーテルを含む樹脂バインダを用いて、銅粉100質量部に対し樹脂バインダ15質量部にしたこと以外は例1と同様にしてペーストを作製した。得られたペーストを、例1と同様にしてガラス基板に塗布して、ガラス基板上に導電膜が形成された物品を得た。その導電膜における銅粉の密度、収縮率、厚さ及び体積抵抗率を測定した。
Example 2 Example Copper powder having 10% particle size 2.3 μm, 50% particle size 4.4 μm, 90% particle size 7.7 μm and an average aspect ratio of 4.0 as copper powder. The composition of the paste is used with respect to 100 parts by mass of copper powder using a resin binder containing 8.7 parts by mass of phenol resin and 6.3 parts by mass of diethylene glycol monoethyl ether with respect to 100 parts by mass of copper powder. A paste was prepared in the same manner as in Example 1 except that the resin binder was changed to 15 parts by mass. The obtained paste was applied to a glass substrate in the same manner as in Example 1 to obtain an article having a conductive film formed on the glass substrate. The density, shrinkage rate, thickness, and volume resistivity of the copper powder in the conductive film were measured.

〔例3〕 実施例
銅粉として、10%粒径2.3μm、50%粒径4.4μm、90%粒径7.7μmを有して、かつ平均アスペクト比が4.0である銅粉を用いたこと以外は例1と同様にしてペーストを作製した。得られたペーストを、例1と同様にしてガラス基板に塗布して、ガラス基板上に導電膜が形成された物品を得た。その導電膜における銅粉の密度、収縮率、厚さ及び体積抵抗率を測定した。
Example 3 Example Copper powder having a 10% particle size of 2.3 μm, a 50% particle size of 4.4 μm, a 90% particle size of 7.7 μm and an average aspect ratio of 4.0. A paste was prepared in the same manner as in Example 1 except that was used. The obtained paste was applied to a glass substrate in the same manner as in Example 1 to obtain an article having a conductive film formed on the glass substrate. The density, shrinkage rate, thickness, and volume resistivity of the copper powder in the conductive film were measured.

〔例4〕 実施例
ペーストの組成を、ペーストの組成を銅粉100質量部に対して17.4質量部のフェノール樹脂と12.6質量部のジエチレングリコールモノエチルエーテルを含む樹脂バインダを用いて、銅粉100質量部に対し樹脂バインダ30質量部にしたこと以外は例1と同様にしてペーストを作製した。得られたペーストを、例1と同様にしてガラス基板上に導電膜が形成された物品を得た。その導電膜における銅粉の密度、収縮率、厚さ及び体積抵抗率を測定した。
[Example 4] Example The composition of the paste was determined using a resin binder containing 17.4 parts by mass of phenol resin and 12.6 parts by mass of diethylene glycol monoethyl ether based on 100 parts by mass of copper powder. A paste was prepared in the same manner as in Example 1 except that the resin binder was changed to 30 parts by mass with respect to 100 parts by mass of the copper powder. The obtained paste was used in the same manner as in Example 1 to obtain an article having a conductive film formed on a glass substrate. The density, shrinkage rate, thickness, and volume resistivity of the copper powder in the conductive film were measured.

〔例5〕 実施例
銅粉と樹脂バインダからなるペーストをガラス基板上に長さ100mm、幅10mm、深さ20μmの直方体型の金型に手摺りスキ−ジを用いて塗布したこと以外は、例3と同様にして、ガラス基板上に導電膜が形成された物品を得た。その導電膜における銅粉の密度、収縮率、厚さ及び体積抵抗率を測定した。
[Example 5] Example A paste composed of copper powder and a resin binder was applied on a glass substrate to a rectangular parallelepiped mold having a length of 100 mm, a width of 10 mm, and a depth of 20 μm using a handrail squeegee, In the same manner as in Example 3, an article having a conductive film formed on a glass substrate was obtained. The density, shrinkage rate, thickness, and volume resistivity of the copper powder in the conductive film were measured.

