JP2014084448A - Ultraviolet-shielding composite particles, dispersion including ultraviolet-shielding composite particles and cosmetic - Google Patents
Ultraviolet-shielding composite particles, dispersion including ultraviolet-shielding composite particles and cosmetic Download PDFInfo
- Publication number
- JP2014084448A JP2014084448A JP2012236972A JP2012236972A JP2014084448A JP 2014084448 A JP2014084448 A JP 2014084448A JP 2012236972 A JP2012236972 A JP 2012236972A JP 2012236972 A JP2012236972 A JP 2012236972A JP 2014084448 A JP2014084448 A JP 2014084448A
- Authority
- JP
- Japan
- Prior art keywords
- zinc oxide
- mass
- shielding composite
- ultraviolet shielding
- particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Cosmetics (AREA)
Abstract
Description
本発明は、紫外線遮蔽複合粒子及び紫外線遮蔽複合粒子含有分散液並びに化粧料に関し、更に詳しくは、フィルム、顔料、塗料、化粧料、紫外線遮蔽材、光学材料、エレクトロニクス材料に好適に用いられ、特に、紫外線遮蔽機能が求められる化粧水、日焼け止めジェル、乳液、クリーム、ファンデーション、口紅、頬紅、アイシャドー等に用いて好適な紫外線遮蔽複合粒子及び紫外線遮蔽複合粒子含有分散液並びに化粧料に関するものである。 The present invention relates to an ultraviolet shielding composite particle, an ultraviolet shielding composite particle-containing dispersion, and a cosmetic, and more specifically, is suitably used for a film, a pigment, a paint, a cosmetic, an ultraviolet shielding material, an optical material, and an electronic material. UV-shielding composite particles suitable for use in skin lotions, sunscreen gels, emulsions, creams, foundations, lipsticks, blushers, eye shadows, and the like, and UV-shielding composite particle-containing dispersions and cosmetics that require UV shielding function is there.
光は、可視光線の他、近赤外線、遠赤外線、紫外線等、様々な波長の光を含んでいる。
特に、紫外線は、UV−A領域(320−340nm)からUV−B領域(280−320nm)までの波長領域を有しており、分子結合を破壊することにより、樹脂やゴム等多くの物質を劣化させる要因となっている。また、紫外線は人体に対して、サンタンやサンバーンだけでなく老化現象や皮膚癌の原因ともなり得ることが知られている。そこで、紫外線遮蔽剤が、フィルム、顔料、塗料、化粧料等の様々な分野において広く用いられている。
In addition to visible light, light includes light of various wavelengths such as near infrared, far infrared, and ultraviolet light.
In particular, ultraviolet rays have a wavelength region from the UV-A region (320-340 nm) to the UV-B region (280-320 nm). By breaking molecular bonds, many substances such as resins and rubbers can be obtained. It is a cause of deterioration. In addition, it is known that ultraviolet rays can cause not only suntan and sunburn but also aging and skin cancer. Therefore, ultraviolet shielding agents are widely used in various fields such as films, pigments, paints, and cosmetics.
紫外線遮蔽剤は、無機系紫外線遮蔽剤と有機系紫外線遮蔽剤に大別される。有機系紫外線遮蔽剤は、熱や長時間の紫外線照射による劣化があることや、広い波長域の紫外線を吸収することができないことや、皮膚への刺激性の問題があるなどから、より安全な紫外線遮蔽剤が求められている。一方、無機系紫外線遮蔽剤は熱や長時間の紫外線照射による劣化がないので、耐熱性や耐候性に優れている。無機系紫外線遮蔽剤としては、一般的には酸化チタンおよび酸化亜鉛が用いられている。
特に、酸化亜鉛は、UV−A領域(320−340nm)からUV−B領域(280−320nm)までの幅広い波長域の紫外線を遮蔽することができる。また、酸化亜鉛は、酸化チタン(屈折率2.7)よりも屈折率が低い(屈折率2.0)ので、ナノ粒子化した場合、透明性に優れた紫外線遮蔽剤として活用されている。
他方、亜鉛は両性元素であるから、その酸化物である酸化亜鉛は、酸およびアルカリに容易に溶解し、水に微量溶解し、亜鉛イオンを放出するという安定性の問題がある。
The ultraviolet shielding agent is roughly classified into an inorganic ultraviolet shielding agent and an organic ultraviolet shielding agent. Organic UV-screening agents are safer due to deterioration due to heat and long-term UV irradiation, inability to absorb UV in a wide wavelength range, and skin irritation problems. There is a need for UV screening agents. On the other hand, an inorganic ultraviolet shielding agent is excellent in heat resistance and weather resistance because it is not deteriorated by heat or prolonged ultraviolet irradiation. As the inorganic ultraviolet shielding agent, titanium oxide and zinc oxide are generally used.
In particular, zinc oxide can block ultraviolet rays in a wide wavelength range from the UV-A region (320-340 nm) to the UV-B region (280-320 nm). Moreover, since zinc oxide has a lower refractive index (refractive index 2.0) than titanium oxide (refractive index 2.7), it is used as an ultraviolet shielding agent having excellent transparency when it is made into nanoparticles.
On the other hand, since zinc is an amphoteric element, zinc oxide, which is an oxide thereof, has a problem of stability in that it easily dissolves in acid and alkali, dissolves in a small amount in water, and releases zinc ions.
例えば、化粧品の場合では、水系の化粧品と油系の化粧品が提案され実用に供されており、水系の化粧品は、油系の化粧品に比べ、べたつきがなく、サラッとした使用感が得られるので、サンスクリーン、乳液、クリーム等の各種化粧料として近年特に使用されている。
これらの水系の化粧料に酸化亜鉛を用いる場合、化粧料中に溶出する亜鉛イオンが有機系紫外線遮蔽剤、水溶性高分子(増粘剤等)等と反応し、性能の低下、変色、化粧料の粘度の増減等をおこす問題があることから、処方の自由度が制限されるという問題点があった。例えば、増粘剤として汎用されるカルボマー(カルボキシビニルポリマー)と酸化亜鉛を併用すると、溶出する亜鉛イオンとカルボマーのカルボン酸部とが反応することにより、カルボマーのゲル構造が破壊され、粘度が低下するという問題点がある。
For example, in the case of cosmetics, water-based cosmetics and oil-based cosmetics have been proposed and put to practical use. Water-based cosmetics are less sticky than oil-based cosmetics and provide a smooth feeling of use. In recent years, it has been particularly used as various cosmetics such as sunscreens, emulsions and creams.
When zinc oxide is used in these water-based cosmetics, the zinc ions eluted in the cosmetics react with organic UV screening agents, water-soluble polymers (thickeners, etc.), etc., resulting in performance degradation, discoloration, and makeup. Since there is a problem of increasing or decreasing the viscosity of the material, there is a problem that the degree of freedom of prescription is limited. For example, when carbomer (carboxyvinyl polymer), which is widely used as a thickener, is used in combination with zinc oxide, the eluted carbomer reacts with the carboxylic acid part of the carbomer, thereby destroying the gel structure of the carbomer and lowering the viscosity. There is a problem of doing.
そこで、これらの問題点を解決するために、酸化亜鉛を無機化合物で被覆することにより亜鉛イオンの溶出を抑制したものとして、酸化亜鉛粒子の表面に含水ケイ素酸化物からなる高密度の被覆層を形成した酸化亜鉛粒子組成物(特許文献1)、酸化亜鉛微粒子からなる基材の表面に2層構造の含水シリカ層を形成したシリカ被覆微粒子酸化亜鉛(特許文献2)が提案されている。 Therefore, in order to solve these problems, zinc oxide is coated with an inorganic compound to suppress elution of zinc ions, and a high-density coating layer made of hydrous silicon oxide is formed on the surface of zinc oxide particles. Proposed zinc oxide particle composition (Patent Document 1) and silica-coated fine particle zinc oxide (Patent Document 2) in which a water-containing silica layer having a two-layer structure is formed on the surface of a substrate made of zinc oxide particles.
一方、酸化亜鉛を樹脂粒子中に内包させたものとして、酸化亜鉛を含む球状樹脂粉体が提案されている(特許文献3)。
この球状樹脂粉体では、酸化亜鉛の分散粒子径が0.1μm以下の分散液を用いて球状樹脂粉体を作製しており、得られた球状樹脂粉体の粒径を30μm以下、酸化亜鉛を全重量のうち1〜80重量%含有したことにより、酸化亜鉛粒子の二次凝集を抑制することができ、透明感、使用感に優れた化粧品原料して利用することができるとされている。
さらに、一次粒子径が0.1μm以下の酸化亜鉛粒子をアクリル樹脂中に均一に分散させた複合球状ポリマー粒子も提案されている(特許文献4)。
On the other hand, a spherical resin powder containing zinc oxide has been proposed as zinc oxide encapsulated in resin particles (Patent Document 3).
In this spherical resin powder, a spherical resin powder is prepared using a dispersion having a dispersed particle diameter of zinc oxide of 0.1 μm or less, and the obtained spherical resin powder has a particle diameter of 30 μm or less and zinc oxide. Is contained in 1 to 80% by weight of the total weight, so that secondary aggregation of the zinc oxide particles can be suppressed, and it can be used as a cosmetic raw material excellent in transparency and feeling of use. .
Furthermore, composite spherical polymer particles in which zinc oxide particles having a primary particle size of 0.1 μm or less are uniformly dispersed in an acrylic resin have been proposed (Patent Document 4).
しかしながら、特許文献1に記載の酸化亜鉛粒子組成物や特許文献2に記載のシリカ被覆微粒子酸化亜鉛では、酸化亜鉛粒子を無機化合物で被覆しただけでは、基剤に対する分散性が低く、肌に対する感触(使用感)が悪化するという問題点があった。したがって、このように無機化合物で酸化亜鉛粒子を被覆した場合、使用感を向上させるためには別途ポリマー等で被覆する必要があり、コスト高になるという新たな問題点があった。
一方、特許文献3に記載の酸化亜鉛を含む球状樹脂粉体や特許文献4に記載の複合球状ポリマー粒子では、酸化亜鉛粒子の二次凝集を抑制することはできるものの、酸化亜鉛粒子からの亜鉛イオンの溶出の抑制を目的としていないので、酸化亜鉛粒子から基剤中への亜鉛イオンの溶出の抑制が不十分で、亜鉛イオンの溶出による化粧料としての性能の低下、変色、化粧料の粘度の増減等の不具合が生じるという問題点があった。
However, the zinc oxide particle composition described in
On the other hand, the spherical resin powder containing zinc oxide described in Patent Document 3 and the composite spherical polymer particles described in Patent Document 4 can suppress secondary aggregation of the zinc oxide particles, but zinc from the zinc oxide particles can be suppressed. Since it is not intended to suppress ion elution, the suppression of zinc ion elution from zinc oxide particles into the base is insufficient, resulting in poor cosmetic performance, discoloration, and viscosity of cosmetics due to zinc ion elution. There was a problem that problems such as increase / decrease occurred.
本発明は、上記の事情に鑑みてなされたものであって、酸化亜鉛粒子からの亜鉛イオンの溶出を抑制することが可能な紫外線遮蔽複合粒子及び紫外線遮蔽複合粒子含有分散液並びに化粧料を提供することを目的とする。 The present invention has been made in view of the above circumstances, and provides an ultraviolet shielding composite particle capable of suppressing elution of zinc ions from zinc oxide particles, an ultraviolet shielding composite particle-containing dispersion, and a cosmetic. The purpose is to do.
本発明者等は、上記課題を解決するために鋭意検討を重ねた結果、酸化亜鉛と第1の樹脂とを含有してなるコアとなる芯材部の表面に、この第1の樹脂と同一組成または異なる組成の第2の樹脂からなるシェルとなる被覆膜を形成すれば、いわゆるコアシェル構造の複合粒子となり、この被覆膜が、酸化亜鉛と第1の樹脂とを含有する芯材部からの亜鉛イオンの溶出を阻止することができることを見出し、この紫外線遮蔽複合粒子を化粧料に適用すれば、紫外線遮蔽機能が向上し、透明性にも優れていることを見出し、本発明を完成するに至った。 As a result of intensive studies in order to solve the above problems, the present inventors have found that the surface of the core part that becomes the core containing zinc oxide and the first resin is the same as the first resin. If a coating film serving as a shell made of a second resin having a different composition or composition is formed, composite particles having a so-called core-shell structure are formed, and this coating film contains a core material portion containing zinc oxide and the first resin. That the elution of zinc ions from water can be prevented, and if this ultraviolet shielding composite particle is applied to cosmetics, it is found that the ultraviolet shielding function is improved and the transparency is excellent, and the present invention is completed. It came to do.
