[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2014075191A - Electrode for nonaqueous secondary battery and nonaqueous secondary battery - Google Patents

Electrode for nonaqueous secondary battery and nonaqueous secondary battery Download PDF

Info

Publication number
JP2014075191A
JP2014075191A JP2012220586A JP2012220586A JP2014075191A JP 2014075191 A JP2014075191 A JP 2014075191A JP 2012220586 A JP2012220586 A JP 2012220586A JP 2012220586 A JP2012220586 A JP 2012220586A JP 2014075191 A JP2014075191 A JP 2014075191A
Authority
JP
Japan
Prior art keywords
current collector
electrode
active material
positive electrode
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012220586A
Other languages
Japanese (ja)
Inventor
Satoshi Arima
智史 有馬
Naoto Nishimura
直人 西村
Shunpei Nishinaka
俊平 西中
Naoto Torata
直人 虎太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2012220586A priority Critical patent/JP2014075191A/en
Publication of JP2014075191A publication Critical patent/JP2014075191A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous secondary battery having high safety with high capacity.SOLUTION: Disclosed is an electrode as a positive electrode or a negative electrode used for a nonaqueous secondary battery. The electrode includes: an active material layer; and a current collector group composed of at least two current collectors laminated in the thickness direction of the active material layer via the active material layer. At least one current collector in the current collector group is constituted of a resin film and a conductive layer laminated on at least one surface, and all current collectors or current collectors except one current collector in the current collector group have one or more of openings.

Description

本発明は、非水系二次電池用電極及び非水系二次電池に関する。更に詳しくは、本発明は、活物質層を有効に使用し得る非水系二次電池用電極及びその電極を用いた非水系二次電池に関する。   The present invention relates to an electrode for a non-aqueous secondary battery and a non-aqueous secondary battery. More specifically, the present invention relates to a non-aqueous secondary battery electrode that can effectively use an active material layer and a non-aqueous secondary battery using the electrode.

正極に金属酸化物、電解質には有機電解液、負極に黒鉛のような炭素材料、正極及び負極間に多孔質セパレータを用いる非水系二次電池の一種であるリチウムイオン二次電池(以下、単に電池ともいう)は、1991年に初めて製品化されて以来、そのエネルギー密度の高さから、小型、軽量化が進む携帯電話のような携帯機器向けの電池として急速に普及してきた。
また、発電された電気を蓄えるために容量を大きくしたリチウムイオン二次電池(大容量電池)も研究されている。この大容量電池としては、従来の電池を単にスケールアップして製造された例が報告されている。
正極及び負極は、通常、集電体上に、正極活物質又は負極活物質(以下、単に活物質ともいう)を含む活物質層を備えている(例えば、特開2001−118565号公報(特許文献1))。この集電体は、通常、金属箔が使用されていた。
A lithium oxide secondary battery (hereinafter simply referred to as a non-aqueous secondary battery) using a metal oxide as a positive electrode, an organic electrolyte as an electrolyte, a carbon material such as graphite as a negative electrode, and a porous separator between the positive electrode and the negative electrode Since it was first commercialized in 1991, it has rapidly spread as a battery for portable devices such as mobile phones that are becoming smaller and lighter due to its high energy density.
In addition, lithium ion secondary batteries (large capacity batteries) having a large capacity for storing the generated electricity have been studied. As this large-capacity battery, an example in which a conventional battery is simply scaled up has been reported.
The positive electrode and the negative electrode usually include an active material layer containing a positive electrode active material or a negative electrode active material (hereinafter also simply referred to as an active material) on a current collector (for example, Japanese Patent Application Laid-Open No. 2001-118565 (patent) Literature 1)). For this current collector, a metal foil is usually used.

ところで、リチウムイオン二次電池は、電解質として有機電解液を用いている。従って、過酷な使用条件においても破裂や発火等の事故に至らないようにすることが望まれている。金属箔は、このような事故を防止する機能がなかった。そこで、WO2009/131184(特許文献2)では、両面に導電層を有するフィルム状又は繊維状の樹脂層を集電体として使用することが提案されている。
この集電体を含む電池では、異常発熱の発生した場合に、樹脂層の溶断により、正極及び/又は負極が破損し、異常箇所の電流を部分的に遮断する。その結果、電池内部の温度上昇が抑制できるとされている。
By the way, the lithium ion secondary battery uses an organic electrolyte as an electrolyte. Therefore, it is desired to prevent accidents such as rupture and ignition even under severe use conditions. The metal foil did not have a function to prevent such an accident. Therefore, in WO2009 / 131184 (Patent Document 2), it is proposed to use a film-like or fibrous resin layer having a conductive layer on both sides as a current collector.
In the battery including the current collector, when abnormal heat generation occurs, the positive electrode and / or the negative electrode are damaged due to melting of the resin layer, and the current at the abnormal portion is partially cut off. As a result, the temperature rise inside the battery can be suppressed.

特開2001−118565号公報JP 2001-118565 A WO2009/131184WO2009 / 131184

特許文献2の集電体は、安全性が向上した電池を得ることができる。ところで、正極又は負極は、集電体上に、正極活物質又は負極活物質を含む活物質層を形成することで得られるが、活物質層中の正極活物質又は負極活物質を充放電反応により有効に使用することが望まれている。特に、大容量電池では、活物質層を厚くすることで容量を確保する構成が提案されており、厚い活物質層の集電体から離れた部分では、正極活物質又は負極活物質が充放電反応に寄与しないことがある。その場合、理論容量に対する実容量の割合が低くなり、所望の容量が得られないことがあった。   The current collector of Patent Document 2 can provide a battery with improved safety. By the way, a positive electrode or a negative electrode is obtained by forming an active material layer containing a positive electrode active material or a negative electrode active material on a current collector. The positive electrode active material or the negative electrode active material in the active material layer is charged and discharged. Therefore, it is desired to use it more effectively. In particular, in a large-capacity battery, a configuration has been proposed in which the capacity is ensured by increasing the thickness of the active material layer, and in a portion away from the current collector of the thick active material layer, the positive electrode active material or the negative electrode active material is charged and discharged. May not contribute to the reaction. In that case, the ratio of the actual capacity to the theoretical capacity is low, and the desired capacity may not be obtained.

かくして本発明によれば、非水系二次電池に使用される正極又は負極としての電極であり、
前記電極が、活物質層と、前記活物質層の厚さ方向に前記活物質層を介して積層された少なくとも2枚の集電体からなる集電体群とを備え、
前記集電体群中の少なくとも1枚の集電体が、樹脂フィルムと、その少なくとも片面に積層された導電層とから構成され、かつ前記集電体群中の全ての集電体又は1枚以外の集電体が、1つ以上の開口を有することを特徴とする非水系二次電池用電極が提供される。
また、本発明によれば、正極、負極、及び前記正極と前記負極間に位置する電解質を含むセパレータとを備えるセルを有し、前記正極及び前記負極の少なくとも一方が上記非水系二次電池用電極であることを特徴とする非水系二次電池が提供される。
Thus, according to the present invention, an electrode as a positive electrode or a negative electrode used in a non-aqueous secondary battery,
The electrode includes an active material layer, and a current collector group including at least two current collectors stacked via the active material layer in the thickness direction of the active material layer,
At least one current collector in the current collector group is composed of a resin film and a conductive layer laminated on at least one surface thereof, and all the current collectors or one sheet in the current collector group A non-aqueous secondary battery electrode is provided in which the current collector other than the above has one or more openings.
According to the invention, there is provided a cell comprising a positive electrode, a negative electrode, and a separator containing an electrolyte positioned between the positive electrode and the negative electrode, wherein at least one of the positive electrode and the negative electrode is for the non-aqueous secondary battery. A non-aqueous secondary battery characterized by being an electrode is provided.

本発明の非水系二次電池用電極によると、電極が集電体を複数枚含むため、活物質層をより厚くでき、そのため高容量の非水系二次電池を提供可能である。また、集電体群中の少なくとも1枚の集電体が、樹脂フィルムと導電層とを備えるため、異常発熱時にこの集電体が溶断することにより電極が破損して、異常箇所の電流を遮断可能な、安全性の高い非水系二次電池を提供可能である。   According to the electrode for a non-aqueous secondary battery of the present invention, since the electrode includes a plurality of current collectors, the active material layer can be made thicker, and therefore a high-capacity non-aqueous secondary battery can be provided. In addition, since at least one current collector in the current collector group includes a resin film and a conductive layer, the current collector melts in the event of abnormal heat generation, so that the electrode is damaged and the current at the abnormal location is reduced. It is possible to provide a highly safe non-aqueous secondary battery that can be shut off.