〔例6〕 実施例
銅粉と樹脂バインダからなるペーストをガラス基板上に長さ100mm、幅10mm、深さ35μmの直方体型の金型に手摺りスキ−ジを用いて塗布したこと以外は、例3と同様にして、ガラス基板上に導電膜が形成された物品を得た。その導電膜における銅粉の密度、収縮率、厚さ及び体積抵抗率を測定した。
[Example 6] Example Except that a paste composed of copper powder and a resin binder was applied on a glass substrate to a rectangular parallelepiped mold having a length of 100 mm, a width of 10 mm, and a depth of 35 μm using a handrail squeegee, In the same manner as in Example 3, an article having a conductive film formed on a glass substrate was obtained. The density, shrinkage rate, thickness, and volume resistivity of the copper powder in the conductive film were measured.

〔例7〕 実施例
銅粉と樹脂バインダからなるペーストをガラス基板上に長さ100mm、幅10mm、深さ20μmの直方体型の金型に手摺りスキ−ジを用いて塗布したこと以外は、例1と同様にして、ガラス基板上に導電膜が形成された物品を得た。その導電膜における銅粉の密度、収縮率、厚さ及び体積抵抗率を測定した。
[Example 7] Example A paste composed of copper powder and a resin binder was applied on a glass substrate to a rectangular parallelepiped mold having a length of 100 mm, a width of 10 mm, and a depth of 20 μm using a handrail squeegee, In the same manner as in Example 1, an article having a conductive film formed on a glass substrate was obtained. The density, shrinkage rate, thickness, and volume resistivity of the copper powder in the conductive film were measured.

〔例8〕 実施例
銅粉と樹脂バインダからなるペーストをガラス基板上に長さ100mm、幅10mm、深さ35μmの直方体型の金型に手摺りスキ−ジを用いて塗布したこと以外は、例1と同様にして、ガラス基板上に導電膜が形成された物品を得た。その導電膜における銅粉の密度、収縮率、厚さ及び体積抵抗率を測定した。
[Example 8] Example A paste composed of copper powder and a resin binder was applied on a glass substrate to a rectangular parallelepiped mold having a length of 100 mm, a width of 10 mm, and a depth of 35 μm using a handrail squeegee, In the same manner as in Example 1, an article having a conductive film formed on a glass substrate was obtained. The density, shrinkage rate, thickness, and volume resistivity of the copper powder in the conductive film were measured.

〔例9〕 実施例
銅粉と樹脂バインダからなるペーストをガラス基板上に長さ100mm、幅10mm、深さ80μmの直方体型の金型に手摺りスキ−ジを用いて塗布したこと以外は、例1と同様にして、ガラス基板上に導電膜が形成された物品を得た。その導電膜における銅粉の密度、収縮率、厚さ及び体積抵抗率を測定した。
[Example 9] Example A paste composed of copper powder and a resin binder was applied to a rectangular parallelepiped mold having a length of 100 mm, a width of 10 mm, and a depth of 80 μm on a glass substrate using a handrail squeegee, In the same manner as in Example 1, an article having a conductive film formed on a glass substrate was obtained. The density, shrinkage rate, thickness, and volume resistivity of the copper powder in the conductive film were measured.

〔例10〕 実施例
樹脂バインダとして銅粉100質量部に対して10.1質量部のフェノール樹脂と11.9質量部のジエチレングリコールモノエチルエーテルを含む樹脂バインダを用いたこと以外は、例1と同様にして、ガラス基板上に導電膜が形成された物品を得た。その導電膜における銅粉の密度、収縮率、厚さ及び体積抵抗率を測定した。
[Example 10] Example Example 1 except that a resin binder containing 10.1 parts by mass of phenol resin and 11.9 parts by mass of diethylene glycol monoethyl ether per 100 parts by mass of copper powder was used as the resin binder. Similarly, an article having a conductive film formed on a glass substrate was obtained. The density, shrinkage rate, thickness, and volume resistivity of the copper powder in the conductive film were measured.

〔例11〕 実施例
樹脂バインダとして銅粉100質量部に対して7.3質量部のフェノール樹脂と14.7質量部のジエチレングリコールモノエチルエーテルを含む樹脂バインダを用いたこと以外は、例1と同様にして、ガラス基板上に導電膜が形成された物品を得た。その導電膜における銅粉の密度、収縮率、厚さ及び体積抵抗率を測定した。
Example 11 Example 1 is used except that a resin binder containing 7.3 parts by mass of phenol resin and 14.7 parts by mass of diethylene glycol monoethyl ether is used as a resin binder with respect to 100 parts by mass of copper powder. Similarly, an article having a conductive film formed on a glass substrate was obtained. The density, shrinkage rate, thickness, and volume resistivity of the copper powder in the conductive film were measured.