すなわち、本発明の紫外線遮蔽複合粒子は、酸化亜鉛と第1の樹脂とを含有してなる芯材部と、該芯材部の表面に形成され前記第1の樹脂と同一組成または異なる組成の第2の樹脂からなる被覆膜とを備えてなることを特徴とする。 That is, the ultraviolet shielding composite particle of the present invention has a core material portion containing zinc oxide and the first resin, and the same or different composition as the first resin formed on the surface of the core material portion. And a coating film made of a second resin.
前記酸化亜鉛の含有率は、前記芯材部及び前記被覆膜を含む全質量に対して15質量%以上かつ40質量%以下であることが好ましい。
前記被覆膜の質量は、該被覆膜及び前記芯材部を含む全質量の30質量%以上かつ70質量%以下であることが好ましい。
前記被覆膜は、有機系紫外線吸収剤を含有してなることが好ましい。
It is preferable that the content rate of the said zinc oxide is 15 mass% or more and 40 mass% or less with respect to the total mass containing the said core material part and the said coating film.
The mass of the coating film is preferably 30% by mass or more and 70% by mass or less of the total mass including the coating film and the core material part.
The coating film preferably contains an organic ultraviolet absorber.
本発明の紫外線遮蔽複合粒子含有分散液は、本発明の紫外線遮蔽複合粒子を分散媒中に分散してなることを特徴とする。 The dispersion containing ultraviolet shielding composite particles of the present invention is characterized in that the ultraviolet shielding composite particles of the present invention are dispersed in a dispersion medium.
本発明の化粧料は、本発明の紫外線遮蔽複合粒子、本発明の紫外線遮蔽複合粒子含有分散液、のうちいずれか一方または双方を基剤中に含有してなることを特徴とする。 The cosmetic of the present invention is characterized in that either or both of the ultraviolet shielding composite particles of the present invention and the ultraviolet shielding composite particle-containing dispersion of the present invention are contained in a base.
本発明の紫外線遮蔽複合粒子によれば、酸化亜鉛と第1の樹脂とを含有してなる芯材部と、該芯材部の表面に形成され前記第1の樹脂と同一組成または異なる組成の第2の樹脂からなる被覆膜とを備えたので、この被覆膜が芯材部に含まれる酸化亜鉛から亜鉛イオンが溶出するのを抑制することで、この複合粒子に含まれる酸化亜鉛から亜鉛イオンが外方へ溶出するのを防止することができる。したがって、亜鉛イオンの溶出による化粧料としての性能の低下、変色、化粧料の粘度の増減等を抑制することができる。 According to the ultraviolet shielding composite particle of the present invention, a core material portion containing zinc oxide and the first resin, and the same or different composition as the first resin formed on the surface of the core material portion. Since the coating film made of the second resin is provided, the coating film suppresses the elution of zinc ions from the zinc oxide contained in the core material portion, so that the zinc oxide contained in the composite particle It is possible to prevent zinc ions from eluting outward. Accordingly, it is possible to suppress deterioration in performance as a cosmetic due to elution of zinc ions, discoloration, increase / decrease in viscosity of the cosmetic, and the like.
本発明の紫外線遮蔽複合粒子含有分散液によれば、本発明の紫外線遮蔽複合粒子を分散媒中に分散したので、この紫外線遮蔽複合粒子に含まれる酸化亜鉛から亜鉛イオンが分散媒中に溶出するのを抑制することができる。したがって、亜鉛イオンの溶出による化粧料としての性能の低下、変色、化粧料の粘度の増減等を抑制することができる。 According to the dispersion containing ultraviolet shielding composite particles of the present invention, since the ultraviolet shielding composite particles of the present invention are dispersed in the dispersion medium, zinc ions are eluted from the zinc oxide contained in the ultraviolet shielding composite particles. Can be suppressed. Accordingly, it is possible to suppress deterioration in performance as a cosmetic due to elution of zinc ions, discoloration, increase / decrease in viscosity of the cosmetic, and the like.
本発明の化粧料によれば、本発明の紫外線遮蔽複合粒子、本発明の紫外線遮蔽複合粒子含有分散液、のうちいずれか一方または双方を基剤中に含有したので、この紫外線遮蔽複合粒子あるいはその分散液に含まれる酸化亜鉛から亜鉛イオンが基剤中に溶出するのを抑制することができる。したがって、亜鉛イオンの溶出による化粧料としての性能の低下、変色、化粧料の粘度の増減等を抑制することができる。 According to the cosmetic of the present invention, since either or both of the ultraviolet shielding composite particles of the present invention and the dispersion containing the ultraviolet shielding composite particles of the present invention are contained in the base, the ultraviolet shielding composite particles or It can suppress that zinc ion elutes in a base from the zinc oxide contained in the dispersion liquid. Accordingly, it is possible to suppress deterioration in performance as a cosmetic due to elution of zinc ions, discoloration, increase / decrease in viscosity of the cosmetic, and the like.
本発明の紫外線遮蔽複合粒子及び紫外線遮蔽複合粒子含有分散液並びに化粧料を実施するための形態について説明する。
なお、以下の実施の形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
An embodiment for carrying out the ultraviolet shielding composite particles, the ultraviolet shielding composite particle-containing dispersion, and the cosmetic of the present invention will be described.
The following embodiments are specifically described for better understanding of the gist of the invention, and do not limit the present invention unless otherwise specified.
[紫外線遮蔽複合粒子]
本発明の一実施形態の紫外線遮蔽複合粒子(以下、単に「複合粒子」と称する場合がある)は、酸化亜鉛と第1の樹脂とを含有してなる芯材部と、この芯材部の表面に形成され第1の樹脂と同一組成または異なる組成の第2の樹脂からなる被覆膜とを備えた複合粒子である。
[Ultraviolet shielding composite particles]
An ultraviolet shielding composite particle according to an embodiment of the present invention (hereinafter sometimes simply referred to as “composite particle”) includes a core part containing zinc oxide and a first resin, A composite particle including a coating film formed on the surface and made of a second resin having the same composition as or different from the first resin.
図1は、本実施形態の紫外線遮蔽複合粒子の一例を示す断面図であり、この紫外線遮蔽複合粒子1は、酸化亜鉛と第1の樹脂とを含有してなる芯材部2の表面2a全体に、第1の樹脂と同一組成または異なる組成の第2の樹脂からなる被覆膜3が形成されている。
この芯材部2の形状は、図1に示した断面が球状の他、楕円状、板状、レンズ状等様々な形状から必要に応じて適宜選択することができる。また、この被覆膜3は、芯材部2に含まれる酸化亜鉛から亜鉛イオンが外部へ溶出するのを抑制することが目的であるから、芯材部2の表面2a全体を覆っている必要がある。
FIG. 1 is a cross-sectional view showing an example of the ultraviolet shielding composite particle of the present embodiment. The ultraviolet
The shape of the
この複合粒子1の全質量中における酸化亜鉛の含有率は、15質量%以上かつ40質量%以下が好ましい。ここで、複合粒子1中の酸化亜鉛の含有率が15質量%未満では、所望の紫外線遮蔽効果を得ることができず、そこで、所望の紫外線遮蔽効果を得ようとすると、大量の複合粒子1を使用しなければならなくなるので好ましくなく、一方、酸化亜鉛の含有率が40質量%を超えると、酸化亜鉛及び樹脂を含む芯材部2における酸化亜鉛の割合が高くなりすぎて、所定形状の芯材部2を作製することが困難となるので好ましくない。
The content of zinc oxide in the total mass of the
この複合粒子1の平均粒子径は、50nm以上かつ1μm以下であることが好ましく、より好ましくは100nm以上かつ700nm以下、さらに好ましくは100nm以上かつ500nm以下である。
ここで、この複合粒子1の平均粒子径を上記の範囲に限定した理由は、平均粒子径が50nm未満では、粒子径が小さすぎるために複合粒子1の合成が困難となるからであり、一方、平均粒子径が1μmを超えると、この複合粒子1を分散媒中に分散して紫外線遮蔽複合粒子含有分散液とする場合に複合粒子1が沈降し易くなる虞があり、さらに、この複合粒子1を分散剤、樹脂膜、化粧料等に用いた場合に可視光領域の透明性を損なう虞があるからである。
The average particle size of the
Here, the reason why the average particle size of the
なお、ここでいう「平均粒子径」とは、この複合粒子1を所定数、例えば、500個、あるいは100個を選び出し、これら複合粒子1各々の最長の直線部分(最大長径)を測定し、これらの測定値を加重平均して求められた数値である。
As used herein, “average particle diameter” refers to a predetermined number, for example, 500 or 100 of the
以下、本実施形態の紫外線遮蔽複合粒子の各構成要素について詳細に説明する。
「芯材部2」
この芯材部2は、酸化亜鉛と第1の樹脂とを含有している。
この芯材部2中の酸化亜鉛の含有率は、30質量%以上かつ80質量%以下が好ましい。ここで、酸化亜鉛の含有率が30質量%未満では、複合粒子1とした場合の複合粒子1中の酸化亜鉛の含有率が低下して15質量%を切る虞があり、所望の紫外線遮蔽性能を得るのに大量の複合粒子1を使用する必要が生じる虞があるからであり、一方、酸化亜鉛の含有率が80質量%を超えると、芯材部2中の酸化亜鉛の量が多すぎて、芯材部2を作製することが困難となる虞があるからである。
Hereinafter, each component of the ultraviolet shielding composite particle of the present embodiment will be described in detail.
"
The
The content of zinc oxide in the
この芯材部2では、酸化亜鉛の紫外線遮蔽性能を損なわない範囲において、他の金属酸化物、例えば、酸化ジルコニウム、酸化チタン、酸化スズ、酸化セリウム等を若干量含んでもよい。
The
この芯材部2の平均粒子径は、用途に応じて適宜調整すればよく、特に限定されない。
例えば、透明な化粧料に用いる場合には、40nm以上かつ900nm以下であることが好ましく、より好ましくは50nm以上かつ600nm以下、さらに好ましくは50nm以上かつ450nm以下である。
ここで、この芯材部2の平均粒子径を上記の範囲に限定した理由は、この範囲が安定した形状の芯材部2が容易に得られる範囲だからであり、上記の範囲を外れると、酸化亜鉛と第1の樹脂とが均一に分布した芯材部2が得られなくなる虞があるので、好ましくない。
The average particle diameter of the
For example, when used for transparent cosmetics, it is preferably 40 nm or more and 900 nm or less, more preferably 50 nm or more and 600 nm or less, and further preferably 50 nm or more and 450 nm or less.
Here, the reason why the average particle diameter of the
(第1の樹脂)
芯材部2を構成する第1の樹脂としては、用途に応じて適宜選択すればよく、特に限定されないが、例えば、(メタ)アクリル樹脂、アクリル酸エステル、メタクリル酸エステル、アクリルスチレン共重合体、アクリルポリエステル共重合体、シリコンアクリル共重合体等を挙げることができる。これらの樹脂の中でも、特に(メタ)アクリル樹脂は、透明性に優れているので好ましい。
(First resin)
The first resin constituting the
この(メタ)アクリル樹脂モノマーの例としては、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸ヘキシル、アクリル酸オクチル、アクリル酸ノニル、アクリル酸デシル、アクリル酸ラウリル、アクリル酸ステアリル、アクリル酸ドデシル等のアクリル酸アルキルエステル;
メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸ヘキシル、メタクリル酸オクチル、メタクリル酸ノニル、メタアクリル酸デシル、メタクリル酸ラウリル、メタクリル酸ステアリル、メタクリル酸ドデシル等のメタクリル酸アルキルエステル;
アクリル酸、メタクリル酸;
アクリロニトリル;メタクリロニトリル;アクリル酸2−クロロエチル;アクリル酸フェニル;アクリル酸トリフルオロエチル;アクリル酸テトラフルオロプロピルを挙げることができる。
Examples of this (meth) acrylic resin monomer include methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, hexyl acrylate, octyl acrylate, nonyl acrylate, decyl acrylate, lauryl acrylate, acrylic acid Alkyl acrylates such as stearyl and dodecyl acrylate;
Methacrylic acid alkyl esters such as methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, hexyl methacrylate, octyl methacrylate, nonyl methacrylate, decyl methacrylate, lauryl methacrylate, stearyl methacrylate, dodecyl methacrylate ;
Acrylic acid, methacrylic acid;
Mention may be made of acrylonitrile; methacrylonitrile; 2-chloroethyl acrylate; phenyl acrylate; trifluoroethyl acrylate; tetrafluoropropyl acrylate.