また、集電体群中、最も外側にある2枚の集電体が、樹脂フィルムと導電層とを備える場合、高容量で、かつより安全性の高い非水系二次電池を提供可能である。
更に、活物質層に含まれる活物質の単位面積当たりの重量が、15〜100mg/cm2×前記集電体の枚数である場合、より高容量で、かつ安全性の高い非水系二次電池を提供可能である。
また、集電体群中の少なくとも1枚の集電体が、凹部及び/又は凸部を1つ以上有する3次元構造領域を備える場合、平坦な集電体を使用した電極に比べて、集電体から離れた部位に存在する活物質をも効率的に充放電反応に使用できる。そのため、理論容量と実容量とを近接できるので、同じ活物質の量であれば、従来よりも大きな実容量を得られる非水系二次電池用電極及び非水系二次電池を提供できる。
In addition, when the two outermost current collectors in the current collector group include a resin film and a conductive layer, it is possible to provide a non-aqueous secondary battery with high capacity and higher safety. .
Furthermore, when the weight per unit area of the active material contained in the active material layer is 15 to 100 mg / cm 2 × the number of the current collectors, the non-aqueous secondary battery has a higher capacity and higher safety. Can be provided.
In addition, when at least one current collector in the current collector group includes a three-dimensional structure region having one or more concave portions and / or convex portions, the current collector is compared with an electrode using a flat current collector. An active material present at a site away from the electric body can also be efficiently used for the charge / discharge reaction. Therefore, since the theoretical capacity and the actual capacity can be close to each other, the non-aqueous secondary battery electrode and the non-aqueous secondary battery that can obtain a larger actual capacity than the conventional capacity can be provided with the same amount of active material.

更に、セルが、正極、セパレータ及び負極の積層方向に対して、複数備えられ、1つのセル中の正極が隣接する他のセルの正極を、及び/又は、1つのセル中の負極が隣接する他のセルの負極を兼ねる場合、よりエネルギー密度の高い非水系二次電池を提供できる。   Further, a plurality of cells are provided in the stacking direction of the positive electrode, the separator, and the negative electrode, and the positive electrode in one cell is adjacent to the positive electrode of another cell and / or the negative electrode in one cell is adjacent. When also serving as the negative electrode of another cell, a non-aqueous secondary battery with higher energy density can be provided.

実施例1の正極の概略断面図である。2 is a schematic cross-sectional view of a positive electrode of Example 1. FIG. 3次元構造領域を備えた集電体の概略要部平面図及び断面図の例である。It is an example of the schematic principal part top view and sectional drawing of a collector provided with the three-dimensional structure area. 3次元構造領域及び開口を備えた集電体の概略要部平面図及び断面図の例である。It is an example of the schematic principal part top view and sectional drawing of a collector provided with the three-dimensional structure area | region and opening.

(非水系二次電池用電極)
電極は、活物質層と、活物質層の厚さ方向に前記活物質層を介して積層された少なくとも2枚の集電体からなる集電体群とを備えている。ここで、電極は、正極、負極、又は正極及び負極を意味する。また、活物質層は、正極の場合、正極活物質層であり、負極の場合、負極活物質層である。
(Electrode for non-aqueous secondary battery)
The electrode includes an active material layer and a current collector group composed of at least two current collectors stacked via the active material layer in the thickness direction of the active material layer. Here, an electrode means a positive electrode, a negative electrode, or a positive electrode and a negative electrode. The active material layer is a positive electrode active material layer in the case of a positive electrode, and is a negative electrode active material layer in the case of a negative electrode.

(1)集電体群
集電体群は、正極及び負極の集電体群として使用可能である。集電体群は、正極及び負極のどちらか一方に使用でき、両方に使用してもよい。また、集電体群を使用する非水系二次電池としては、リチウムイオン二次電池、リチウム金属二次電池等が挙げられる。この内、集電体群を正極及び負極の両方に使用可能なリチウムイオン二次電池が好ましい。
集電体群を構成する集電体数は、少なくとも2枚である。集電体数の上限は、集電をとることができさえすれば特に限定されないが、好ましくは2〜3枚である。
集電体の厚さは、0.01〜0.1mmの範囲であることが好ましい。厚さが0.01mmより薄い場合、活物質材の担持性を十分確保できないことがある。0.1mmより厚い場合、二次電池に占める集電体の体積割合が大きくなるため、電池容量を大きくできないことがある。より好ましい厚さは、0.02〜0.05mmの範囲である。
集電体は、十分な集電性を確保する観点から、0.1Ω/□以下のシート抵抗であることが好ましい。より好ましいシート抵抗は、0.05Ω/□以下である。
(1) Current collector group The current collector group can be used as a positive electrode and negative electrode current collector group. The current collector group can be used for either the positive electrode or the negative electrode, or may be used for both. Examples of the non-aqueous secondary battery using the current collector group include a lithium ion secondary battery and a lithium metal secondary battery. Among these, the lithium ion secondary battery which can use a collector group for both a positive electrode and a negative electrode is preferable.
The number of current collectors constituting the current collector group is at least two. The upper limit of the number of current collectors is not particularly limited as long as the current can be collected, but is preferably 2 to 3 sheets.
The thickness of the current collector is preferably in the range of 0.01 to 0.1 mm. When the thickness is less than 0.01 mm, the supportability of the active material material may not be ensured sufficiently. If it is thicker than 0.1 mm, the volume ratio of the current collector to the secondary battery becomes large, so the battery capacity may not be increased. A more preferred thickness is in the range of 0.02 to 0.05 mm.
The current collector preferably has a sheet resistance of 0.1Ω / □ or less from the viewpoint of ensuring sufficient current collecting performance. A more preferable sheet resistance is 0.05Ω / □ or less.

集電体群中の少なくとも1枚の集電体は、樹脂フィルムと、その少なくとも片面に積層された導電層とから構成されている。
(a)樹脂フィルム及び導電層
樹脂フィルムは、特に限定されないが、電池に安全性を付与する観点から、温度上昇時において熱変形する樹脂材料のフィルムを使用することが好ましい。そのような樹脂材料として、例えば、熱変形温度が150℃以下である、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン樹脂、ポリスチレン(PS)等が挙げられる。
樹脂フィルムには、一軸延伸、二軸延伸又は無延伸等のいずれかの方法で製造した樹脂フィルムを使用することもできる。
At least one current collector in the current collector group is composed of a resin film and a conductive layer laminated on at least one surface thereof.
(A) Resin film and conductive layer The resin film is not particularly limited, but it is preferable to use a film of a resin material that is thermally deformed when the temperature rises from the viewpoint of providing safety to the battery. Examples of such a resin material include polyolefin resins such as polyethylene (PE) and polypropylene (PP), polystyrene (PS), and the like having a heat distortion temperature of 150 ° C. or lower.
As the resin film, a resin film produced by any method such as uniaxial stretching, biaxial stretching, or non-stretching can be used.

樹脂フィルムの厚さは、0.01〜0.1mmの範囲であることが好ましい。厚さが0.01mmより薄い場合、活物質の担持性を十分確保できないことがある。0.1mmより厚い場合、二次電池に占める集電体の体積割合が大きくなるため、電池容量を大きくできないことがある。より好ましい厚さは、0.015〜0.05mmの範囲である。   The thickness of the resin film is preferably in the range of 0.01 to 0.1 mm. When the thickness is less than 0.01 mm, sufficient support of the active material may not be ensured. If it is thicker than 0.1 mm, the volume ratio of the current collector to the secondary battery becomes large, so the battery capacity may not be increased. A more preferred thickness is in the range of 0.015 to 0.05 mm.

正極側の導電層は、アルミニウム、チタン又はニッケルの層を用いることが好ましく、負極側の導電層は、銅又はニッケルの層を用いることが好ましい。
導電層の厚さは、導電性を確保できれば特に限定されないが、通常0.002〜0.01mmの範囲である。
導電層の形成方法としては、特に限定されず、蒸着、スパッタリング、電解めっき、無電解めっき、貼り合わせ等の方法、及びこれらの方法の組み合わせからなる方法が挙げられる。
樹脂フィルムと導電層とを備える集電体は、集電体群中、最も外側にある2枚であることが好ましい。異常発熱は、主に電極表面で生じる(例えば、正極と負極との短絡)ため、電極表面に近い側の集電体が樹脂フィルムと導電層とを備えていれば、より効果的に異常発熱の発生を抑制できる。
The positive electrode side conductive layer is preferably an aluminum, titanium or nickel layer, and the negative electrode side conductive layer is preferably a copper or nickel layer.
Although the thickness of a conductive layer will not be specifically limited if electroconductivity is securable, Usually, it is the range of 0.002-0.01 mm.
The method for forming the conductive layer is not particularly limited, and examples thereof include methods such as vapor deposition, sputtering, electrolytic plating, electroless plating, bonding, and combinations of these methods.
The current collectors including the resin film and the conductive layer are preferably the two outermost sheets in the current collector group. Abnormal heat generation mainly occurs on the electrode surface (for example, short circuit between the positive electrode and the negative electrode), so if the current collector near the electrode surface has a resin film and a conductive layer, abnormal heat generation is more effective. Can be suppressed.