〔例12〕 実施例
ペーストの組成を、ペーストの組成を銅粉100質量部に対して8.7質量部のフェノール樹脂と6.3質量部のジエチレングリコールモノエチルエーテルを含む樹脂バインダを用いて、銅粉100質量部に対し樹脂バインダ15質量部にしたこと以外は例1と同様にしてペーストを作製した。得られたペーストを、例1と同様にしてガラス基板上に導電膜が形成された物品を得た。その導電膜における銅粉の密度、収縮率、厚さ及び体積抵抗率を測定した。
[Example 12] Example The composition of the paste was determined using a resin binder containing 8.7 parts by mass of phenol resin and 6.3 parts by mass of diethylene glycol monoethyl ether based on 100 parts by mass of copper powder. A paste was prepared in the same manner as in Example 1 except that the resin binder was changed to 15 parts by mass with respect to 100 parts by mass of the copper powder. The obtained paste was used in the same manner as in Example 1 to obtain an article having a conductive film formed on a glass substrate. The density, shrinkage rate, thickness, and volume resistivity of the copper powder in the conductive film were measured.

〔例13〕 実施例
ペーストの組成を、ペーストの組成を銅粉100質量部に対して23.2質量部のフェノール樹脂と16.8質量部のジエチレングリコールモノエチルエーテルを含む樹脂バインダを用いて、銅粉100質量部に対し樹脂バインダ40質量部にしたこと以外は例1と同様にしてペーストを作製した。得られたペーストを、例1と同様にしてガラス基板上に導電膜が形成された物品を得た。その導電膜における銅粉の密度、収縮率、厚さ及び体積抵抗率を測定した。
[Example 13] Example The composition of the paste was determined using a resin binder containing 23.2 parts by mass of phenol resin and 16.8 parts by mass of diethylene glycol monoethyl ether based on 100 parts by mass of copper powder. A paste was prepared in the same manner as in Example 1 except that the resin binder was 40 parts by mass with respect to 100 parts by mass of the copper powder. The obtained paste was used in the same manner as in Example 1 to obtain an article having a conductive film formed on a glass substrate. The density, shrinkage rate, thickness, and volume resistivity of the copper powder in the conductive film were measured.

〔例14〕 実施例
熱処理温度を200℃にしたこと以外は例1と同様にしてペーストを作製した。得られたペーストを、例1と同様にしてガラス基板上に導電膜が形成された物品を得た。その導電膜における銅粉の密度、収縮率、厚さ及び体積抵抗率を測定した。
[Example 14] Example A paste was prepared in the same manner as in Example 1 except that the heat treatment temperature was 200 ° C. The obtained paste was used in the same manner as in Example 1 to obtain an article having a conductive film formed on a glass substrate. The density, shrinkage rate, thickness, and volume resistivity of the copper powder in the conductive film were measured.

〔例15〕 実施例
熱処理温度を120℃にしたこと以外は例1と同様にしてペーストを作製した。得られたペーストを、例1と同様にしてガラス基板上に導電膜が形成された物品を得た。その導電膜における銅粉の密度、収縮率、厚さ及び体積抵抗率を測定した。
[Example 15] Example A paste was prepared in the same manner as in Example 1 except that the heat treatment temperature was 120 ° C. The obtained paste was used in the same manner as in Example 1 to obtain an article having a conductive film formed on a glass substrate. The density, shrinkage rate, thickness, and volume resistivity of the copper powder in the conductive film were measured.

〔例16〕 比較例
樹脂バインダとして銅粉100質量部に対して5.7質量部のフェノール樹脂と16.3質量部のジエチレングリコールモノエチルエーテルを含む樹脂バインダを用いたこと以外は、例1と同様にして、ガラス基板上に導電膜が形成された物品を得た。その導電膜における銅粉の密度、収縮率、厚さ及び体積抵抗率を測定した。
[Example 16] Comparative Example Example 1 except that a resin binder containing 5.7 parts by mass of phenol resin and 16.3 parts by mass of diethylene glycol monoethyl ether with respect to 100 parts by mass of copper powder was used as the resin binder. Similarly, an article having a conductive film formed on a glass substrate was obtained. The density, shrinkage rate, thickness, and volume resistivity of the copper powder in the conductive film were measured.