また、これらの(メタ)アクリル樹脂モノマーと組み合わせて重合することができるモノマーの例としては、スチレン、o‐メチルスチレン、m‐メチルスチレン、p‐メチルスチレン、α‐メチルスチレン、o‐エチルスチレン、m‐エチルスチレン、p‐エチルスチレン、2,4‐ジメチルスチレン、p‐n‐ブチルスチレン、p‐t‐ブチルスチレン、p‐n‐ヘキシルスチレン、p‐n‐オクチルスチレン、p‐n‐ノニルスチレン、p‐n‐デシルスチレン、p‐n−ドデシルスチレン、p‐メトキシスチレン、p‐フェニルスチレン、p‐クロロスチレン、3,4‐ジクロロスチレン、酢酸ビニル、プロピオン酸ビニル、安息香酸ビニル、酢酸ビニル、N‐ビニルビロビニル、フッ化ビニリデン、テトラフルオロエチレン、ヘキサフルオロプロピレン、ブタジエン、イソブレンを挙げることができる。
上述したモノマーは、1種のみを単独で重合してもよく、2種以上を組み合わせて重合して用いてもよい。また、上述したモノマーに替えてオリゴマーを適宜用いてもよい。
Examples of monomers that can be polymerized in combination with these (meth) acrylic resin monomers include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, α-methylstyrene, o-ethylstyrene. , M-ethylstyrene, p-ethylstyrene, 2,4-dimethylstyrene, pn-butylstyrene, pt-butylstyrene, pn-hexylstyrene, pn-octylstyrene, pn- Nonyl styrene, pn-decyl styrene, pn-dodecyl styrene, p-methoxy styrene, p-phenyl styrene, p-chloro styrene, 3,4-dichloro styrene, vinyl acetate, vinyl propionate, vinyl benzoate, Vinyl acetate, N-vinylvinylvinyl, vinylidene fluoride, tetrafluoroethylene, hex Hexafluoropropylene, butadiene, it may be mentioned Isoburen.
The monomers described above may be polymerized alone or in combination of two or more. Further, an oligomer may be appropriately used instead of the above-described monomer.
「被覆膜3」
この被覆膜3は、上記の第1の樹脂と同一組成または異なる組成の第2の樹脂からなる被覆膜である。
この被覆膜3を構成する第2の樹脂としては、上記の第1の樹脂と同様、例えば、(メタ)アクリル樹脂、アクリル酸エステル、メタクリル酸エステル、アクリルスチレン共重合体、アクリルポリエステル共重合体、シリコンアクリル共重合体等を挙げることができる。これらの樹脂の中でも、特に(メタ)アクリル樹脂は、透明性に優れているので好ましい。なお、この(メタ)アクリル樹脂モノマーやこれらの(メタ)アクリル樹脂モノマーと組み合わせて重合することができるモノマーについては、既に述べているので、ここでは省略する。
"Coating film 3"
The coating film 3 is a coating film made of a second resin having the same composition as or different from the first resin.
The second resin constituting the coating film 3 is, for example, (meth) acrylic resin, acrylic ester, methacrylic ester, acrylic styrene copolymer, acrylic polyester copolymer, as with the first resin. Examples thereof include a coalescence and a silicon acrylic copolymer. Among these resins, a (meth) acrylic resin is particularly preferable because of its excellent transparency. Since the (meth) acrylic resin monomer and the monomer that can be polymerized in combination with these (meth) acrylic resin monomers have already been described, they are omitted here.
この第2の樹脂としては、用途に応じて適宜選択すればよく、上記の第1の樹脂と同一の組成であってもよく、または異なる組成であってもよいが、芯材部2との密着性を考慮すると、芯材部2に用いられる第1の樹脂と同一組成の樹脂が好ましい。例えば、第1の樹脂が(メタ)アクリル樹脂の場合、第2の樹脂も(メタ)アクリル樹脂とすることが好ましい。
The second resin may be appropriately selected depending on the application, and may be the same composition as the first resin or a different composition. In consideration of adhesion, a resin having the same composition as the first resin used for the
この被覆膜3では、その特性を損なわない範囲において、有機系紫外線吸収剤等を含んでいてもよい。
有機系紫外線吸収剤としては、例えば、ジベンゾイルメタン誘導体(ジベンゾイルメタン及びその誘導体)、ベンゾフェノン誘導体(ベンゾフェノン及びその誘導体)、パラアミノ安息香酸誘導体(パラアミノ安息香酸及びその誘導体)、メトキシ桂皮酸誘導体(メトキシ桂皮酸及びその誘導体)、ベンゾトリアゾール誘導体(ベンゾトリアゾール及びその誘導体)、シアノアクリレート誘導体(シアノアクリレート及びその誘導体)、サリチル酸誘導体(サリチル酸及びその誘導体)等を用いることができる。これらの有機系紫外線吸収剤は、1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。
The coating film 3 may contain an organic ultraviolet absorber or the like as long as the characteristics are not impaired.
Examples of organic ultraviolet absorbers include dibenzoylmethane derivatives (dibenzoylmethane and derivatives thereof), benzophenone derivatives (benzophenone and derivatives thereof), paraaminobenzoic acid derivatives (paraaminobenzoic acid and derivatives thereof), methoxycinnamic acid derivatives ( Methoxycinnamic acid and derivatives thereof), benzotriazole derivatives (benzotriazole and derivatives thereof), cyanoacrylate derivatives (cyanoacrylate and derivatives thereof), salicylic acid derivatives (salicylic acid and derivatives thereof), and the like can be used. These organic ultraviolet absorbers may be used alone or in combination of two or more.
ジベンゾイルメタン誘導体は、含有率が高くなればなるほど、単位ジベンゾイルメタン誘導体当たりの紫外線吸収の効率が向上する。
そこで、ジベンゾイルメタン誘導体を被覆膜3に添加すれば、ジベンゾイルメタン誘導体は、芯材部2を覆う被覆膜3のみに存在することとなる。この被覆膜3に添加されたジベンゾイルメタン誘導体は、この紫外線遮蔽複合粒子1と単に混合した場合と比べて、ジベンゾイルメタン誘導体を含む被覆膜3の紫外線吸収スペクトルがブロード化し、紫外線の長波長側まで吸収可能となる。その結果、ジベンゾイルメタン誘導体を含む被覆膜3の単位当たりの紫外線吸収効率が高くなり、紫外線吸収性が向上することとなる。
The higher the content of the dibenzoylmethane derivative, the higher the efficiency of ultraviolet absorption per unit dibenzoylmethane derivative.
Therefore, if a dibenzoylmethane derivative is added to the coating film 3, the dibenzoylmethane derivative is present only in the coating film 3 covering the
このジベンゾイルメタン誘導体の中では、紫外線遮蔽性及び透明性の点で、4−tert−ブチル−4’−メトキシジベンゾイルメタン(アボベンゾン)が特に好ましい。
また、ジベンゾイルメタン誘導体単独ではなく、その特性を損なわない範囲でベンゾフェノン誘導体、パラアミノ安息香酸誘導体、メトキシ桂皮酸誘導体、サリチル酸誘導体等の他の有機系紫外線遮蔽剤を1種または2種以上を混合して用いてもよい。
Among these dibenzoylmethane derivatives, 4-tert-butyl-4′-methoxydibenzoylmethane (Avobenzone) is particularly preferable from the viewpoint of ultraviolet shielding properties and transparency.
Also, not only dibenzoylmethane derivatives but also other organic UV screening agents such as benzophenone derivatives, paraaminobenzoic acid derivatives, methoxycinnamic acid derivatives, salicylic acid derivatives, etc., as long as the properties are not impaired. May be used.
この被覆膜3の全質量は、複合粒子1全体の質量、すなわち芯材部2の質量と被覆膜3の質量との合計の質量に対して、30質量%以上かつ70質量%以下が好ましく、より好ましくは40質量%以上かつ65質量%以下である。
ここで、被覆膜3の全質量を、複合粒子1全体の質量に対して上記の範囲とした理由は、被覆膜3の全質量が複合粒子1全体の質量に対して40質量%未満では、被覆膜3を芯材部2の表面2aに均一に形成することが困難となり、芯材部2の表面2aの一部が露出したり、あるいは被覆膜3の膜厚を十分に確保することが困難となり、その結果、亜鉛イオンの溶出を十分に低減することが困難となる虞がある。一方、被覆膜3の全質量が複合粒子1全体の質量に対して70質量%を超えると、複合粒子1中の酸化亜鉛の含有率が少なくなる結果、所望の紫外線遮蔽効果を得るのに大量の複合粒子1を使用する必要がある虞がある。
The total mass of the coating film 3 is 30% by mass or more and 70% by mass or less based on the total mass of the
Here, the reason why the total mass of the coating film 3 is in the above range with respect to the total mass of the
[紫外線遮蔽複合粒子の製造方法]
本実施形態の紫外線遮蔽複合粒子1の製造方法は、芯材部2を作製する芯材部作製工程と、この芯材部2の表面2aに第2の樹脂からなる被覆膜3を形成する被覆膜形成工程とを有する。
[Method for producing ultraviolet shielding composite particles]
In the manufacturing method of the ultraviolet shielding
「芯材部作製工程」
芯材部2を作製する方法は特に限定されず、例えば、上述した酸化亜鉛微粒子を上述した第1の樹脂のモノマー中に公知の方法で分散させた分散液を、公知の重合方法を用いて粒子化して芯材部2とすればよい。このような重合方法としては、例えば、ミニエマルジョン法等が好適に用いられる。
"Core material production process"
The method for producing the
「被覆膜形成工程」
芯材部2の存在下にて、第2の樹脂モノマーを重合させることにより、この芯材部2の表面2aに第2の樹脂からなる被覆膜3を形成する工程であり、第2の樹脂モノマーを重合させる方法としては、公知の方法を用いればよく、特に限定されない。このような重合方法としては、例えば、シード重合法、ミニエマルジョン法等が挙げられ、特に、シード重合法が好適に用いられる。
"Coating film formation process"
In this step, the second resin monomer is polymerized in the presence of the
[紫外線遮蔽複合粒子含有分散液]
本実施形態の紫外線遮蔽複合粒子含有分散液(以下、単に「分散液」と称する場合もある)は、上記の紫外線遮蔽複合粒子1を分散媒中に分散してなる分散液である。
この分散液における複合粒子1の含有率は、所望の紫外線遮蔽性能を得るために適宜調整すればよく、好ましくは1質量%以上かつ80質量%以下、より好ましくは20質量%以上かつ70質量%以下、さらに好ましくは30質量%以上かつ60質量%以下である。
[Dispersion containing ultraviolet shielding composite particles]
The ultraviolet shielding composite particle-containing dispersion of the present embodiment (hereinafter sometimes simply referred to as “dispersion”) is a dispersion obtained by dispersing the ultraviolet shielding
The content of the
ここで、複合粒子1の含有率を1質量%以上かつ80質量%以下とした理由は、複合粒子1の含有率が1質量%未満では、この分散液が十分な紫外線遮蔽機能を示すことができなくなる虞があるからである。そのため、化粧料等に配合する際に大量の分散液を添加することが必要となり、コスト高となる虞がある。一方、含有率が80質量%を越えると、分散液の粘性が増加(増粘)して複合粒子1の分散安定性が低下し、複合粒子1が沈降し易くなる虞があるからである。
Here, the reason why the content of the
このような分散媒としては、上記の複合粒子1を分散させることができる溶媒であればよく、特には限定されないが、水の他、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、オクタノール等のアルコール類;
酢酸エチル、酢酸ブチル、乳酸エチル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、γ−ブチロラクトン等のエステル類;
ジエチルエーテル、エチレングリコールモノメチルエーテル(メチルセロソルブ)、エチレングリコールモノエチルエーテル(エチルセロソルブ)、エチレングリコールモノブチルエーテル(ブチルセロソルブ)、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル等のエーテル類;
が好適に用いられる。
Such a dispersion medium is not particularly limited as long as it is a solvent that can disperse the
Esters such as ethyl acetate, butyl acetate, ethyl lactate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, γ-butyrolactone;
Ethers such as diethyl ether, ethylene glycol monomethyl ether (methyl cellosolve), ethylene glycol monoethyl ether (ethyl cellosolve), ethylene glycol monobutyl ether (butyl cellosolve), diethylene glycol monomethyl ether, diethylene glycol monoethyl ether;
Are preferably used.
また、アセトン、メチルエチルケトン、メチルイソブチルケトン、アセチルアセトン、シクロヘキサノン等のケトン類;
ベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素;
シクロヘキサン等の環状炭化水素;
ジメチルポリシロキサン、メチルフェニルポリシロキサン、ジフェニルポリシロキサン等の鎖状ポリシロキサン類;
も好適に用いられる。
In addition, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, acetyl acetone, cyclohexanone;
Aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene;
Cyclic hydrocarbons such as cyclohexane;
Linear polysiloxanes such as dimethylpolysiloxane, methylphenylpolysiloxane, diphenylpolysiloxane;
Are also preferably used.