(b)開口
集電体群中の全ての集電体又は1枚以外の集電体が、1つ以上の開口を有している。開口を形成することで、集電体を複数枚設けても、集電体間の活物質からのリチウムイオンの拡散が阻害されることを防止できるので、より充放電効率の良好な電池を提供可能である。開口の数は、集電体の単位面積当たり、1〜1000個/cm2の範囲であることが好ましい。開口の平面形状は、特に限定されず、円形、楕円形、三角形、四角形、五角形、六角形、七角形以上の多角形、星型、不定形等が挙げられる。この内、形成が容易である観点から、円形及び四角形が好ましい。開口の最大長さは、小さ過ぎるとリチウムイオン拡散阻害の防止効果が小さくなり、大き過ぎると集電体の強度が低下することがある。従って、1〜1000μmの範囲であることが好ましく、5〜300μmの範囲であることがより好ましい。なお、最大長さは、平面形状が円形の場合、直径に、四角形の場合、対角線の長さに対応する。
(B) Openings All current collectors in the current collector group or current collectors other than one current collector have one or more openings. By forming an opening, even if a plurality of current collectors are provided, it is possible to prevent the diffusion of lithium ions from the active material between the current collectors, thereby preventing batteries with better charge / discharge efficiency. Is possible. The number of openings is preferably in the range of 1 to 1000 / cm 2 per unit area of the current collector. The planar shape of the opening is not particularly limited, and examples thereof include a circle, an ellipse, a triangle, a quadrangle, a pentagon, a hexagon, a heptagon or more polygon, a star, and an indefinite shape. Among these, from the viewpoint of easy formation, a circle and a quadrangle are preferable. If the maximum length of the opening is too small, the effect of preventing lithium ion diffusion is reduced, and if it is too large, the strength of the current collector may be reduced. Therefore, it is preferably in the range of 1 to 1000 μm, more preferably in the range of 5 to 300 μm. The maximum length corresponds to the diameter when the planar shape is circular, and the diagonal length when the planar shape is square.

(c)3次元構造領域
集電体群中の少なくとも1枚の集電体は、凹部及び/又は凸部を1つ以上有する3次元構造領域を備えていてもよい。集電体が3次元構造領域を備えることで、活物質層を厚くしても充放電効率の高い電極を提供できる。
3次元構造領域は、それを含む集電体面の半分以上を占めることが好ましい。半分以上を占めることにより、その上に形成される活物質層中の活物質を充放電反応に効率よく使用できる。3次元構造領域が集電体面に占める割合の上限は、全面である。但し、集電体は、電気を取り出すための端子がいずれかの端部に設けられるため、その端部から2〜20mmの範囲の幅で平坦になっていることが好ましい。従って、充放電効率と、端子を形成する領域の必要性との観点から、80〜98%の範囲で3次元構造領域が集電体面を占めていることが好ましい。
(C) Three-dimensional structure region At least one current collector in the current collector group may include a three-dimensional structure region having one or more concave portions and / or convex portions. By providing the current collector with a three-dimensional structure region, an electrode with high charge / discharge efficiency can be provided even if the active material layer is thickened.
The three-dimensional structure region preferably occupies half or more of the current collector surface including the three-dimensional structure region. By occupying more than half, the active material in the active material layer formed thereon can be efficiently used for the charge / discharge reaction. The upper limit of the ratio of the three-dimensional structure region to the current collector surface is the entire surface. However, since the current collector is provided with a terminal for taking out electricity at either end, it is preferable that the current collector is flat with a width in the range of 2 to 20 mm. Therefore, it is preferable that the three-dimensional structure region occupies the current collector surface in the range of 80 to 98% from the viewpoint of charge / discharge efficiency and the necessity of the region for forming the terminal.

3次元構造領域は、集電体に凹部及び/又は凸部が1つ以上形成されている領域を意味している。また、集電体は、凹部のみ備えていてもよく、凸部のみ備えていてもよく、凹部と凸部とを両方備えていてもよい。更に、両方備える場合、凹部と凸部とを交互に並べてもよく、凹部のみの領域と凸部のみの領域とを並べてもよい。
凹部及び凸部は、例えば図2(a)の概略要部平面図及び図2(b)の概略要部断面図に示すように配置されていてもよい。
The three-dimensional structure region means a region where one or more concave portions and / or convex portions are formed on the current collector. Moreover, the current collector may be provided with only a concave portion, may be provided with only a convex portion, or may be provided with both a concave portion and a convex portion. Furthermore, when providing both, a recessed part and a convex part may be arranged alternately, and the area | region only of a recessed part and the area | region only of a convex part may be arranged.
The concave portion and the convex portion may be arranged, for example, as shown in the schematic plan view of the main part of FIG. 2A and the schematic cross-sectional view of the main part of FIG.

3次元構造領域中の凹部及び凸部の数(凹部と凸部とが両方形成されている場合は、合計数)は、本発明の効果を阻害しない限り、特に限定されない。例えば、単位面積当たり、1個/cm2以上とすることができる。個数の上限は、3次元構造領域中に形成可能な凹部及び凸部の数であり、例えば、2000個/cm2以下である。より好ましい個数は、1〜1000個/cm2の範囲である。
凹部及び凸部の平面形状は、本発明の効果を阻害しない限り、特に限定されない。例えば、円形(図2(a)参照)、楕円形、三角形、四角形、五角形、六角形、七角形以上の多角形、星型、不定形等が挙げられる。この内、形成が容易である観点から、円形及び四角形が好ましい。
The number of concave portions and convex portions in the three-dimensional structure region (the total number when both concave portions and convex portions are formed) is not particularly limited as long as the effect of the present invention is not impaired. For example, it can be 1 piece / cm 2 or more per unit area. The upper limit of the number is the number of concave portions and convex portions that can be formed in the three-dimensional structure region, and is, for example, 2000 pieces / cm 2 or less. A more preferable number is in the range of 1 to 1000 / cm 2 .
The planar shapes of the concave portion and the convex portion are not particularly limited as long as the effects of the present invention are not impaired. For example, a circle (see FIG. 2A), an ellipse, a triangle, a quadrangle, a pentagon, a hexagon, a polygon more than a heptagon, a star, an indeterminate form, and the like can be given. Among these, from the viewpoint of easy formation, a circle and a quadrangle are preferable.

凹部の最上端の最大長さ及び凸部の最下端の最大長さは、大き過ぎると導電性を向上させる効果が小さくなり、小さ過ぎると活物質層を均一に形成し難くなる。従って、1〜1000μmの範囲であることが好ましく、5〜500μmの範囲であることがより好ましい。なお、最大長さは、例えば、平面形状が円形の場合、直径に、四角形の場合、対角線の長さに対応する。
凹部及び凸部の断面形状は、本発明の効果を阻害しない限り、特に限定されない。例えば、三角形(図2(b)参照)、四角形、部分円等が挙げられる。ここで、凹部及び凸部が部分円である場合、凹部と凸部とを交互に並べることで、波型の断面形状とすることも可能である。
If the maximum length of the uppermost end of the concave portion and the maximum length of the lowermost end of the convex portion are too large, the effect of improving the conductivity will be small, and if it is too small, it will be difficult to form the active material layer uniformly. Therefore, it is preferably in the range of 1 to 1000 μm, more preferably in the range of 5 to 500 μm. The maximum length corresponds to, for example, the diameter when the planar shape is circular, and the length of the diagonal line when the planar shape is square.
The cross-sectional shapes of the concave portion and the convex portion are not particularly limited as long as the effects of the present invention are not impaired. For example, a triangle (see FIG. 2B), a quadrangle, a partial circle, and the like can be given. Here, when the concave portion and the convex portion are partial circles, a corrugated cross-sectional shape can be obtained by alternately arranging the concave portion and the convex portion.

凹部の深さ及び凸部の高さは、小さ過ぎると導電性を向上させる効果が小さくなり、大き過ぎると活物質層を均一に形成し難くなる。従って、50〜1000μmの範囲であることが好ましく、150〜750μmの範囲であることがより好ましい。   If the depth of the concave portion and the height of the convex portion are too small, the effect of improving the conductivity will be small, and if it is too large, it will be difficult to form the active material layer uniformly. Therefore, it is preferably in the range of 50 to 1000 μm, and more preferably in the range of 150 to 750 μm.

更に、凹部の最下点及び凸部の頂点には、図3(a)の概略要部断面図及び図3(b)の概略要部平面図にあるように、開口が形成されていてもよい。なお、開口は、集電体間の活物質からのリチウムイオンの拡散が阻害されることを防止できさえすれば、図3(a)及び(b)以外の箇所に形成されていてもよい。
3次元構造領域は、例えば、雄型と雌型を用いてプレスする方法、パンチング加工方法、ラス加工方法等により形成できる。なお、3次元構造領域の形成は、導電層を形成した後でも、形成する前でもよいが、導電層の形成方法に合わせて適宜選択できる。
Furthermore, as shown in the schematic cross-sectional view of the main part in FIG. 3A and the schematic plan view of the main part in FIG. Good. Note that the openings may be formed at locations other than FIGS. 3A and 3B as long as it is possible to prevent the diffusion of lithium ions from the active material between the current collectors.
The three-dimensional structure region can be formed by, for example, a pressing method using a male mold and a female mold, a punching processing method, a lath processing method, or the like. The three-dimensional structure region may be formed either after the conductive layer is formed or before it is formed, but can be appropriately selected according to the method for forming the conductive layer.