〔例17〕 比較例
ペーストの組成を、ペーストの組成を銅粉100質量部に対して29.0質量部のフェノール樹脂と21.0質量部のジエチレングリコールモノエチルエーテルを含む樹脂バインダを用いて、銅粉100質量部に対し樹脂バインダ50質量部にしたこと以外は例2と同様にしてペーストを作製した。得られたペーストを、例1と同様にしてガラス基板上に導電膜が形成された物品を得た。その導電膜における銅粉の密度、収縮率、厚さ及び体積抵抗率を測定した。
[Example 17] Comparative Example The composition of the paste was determined using a resin binder containing 29.0 parts by mass of a phenol resin and 21.0 parts by mass of diethylene glycol monoethyl ether based on 100 parts by mass of the copper powder. A paste was prepared in the same manner as in Example 2 except that the resin binder was changed to 50 parts by mass with respect to 100 parts by mass of the copper powder. The obtained paste was used in the same manner as in Example 1 to obtain an article having a conductive film formed on a glass substrate. The density, shrinkage rate, thickness, and volume resistivity of the copper powder in the conductive film were measured.

〔例18〕 比較例
ペーストの組成を、ペーストの組成を銅粉100質量部に対して29.0質量部のフェノール樹脂と21.0質量部のジエチレングリコールモノエチルエーテルを含む樹脂バインダを用いて、銅粉100質量部に対し樹脂バインダ50質量部にしたこと以外は例1と同様にしてペーストを作製した。得られたペーストを、例1と同様にしてガラス基板上に導電膜が形成された物品を得た。その導電膜における銅粉の密度、収縮率、厚さ及び体積抵抗率を測定した。
[Example 18] Comparative Example The composition of the paste was changed using a resin binder containing 29.0 parts by mass of a phenol resin and 21.0 parts by mass of diethylene glycol monoethyl ether based on 100 parts by mass of the copper powder. A paste was prepared in the same manner as in Example 1 except that the resin binder was changed to 50 parts by mass with respect to 100 parts by mass of the copper powder. The obtained paste was used in the same manner as in Example 1 to obtain an article having a conductive film formed on a glass substrate. The density, shrinkage rate, thickness, and volume resistivity of the copper powder in the conductive film were measured.

実施例である例1〜15及び比較例である例16〜18の結果を表1にまとめた。
実施例1〜15と例16〜18を比較すると、表1に示すように、例13の記載から導電膜に含まれる銅粉の密度が4.4g/cm以上で、例12の記載から体積収縮率11体積%以上である場合に体積抵抗率が電子部品用の導電膜として好適に使用される臨界値である50μΩ・cm以下にまで性能が向上している。また、例4の記載のとおり体積収縮率が30体積%である場合に体積抵抗率は22μΩ・cmを示している。これらのことから導電膜中の銅粉の密度及び体積収縮率が特定の範囲にある場合に、導電膜の導電性が著しく向上することがわかる。
The results of Examples 1 to 15 as examples and Examples 16 to 18 as comparative examples are summarized in Table 1.
When Examples 1-15 and Examples 16-18 are compared, as shown in Table 1, the density of the copper powder contained in the conductive film is 4.4 g / cm 3 or more from the description in Example 13, and from the description in Example 12. When the volume shrinkage is 11% by volume or more, the performance is improved to a critical value of 50 μΩ · cm or less which is preferably used as a conductive film for electronic parts. Further, as described in Example 4, when the volume shrinkage is 30% by volume, the volume resistivity is 22 μΩ · cm. From these facts, it is understood that the conductivity of the conductive film is remarkably improved when the density and volumetric shrinkage of the copper powder in the conductive film are in a specific range.