また、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン、ドデカメチルシクロヘキサンシロキサン等の環状ポリシロキサン類;
アミノ変性ポリシロキサン、ポリエーテル変性ポリシロキサン、アルキル変性ポリシロキサン、フッ素変性ポリシロキサン等の変性ポリシロキサン類;
も好適に用いられる。
これらの水及び溶媒のうち1種のみを用いてもよく、2種以上を混合して用いてもよい。
And cyclic polysiloxanes such as octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, dodecamethylcyclohexanesiloxane;
Modified polysiloxanes such as amino-modified polysiloxane, polyether-modified polysiloxane, alkyl-modified polysiloxane, and fluorine-modified polysiloxane;
Are also preferably used.
Only 1 type may be used among these water and a solvent, and 2 or more types may be mixed and used for it.
本実施形態の分散液は、その特性を損なわない範囲において分散剤や水溶性バインダーを含んでもよい。
分散剤としては、陰イオン界面活性剤、陽イオン界面活性剤、両性界面活性剤、非イオン界面活性剤、オルガノアルコキシシランやオルガノクロロシラン等のシランカップリング剤が好適に用いられる。これらの分散剤の種類や量は複合粒子1の粒子径や目的とする分散媒の種類により適宜選択すればよく、上記分散剤のうち1種のみを用いてもよく、2種以上を混合して用いてもよい。
水溶性バインダーとしては、ポリビニルアルコール(PVA)、ポリビニルピロリドン、ヒドロキシセルロース、ポリアクリル酸等を用いることができる。
The dispersion of this embodiment may contain a dispersant and a water-soluble binder as long as the characteristics are not impaired.
As the dispersant, anionic surfactants, cationic surfactants, amphoteric surfactants, nonionic surfactants, and silane coupling agents such as organoalkoxysilanes and organochlorosilanes are preferably used. The type and amount of these dispersants may be appropriately selected depending on the particle diameter of the
As the water-soluble binder, polyvinyl alcohol (PVA), polyvinyl pyrrolidone, hydroxycellulose, polyacrylic acid, or the like can be used.
複合粒子1を分散媒中に分散させる方法としては、特に限定されず、公知の分散手法を用いることができる。例えば、攪拌機の他、ジルコニアビーズを用いたビーズミル、ボールミル、ホモジナイザー、超音波分散機、混練機、三本ロールミル、自転・公転ミキサー等が好適に用いられる。分散処理に要する時間としては、複合粒子1が分散媒中に均一に分散されるのに十分な時間であればよい。
The method for dispersing the
[化粧料]
本実施形態の化粧料は、上記の紫外線遮蔽複合粒子1、上記の紫外線遮蔽複合粒子含有分散液、のうちいずれか一方または双方を基剤中に含有している。
これらの紫外線遮蔽複合粒子1や紫外線遮蔽複合粒子含有分散液を、紫外線遮蔽用途で用いる場合には、上記の紫外線遮蔽複合粒子1の平均粒子径は50nm以上かつ700nm以下のものを用いるのが好ましい。
この複合粒子1の含有率は適宜調整すればよいが、化粧料全体の質量に対して1質量%以上かつ60質量%以下含有していることが好ましい。複合粒子1を上記の範囲内で含有することにより、透明感を十分に確保することができ、しかも、ざらつき感等が無く、使用感に優れた化粧料を得ることができる。
[Cosmetics]
The cosmetic of the present embodiment contains either or both of the ultraviolet shielding
When these ultraviolet shielding
The content of the
本実施形態の化粧料には、本発明の効果を損なわない範囲内において、有機系紫外線遮蔽剤、無機系紫外線遮蔽剤、添加剤等を含有していてもよい。
この有機系紫外線遮蔽剤としては、例えば、アントラニラート類、ケイ皮酸誘導体、サリチル酸誘導体、ショウノウ誘導体、ベンゾフェノン誘導体、β,β'-ジフェニルアクリラート誘導体、ベンゾトリアゾール誘導体、ベンザルマロナート誘導体、ベンゾイミダゾール誘導体、イミダゾリン類、ビスベンゾアゾリル誘導体、p−アミノ安息香酸(PABA)誘導体、メチレンビス(ヒドロキシフェニルベンゾトリアゾール)誘導体等が挙げられ、これらの群から選択される1種または2種以上を選択して用いることができる。
The cosmetic of the present embodiment may contain an organic ultraviolet shielding agent, an inorganic ultraviolet shielding agent, an additive and the like within a range not impairing the effects of the present invention.
Examples of the organic ultraviolet screening agent include anthranilates, cinnamic acid derivatives, salicylic acid derivatives, camphor derivatives, benzophenone derivatives, β, β'-diphenyl acrylate derivatives, benzotriazole derivatives, benzalmalonate derivatives, Benzimidazole derivatives, imidazolines, bisbenzoazolyl derivatives, p-aminobenzoic acid (PABA) derivatives, methylenebis (hydroxyphenylbenzotriazole) derivatives, etc., and one or more selected from these groups It can be selected and used.
また、無機系紫外線遮蔽剤としては、例えば、酸化チタン、酸化亜鉛、酸化セリウム等が挙げられ、これらの群から1種または2種以上を適宜選択して用いることができる。 Examples of the inorganic ultraviolet shielding agent include titanium oxide, zinc oxide, cerium oxide, and the like, and one or two or more kinds can be appropriately selected from these groups.
この化粧料は、上記の紫外線遮蔽複合粒子1、上記の紫外線遮蔽複合粒子含有分散液、のうちいずれか一方または双方を、乳液、クリーム、ファンデーション、口紅、頬紅、アイシャドー等の基剤中に従来どおりに配合することにより得ることができる。
さらに、従来では処方が困難であった化粧水や日焼け止めジェル等の水系化粧料に、上記の紫外線遮蔽複合粒子1、上記の紫外線遮蔽複合粒子含有分散液、のうちいずれか一方または双方を配合することにより、紫外線遮蔽能、透明感及び使用感に優れた水系化粧料を得ることができる。
In this cosmetic, any one or both of the ultraviolet shielding
In addition, one or both of the above-described UV-shielding
さらにまた、この化粧料を化粧品の成分として用いることにより、紫外線遮蔽能、透明感及び使用感に優れたスキンケア化粧品、メイクアップ化粧品、ボディケア化粧品等の各種化粧品を提供することが可能である。特に、紫外線遮蔽能が必要とされるボディケア化粧品のサンスクリーン等に好適である。 Furthermore, by using this cosmetic as a cosmetic ingredient, it is possible to provide various cosmetics such as skin care cosmetics, makeup cosmetics, and body care cosmetics that are excellent in ultraviolet shielding ability, transparency, and feeling of use. In particular, it is suitable for sunscreens and the like of body care cosmetics that require ultraviolet shielding ability.
以上説明したように、本実施形態の紫外線遮蔽複合粒子1によれば、酸化亜鉛と第1の樹脂とを含有してなる芯材部2と、この芯材部2の表面2aに形成され第1の樹脂と同一組成または異なる組成の第2の樹脂からなる被覆膜3とを備えたので、この被覆膜3が芯材部2に含まれる酸化亜鉛から亜鉛イオンが溶出するのを抑制することで、この複合粒子1に含まれる酸化亜鉛から亜鉛イオンが溶出し、この複合粒子1の外方へ拡散するのを防止することができる。したがって、亜鉛イオンの溶出による化粧料としての性能の低下、変色、化粧料の粘度の増減等を抑制することができる。
As described above, according to the ultraviolet shielding
被覆膜3に有機系紫外線吸収剤を含有した場合には、有機系紫外線吸収剤の吸収性能と、芯材部2中の酸化亜鉛の散乱性能との相乗効果により、UV−A領域からUV−B領域までの幅広い波長域の紫外線の遮蔽性を向上させることができる。
特に有機系紫外線吸収剤としてジベンゾイルメタン誘導体を用いた場合には、紫外線吸収性能をさらに向上させることができる。
In the case where the coating film 3 contains an organic ultraviolet absorber, the UV-A region has a UV effect due to a synergistic effect between the absorption performance of the organic ultraviolet absorber and the scattering performance of zinc oxide in the
In particular, when a dibenzoylmethane derivative is used as the organic ultraviolet absorber, the ultraviolet absorption performance can be further improved.
本実施形態の紫外線遮蔽複合粒子含有分散液によれば、本実施形態の紫外線遮蔽複合粒子1を分散媒中に分散したので、この紫外線遮蔽複合粒子1に含まれる酸化亜鉛から亜鉛イオンが分散媒中に溶出するのを抑制することができる。したがって、分散液におけるUV−A領域からUV−B領域までの幅広い波長域の紫外線の遮蔽性を向上させることができる。
According to the dispersion containing ultraviolet shielding composite particles of the present embodiment, since the ultraviolet shielding
本実施形態の化粧料によれば、本実施形態の紫外線遮蔽複合粒子1、本実施形態の紫外線遮蔽複合粒子含有分散液、のうちいずれか一方または双方を基剤中に含有したので、この紫外線遮蔽複合粒子1あるいはその分散液に含まれる酸化亜鉛から亜鉛イオンが基剤中に溶出するのを抑制することができる。したがって、亜鉛イオンの溶出による化粧料としての性能の低下、変色、化粧料の粘度の増減等を抑制することができる。
According to the cosmetic of the present embodiment, since either or both of the ultraviolet shielding
以下、実施例及び比較例により本発明を具体的に説明するが、本発明はこれらの実施例により限定されるものではない。 EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention concretely, this invention is not limited by these Examples.
[実施例1]
「紫外線遮蔽複合粒子の作製」
A.芯材部の作製
平均一次粒子径0.02μmの酸化亜鉛粒子(住友大阪セメント製)55質量部、リン酸エステル型界面活性剤3.3質量部、メタクリル酸メチル(以下、MMAと略称する)41.7質量部を混合し、ジルコニアビーズを用いたビーズミルにて、2500rpmにて2時間分散処理を行い、酸化亜鉛/MMA分散液を作製した。
得られた分散液の体積粒度分布を粒度分布計 LB−550(堀場製作所社製)にて評価したところ、累積体積百分率が10体積%(d10)における粒子径は54nm、累積体積百分率が50体積%(d50)における粒子径は87nm、累積体積百分率が90体積%(d90)における粒子径は160nmであった。
[Example 1]
"Preparation of UV shielding composite particles"
A. Production of core material part 55 parts by mass of zinc oxide particles (manufactured by Sumitomo Osaka Cement) having an average primary particle size of 0.02 μm, 3.3 parts by mass of a phosphate type surfactant, methyl methacrylate (hereinafter abbreviated as MMA) 41.7 parts by mass were mixed and subjected to a dispersion treatment at 2500 rpm for 2 hours in a bead mill using zirconia beads to prepare a zinc oxide / MMA dispersion.
When the volume particle size distribution of the obtained dispersion was evaluated with a particle size distribution analyzer LB-550 (manufactured by Horiba Seisakusho), the particle size at a cumulative volume percentage of 10% by volume (d10) was 54 nm, and the cumulative volume percentage was 50 volumes. % (D50) had a particle size of 87 nm, and a cumulative volume percentage of 90 vol% (d90) had a particle size of 160 nm.
次いで、上記の酸化亜鉛/MMA分散液30.00質量部に、純水64.75質量部、ドデシルベンゼンスルホン酸ナトリウム0.95質量部、エチレングリコールジメタクリレート4質量部、シリコーン系消泡剤 KS−66(信越化学社製)0.30質量部を混合し、ホモジナイザーを用いて攪拌し、エマルジョンAを作製した。 Next, 30.00 parts by mass of the above zinc oxide / MMA dispersion, 64.75 parts by mass of pure water, 0.95 parts by mass of sodium dodecylbenzenesulfonate, 4 parts by mass of ethylene glycol dimethacrylate, silicone antifoaming agent KS -66 (manufactured by Shin-Etsu Chemical Co., Ltd.) 0.30 parts by mass was mixed and stirred using a homogenizer to prepare an emulsion A.
次いで、得られたエマルジョン80質量部と、純水19.968質量部に過硫酸カリウム0.032質量部を溶解した過硫酸カリウム溶液とを混合し、攪拌器及び温度計を備えた反応装置に移して窒素置換を室温(25℃)にて1時間行なった。次いで、65℃まで昇温させて、65℃にて3時間保持して重合反応を行い、芯材部となる酸化亜鉛含有樹脂粒子Aを含有するスラリーAを得た。
次いで、この酸化亜鉛含有樹脂粒子Aを含有するスラリーAを遠心分離機にて固液分離し、その後、分離した固形物を純水にて洗浄し、さらに90℃にて乾燥して、酸化亜鉛含有樹脂粒子Aを回収した。
Next, 80 parts by mass of the obtained emulsion and a potassium persulfate solution in which 0.032 parts by mass of potassium persulfate was dissolved in 19.968 parts by mass of pure water were mixed, and a reactor equipped with a stirrer and a thermometer was mixed. The nitrogen substitution was carried out at room temperature (25 ° C.) for 1 hour. Next, the temperature was raised to 65 ° C., and the polymerization reaction was carried out by holding at 65 ° C. for 3 hours to obtain slurry A containing zinc oxide-containing resin particles A serving as a core material portion.