(2)電極の構成
電極は、集電体を少なくとも2枚と、活物質層とを備えている。本発明の電極は、複数枚の集電体を含むため、活物質の塗布重量を大きくしても、充放電に寄与しない活物質が存在することを防止できる。例えば、活物質層に含まれる活物質の単位面積当たりの重量を、15〜100mg/cm2×前記集電体の枚数とすることができる。
電極は、例えば集電体が2枚の場合、積層方向に、活物質層/集電体/活物質層/集電体の積層構成、活物質層/集電体/活物質層/集電体/活物質層の積層構成を有しうる。
なお、集電体により活物質層が複数層に区画された場合、区画された活物質層のそれぞれは、同一の厚さを有していても、異なる厚さを有していてもよい。
(2) Configuration of electrode The electrode includes at least two current collectors and an active material layer. Since the electrode of the present invention includes a plurality of current collectors, it is possible to prevent the presence of an active material that does not contribute to charge / discharge even when the coating weight of the active material is increased. For example, the weight per unit area of the active material contained in the active material layer can be 15 to 100 mg / cm 2 × the number of the current collectors.
For example, when there are two current collectors, the electrode has a stacked structure of active material layer / current collector / active material layer / current collector, active material layer / current collector / active material layer / current collector in the stacking direction. It may have a laminated structure of body / active material layers.
Note that when the active material layer is partitioned into a plurality of layers by the current collector, each of the partitioned active material layers may have the same thickness or a different thickness.

(a)正極
(i)正極活物質層
正極活物質層に含まれる正極活物質としては、リチウムを含有した酸化物が挙げられる。具体的には、LiCoO2、LiNiO2、LiFeO2、LiMnO2、LiMn24、及びこれら酸化物中の遷移金属の一部を他の金属元素(Co、Ni、Fe、Mn、Al、Mg等)で置換した物、LiMPO4(MはCo、Ni、Mn、Feから選ばれる少なくとも1種以上の元素)で表されるオリビン構造を有する酸化物等が挙げられる。中でもMn及び/又はFeを用いた正極活物質がコストの観点から好ましい。
(A) Positive electrode (i) Positive electrode active material layer As a positive electrode active material contained in a positive electrode active material layer, the oxide containing lithium is mentioned. Specifically, LiCoO 2 , LiNiO 2 , LiFeO 2 , LiMnO 2 , LiMn 2 O 4 , and a part of transition metals in these oxides are replaced with other metal elements (Co, Ni, Fe, Mn, Al, Mg Etc.), oxides having an olivine structure represented by LiMPO 4 (M is at least one element selected from Co, Ni, Mn, and Fe). Among these, a positive electrode active material using Mn and / or Fe is preferable from the viewpoint of cost.

(ii)その他の添加物
正極活物質層には、層として維持するために、正極活物質以外に、結着材が含まれていてもよい。
結着材としては、例えば、ポリフッ化ビニリデン(PVDF)、ポリビニルピリジン、ポリテトラフルオロエチレン等のフッ素系ポリマー、ポリエチレン、ポリプロピレン等のポリオレフィン系ポリマー、スチレンブタジエンゴム等が挙げられる。
(Ii) Other Additives In order to maintain the positive electrode active material layer as a layer, a binder may be included in addition to the positive electrode active material.
Examples of the binder include fluorine polymers such as polyvinylidene fluoride (PVDF), polyvinyl pyridine, and polytetrafluoroethylene, polyolefin polymers such as polyethylene and polypropylene, and styrene butadiene rubber.

正極活物質層には、他に導電材や増粘材が含まれていてもよい。
導電材としては、化学的に安定なものを使用することが好ましい。具体的には、カーボンブラック、アセチレンブラック、ケッチェンブラック、グラファイト(天然黒鉛、人造黒鉛)、炭素繊維等の炭素質材料や導電性金属酸化物等が挙げられる。
増粘材としては、例えば、ポリエチレングリコール類、セルロース類、ポリアクリルアミド類、ポリN−ビニルアミド類、ポリN−ビニルピロリドン類等が挙げられる。
In addition, the positive electrode active material layer may contain a conductive material or a thickener.
As the conductive material, it is preferable to use a chemically stable material. Specific examples include carbonaceous materials such as carbon black, acetylene black, ketjen black, graphite (natural graphite, artificial graphite), carbon fiber, and conductive metal oxides.
Examples of the thickener include polyethylene glycols, celluloses, polyacrylamides, poly N-vinyl amides, poly N-vinyl pyrrolidones and the like.

結着材、増粘材、導電材の混合比は、混合する結着材、増粘材、導電材の種類により異なるが、正極活物質100重量部に対して、結着材は1〜50重量部程度、増粘材は0.1〜20重量部程度、導電材は0.1〜50重量部程度である。結着材が、1重量部程度より少ないと結着能力が不十分となることがあり、50重量部程度より多いと正極内に含まれる活物質量が減り、正極の抵抗又は分極等が大きくなって放電容量が小さくなることがある。また、増粘材が、0.1重量部程度より少ないと増粘能力が不十分となることがあり、20重量部程度より多いと正極内に含まれる活物質量が減り、正極の抵抗又は分極等が大きくなって放電容量が小さくなることがある。更に、導電材が0.1重量部程度より少ないと、正極の抵抗又は分極等が大きくなって放電容量が小さくなることがあり、50重量部程度より多いと正極内に含まれる活物質量が減ることにより正極としての放電容量が小さくなることがある。   The mixing ratio of the binder, the thickener, and the conductive material varies depending on the types of the binder, the thickener, and the conductive material to be mixed, but the binder is 1 to 50 with respect to 100 parts by weight of the positive electrode active material. About 0.1 parts by weight, thickener is about 0.1-20 parts by weight, and conductive material is about 0.1-50 parts by weight. When the amount of the binder is less than about 1 part by weight, the binding ability may be insufficient. When the amount of the binder is more than about 50 parts by weight, the amount of active material contained in the positive electrode is reduced, and the resistance or polarization of the positive electrode is increased. As a result, the discharge capacity may be reduced. Further, if the thickener is less than about 0.1 parts by weight, the thickening ability may be insufficient, and if it is more than about 20 parts by weight, the amount of the active material contained in the positive electrode decreases, and the positive electrode resistance or Polarization and the like may increase and the discharge capacity may decrease. Furthermore, if the conductive material is less than about 0.1 part by weight, the resistance or polarization of the positive electrode may increase and the discharge capacity may decrease, and if it exceeds about 50 parts by weight, the amount of active material contained in the positive electrode may be small. By decreasing, the discharge capacity as the positive electrode may be reduced.

(b)負極
(i)負極活物質層
負極活物質層に含まれる負極活物質としては、天然黒鉛、粒子状(鱗片状、塊状、繊維状、ウイスカー状、球状、破砕状等)の人造黒鉛、あるいは、メソカーボンマイクロビーズ、メソフェーズピッチ粉末、等方性ピッチ粉末等の黒鉛化品等に代表される高結晶性黒鉛、樹脂焼成炭等の難黒鉛化炭素等が挙げられる。これら負極活物質は、1種のみからなっていてもよく、2種以上混合してもよい。また、錫の酸化物、シリコン系の負極活物質等の容量の大きい合金系の材料も使用可能である。
(ii)その他の添加物
負極活物質層には、正極活物質層と同様に、結着材、導電材、増粘材等の他の添加物が含まれていてもよい。これら他の添加物は、正極活物質層の欄に記載した物をいずれも使用できる。
(B) Negative electrode (i) Negative electrode active material layer As the negative electrode active material contained in the negative electrode active material layer, natural graphite, particulate (scale-like, lump-like, fibrous, whisker-like, spherical, crushed, etc.) artificial graphite Or highly crystalline graphite typified by graphitized products such as mesocarbon microbeads, mesophase pitch powder and isotropic pitch powder, and non-graphitizable carbon such as resin-fired charcoal. These negative electrode active materials may consist of only 1 type, and may mix 2 or more types. Also, alloy materials having a large capacity such as tin oxide and silicon-based negative electrode active materials can be used.
(Ii) Other Additives The negative electrode active material layer may contain other additives such as a binder, a conductive material, and a thickener as in the positive electrode active material layer. As these other additives, any of those described in the column of the positive electrode active material layer can be used.