Figure 2014086243
Figure 2014086243

本発明の導電膜形成用ペースト及び導電膜は、様々な用途に利用でき、具体的には、プリント配線板などにおける配線パターンの形成及び修復、半導体パッケージ内の層間配線、並びにプリント配線板と電子部品との接合などの広い用途に利用できる。   The conductive film-forming paste and the conductive film of the present invention can be used for various applications, specifically, formation and repair of wiring patterns in printed wiring boards, interlayer wiring in semiconductor packages, and printed wiring boards and electronics. It can be used for a wide range of applications such as joining parts.

Claims (9)

銅粉100質量部に対して、15〜40質量部の樹脂バインダを含むペーストであり、該ペーストを100〜300℃で熱処理して硬化させた際の銅粉の密度が4.0〜6.5g/cmで、該ペーストの溶剤体積分を除く成分の収縮率が10〜30体積%である導電膜形成用ペースト。 It is a paste containing 15 to 40 parts by mass of a resin binder with respect to 100 parts by mass of copper powder, and the density of the copper powder when the paste is cured by heat treatment at 100 to 300 ° C. is 4.0 to 6. A conductive film forming paste having a shrinkage rate of 10 to 30% by volume at 5 g / cm 3 and excluding the solvent volume of the paste. ペースト中に含まれる樹脂成分が、銅粉100質量部に対して、6〜28質量部である請求項1に記載の導電膜形成用ペースト。   The conductive film-forming paste according to claim 1, wherein the resin component contained in the paste is 6 to 28 parts by mass with respect to 100 parts by mass of the copper powder. 銅粉の平均アスペクト比が2.5〜6である請求項1又は2に記載の導電膜形成用ペースト。   The conductive film forming paste according to claim 1 or 2, wherein the copper powder has an average aspect ratio of 2.5 to 6. 銅粉の10%粒径が2.0〜4.0μm、50%粒径が4.0〜8.0μm及び90%粒径が7.0〜14.0μmである請求項1〜3のいずれか一項に記載の導電膜形成用ペースト。   The copper powder has a 10% particle size of 2.0 to 4.0 µm, a 50% particle size of 4.0 to 8.0 µm, and a 90% particle size of 7.0 to 14.0 µm. The conductive film forming paste according to claim 1. 銅粉と樹脂バインダを含む導電膜であって、導電膜に含まれる銅粉の密度が4.0〜6.5g/cmであり、かつ銅粉と樹脂バインダを含むペーストを熱処理して導電膜を成形する工程における、該ペーストの溶剤体積分を除く成分の収縮率が10〜30体積%である導電膜。 A conductive film containing copper powder and a resin binder, wherein the density of the copper powder contained in the conductive film is 4.0 to 6.5 g / cm 3 , and the paste containing the copper powder and the resin binder is heat treated The electrically conductive film whose shrinkage | contraction rate of the component except the solvent volume of the paste in the process of shape | molding a film | membrane is 10-30 volume%. 導電膜の厚さが10〜50μmである請求項5に記載の導電膜。   The conductive film according to claim 5, wherein the conductive film has a thickness of 10 to 50 μm. 体積抵抗率が50μΩ・cm以下である請求項5又は6に記載の導電膜。   The conductive film according to claim 5 or 6, wherein the volume resistivity is 50 µΩ · cm or less. 基材上に請求項5〜7のいずれか一項に記載の導電膜が形成された物品。   The article | item in which the electrically conductive film as described in any one of Claims 5-7 was formed on the base material. 銅粉100質量部に対して、15〜40質量部の樹脂バインダを混合して得られるペーストを熱処理して得られる導電膜の製造方法であって、該導電膜の銅粉の密度が4.0〜6.5g/cm、かつ熱処理の前後におけるペーストの溶剤体積分を除く成分の収縮率が10〜30体積%である導電膜の製造方法。 It is a manufacturing method of the electrically conductive film obtained by heat-processing the paste obtained by mixing 15-40 mass parts resin binder with respect to 100 mass parts of copper powder, Comprising: The density of the copper powder of this electrically conductive film is 4. The manufacturing method of the electrically conductive film whose shrinkage | contraction rate of the component except 0-6.5 g / cm < 3 > and the solvent volume fraction of the paste before and behind heat processing is 10-30 volume%.
JP2012233769A 2012-10-23 2012-10-23 Paste for forming an electroconductive film, electroconductive film, method for manufacturing an electroconductive film, and article Pending JP2014086243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012233769A JP2014086243A (en) 2012-10-23 2012-10-23 Paste for forming an electroconductive film, electroconductive film, method for manufacturing an electroconductive film, and article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012233769A JP2014086243A (en) 2012-10-23 2012-10-23 Paste for forming an electroconductive film, electroconductive film, method for manufacturing an electroconductive film, and article