Next, the slurry A containing the zinc oxide-containing resin particles A is subjected to solid-liquid separation with a centrifuge, and then the separated solid is washed with pure water and further dried at 90 ° C. to obtain zinc oxide. The contained resin particles A were collected.
B.芯材部の評価
この酸化亜鉛含有樹脂粒子A中の酸化亜鉛の含有率を測定した。
ここでは、熱重量測定装置 Thermoplus8120(リガク(株)社製) Thermoplus8120)を行い、800℃にて加熱した後の残渣から酸化亜鉛の含有率を算出した。その結果、この酸化亜鉛含有樹脂粒子A中の酸化亜鉛の含有率は53質量%であった。
B. Evaluation of core part The content rate of the zinc oxide in this zinc oxide containing resin particle A was measured.
Here, a thermogravimetric measuring device Thermoplus 8120 (manufactured by Rigaku Corporation) Thermoplus 8120) was performed, and the content of zinc oxide was calculated from the residue after heating at 800 ° C. As a result, the zinc oxide content in the zinc oxide-containing resin particles A was 53% by mass.
次いで、この酸化亜鉛含有樹脂粒子Aの亜鉛溶出量を測定した。
ここでは、酸化亜鉛含有樹脂粒子Aを25℃に保持したpH=2の希塩酸に浸漬し、この希塩酸への酸化亜鉛の溶解度を原子吸光分析にて測定した。その結果、この酸化亜鉛含有樹脂粒子Aの亜鉛溶出量は18ppmであった。
Next, the zinc elution amount of the zinc oxide-containing resin particles A was measured.
Here, the zinc oxide-containing resin particles A were immersed in dilute hydrochloric acid at pH = 2 maintained at 25 ° C., and the solubility of zinc oxide in the dilute hydrochloric acid was measured by atomic absorption analysis. As a result, the zinc elution amount of the zinc oxide-containing resin particles A was 18 ppm.
C.紫外線遮蔽複合粒子の作製
MMA30質量部と、純水69.964質量部に過硫酸カリウム0.036質量部を溶解した過硫酸カリウム分散液とを混合し、ホモジナイザーにて撹拌・混合し、エマルジョンAを作製した。
次いで、上記の酸化亜鉛含有樹脂粒子Aを含有するスラリーAを85質量部、エマルジョンAを15質量部、を混合し、窒素置換を室温(25℃)にて1時間行なった。次いで、65℃まで昇温させて、65℃にて3時間保持して重合反応を行い、芯材部となる酸化亜鉛含有樹脂粒子Aの表面にMMAを重合してなるメタクリル樹脂からなる被覆膜を形成した。
次いで、この反応液を遠心分離機にて固液分離し、その後、分離した固形物を純水にて洗浄し、さらに90℃にて乾燥して、実施例1の紫外線遮蔽複合粒子Aを作製した。
C. Preparation of UV-shielding composite particles 30 parts by mass of MMA and 69.964 parts by mass of pure water were mixed with a potassium persulfate dispersion in which 0.036 parts by mass of potassium persulfate was dissolved, and stirred and mixed with a homogenizer. Was made.
Next, 85 parts by mass of slurry A containing zinc oxide-containing resin particles A and 15 parts by mass of emulsion A were mixed, and nitrogen substitution was performed at room temperature (25 ° C.) for 1 hour. Next, the temperature is raised to 65 ° C. and held at 65 ° C. for 3 hours to conduct a polymerization reaction, and a coating made of a methacrylic resin obtained by polymerizing MMA on the surface of the zinc oxide-containing resin particles A serving as a core material portion. A film was formed.
Next, the reaction solution is subjected to solid-liquid separation with a centrifuge, and then the separated solid is washed with pure water and further dried at 90 ° C. to produce the ultraviolet shielding composite particles A of Example 1. did.
D.紫外線遮蔽複合粒子の評価
この紫外線遮蔽複合粒子A中の酸化亜鉛の含有率を、酸化亜鉛含有樹脂粒子Aと同様にして測定した。その結果、この紫外線遮蔽複合粒子A中の酸化亜鉛の含有率は44質量%であった。
次いで、この紫外線遮蔽複合粒子Aの亜鉛溶出量を、酸化亜鉛含有樹脂粒子Aと同様にして測定した。その結果、この紫外線遮蔽複合粒子Aの亜鉛溶出量は10ppmであった。
D. Evaluation of UV shielding composite particles The content of zinc oxide in the UV shielding composite particles A was measured in the same manner as the zinc oxide-containing resin particles A. As a result, the content of zinc oxide in the ultraviolet shielding composite particles A was 44% by mass.
Subsequently, the zinc elution amount of the ultraviolet shielding composite particles A was measured in the same manner as the zinc oxide-containing resin particles A. As a result, the zinc elution amount of the ultraviolet shielding composite particles A was 10 ppm.
[実施例2]
「紫外線遮蔽複合粒子の作製」
A.芯材部の作製
平均一次粒子径0.02μmの酸化亜鉛粒子(住友大阪セメント製)55質量部を、52.5質量部に変更した以外は、実施例1に準じて、実施例2の酸化亜鉛/MMA分散液を作製した。
得られた分散液の体積粒度分布を粒度分布計 LB−550(堀場製作所社製)にて評価したところ、累積体積百分率が10体積%(d10)における粒子径は53nm、累積体積百分率が50体積%(d50)における粒子径は82nm、累積体積百分率が90体積%(d90)における粒子径は128nmであった。
[Example 2]
"Preparation of UV shielding composite particles"
A. Preparation of core part Oxidation of Example 2 according to Example 1 except that 55 parts by mass of zinc oxide particles (manufactured by Sumitomo Osaka Cement) having an average primary particle size of 0.02 μm were changed to 52.5 parts by mass. A zinc / MMA dispersion was prepared.
When the volume particle size distribution of the obtained dispersion was evaluated with a particle size distribution analyzer LB-550 (manufactured by Horiba Seisakusho), the particle size was 53 nm and the cumulative volume percentage was 50 volumes when the cumulative volume percentage was 10 vol% (d10). % (D50) had a particle diameter of 82 nm, and the cumulative volume percentage was 90 volume% (d90), and the particle diameter was 128 nm.
次いで、上記の酸化亜鉛/MMA分散液30.00質量部に、純水64.75質量部、ドデシルベンゼンスルホン酸ナトリウム0.95質量部、エチレングリコールジメタクリレート4質量部、シリコーン系消泡剤 KS−66(信越化学社製)0.30質量部を混合し、ホモジナイザーを用いて攪拌し、エマルジョンBを作製した。 Next, 30.00 parts by mass of the above zinc oxide / MMA dispersion, 64.75 parts by mass of pure water, 0.95 parts by mass of sodium dodecylbenzenesulfonate, 4 parts by mass of ethylene glycol dimethacrylate, silicone antifoaming agent KS -66 (manufactured by Shin-Etsu Chemical Co., Ltd.) 0.30 part by mass was mixed and stirred using a homogenizer to prepare an emulsion B.
次いで、得られたエマルジョンB80質量部と、純水19.966質量部に過硫酸カリウム0.034質量部を溶解した過硫酸カリウム溶液とを混合し、攪拌器及び温度計を備えた反応装置に移して窒素置換を室温(25℃)にて1時間行なった。次いで、65℃まで昇温させて、65℃にて3時間保持して重合反応を行い、芯材部となる酸化亜鉛含有樹脂粒子Bを含有するスラリーBを得た。
次いで、この酸化亜鉛含有樹脂粒子Bを含有するスラリーBを遠心分離機にて固液分離し、その後、分離した固形物を純水にて洗浄し、さらに90℃にて乾燥して、酸化亜鉛含有樹脂粒子Bを回収した。
Next, 80 parts by mass of the obtained emulsion B and a potassium persulfate solution obtained by dissolving 0.034 parts by mass of potassium persulfate in 19.966 parts by mass of pure water were mixed, and a reactor equipped with a stirrer and a thermometer was mixed. The nitrogen substitution was carried out at room temperature (25 ° C.) for 1 hour. Next, the temperature was raised to 65 ° C., and the polymerization reaction was carried out by holding at 65 ° C. for 3 hours to obtain a slurry B containing zinc oxide-containing resin particles B serving as a core material part.
Next, the slurry B containing the zinc oxide-containing resin particles B is subjected to solid-liquid separation with a centrifuge, and then the separated solid is washed with pure water and further dried at 90 ° C. to obtain zinc oxide. The contained resin particles B were collected.
B.芯材部の評価
酸化亜鉛含有樹脂粒子B中の酸化亜鉛の含有率を、実施例1に準じて測定した。その結果、この酸化亜鉛含有樹脂粒子B中の酸化亜鉛の含有率は51質量%であった。
次いで、この酸化亜鉛含有樹脂粒子Bの亜鉛溶出量を、実施例1に準じて測定した。その結果、この酸化亜鉛含有樹脂粒子Bの亜鉛溶出量は19ppmであった。
B. Evaluation of Core Material Part The content rate of zinc oxide in the zinc oxide-containing resin particles B was measured according to Example 1. As a result, the zinc oxide content in the zinc oxide-containing resin particles B was 51% by mass.
Next, the zinc elution amount of the zinc oxide-containing resin particles B was measured according to Example 1. As a result, the zinc elution amount of the zinc oxide-containing resin particles B was 19 ppm.
C.紫外線遮蔽複合粒子の作製
MMA30質量部と、純水69.964質量部に過硫酸カリウム0.036質量部を溶解した過硫酸カリウム分散液とを混合し、ホモジナイザーにて撹拌・混合し、エマルジョンBを作製した。
次いで、上記の酸化亜鉛含有樹脂粒子Bを含有するスラリーBを80質量部、エマルジョンBを15質量部、を混合し、窒素置換を室温(25℃)にて1時間行なった。次いで、65℃まで昇温させて、65℃にて3時間保持して重合反応を行い、芯材部となる酸化亜鉛含有樹脂粒子Bの表面にMMAを重合してなるメタクリル樹脂からなる被覆膜を形成した。
次いで、この反応液を遠心分離機にて固液分離し、その後、分離した固形物を純水にて洗浄し、さらに90℃にて乾燥して、実施例2の紫外線遮蔽複合粒子Bを作製した。
C. Preparation of UV shielding composite particles 30 parts by mass of MMA and 69.964 parts by mass of pure water were mixed with potassium persulfate dispersion in which 0.036 parts by mass of potassium persulfate was dissolved, and stirred and mixed with a homogenizer. Was made.
Next, 80 parts by mass of the slurry B containing the zinc oxide-containing resin particles B and 15 parts by mass of the emulsion B were mixed, and nitrogen substitution was performed at room temperature (25 ° C.) for 1 hour. Next, the temperature is raised to 65 ° C. and held at 65 ° C. for 3 hours to conduct a polymerization reaction, and a coating made of a methacrylic resin obtained by polymerizing MMA on the surface of the zinc oxide-containing resin particles B serving as a core material portion A film was formed.
Next, the reaction solution is subjected to solid-liquid separation with a centrifugal separator, and then the separated solid is washed with pure water and further dried at 90 ° C. to produce the ultraviolet shielding composite particle B of Example 2. did.
D.紫外線遮蔽複合粒子の評価
次いで、この紫外線遮蔽複合粒子B中の酸化亜鉛の含有率を、実施例1に準じて測定した。その結果、この紫外線遮蔽複合粒子B中の酸化亜鉛の含有率は39質量%であった。
次いで、この紫外線遮蔽複合粒子Bの亜鉛溶出量を、実施例1に準じて測定した。その結果、この紫外線遮蔽複合粒子Bの亜鉛溶出量は7ppmであった。
D. Evaluation of UV-shielding composite particles Next, the content of zinc oxide in the UV-shielding composite particles B was measured according to Example 1. As a result, the content of zinc oxide in the ultraviolet shielding composite particle B was 39% by mass.
Subsequently, the zinc elution amount of the ultraviolet shielding composite particles B was measured according to Example 1. As a result, the zinc elution amount of the ultraviolet shielding composite particle B was 7 ppm.