(c)形成方法
電極は、例えば、活物質及び任意にその他の添加物を含むペーストを集電体上に塗布し、次いで、他の集電体を塗膜上に載置した後に塗膜を乾燥させ、ペーストを他の集電体上に塗布し、得られた塗膜を乾燥させる手順を繰り返し、最後にプレスする方法により形成できる。
上記以外の方法として、
(i)集電体の両面に塗膜を形成して両面塗工集電体を得、これとは別に集電体の片面に塗膜を形成して片面塗工集電体を得、片面塗工集電体の未塗工面に両面塗工集電体を載置し、プレスする方法、
(ii)片面塗工集電体の未塗工面に塗膜を形成し、形成した塗膜上に他の片面塗工集電体の未塗工面を載置し、プレスする方法、
(iii)片面塗工集電体の未塗工面に塗膜を形成し、形成した塗膜上に未塗工集電体を載置し、未塗工集電体の未塗工面に塗膜を形成し、プレスする方法、
(iv)所定の大きさの型内に、集電体群を配置し、型にペーストを充填し、ペーストを乾燥させ、型から取り出して、もしくは取り出さずにプレスする方法
等が挙げられる。
また、ペーストの塗布と乾燥を繰り返すことにより、活物質層自体を厚くすることも可能である。更に、乾燥後に、電極特性向上のためにプレスしてもよい。
活物質層は、集電体全面を覆っていてもよく、端子を形成する部位を除く集電体領域を覆っていてもよい。また、集電体の両面に活物質層を形成してもよい。更に、活物質層を片面に備えた集電体を2枚形成し、2枚の集電体の活物質層未形成の面同士を貼り合わせることで、両面に活物質層を備えた電極を得てもよい。
(C) Forming method For example, the electrode is formed by applying a paste containing an active material and optionally other additives on the current collector, and then placing the other current collector on the coating film. It can form by the method of drying, apply | coating a paste on another electrical power collector, repeating the procedure of drying the obtained coating film, and finally pressing.
As a method other than the above,
(I) A coated film is formed on both sides of the current collector to obtain a double-sided coated current collector. Separately, a coated film is formed on one side of the current collector to obtain a single-sided coated current collector. A method of placing and pressing a double-sided coated current collector on the uncoated surface of the coated current collector,
(Ii) A method of forming a coating film on an uncoated surface of a single-sided coated current collector, placing an uncoated surface of another single-sided coated current collector on the formed coating film, and pressing it;
(Iii) A coating film is formed on the uncoated surface of the single-sided coated current collector, the uncoated current collector is placed on the formed coating film, and the coated film is applied to the uncoated surface of the uncoated current collector. Forming and pressing method,
(Iv) A method in which a current collector group is arranged in a mold of a predetermined size, the mold is filled with paste, the paste is dried, taken out from the mold, or pressed without being taken out, and the like.
Further, the active material layer itself can be thickened by repeating the application and drying of the paste. Furthermore, after drying, you may press for an electrode characteristic improvement.
The active material layer may cover the entire surface of the current collector, or may cover the current collector region excluding the portion where the terminal is formed. Further, an active material layer may be formed on both sides of the current collector. Furthermore, by forming two current collectors having an active material layer on one side and bonding the surfaces of the two current collectors where the active material layer is not formed, electrodes having an active material layer on both sides are formed. May be obtained.

(3)非水系二次電池
非水系二次電池は、正極、負極、及び前記正極と前記負極間に位置するセパレータと、電解質とを備えるセルを有する。
(a)電極
正極及び負極の少なくとも一方は、上記非水系二次電池用電極である。
正極及び負極の両方が、上記非水系二次電池用電極であってもよく、どちらか一方が、上記非水系二次電池用電極であってもよい。
上記非水系二次電池用電極以外の電極としては、平坦な集電体(金属箔、導電層と樹脂フィルムとの積層体等)と、その上に形成された活物質層とからなる、公知の電極が挙げられる。
(3) Nonaqueous secondary battery A nonaqueous secondary battery has a cell provided with a positive electrode, a negative electrode, a separator located between the positive electrode and the negative electrode, and an electrolyte.
(A) Electrode At least one of a positive electrode and a negative electrode is the said electrode for non-aqueous secondary batteries.
Both the positive electrode and the negative electrode may be the non-aqueous secondary battery electrode, and either one may be the non-aqueous secondary battery electrode.
As an electrode other than the electrode for the non-aqueous secondary battery, a known material is composed of a flat current collector (a metal foil, a laminate of a conductive layer and a resin film, etc.) and an active material layer formed thereon. The electrode is mentioned.

(b)セパレータ
セパレータは、例えば、電気絶縁性の合成樹脂繊維、ガラス繊維、天然繊維等の不織布、織布又は微多孔質膜等の中から適宜選択可能である。なかでもポリエチレン、ポリプロピレン、ポリエステル、アラミド系樹脂、セルロース系樹脂等の不織布、微多孔質膜が品質の安定性等の点から好ましい。これら合成樹脂の不織布、微多孔質膜では電池が異常発熱した場合に、セパレータが熱により溶解し、正負極間を遮断する機能を付加したものもあり、安全性の観点からこれらも好適に使用することができる。
セパレータの厚さは特に限定されないが、必要量の電解液を保持することが可能で、かつ正極と負極との短絡を防ぐ厚さがあればよい。例えば、10〜1000μm程度であり、好ましくは20〜50μm程度である。また、セパレータを構成する材質は、透気度が1〜500秒/cm3であることが、低い電池内部抵抗を維持しつつ、電池内部短絡を防ぐだけの強度を確保できるため好ましい。
(B) Separator The separator can be appropriately selected from, for example, electrically insulating synthetic resin fibers, glass fibers, nonwoven fabrics such as natural fibers, woven fabrics, or microporous membranes. Of these, non-woven fabrics such as polyethylene, polypropylene, polyester, aramid resin, and cellulose resin, and microporous membranes are preferable from the viewpoint of quality stability and the like. Some of these synthetic resin non-woven fabrics and microporous membranes have a function in which the separator melts by heat and blocks between the positive and negative electrodes when the battery abnormally heats up. can do.
Although the thickness of a separator is not specifically limited, The thickness which can hold | maintain a required amount of electrolyte solution and prevents the short circuit of a positive electrode and a negative electrode should just be sufficient. For example, it is about 10-1000 micrometers, Preferably it is about 20-50 micrometers. Moreover, it is preferable that the material constituting the separator has an air permeability of 1 to 500 seconds / cm 3 because strength sufficient to prevent a battery internal short circuit can be secured while maintaining a low battery internal resistance.

セパレータの形状及び大きさは特に限定されるものではなく、例えば、正方形又は長方形等の矩形、多角形、円形等種々の形状が挙げられる。更に、正極及び負極とともに積層させた場合に、正極よりも大きいことが好ましく、なかでも、正極よりもやや大きく、負極よりもやや小さな相似形であることが好ましい。   The shape and size of the separator are not particularly limited, and examples thereof include various shapes such as a rectangle such as a square or a rectangle, a polygon, and a circle. Furthermore, when laminated together with the positive electrode and the negative electrode, it is preferably larger than the positive electrode, and in particular, it is preferably a similar shape slightly larger than the positive electrode and slightly smaller than the negative electrode.

(c)電解質
電解質は、一般に、有機溶媒と電解質塩とを含む電解液が使用される。
有機溶媒としては、プロピレンカーボネート(PC)とエチレンカーボネート(EC)、ブチレンカーボネート等の環状カーボネート類と、ジメチルカーボネート(DMC)、ジエチルカーボネート、エチルメチルカーボネート、ジプロピルカーボネート等の鎖状カーボネート類、γ−ブチロラクトン、γ−バレロラクトン等のラクトン類、テトラヒドロフラン、2−メチルテトラヒドロフラン等のフラン類、ジエチルエーテル、1,2−ジメトキシエタン、1,2−ジエトキシエタン、エトキシメトキシエタン、ジオキサン等のエーテル類、ジメチルスルホキシド、スルホラン、メチルスルホラン、アセトニトリル、ギ酸メチル、酢酸メチル等が挙げられる。これら有機溶媒は、2種以上混合してもよい。
(C) Electrolyte As the electrolyte, an electrolytic solution containing an organic solvent and an electrolyte salt is generally used.
Examples of the organic solvent include cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), and butylene carbonate; chain carbonates such as dimethyl carbonate (DMC), diethyl carbonate, ethyl methyl carbonate, and dipropyl carbonate; -Lactones such as butyrolactone and γ-valerolactone, furans such as tetrahydrofuran and 2-methyltetrahydrofuran, ethers such as diethyl ether, 1,2-dimethoxyethane, 1,2-diethoxyethane, ethoxymethoxyethane, and dioxane Dimethyl sulfoxide, sulfolane, methyl sulfolane, acetonitrile, methyl formate, methyl acetate and the like. Two or more of these organic solvents may be mixed.