Publications (1)

Publication Number Publication Date
JP2014086243A true JP2014086243A (en) 2014-05-12

Family

ID=50789120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012233769A Pending JP2014086243A (en) 2012-10-23 2012-10-23 Paste for forming an electroconductive film, electroconductive film, method for manufacturing an electroconductive film, and article

Country Status (1)

Country Link
JP (1) JP2014086243A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017034250A (en) * 2015-07-31 2017-02-09 エルジー エレクトロニクス インコーポレイティド Solar cell and method for manufacturing the same
JP2019114373A (en) * 2017-12-22 2019-07-11 石福金属興業株式会社 Platinum paste

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012136771A (en) * 2010-12-10 2012-07-19 Agc Seimi Chemical Co Ltd Method of producing surface-modified copper particle, method of producing composition for forming conductor, method of producing conductor film, and article having the conductor film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012136771A (en) * 2010-12-10 2012-07-19 Agc Seimi Chemical Co Ltd Method of producing surface-modified copper particle, method of producing composition for forming conductor, method of producing conductor film, and article having the conductor film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017034250A (en) * 2015-07-31 2017-02-09 エルジー エレクトロニクス インコーポレイティド Solar cell and method for manufacturing the same
US10290765B2 (en) 2015-07-31 2019-05-14 Lg Electronics Inc. Solar cell and method for manufacturing the same
US10615303B2 (en) 2015-07-31 2020-04-07 Lg Electronics Inc. Solar cell and method for manufacturing the same
JP2019114373A (en) * 2017-12-22 2019-07-11 石福金属興業株式会社 Platinum paste
JP6997444B2 (en) 2017-12-22 2022-01-17 石福金属興業株式会社 Platinum paste

Similar Documents

Publication Publication Date Title
TWI705998B (en) Conductive composition and electronic component using the same
US10940534B2 (en) Metal paste having excellent low-temperature sinterability and method for producing the metal paste
JP5971250B2 (en) Composition set, conductive substrate, method for producing the same, and conductive adhesive composition
JP4935592B2 (en) Thermosetting conductive paste
CN110462752B (en) Resin composition for forming electrode, chip-type electronic component, and method for producing same
CN103468159A (en) Silver coated nickel powder conductive adhesive and preparation method thereof
JPWO2002028574A1 (en) Functional alloy particles
JP5839573B2 (en) Heat curable conductive paste composition
JP2004111254A (en) Metal contained composition for electrical connection of electronic device
JPWO2013161966A1 (en) Conductive composition
TW201112267A (en) Thermosetting electrode paste composition for low temperature
JPWO2014084275A1 (en) Conductive paste and manufacturing method thereof
JP2011142052A (en) Copper conductor ink, conductive substrate, and method of manufacturing the same
JP2006049148A (en) Conductive paste
JP2004111253A (en) Conductive composition for electrical connection of electronic device, and electron device
JPWO2012161201A1 (en) Conductive paste, base material with conductive film using the same, and method for producing base material with conductive film
JPH0753843B2 (en) Conductive paint that can be soldered
JP2014086243A (en) Paste for forming an electroconductive film, electroconductive film, method for manufacturing an electroconductive film, and article
JPH1064331A (en) Conductive paste, electric circuit using conductive paste, and manufacture of electric circuit
JP7369031B2 (en) Paste composition and method for manufacturing electronic component device
JP2020029622A (en) Joining composition
JP7122346B2 (en) Adhesive conductor paste
TWI708821B (en) Heat-curing conductive paste
JP2007157434A (en) Conductor forming method
JP7143685B2 (en) METHOD FOR MANUFACTURING CONDUCTIVE LAMINATED BODY, CONDUCTIVE LAMINATED BODY, AND 2-PART CONDUCTIVE FILM FORMING AGENT

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150130

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160812

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161206