[実施例3]
「紫外線遮蔽複合粒子の作製」
A.芯材部の作製
平均一次粒子径0.02μmの酸化亜鉛粒子(住友大阪セメント製)55質量部を、50質量部に変更した以外は、実施例1に準じて、実施例3の酸化亜鉛/MMA分散液を作製した。
得られた分散液の体積粒度分布を粒度分布計 LB−550(堀場製作所社製)にて評価したところ、累積体積百分率が10体積%(d10)における粒子径は49nm、累積体積百分率が50体積%(d50)における粒子径は80nm、累積体積百分率が90体積%(d90)における粒子径は134nmであった。
[Example 3]
"Preparation of UV shielding composite particles"
A. Preparation of core material part According to Example 1, except that 55 parts by mass of zinc oxide particles (manufactured by Sumitomo Osaka Cement) having an average primary particle size of 0.02 μm were changed to 50 parts by mass, the zinc oxide / An MMA dispersion was prepared.
When the volume particle size distribution of the obtained dispersion was evaluated with a particle size distribution analyzer LB-550 (manufactured by Horiba, Ltd.), the particle diameter was 49 nm and the cumulative volume percentage was 50 volumes when the cumulative volume percentage was 10 vol% (d10). % (D50) had a particle size of 80 nm, and a cumulative volume percentage of 90 vol% (d90) had a particle size of 134 nm.
次いで、上記の酸化亜鉛/MMA分散液30.00質量部に、純水64.75質量部、ドデシルベンゼンスルホン酸ナトリウム0.95質量部、エチレングリコールジメタクリレート4質量部、シリコーン系消泡剤 KS−66(信越化学社製)0.30質量部を混合し、ホモジナイザーを用いて攪拌し、エマルジョンCを作製した。 Next, 30.00 parts by mass of the above zinc oxide / MMA dispersion, 64.75 parts by mass of pure water, 0.95 parts by mass of sodium dodecylbenzenesulfonate, 4 parts by mass of ethylene glycol dimethacrylate, silicone antifoaming agent KS -66 (manufactured by Shin-Etsu Chemical Co., Ltd.) 0.30 parts by mass was mixed and stirred using a homogenizer to prepare Emulsion C.
次いで、得られたエマルジョンC80質量部と、純水19.964質量部に過硫酸カリウム0.036質量部を溶解した過硫酸カリウム溶液とを混合し、攪拌器及び温度計を備えた反応装置に移して窒素置換を室温(25℃)にて1時間行なった。次いで、65℃まで昇温させて、65℃にて3時間保持して重合反応を行い、芯材部となる酸化亜鉛含有樹脂粒子Cを含有するスラリーCを得た。
次いで、この酸化亜鉛含有樹脂粒子Cを含有するスラリーCを遠心分離機にて固液分離し、その後、分離した固形物を純水にて洗浄し、さらに90℃にて乾燥して、酸化亜鉛含有樹脂粒子Cを回収した。
Next, 80 parts by mass of the obtained emulsion C and a potassium persulfate solution obtained by dissolving 0.036 parts by mass of potassium persulfate in 19.964 parts by mass of pure water were mixed, and a reactor equipped with a stirrer and a thermometer was mixed. The nitrogen substitution was carried out at room temperature (25 ° C.) for 1 hour. Next, the temperature was raised to 65 ° C., and the polymerization reaction was carried out by holding at 65 ° C. for 3 hours to obtain slurry C containing zinc oxide-containing resin particles C to be the core material part.
Next, the slurry C containing the zinc oxide-containing resin particles C is subjected to solid-liquid separation with a centrifuge, and then the separated solid is washed with pure water and further dried at 90 ° C. The contained resin particles C were collected.
B.芯材部の評価
酸化亜鉛含有樹脂粒子C中の酸化亜鉛の含有率を、実施例1に準じて測定した。その結果、この酸化亜鉛含有樹脂粒子C中の酸化亜鉛の含有率は50質量%であった。
次いで、この酸化亜鉛含有樹脂粒子Cの亜鉛溶出量を、実施例1に準じて測定した。その結果、この酸化亜鉛含有樹脂粒子Cの亜鉛溶出量は18ppmであった。
B. Evaluation of Core Material Part The content rate of zinc oxide in the zinc oxide-containing resin particles C was measured according to Example 1. As a result, the zinc oxide content in the zinc oxide-containing resin particles C was 50% by mass.
Next, the zinc elution amount of the zinc oxide-containing resin particles C was measured according to Example 1. As a result, the zinc elution amount of the zinc oxide-containing resin particles C was 18 ppm.
C.紫外線遮蔽複合粒子の作製
MMA30質量部と、純水69.964質量部に過硫酸カリウム0.036質量部を溶解した過硫酸カリウム分散液とを混合し、ホモジナイザーにて撹拌・混合し、エマルジョンCを作製した。
次いで、上記の酸化亜鉛含有樹脂粒子Cを含有するスラリーCを77.5質量部、エマルジョンCを22.5質量部、を混合し、窒素置換を室温(25℃)にて1時間行なった。次いで、65℃まで昇温させて、65℃にて3時間保持して重合反応を行い、芯材部となる酸化亜鉛含有樹脂粒子Cの表面にMMAを重合してなるメタクリル樹脂からなる被覆膜を形成した。
次いで、この反応液を遠心分離機にて固液分離し、その後、分離した固形物を純水にて洗浄し、さらに90℃にて乾燥して、実施例3の紫外線遮蔽複合粒子Cを作製した。
C. Preparation of UV-shielding composite particles 30 parts by mass of MMA and 69.964 parts by mass of pure water were mixed with potassium persulfate dispersion in which 0.036 parts by mass of potassium persulfate was dissolved. Was made.
Next, 77.5 parts by mass of the slurry C containing the zinc oxide-containing resin particles C and 22.5 parts by mass of the emulsion C were mixed, and nitrogen substitution was performed at room temperature (25 ° C.) for 1 hour. Next, the temperature is raised to 65 ° C. and held at 65 ° C. for 3 hours to conduct a polymerization reaction, and a coating made of a methacrylic resin obtained by polymerizing MMA on the surface of the zinc oxide-containing resin particles C to be the core material part A film was formed.
Next, this reaction solution is subjected to solid-liquid separation with a centrifuge, and then the separated solid is washed with pure water and further dried at 90 ° C. to produce the ultraviolet shielding composite particles C of Example 3. did.
D.紫外線遮蔽複合粒子の評価
次いで、この紫外線遮蔽複合粒子C中の酸化亜鉛の含有率を、実施例1に準じて測定した。その結果、この紫外線遮蔽複合粒子C中の酸化亜鉛の含有率は37質量%であった。
次いで、この紫外線遮蔽複合粒子Cの亜鉛溶出量を、実施例1に準じて測定した。その結果、この紫外線遮蔽複合粒子Cの亜鉛溶出量は7ppmであった。
D. Evaluation of UV-shielding composite particles Next, the content of zinc oxide in the UV-shielding composite particles C was measured according to Example 1. As a result, the content of zinc oxide in the ultraviolet shielding composite particles C was 37% by mass.
Next, the zinc elution amount of the ultraviolet shielding composite particles C was measured according to Example 1. As a result, the zinc elution amount of the ultraviolet shielding composite particles C was 7 ppm.
[実施例4]
「紫外線遮蔽複合粒子の作製」
A.芯材部の作製
平均一次粒子径0.02μmの酸化亜鉛粒子(住友大阪セメント製)55質量部を、45質量部に変更した以外は、実施例1に準じて、実施例4の酸化亜鉛/MMA分散液を作製した。
得られた分散液の体積粒度分布を粒度分布計 LB−550(堀場製作所社製)にて評価したところ、累積体積百分率が10体積%(d10)における粒子径は48nm、累積体積百分率が50体積%(d50)における粒子径は80nm、累積体積百分率が90体積%(d90)における粒子径は137nmであった。
[Example 4]
"Preparation of UV shielding composite particles"
A. Preparation of core material part According to Example 1, except that 55 parts by mass of zinc oxide particles (manufactured by Sumitomo Osaka Cement) having an average primary particle size of 0.02 μm were changed to 45 parts by mass. An MMA dispersion was prepared.
When the volume particle size distribution of the obtained dispersion was evaluated with a particle size distribution analyzer LB-550 (manufactured by Horiba, Ltd.), the particle size was 48 nm and the cumulative volume percentage was 50 volumes when the cumulative volume percentage was 10 vol% (d10). % (D50) had a particle size of 80 nm, and a cumulative volume percentage of 90 vol% (d90) had a particle size of 137 nm.
次いで、上記の酸化亜鉛/MMA分散液30.00質量部に、純水64.75質量部、ドデシルベンゼンスルホン酸ナトリウム0.95質量部、エチレングリコールジメタクリレート4質量部、シリコーン系消泡剤 KS−66(信越化学社製)0.30質量部を混合し、ホモジナイザーを用いて攪拌し、エマルジョンDを作製した。 Next, 30.00 parts by mass of the above zinc oxide / MMA dispersion, 64.75 parts by mass of pure water, 0.95 parts by mass of sodium dodecylbenzenesulfonate, 4 parts by mass of ethylene glycol dimethacrylate, silicone antifoaming agent KS -66 (manufactured by Shin-Etsu Chemical Co., Ltd.) 0.30 part by mass was mixed and stirred using a homogenizer to prepare an emulsion D.
次いで、得られたエマルジョンD80質量部と、純水19.960質量部に過硫酸カリウム0.040質量部を溶解した過硫酸カリウム溶液とを混合し、攪拌器及び温度計を備えた反応装置に移して窒素置換を室温(25℃)にて1時間行なった。次いで、65℃まで昇温させて、65℃にて3時間保持して重合反応を行い、芯材部となる酸化亜鉛含有樹脂粒子Dを含有するスラリーDを得た。
次いで、この酸化亜鉛含有樹脂粒子Dを含有するスラリーDを遠心分離機にて固液分離し、その後、分離した固形物を純水にて洗浄し、さらに90℃にて乾燥して、酸化亜鉛含有樹脂粒子Dを回収した。
Next, 80 parts by mass of the obtained emulsion D and a potassium persulfate solution obtained by dissolving 0.040 parts by mass of potassium persulfate in 19.960 parts by mass of pure water were mixed, and a reactor equipped with a stirrer and a thermometer was mixed. The nitrogen substitution was carried out at room temperature (25 ° C.) for 1 hour. Next, the temperature was raised to 65 ° C., and the polymerization reaction was carried out by holding at 65 ° C. for 3 hours to obtain a slurry D containing zinc oxide-containing resin particles D serving as a core part.
Next, the slurry D containing the zinc oxide-containing resin particles D is subjected to solid-liquid separation with a centrifuge, and then the separated solid is washed with pure water and further dried at 90 ° C. to obtain zinc oxide. The contained resin particles D were collected.
B.芯材部の評価
酸化亜鉛含有樹脂粒子D中の酸化亜鉛の含有率を、実施例1に準じて測定した。その結果、この酸化亜鉛含有樹脂粒子D中の酸化亜鉛の含有率は45質量%であった。
次いで、この酸化亜鉛含有樹脂粒子Dの亜鉛溶出量を、実施例1に準じて測定した。その結果、この酸化亜鉛含有樹脂粒子Dの亜鉛溶出量は14ppmであった。
B. Evaluation of Core Material Part The content rate of zinc oxide in the zinc oxide-containing resin particles D was measured according to Example 1. As a result, the zinc oxide content in the zinc oxide-containing resin particles D was 45% by mass.
Next, the zinc elution amount of the zinc oxide-containing resin particles D was measured according to Example 1. As a result, the zinc elution amount of the zinc oxide-containing resin particles D was 14 ppm.
C.紫外線遮蔽複合粒子の作製
MMA30質量部と、純水69.964質量部に過硫酸カリウム0.036質量部を溶解した過硫酸カリウム分散液とを混合し、ホモジナイザーにて撹拌・混合し、エマルジョンDを作製した。
次いで、上記の酸化亜鉛含有樹脂粒子Dを含有するスラリーDを85質量部、エマルジョンDを15質量部、を混合し、窒素置換を室温(25℃)にて1時間行なった。次いで、65℃まで昇温させて、65℃にて3時間保持して重合反応を行い、芯材部となる酸化亜鉛含有樹脂粒子Dの表面にMMAを重合してなるメタクリル樹脂からなる被覆膜を形成した。
次いで、この反応液を遠心分離機にて固液分離し、その後、分離した固形物を純水にて洗浄し、さらに90℃にて乾燥して、実施例4の紫外線遮蔽複合粒子Dを作製した。
C. Preparation of UV shielding composite particles 30 parts by mass of MMA and 69.964 parts by mass of pure water were mixed with a potassium persulfate dispersion in which 0.036 parts by mass of potassium persulfate was dissolved, and the mixture was stirred and mixed with a homogenizer. Was made.