電解質塩としては、ホウフッ化リチウム(LiBF4)、リンフッ化リチウム(LiPF6)、トリフルオロメタンスルホン酸リチウム(LiCF3SO3)、トリフルオロ酢酸リチウム(LiCF3COO)、トリフルオロメタンスルホン酸イミドリチウム(LiN(CF3SO22)等のリチウム塩が挙げられる。これら電解質塩は、2種以上を混合してもよい。
また、上記電解液をポリマーマトリックス中に保持したゲル電解質や、イオン液体からなる電解質を用いることも可能である。
Examples of the electrolyte salt include lithium borofluoride (LiBF 4 ), lithium phosphofluoride (LiPF 6 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), lithium trifluoroacetate (LiCF 3 COO), lithium trifluoromethanesulfonate imido ( Examples thereof include lithium salts such as LiN (CF 3 SO 2 ) 2 ). Two or more of these electrolyte salts may be mixed.
Moreover, it is also possible to use the gel electrolyte which hold | maintained the said electrolyte solution in the polymer matrix, and the electrolyte which consists of an ionic liquid.

(d)セル
電池は、正極、セパレータ及び負極の積層方向に対して、複数のセルを備えていてもよい。この場合、1つのセル中の正極が隣接する他のセルの正極を、及び/又は、1つのセル中の負極が隣接する他のセルの負極を兼ねることが可能である。兼ねることで、正極及び/又は負極を新たに設けるスペースを削減できるので、より高エネルギー密度の電池を提供できる。
更に、電極を構成する集電体群の内、最表面側の集電体が、前記樹脂フィルムと導電層とを備える集電体であることが好ましい。この電極を使用すれば、電池内部で異常発熱が生じた際に、樹脂フィルムの溶断に伴う電極破損による電流遮断機能を、より効果的に発現可能であるため、より安全性の高い電池を提供できる。
(D) Cell The battery may include a plurality of cells in the stacking direction of the positive electrode, the separator, and the negative electrode. In this case, the positive electrode in one cell can also serve as the positive electrode of another cell and / or the negative electrode of another cell in which the negative electrode in one cell is adjacent. By serving also, the space for newly providing the positive electrode and / or the negative electrode can be reduced, so that a battery having a higher energy density can be provided.
Furthermore, it is preferable that the current collector on the outermost surface of the current collector group constituting the electrode is a current collector provided with the resin film and the conductive layer. If this electrode is used, when abnormal heat generation occurs inside the battery, the current interruption function due to electrode breakage due to fusing of the resin film can be expressed more effectively, providing a safer battery it can.

(e)その他
電池は、外装缶や樹脂フィルムからなる袋体に保持されていてもよい。
外装缶には、金属製の缶、例えば鉄にニッケルメッキが施された材料を用いるのが好ましい。これは、外装缶としての強度を保つのに、安価で達成できるからである。その他の材料としては、たとえば、ステンレススチール、アルミニウム等からなる缶でもよい。また、外装缶の形状は薄い扁平筒型、円筒型、角筒型等いずれでもよいが、大型リチウム二次電池の場合は組電池として使用することが多いため薄い扁平筒型または角筒型であるのが好ましい。
(E) Others The battery may be held in a bag made of an outer can or a resin film.
For the outer can, it is preferable to use a metal can, for example, a material in which iron is nickel-plated. This is because it can be achieved at low cost in order to maintain the strength of the outer can. As another material, for example, a can made of stainless steel, aluminum, or the like may be used. The shape of the outer can may be any of a thin flat tube type, a cylindrical type, a rectangular tube type, etc., but in the case of a large lithium secondary battery, it is often used as an assembled battery. Preferably there is.

以下、実施例により具体的に本発明を説明するが、本発明はこれにより何ら制限されるものではない。
実施例1
この実施例では図1の概略断面図に示す正極を含む電池を作製した。図1中、A及びCは上下正極集電体、Bは中心正極集電体、Dは正極活物質層を意味する。なお、上下集電体は3次元構造及び開口を有しているが、図1では図示の簡略化のために省略している。
正極活物質としてLiFePO4を100重量部、導電材(電気化学工業社製デンカブラック)を10重量部、結着材としてPVDF(クレハ社製KFポリマー(登録商標))を10重量部、溶剤としてN−メチル−2−ピロリドン(以下、NMPと称する)を用い正極活物質層形成用のペーストを作製した。
正極の上下正極集電体A及びCには、6.5μm厚アルミニウム箔/20μm厚ポリオレフィン系樹脂層/6.5μm厚アルミニウム箔を積層してなるラミネートフィルムを、凹部の最下点及び凸部の頂点に開口が形成されるように3次元形状に加工したものを使用した(平面形状:長さ250mm、幅150mmの長方形)。図3(a)に正極集電体の概略要部断面図の一部を、図3(b)に概略要部平面図の一部を示す。また、3次元構造領域及び開口の概要を下記する。
・凹部と凸部の合計数:73500個(単位面積当たりの個数は200個/cm2
・凹部及び凸部の平面形状:円
・開口の平面形状:円
・凹部及び凸部の断面形状:三角形
・凹部の深さ及び凸部の高さ:200μm
・凹部の最上端及び凸部の最下端の直径:300μm
・開口の直径:200μm
・平面視長さ方向の端部から幅5mmの範囲は凹部及び凸部、開口の存在しない平面である
中心正極集電体Bには、平板状の厚さ20μmアルミニウム箔を用いた。
Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto.
Example 1
In this example, a battery including the positive electrode shown in the schematic cross-sectional view of FIG. 1 was produced. In FIG. 1, A and C are upper and lower positive electrode current collectors, B is a central positive electrode current collector, and D is a positive electrode active material layer. Note that the upper and lower current collectors have a three-dimensional structure and an opening, but are omitted in FIG. 1 for simplicity of illustration.
100 parts by weight of LiFePO 4 as a positive electrode active material, 10 parts by weight of a conductive material (Denka Black manufactured by Denki Kagaku Kogyo), 10 parts by weight of PVDF (KF polymer (registered trademark) manufactured by Kureha Co., Ltd.) as a binder, A paste for forming a positive electrode active material layer was prepared using N-methyl-2-pyrrolidone (hereinafter referred to as NMP).
For the upper and lower positive electrode current collectors A and C of the positive electrode, a laminate film formed by laminating 6.5 μm thick aluminum foil / 20 μm thick polyolefin resin layer / 6.5 μm thick aluminum foil is used as the lowest point of the concave portion and the convex portion. What was processed into a three-dimensional shape so that an opening was formed at the apex of the plate (planar shape: rectangle with a length of 250 mm and a width of 150 mm) was used. 3A shows a part of a schematic cross-sectional view of the main part of the positive electrode current collector, and FIG. 3B shows a part of the schematic plan view of the main part. An outline of the three-dimensional structure region and the opening will be described below.
・ Total number of concave and convex portions: 73500 (number per unit area is 200 / cm 2 )
-Planar shape of recesses and projections: circles-Plane shape of openings: cross-sectional shapes of circles, recesses and projections: triangles-Depth of recesses and height of projections: 200 μm
・ Diameter of the uppermost end of the concave portion and the lowermost end of the convex portion: 300 μm
・ Aperture diameter: 200 μm
-The range of 5 mm in width from the end in the length direction in plan view is a flat surface having no concave portions, convex portions, or openings. The central positive electrode current collector B was a flat plate-shaped 20 μm thick aluminum foil.

図3(a)及び(b)中、1は樹脂フィルム、2は導電層、3は凹部、4は凸部、5は開口、aは凹部の深さ及び凸部の高さ、bは凹部の最上端及び凸部の最下端の直径、cは最近接の凹部の最下点と凸部の頂点との平面視での間隔、dは開口の直径を意味する。
上記の正極ペーストを、正極集電体A〜Cの両面に塗布し、塗布された正極集電体A〜Cを積層し、十分に乾燥した後、プレスすることで正極活物質層を備えた正極を得た(正極塗工部サイズ:長さ200mm×幅150mm、単位面積当たりの平均活物質重量:約110mg/cm2)。
3 (a) and 3 (b), 1 is a resin film, 2 is a conductive layer, 3 is a recess, 4 is a protrusion, 5 is an opening, a is the depth of the recess and the height of the protrusion, and b is a recess. The diameter of the uppermost end and the lowermost end of the convex part, c is the distance between the lowest point of the nearest concave part and the apex of the convex part, and d is the diameter of the opening.
The positive electrode paste was applied to both surfaces of the positive electrode current collectors A to C, the applied positive electrode current collectors A to C were laminated, sufficiently dried, and then pressed to provide a positive electrode active material layer. A positive electrode was obtained (positive electrode coating part size: length 200 mm × width 150 mm, average active material weight per unit area: about 110 mg / cm 2 ).