Next, 85 parts by mass of the slurry D containing the zinc oxide-containing resin particles D and 15 parts by mass of the emulsion D were mixed, and nitrogen substitution was performed at room temperature (25 ° C.) for 1 hour. Next, the temperature is raised to 65 ° C. and held at 65 ° C. for 3 hours to conduct a polymerization reaction, and a coating made of a methacrylic resin obtained by polymerizing MMA on the surface of the zinc oxide-containing resin particles D serving as a core part. A film was formed.
Next, the reaction solution is subjected to solid-liquid separation with a centrifuge, and then the separated solid is washed with pure water and further dried at 90 ° C. to produce the ultraviolet shielding composite particles D of Example 4. did.
D.紫外線遮蔽複合粒子の評価
次いで、この紫外線遮蔽複合粒子D中の酸化亜鉛の含有率を、実施例1に準じて測定した。その結果、この紫外線遮蔽複合粒子D中の酸化亜鉛の含有率は36質量%であった。
次いで、この紫外線遮蔽複合粒子Dの亜鉛溶出量を、実施例1に準じて測定した。その結果、この紫外線遮蔽複合粒子Dの亜鉛溶出量は3ppmであった。
D. Evaluation of UV shielding composite particles Next, the content of zinc oxide in the UV shielding composite particles D was measured according to Example 1. As a result, the content of zinc oxide in the ultraviolet shielding composite particle D was 36% by mass.
Next, the zinc elution amount of the ultraviolet shielding composite particles D was measured according to Example 1. As a result, the zinc elution amount of the ultraviolet shielding composite particles D was 3 ppm.
[比較例1]
「酸化亜鉛含有樹脂粒子の作製」
実施例1に準じて、比較例1の酸化亜鉛/MMA分散液を作製した。
得られた分散液の体積粒度分布を粒度分布計 LB−550(堀場製作所社製)にて評価したところ、累積体積百分率が10体積%(d10)における粒子径は54nm、累積体積百分率が50体積%(d50)における粒子径は87nm、累積体積百分率が90体積%(d90)における粒子径は160nmであった。
次いで、上記の酸化亜鉛/MMA分散液を用いて、実施例1に準じて、比較例1の酸化亜鉛含有樹脂粒子Fを作製した。
[Comparative Example 1]
"Preparation of zinc oxide-containing resin particles"
In accordance with Example 1, a zinc oxide / MMA dispersion of Comparative Example 1 was prepared.
When the volume particle size distribution of the obtained dispersion was evaluated with a particle size distribution analyzer LB-550 (manufactured by Horiba Seisakusho), the particle size at a cumulative volume percentage of 10% by volume (d10) was 54 nm, and the cumulative volume percentage was 50 volumes. % (D50) had a particle size of 87 nm, and a cumulative volume percentage of 90 vol% (d90) had a particle size of 160 nm.
Subsequently, the zinc oxide containing resin particle F of the comparative example 1 was produced according to Example 1 using said zinc oxide / MMA dispersion liquid.
「酸化亜鉛含有樹脂粒子の評価」
酸化亜鉛含有樹脂粒子F中の酸化亜鉛の含有率を、実施例1に準じて測定した。その結果、この酸化亜鉛含有樹脂粒子F中の酸化亜鉛の含有率は53質量%であった。
次いで、この酸化亜鉛含有樹脂粒子Fの亜鉛溶出量を、実施例1に準じて測定した。その結果、この酸化亜鉛含有樹脂粒子Fの亜鉛溶出量は18ppmであった。
"Evaluation of resin particles containing zinc oxide"
The content of zinc oxide in the zinc oxide-containing resin particles F was measured according to Example 1. As a result, the zinc oxide content in the zinc oxide-containing resin particles F was 53% by mass.
Next, the zinc elution amount of the zinc oxide-containing resin particles F was measured according to Example 1. As a result, the zinc elution amount of the zinc oxide-containing resin particles F was 18 ppm.
[比較例2]
「酸化亜鉛含有樹脂粒子の作製」
実施例2に準じて、比較例2の酸化亜鉛/MMA分散液を作製した。
得られた分散液の体積粒度分布を粒度分布計 LB−550(堀場製作所社製)にて評価したところ、累積体積百分率が10体積%(d10)における粒子径は53nm、累積体積百分率が50体積%(d50)における粒子径は82nm、累積体積百分率が90体積%(d90)における粒子径は128nmであった。
次いで、上記の酸化亜鉛/MMA分散液を用いて、実施例2に準じて、比較例2の酸化亜鉛含有樹脂粒子Gを作製した。
[Comparative Example 2]
"Preparation of zinc oxide-containing resin particles"
In accordance with Example 2, a zinc oxide / MMA dispersion of Comparative Example 2 was prepared.
When the volume particle size distribution of the obtained dispersion was evaluated with a particle size distribution analyzer LB-550 (manufactured by Horiba Seisakusho), the particle size was 53 nm and the cumulative volume percentage was 50 volumes when the cumulative volume percentage was 10 vol% (d10). % (D50) had a particle diameter of 82 nm, and the cumulative volume percentage was 90 volume% (d90), and the particle diameter was 128 nm.
Subsequently, the zinc oxide containing resin particle G of the comparative example 2 was produced according to Example 2 using said zinc oxide / MMA dispersion liquid.
「酸化亜鉛含有樹脂粒子の評価」
酸化亜鉛含有樹脂粒子G中の酸化亜鉛の含有率を、実施例1に準じて測定した。その結果、この酸化亜鉛含有樹脂粒子G中の酸化亜鉛の含有率は51質量%であった。
次いで、この酸化亜鉛含有樹脂粒子Gの亜鉛溶出量を、実施例1に準じて測定した。その結果、この酸化亜鉛含有樹脂粒子Gの亜鉛溶出量は19ppmであった。
"Evaluation of resin particles containing zinc oxide"
The content of zinc oxide in the zinc oxide-containing resin particles G was measured according to Example 1. As a result, the zinc oxide content in the zinc oxide-containing resin particles G was 51% by mass.
Next, the zinc elution amount of the zinc oxide-containing resin particles G was measured according to Example 1. As a result, the zinc elution amount of the zinc oxide-containing resin particles G was 19 ppm.
[比較例3]
「酸化亜鉛含有樹脂粒子の作製」
実施例3に準じて、比較例3の酸化亜鉛/MMA分散液を作製した。
得られた分散液の体積粒度分布を粒度分布計 LB−550(堀場製作所社製)にて評価したところ、累積体積百分率が10体積%(d10)における粒子径は49nm、累積体積百分率が50体積%(d50)における粒子径は80nm、累積体積百分率が90体積%(d90)における粒子径は134nmであった。
次いで、上記の酸化亜鉛/MMA分散液を用いて、実施例3に準じて、比較例3の酸化亜鉛含有樹脂粒子Hを作製した。
[Comparative Example 3]
"Preparation of zinc oxide-containing resin particles"
A zinc oxide / MMA dispersion of Comparative Example 3 was prepared according to Example 3.
When the volume particle size distribution of the obtained dispersion was evaluated with a particle size distribution analyzer LB-550 (manufactured by Horiba, Ltd.), the particle diameter was 49 nm and the cumulative volume percentage was 50 volumes when the cumulative volume percentage was 10 vol% (d10). % (D50) had a particle size of 80 nm, and a cumulative volume percentage of 90 vol% (d90) had a particle size of 134 nm.
Subsequently, the zinc oxide containing resin particle H of the comparative example 3 was produced according to Example 3 using said zinc oxide / MMA dispersion liquid.
「酸化亜鉛含有樹脂粒子の評価」
酸化亜鉛含有樹脂粒子H中の酸化亜鉛の含有率を、実施例1に準じて測定した。その結果、この酸化亜鉛含有樹脂粒子H中の酸化亜鉛の含有率は50質量%であった。
次いで、この酸化亜鉛含有樹脂粒子Hの亜鉛溶出量を、実施例1に準じて測定した。その結果、この酸化亜鉛含有樹脂粒子Hの亜鉛溶出量は18ppmであった。
"Evaluation of resin particles containing zinc oxide"
The content of zinc oxide in the zinc oxide-containing resin particles H was measured according to Example 1. As a result, the zinc oxide content in the zinc oxide-containing resin particles H was 50% by mass.
Next, the zinc elution amount of the zinc oxide-containing resin particles H was measured according to Example 1. As a result, the zinc elution amount of the zinc oxide-containing resin particles H was 18 ppm.
[比較例4]
「酸化亜鉛含有樹脂粒子の作製」
実施例4に準じて、比較例4の酸化亜鉛/MMA分散液を作製した。
得られた分散液の体積粒度分布を粒度分布計 LB−550(堀場製作所社製)にて評価したところ、累積体積百分率が10体積%(d10)における粒子径は48nm、累積体積百分率が50体積%(d50)における粒子径は80nm、累積体積百分率が90体積%(d90)における粒子径は137nmであった。
次いで、上記の酸化亜鉛/MMA分散液を用いて、実施例4に準じて、比較例4の酸化亜鉛含有樹脂粒子Jを作製した。
[Comparative Example 4]
"Preparation of zinc oxide-containing resin particles"
A zinc oxide / MMA dispersion of Comparative Example 4 was prepared according to Example 4.
When the volume particle size distribution of the obtained dispersion was evaluated with a particle size distribution analyzer LB-550 (manufactured by Horiba, Ltd.), the particle size was 48 nm and the cumulative volume percentage was 50 volumes when the cumulative volume percentage was 10 vol% (d10). % (D50) had a particle size of 80 nm, and a cumulative volume percentage of 90 vol% (d90) had a particle size of 137 nm.
Subsequently, the zinc oxide containing resin particle J of the comparative example 4 was produced according to Example 4 using said zinc oxide / MMA dispersion liquid.
「酸化亜鉛含有樹脂粒子の評価」
酸化亜鉛含有樹脂粒子J中の酸化亜鉛の含有率を、実施例1に準じて測定した。その結果、この酸化亜鉛含有樹脂粒子J中の酸化亜鉛の含有率は45質量%であった。
次いで、この酸化亜鉛含有樹脂粒子Jの亜鉛溶出量を、実施例1に準じて測定した。その結果、この酸化亜鉛含有樹脂粒子Jの亜鉛溶出量は14ppmであった。
これらの評価結果を表1に示す。
"Evaluation of resin particles containing zinc oxide"
The content of zinc oxide in the zinc oxide-containing resin particles J was measured according to Example 1. As a result, the zinc oxide content in the zinc oxide-containing resin particles J was 45% by mass.
Next, the zinc elution amount of the zinc oxide-containing resin particles J was measured according to Example 1. As a result, the zinc elution amount of the zinc oxide-containing resin particles J was 14 ppm.
These evaluation results are shown in Table 1.
[実施例5]
「紫外線遮蔽複合粒子の作製」
実施例1に準じて、実施例5の紫外線遮蔽複合粒子Eを作製した。
次いで、この紫外線遮蔽複合粒子Eの亜鉛溶出量を、実施例1に準じて測定した。その結果、この紫外線遮蔽複合粒子Eの亜鉛溶出量は10ppmであった。
[Example 5]
"Preparation of UV shielding composite particles"
In accordance with Example 1, ultraviolet shielding composite particles E of Example 5 were produced.
Next, the zinc elution amount of the ultraviolet shielding composite particles E was measured according to Example 1. As a result, the zinc elution amount of the ultraviolet shielding composite particles E was 10 ppm.
[紫外線遮蔽複合粒子含有分散液の作製]
上記の紫外線遮蔽複合粒子E35質量部、ポリエーテル変性シリコーン8.1質量部、デカメチルシクロペンタシロキサン SH245(東レ・ダウコーニング社製)56.9質量部を混合し、ガラスビーズを用いたサンドミルにて分散させ、紫外線遮蔽複合粒子Eを含有する分散液Eを作製した。
[Preparation of dispersion containing ultraviolet shielding composite particles]
The above-mentioned ultraviolet shielding composite particle E35 parts by mass, polyether-modified silicone 8.1 parts by mass, decamethylcyclopentasiloxane SH245 (manufactured by Toray Dow Corning Co., Ltd.) 56.9 parts by mass are mixed together in a sand mill using glass beads. A dispersion E containing the ultraviolet shielding composite particles E was prepared.
得られた分散液Eの分散体積粒度分布を粒度分布計 LB−550(堀場製作所社製)にて評価したところ、累積体積百分率が10体積%(d10)における分散粒径は174nm、累積体積百分率が50体積%(d50)における分散粒径は279nm、累積体積百分率が90体積%(d90)における分散粒径は420nmであった。
また、この分散液Eの亜鉛溶出量を測定したところ、検出限界以下(≦1ppm)であり、亜鉛の溶出は確認されなかった。
When the dispersion volume particle size distribution of the obtained dispersion E was evaluated with a particle size distribution analyzer LB-550 (manufactured by Horiba, Ltd.), the dispersion particle size was 174 nm and the cumulative volume percentage was 10% by volume (d10). Was 50% by volume (d50), the dispersed particle diameter was 279 nm, and the dispersed particle diameter when the cumulative volume percentage was 90% by volume (d90) was 420 nm.
Moreover, when the zinc elution amount of this dispersion E was measured, it was below the detection limit (≦ 1 ppm), and zinc elution was not confirmed.
[比較例5]
平均一次粒子径0.02μmの酸化亜鉛粒子(住友大阪セメント製)10質量部と、純水90質量部を混合し、超音波分散機を用いて酸化亜鉛粒子を純水中に均一に分散させた酸化亜鉛10質量%水性懸濁液Kを作製した。
次いで、この酸化亜鉛10質量%水性懸濁液Kに、ケイ酸ナトリウム水溶液を、酸化亜鉛に対して酸化ケイ素(SiO2)換算で10質量%となるように添加して混合し、酸化亜鉛ケイ酸ナトリウム含有懸濁液Kとした。
[Comparative Example 5]
10 parts by mass of zinc oxide particles having an average primary particle size of 0.02 μm (manufactured by Sumitomo Osaka Cement) and 90 parts by mass of pure water are mixed, and the zinc oxide particles are uniformly dispersed in pure water using an ultrasonic disperser. A 10% by weight aqueous suspension K of zinc oxide was prepared.
Next, an aqueous sodium silicate solution was added to the zinc oxide 10 mass% aqueous suspension K so as to be 10 mass% in terms of silicon oxide (SiO 2 ) with respect to zinc oxide and mixed. A suspension K containing sodium acid was obtained.
次いで、この酸化亜鉛ケイ酸ナトリウム含有懸濁液Kに0.5Nの希塩酸を徐々に添加して、この混合液のpHを7に調整し、その後、室温(25℃)にて6時間、静置し、懸濁液Kを得た。 Next, 0.5 N dilute hydrochloric acid is gradually added to the zinc oxide silicate-containing suspension K to adjust the pH of the mixture to 7, and then the mixture is allowed to stand at room temperature (25 ° C.) for 6 hours. Suspension K was obtained.
その後、この懸濁液Kを濾過器にて濾過した後、分離した固形物を純水にて洗浄し、さらに105℃にて乾燥して、酸化亜鉛粒子の表面を酸化ケイ素膜で被覆した酸化ケイ素被覆酸化亜鉛粒子Kを作製した。
次いで、この酸化ケイ素被覆酸化亜鉛粒子Kの亜鉛溶出量を、実施例1に準じて測定した。その結果、この酸化ケイ素被覆酸化亜鉛粒子Kの亜鉛溶出量は34ppmであった。
Thereafter, the suspension K is filtered with a filter, and then the separated solid is washed with pure water and further dried at 105 ° C. to oxidize the surface of the zinc oxide particles with a silicon oxide film. Silicon-coated zinc oxide particles K were produced.
Next, the zinc elution amount of the silicon oxide-coated zinc oxide particles K was measured according to Example 1. As a result, the zinc elution amount of the silicon oxide-coated zinc oxide particles K was 34 ppm.
以上の評価結果によれば、実施例1〜4では、芯材部となる酸化亜鉛含有樹脂粒子の表面をメタクリル樹脂からなる被覆膜にて被覆したことから亜鉛溶出量が10ppm以下であったのに対し、比較例1〜4では、被覆膜にて被覆していないコア部のみからなる酸化亜鉛含有樹脂粒子そのものであったことから亜鉛溶出量が14ppm以上と大きいことが分かった。
実施例5では、紫外線遮蔽複合粒子Eを用いて分散液Eを作製したので、亜鉛溶出量が10ppm以下の分散液が得られることが分かった。
一方、比較例5では、酸化亜鉛粒子の表面を酸化ケイ素膜で被覆したのみであるから、酸化ケイ素被覆酸化亜鉛粒子Kの亜鉛溶出量は、34ppmと非常に大きいものであった。
According to the above evaluation results, in Examples 1 to 4, the zinc elution amount was 10 ppm or less because the surface of the zinc oxide-containing resin particles serving as the core part was coated with the coating film made of methacrylic resin. On the other hand, in Comparative Examples 1-4, since it was the zinc oxide containing resin particle itself which consists only of the core part which is not coat | covered with a coating film, it turned out that zinc elution amount is as large as 14 ppm or more.
In Example 5, since the dispersion liquid E was produced using the ultraviolet shielding composite particles E, it was found that a dispersion liquid having a zinc elution amount of 10 ppm or less was obtained.
On the other hand, in Comparative Example 5, since the surface of the zinc oxide particles was only coated with the silicon oxide film, the zinc elution amount of the silicon oxide-coated zinc oxide particles K was as extremely large as 34 ppm.
以上により、実施例1〜5では、コア部となる芯材部の表面をシェル部となる被覆膜にて被覆したので、比較例1〜4のコア部のみからなる酸化亜鉛含有樹脂粒子や比較例5の酸化亜鉛粒子の表面を酸化ケイ素膜で被覆した酸化ケイ素被覆酸化亜鉛粒子と比べて、亜鉛溶出量が抑制されていることが分かった。 By the above, in Examples 1-5, since the surface of the core material part used as a core part was coat | covered with the coating film used as a shell part, the zinc oxide containing resin particle which consists only of the core part of Comparative Examples 1-4, It was found that the zinc elution amount was suppressed as compared with the silicon oxide-coated zinc oxide particles in which the surface of the zinc oxide particles of Comparative Example 5 was coated with a silicon oxide film.
本発明の紫外線遮蔽複合粒子は、酸化亜鉛と第1の樹脂とを含有してなる芯材部と、該芯材部の表面に形成され前記第1の樹脂と同一組成または異なる組成の第2の樹脂からなる被覆膜とを備えたことにより、この複合粒子に含まれる酸化亜鉛から亜鉛イオンが溶出するのを防止し、よって、亜鉛イオンの溶出による化粧料としての性能の低下、変色、化粧料の粘度の増減等を抑制させることができるものであるから、紫外線遮蔽能が必要とされ、使用感に優れる化粧品への適用はもちろんのこと、化粧品以外の分野で用いる場合においては、分散剤や樹脂の選択の幅が広がり、塗料等の設計配合の自由度を高めることができ、その工業的価値は大きい。 The ultraviolet shielding composite particles of the present invention include a core part containing zinc oxide and a first resin, and a second part having the same composition as or different from the first resin formed on the surface of the core part. And the coating film made of the resin, it is possible to prevent zinc ions from eluting from the zinc oxide contained in the composite particles. Since it can suppress the increase and decrease of the viscosity of cosmetics, UV shielding ability is required, and of course, it can be applied to cosmetics with excellent usability and dispersed when used in fields other than cosmetics. The range of choice of agents and resins is widened, and the degree of freedom in designing and blending paints and the like can be increased, and its industrial value is great.
1 紫外線遮蔽複合粒子
2 芯材部
2a 表面
3 被覆膜
DESCRIPTION OF
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012236972A JP2014084448A (en) | 2012-10-26 | 2012-10-26 | Ultraviolet-shielding composite particles, dispersion including ultraviolet-shielding composite particles and cosmetic |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012236972A JP2014084448A (en) | 2012-10-26 | 2012-10-26 | Ultraviolet-shielding composite particles, dispersion including ultraviolet-shielding composite particles and cosmetic |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014084448A true JP2014084448A (en) | 2014-05-12 |
Family
ID=50787826
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012236972A Pending JP2014084448A (en) | 2012-10-26 | 2012-10-26 | Ultraviolet-shielding composite particles, dispersion including ultraviolet-shielding composite particles and cosmetic |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2014084448A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018025610A1 (en) | 2016-08-04 | 2018-02-08 | 日本板硝子株式会社 | Zinc-oxide-containing composite particles, composition for uv shielding, and cosmetic |
JP2018533566A (en) * | 2015-11-13 | 2018-11-15 | ローム アンド ハース カンパニーRohm And Haas Company | Formulation comprising encapsulated metal oxide particles |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09255525A (en) * | 1996-03-22 | 1997-09-30 | Japan Synthetic Rubber Co Ltd | Particle for preventing ultraviolet light |
JP2003073407A (en) * | 2001-08-29 | 2003-03-12 | Pacific Corp | Inorganic/polymer composite particle for ultraviolet scattering and its production method |
JP2004124045A (en) * | 2002-08-08 | 2004-04-22 | Kao Corp | Composite polymer particle and its production method |
-
2012
- 2012-10-26 JP JP2012236972A patent/JP2014084448A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09255525A (en) * | 1996-03-22 | 1997-09-30 | Japan Synthetic Rubber Co Ltd | Particle for preventing ultraviolet light |
JP2003073407A (en) * | 2001-08-29 | 2003-03-12 | Pacific Corp | Inorganic/polymer composite particle for ultraviolet scattering and its production method |
JP2004124045A (en) * | 2002-08-08 | 2004-04-22 | Kao Corp | Composite polymer particle and its production method |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018533566A (en) * | 2015-11-13 | 2018-11-15 | ローム アンド ハース カンパニーRohm And Haas Company | Formulation comprising encapsulated metal oxide particles |
WO2018025610A1 (en) | 2016-08-04 | 2018-02-08 | 日本板硝子株式会社 | Zinc-oxide-containing composite particles, composition for uv shielding, and cosmetic |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5834916B2 (en) | Metal oxide-encapsulating resin powder, dispersion containing the same, aqueous dispersion, method for producing metal oxide-encapsulating resin powder, and cosmetics | |
WO2013094639A1 (en) | Ultraviolet-shielding composite particles, dispersion containing said ultraviolet-shielding composite particles, resin composition containing said ultraviolet-shielding composite particles, multi-layered ultraviolet-shielding composite particles, ultraviolet-shielding dispersion, and cosmetic | |
JP5137503B2 (en) | UV-cutting agent for cosmetics and cosmetics using the same | |
EP2711404B1 (en) | Ultraviolet shielding agent, method for producing same, ultraviolet shielding agent-containing dispersion liquid, and cosmetic preparation | |
KR101611210B1 (en) | Resin particles, method for producing resin particles, and use of resin particles | |
JP6458737B2 (en) | Silicon oxide-coated zinc oxide, production method thereof, silicon oxide-coated zinc oxide-containing composition, and cosmetics | |
JP6763304B2 (en) | Silicon oxide-coated zinc oxide, its production method, silicon oxide-coated zinc oxide-containing composition, and cosmetics | |
JP5870719B2 (en) | Composite particles, composite particle-containing dispersion, composite particle-containing resin composition, composite particle-containing resin film, and cosmetic | |
JP2014084448A (en) | Ultraviolet-shielding composite particles, dispersion including ultraviolet-shielding composite particles and cosmetic | |
KR100835865B1 (en) | Microfine emulsion containing titanium dioxide and zinc oxide and composition of external application to the skin containing thereof | |
JP6028327B2 (en) | UV shielding composite particles, UV shielding multilayer composite particles, UV shielding dispersions, and cosmetics | |
JP6294204B2 (en) | Composite particle, method for producing composite particle, and use thereof | |
JP6186704B2 (en) | Ultraviolet shielding particles, ultraviolet shielding dispersion, cosmetic, and method for producing ultraviolet shielding particles | |
JP2013227266A (en) | Ultraviolet shielding agent, method for producing the same, ultraviolet shielding agent-containing dispersion liquid and cosmetic | |
JP2013091658A (en) | Cosmetic, oil-based cosmetic, water-based cosmetic, and emulsification-based cosmetic | |
JP5970956B2 (en) | Ultraviolet shielding agent, dispersion containing ultraviolet shielding agent, cosmetic, and method for producing ultraviolet shielding agent | |
JP2014101303A (en) | Production method of core shell type composite particle and core shell type composite particle | |
KR100930875B1 (en) | Cake type cosmetic composition for UV protection | |
EP4455175A1 (en) | Polymer compound and application thereof | |
JP7552426B2 (en) | Surface-modified zinc oxide particles, dispersion, cosmetic, and method for producing surface-modified zinc oxide particles | |
WO2013031825A1 (en) | Uv-shielding gel composition, method for producing same, and cosmetic material | |
KR20170038508A (en) | Polymeric beads, polymeric beads complex, optical particle composition and cosmetics using the same | |
CN113057896A (en) | Preparation method of sunscreen lotion microspheres | |
CN113069381A (en) | High-efficiency sunscreen liquid | |
KR20090012661A (en) | Hybridized pigment complex with enhanced uv shielding effects, new physical properties and the manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150818 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160720 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160830 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161031 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170314 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20170919 |