次に、負極活物質として中国産の天然黒鉛(平均粒径15μm、d002=0.3357nm、BET比表面積3m2/g)を100重量部、結着材として上記PVDFを12重量部、溶剤としてNMPを用い負極活物質層形成用のペーストを作製した。このペーストを、負極集電体としての銅箔の両面に塗布し、十分に乾燥した後、プレスすることで負極活物質層を備えた負極を得た(負極塗工部サイズ:長さ205mm×幅158mm)。 Next, 100 parts by weight of Chinese natural graphite (average particle size 15 μm, d002 = 0.3357 nm, BET specific surface area 3 m 2 / g) as negative electrode active material, 12 parts by weight of PVDF as binder, and solvent A paste for forming a negative electrode active material layer was prepared using NMP. This paste was applied to both sides of a copper foil as a negative electrode current collector, sufficiently dried, and then pressed to obtain a negative electrode provided with a negative electrode active material layer (negative electrode coating part size: length 205 mm × Width 158 mm).

長さ205mm、幅158mm、厚さ36μmのアラミド系樹脂の不織布(日本バイリーン社製、200℃での熱収縮率1.0%以下、以下、アラミド系樹脂層)をセパレータとして、セパレータ、正極及び負極を、負極/セパレータ/正極/セパレータ/負極/セパレータ/正極/セパレータ/負極/セパレータ/正極/セパレータ/負極/セパレータ/正極/セパレータ/負極/セパレータ/正極/セパレータ/負極/セパレータ/正極/セパレータ/負極/セパレータ/正極/セパレータ/負極/セパレータ/正極/セパレータ/負極/セパレータ/正極/セパレータ/負極の順で積層することで、電池要素を得た。更に、それぞれの正極(3枚の正極集電体)及び負極にタブを溶接し、得られた電池要素を、缶内に挿入した。   A non-woven fabric of aramid resin having a length of 205 mm, a width of 158 mm, and a thickness of 36 μm (manufactured by Japan Vilene Co., Ltd., heat shrinkage rate of 1.0% or less at 200 ° C., hereinafter referred to as an aramid resin layer) is used as a separator. Negative electrode, negative electrode / separator / positive electrode / separator / negative electrode / separator / positive electrode / separator / negative electrode / separator / positive electrode / separator / negative electrode / separator / negative electrode / separator / positive electrode / separator / negative electrode / separator / positive electrode / separator A battery element was obtained by stacking in the order of / negative electrode / separator / positive electrode / separator / negative electrode / separator / positive electrode / separator / negative electrode / separator / positive electrode / separator / negative electrode. Further, a tab was welded to each positive electrode (three positive electrode current collectors) and the negative electrode, and the obtained battery element was inserted into a can.

なお、熱収縮率は、次のように決定した。まず、樹脂フィルム上に50mm以上の間隔を空けて2つのポイントを付け、両者のポイント間距離をノギスを用いて測定した。その後、15分間、200℃で加熱処理を行った後に、再度、同じポイント間距離を測定し、加熱処理前後の測定値から熱収縮率を求めた。この方法に基づき、樹脂フィルムの縦方向及び横方向について、それぞれ3つ以上のポイント間距離を測定し、各々の測定結果から算出された熱収縮率の平均値を縦、横それぞれの熱収縮率とし、縦、横いずれか大きい方の値を最終的な熱収縮率として決定した。このとき、樹脂フィルムの縦方向及び横方向のそれぞれについて、少なくとも、樹脂フィルムの端部から10%以内の2点と、樹脂フィルムの端部から50%前後の1点を、ポイント間距離の測定箇所として選定した。
電解液としては、エチレンカーボネート(EC)とジメチルカーボネート(DMC)を体積比で1:1になるように混合した溶媒に1MのLiPF6を溶解したものを用いた。この電解液を、缶内に注液し、減圧下にて保持して、大気圧に戻した後、蓋の外周を封止して電池を作製した。
The heat shrinkage rate was determined as follows. First, two points were attached on the resin film with an interval of 50 mm or more, and the distance between the two points was measured using a caliper. Then, after heat-processing for 15 minutes at 200 degreeC, the same distance between points was measured again and the thermal contraction rate was calculated | required from the measured value before and behind heat processing. Based on this method, the distance between three or more points was measured for each of the longitudinal direction and the transverse direction of the resin film, and the average value of the thermal shrinkage rate calculated from each measurement result was determined for the longitudinal and lateral thermal shrinkage rates. And the larger value of either vertical or horizontal was determined as the final heat shrinkage rate. At this time, for each of the longitudinal direction and the lateral direction of the resin film, at least two points within 10% from the end of the resin film and one point around 50% from the end of the resin film are measured for the distance between the points. Selected as a location.
As the electrolytic solution, a solution obtained by dissolving 1M LiPF 6 in a solvent in which ethylene carbonate (EC) and dimethyl carbonate (DMC) were mixed at a volume ratio of 1: 1 was used. This electrolytic solution was poured into a can, held under reduced pressure and returned to atmospheric pressure, and then the outer periphery of the lid was sealed to produce a battery.

比較例1
上下正極集電体として用いた、6.5μm厚アルミニウム箔/20μm厚ポリオレフィン系樹脂層/6.5μm厚アルミニウム箔を積層してなるラミネートフィルムに、3次元形状の加工及び開口の形成をしていないこと以外は実施例1と同様に行った。
Comparative Example 1
Three-dimensional shape processing and openings are formed on a laminate film made by laminating 6.5 μm thick aluminum foil / 20 μm thick polyolefin resin layer / 6.5 μm thick aluminum foil used as upper and lower positive electrode current collectors. The procedure was the same as in Example 1 except that no.

比較例2
上下正極集電体を用いず、中心正極集電体として、6.5μm厚アルミニウム箔/20μm厚ポリオレフィン系樹脂層/6.5μm厚アルミニウム箔を積層してなるラミネートフィルムを、凹部の最下点及び凸部の頂点に開口が形成されるように3次元形状に加工したものを用いること以外は実施例1と同様に行った。ただし、正極の単位面積当たりの活物質重量が実施例1の正極と等しくなるように作製した。
Comparative Example 2
A laminate film formed by laminating 6.5 μm-thick aluminum foil / 20 μm-thick polyolefin resin layer / 6.5 μm-thick aluminum foil is used as the central positive electrode current collector without using the upper and lower positive electrode current collectors. The same procedure as in Example 1 was performed except that a three-dimensional shape was used so that an opening was formed at the apex of the convex portion. However, the active material weight per unit area of the positive electrode was made equal to that of the positive electrode of Example 1.

(電池特性評価)
実施例1及び比較例1〜2の電池を、以下の充放電試験により評価した。
(Battery characteristics evaluation)
The batteries of Example 1 and Comparative Examples 1 and 2 were evaluated by the following charge / discharge test.

(充放電試験)
試験条件
充電:充電電流0.2C、終止電圧3.5Vで定電流定電圧充電し、20時間充電後又は充電電流が0.02Cまで減衰後に充電終了
放電:放電電流0.2C、0.5C、1Cでそれぞれ定電流放電し、終止電圧2.0V到達後に放電終了
上記条件で充放電試験を行った。2.0Vまで放電を行った時間をもとに、放電電流1.0Cと0.2Cの際の放電容量を算出した。以下の表1に0.2C時の放電容量と、それに対する1.0C時の放電容量の割合を示す。
(Charge / discharge test)
Test conditions Charging: Charged at constant current and constant voltage at a charging current of 0.2 C and a final voltage of 3.5 V, and terminated after charging for 20 hours or after the charging current decayed to 0.02 C. Discharge: Discharge current of 0.2 C, 0.5 C 1C was discharged at a constant current, and the discharge was completed after reaching a final voltage of 2.0 V. The charge / discharge test was performed under the above conditions. Based on the discharge time to 2.0 V, the discharge capacity at discharge currents of 1.0 C and 0.2 C was calculated. Table 1 below shows the discharge capacity at 0.2 C and the ratio of the discharge capacity at 1.0 C to the discharge capacity.

表1から、0.2C時の放電容量、放電容量の割合(1.0C容量/0.2C容量)共に、実施例1の電池が他の電池より大きいこと、3次元形状加工及び開口形成を施した上下正極集電体の配置が電池特性向上に効果的であることが判明した。   From Table 1, the discharge capacity at 0.2 C and the ratio of the discharge capacity (1.0 C capacity / 0.2 C capacity) were larger than the other batteries in Example 1, and the three-dimensional shape processing and opening formation were performed. It was found that the arrangement of the applied upper and lower positive electrode current collectors is effective for improving battery characteristics.

(電池安全性評価)
上記充放電試験後の実施例1の電池を、以下の釘刺し試験により評価した。
(Battery safety evaluation)
The battery of Example 1 after the charge / discharge test was evaluated by the following nail penetration test.

(釘刺し試験)
上記充放電試験後に満充電状態とし、2.5mmφの釘を用いた釘刺し試験での挙動を観測したところ、電池の膨張・破裂・発火なきことが確認でき、安全性の高い電池であることが判明した。
(Nail penetration test)
After the above charge / discharge test, the battery was fully charged and the behavior in a nail penetration test using a 2.5 mmφ nail was observed. As a result, it was confirmed that there was no expansion, rupture, or ignition of the battery. There was found.

A及びC:上下正極集電体、B:中心正極集電体、D:正極活物質層、1:樹脂フィルム、2:導電層、3:凹部、4:凸部、5:開口、a:凹部の深さ及び凸部の高さ、b:凹部の最上端及び凸部の最下端の直径、c:最近接の凹部の最下点と凸部の頂点との平面視での間隔、d:開口の直径 A and C: upper and lower positive electrode current collectors, B: central positive electrode current collector, D: positive electrode active material layer, 1: resin film, 2: conductive layer, 3: concave portion, 4: convex portion, 5: opening, a: Depth of concave portion and height of convex portion, b: Diameter of the uppermost end of the concave portion and the lowermost end of the convex portion, c: Distance in plan view between the lowest point of the nearest concave portion and the apex of the convex portion, d : Diameter of opening

Claims (6)

非水系二次電池に使用される正極又は負極としての電極であり、
前記電極が、活物質層と、前記活物質層の厚さ方向に前記活物質層を介して積層された少なくとも2枚の集電体からなる集電体群とを備え、
前記集電体群中の少なくとも1枚の集電体が、樹脂フィルムと、その少なくとも片面に積層された導電層とから構成され、かつ前記集電体群中の全ての集電体又は1枚以外の集電体が、1つ以上の開口を有することを特徴とする非水系二次電池用電極。
It is an electrode as a positive electrode or a negative electrode used for a non-aqueous secondary battery,
The electrode includes an active material layer, and a current collector group including at least two current collectors stacked via the active material layer in the thickness direction of the active material layer,
At least one current collector in the current collector group is composed of a resin film and a conductive layer laminated on at least one surface thereof, and all the current collectors or one sheet in the current collector group An electrode for a non-aqueous secondary battery, wherein the current collector other than 1 has one or more openings.
前記集電体群中、最も外側にある2枚の集電体が、前記樹脂フィルムと導電層とを備える請求項1に記載の非水系二次電池用電極。   2. The electrode for a non-aqueous secondary battery according to claim 1, wherein two outermost current collectors in the current collector group include the resin film and a conductive layer. 前記活物質層に含まれる活物質の単位面積当たりの重量が、15〜100mg/cm2×前記集電体の枚数である請求項1又は2に記載の非水系二次電池用電極。 The electrode for a non-aqueous secondary battery according to claim 1 or 2, wherein the weight per unit area of the active material contained in the active material layer is 15 to 100 mg / cm 2 × the number of the current collectors. 前記集電体群中の少なくとも1枚の集電体が、凹部及び/又は凸部を1つ以上有する3次元構造領域を備える請求項1〜3のいずれか1つに記載の非水系二次電池用電極。   The non-aqueous secondary according to any one of claims 1 to 3, wherein at least one current collector in the current collector group includes a three-dimensional structure region having one or more concave portions and / or convex portions. Battery electrode. 正極、負極、及び前記正極と前記負極間に位置する電解質を含むセパレータとを備えるセルを有し、前記正極及び前記負極の少なくとも一方が請求項1〜4のいずれか1つに記載の非水系二次電池用電極であることを特徴とする非水系二次電池。   It has a cell provided with a positive electrode, a negative electrode, and the separator containing the electrolyte located between the said positive electrode and the said negative electrode, At least one of the said positive electrode and the said negative electrode is a non-aqueous system as described in any one of Claims 1-4 A non-aqueous secondary battery, which is an electrode for a secondary battery. 前記セルが、正極、セパレータ及び負極の積層方向に対して、複数備えられ、1つのセル中の正極が隣接する他のセルの正極を、及び/又は、1つのセル中の負極が隣接する他のセルの負極を兼ねる請求項5に記載の非水系二次電池。   A plurality of the cells are provided in the stacking direction of the positive electrode, the separator, and the negative electrode, and the positive electrode in one cell is adjacent to the positive electrode of another cell and / or the negative electrode in one cell is adjacent. The nonaqueous secondary battery according to claim 5, which also serves as a negative electrode of the cell.
JP2012220586A 2012-10-02 2012-10-02 Electrode for nonaqueous secondary battery and nonaqueous secondary battery Pending JP2014075191A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012220586A JP2014075191A (en) 2012-10-02 2012-10-02 Electrode for nonaqueous secondary battery and nonaqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012220586A JP2014075191A (en) 2012-10-02 2012-10-02 Electrode for nonaqueous secondary battery and nonaqueous secondary battery

Publications (1)

Publication Number Publication Date
JP2014075191A true JP2014075191A (en) 2014-04-24

Family

ID=50749226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012220586A Pending JP2014075191A (en) 2012-10-02 2012-10-02 Electrode for nonaqueous secondary battery and nonaqueous secondary battery

Country Status (1)

Country Link
JP (1) JP2014075191A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019153591A (en) * 2015-04-30 2019-09-12 フォン アルデンヌ アセット ゲーエムベーハー ウント コー カーゲー Method and coating arrangement
CN112993263A (en) * 2021-02-08 2021-06-18 珠海冠宇电池股份有限公司 Current collector and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001118565A (en) * 1999-10-14 2001-04-27 Nec Corp Electrode-forming body, method for manufacturing and secondary battery using the same
JP2002516473A (en) * 1998-05-15 2002-06-04 ヴァレンス テクノロジー、 インク. Grid placement in lithium-ion two-cell counter electrode
JP2003031224A (en) * 2001-04-10 2003-01-31 Toyo Kohan Co Ltd Light-weight current collector for secondary battery
JP2009032398A (en) * 2007-07-24 2009-02-12 Toyota Motor Corp Electrode body for battery and its manufacturing method
JP2009070782A (en) * 2007-09-18 2009-04-02 Fuji Heavy Ind Ltd Power storage device
JP2012048913A (en) * 2010-08-25 2012-03-08 Sharp Corp Collector and electrode for nonaqueous secondary battery, and nonaqueous secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002516473A (en) * 1998-05-15 2002-06-04 ヴァレンス テクノロジー、 インク. Grid placement in lithium-ion two-cell counter electrode
JP2001118565A (en) * 1999-10-14 2001-04-27 Nec Corp Electrode-forming body, method for manufacturing and secondary battery using the same
JP2003031224A (en) * 2001-04-10 2003-01-31 Toyo Kohan Co Ltd Light-weight current collector for secondary battery
JP2009032398A (en) * 2007-07-24 2009-02-12 Toyota Motor Corp Electrode body for battery and its manufacturing method
JP2009070782A (en) * 2007-09-18 2009-04-02 Fuji Heavy Ind Ltd Power storage device
JP2012048913A (en) * 2010-08-25 2012-03-08 Sharp Corp Collector and electrode for nonaqueous secondary battery, and nonaqueous secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019153591A (en) * 2015-04-30 2019-09-12 フォン アルデンヌ アセット ゲーエムベーハー ウント コー カーゲー Method and coating arrangement
CN112993263A (en) * 2021-02-08 2021-06-18 珠海冠宇电池股份有限公司 Current collector and application thereof

Similar Documents

Publication Publication Date Title
JP5690529B2 (en) Current collector and electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JP5690575B2 (en) Non-aqueous secondary battery
JP5055350B2 (en) Nonaqueous electrolyte secondary battery and electrode for nonaqueous electrolyte secondary battery
JP5693982B2 (en) Non-aqueous secondary battery
JP6337777B2 (en) Separator, electrode element, power storage device, and method for manufacturing the separator
US20130177787A1 (en) Current collector and nonaqueous secondary battery
US20150111085A1 (en) Separator for Electrochemical Element and Fabrication Method for Same
JP4649502B2 (en) Lithium ion secondary battery
JP5371979B2 (en) Lithium ion secondary battery
JPWO2005067080A1 (en) Lithium ion secondary battery
JP6783149B2 (en) Power storage device
JP2013012405A (en) Nonaqueous secondary battery
JP3705801B1 (en) Lithium ion secondary battery
JP5937969B2 (en) Non-aqueous secondary battery
JP6184810B2 (en) Non-aqueous secondary battery
JP2015072805A (en) Nonaqueous secondary battery
WO2010131650A1 (en) Non-aqueous electrolyte secondary battery
JPWO2005067079A1 (en) Lithium secondary battery
JP2011159506A (en) Nonaqueous secondary battery
JP2010040488A (en) Battery
WO2013002055A1 (en) Current collector and electrode for use in non-aqueous secondary cell, and non-aqueous secondary cell
JP2018152229A (en) Secondary battery
JP5435565B2 (en) Non-aqueous electrolyte secondary battery
KR101900149B1 (en) Non-Aqueous Electrolyte Secondary Battery
CN112216878B (en) Lithium ion battery repeating unit, lithium ion battery, using method of lithium ion battery, battery module and automobile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160705

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170110