[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2014074213A - High strength aluminum alloy extruded material and method of producing the same - Google Patents

High strength aluminum alloy extruded material and method of producing the same Download PDF

Info

Publication number
JP2014074213A
JP2014074213A JP2012222943A JP2012222943A JP2014074213A JP 2014074213 A JP2014074213 A JP 2014074213A JP 2012222943 A JP2012222943 A JP 2012222943A JP 2012222943 A JP2012222943 A JP 2012222943A JP 2014074213 A JP2014074213 A JP 2014074213A
Authority
JP
Japan
Prior art keywords
extruded material
less
aluminum alloy
strength
extrusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012222943A
Other languages
Japanese (ja)
Other versions
JP6022882B2 (en
Inventor
Hidechika Hatta
秀周 八太
Takero Watanabe
威郎 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UACJ Corp
Original Assignee
UACJ Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UACJ Corp filed Critical UACJ Corp
Priority to JP2012222943A priority Critical patent/JP6022882B2/en
Priority to CN201310439853.0A priority patent/CN103710580B/en
Priority to US14/040,630 priority patent/US20140096878A1/en
Publication of JP2014074213A publication Critical patent/JP2014074213A/en
Application granted granted Critical
Publication of JP6022882B2 publication Critical patent/JP6022882B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/05Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Extrusion Of Metal (AREA)

Abstract

【課題】耐食性、押出加工性及び押出加工後の表面品質に優れた高強度アルミニウム合金押出材を提供する。
【解決手段】Si:0.70〜1.3%(質量%、以下同じ)、Mg:0.45〜1.2%、Cu:0.15〜0.40%未満、Mn:0.10〜0.40%、Cr:0.06%以下(0%を含まず)、Zr:0.05〜0.20%、Ti:0.005〜0.15%を含有し、Fe:0.30%以下、V:0.01%以下に規制し、残部Alおよび不可避不純物からなる化学成分を有し、晶出物の粒径が5μm以下に規制されており、熱間押出方向と平行な断面における繊維状組織の面積比率が95%以上であることを特徴とする高強度アルミニウム合金押出材である。
【選択図】図1
A high-strength aluminum alloy extruded material excellent in corrosion resistance, extrudability and surface quality after extrusion is provided.
Si: 0.70 to 1.3% (mass%, hereinafter the same), Mg: 0.45 to 1.2%, Cu: 0.15 to less than 0.40%, Mn: 0.10 -0.40%, Cr: 0.06% or less (not including 0%), Zr: 0.05-0.20%, Ti: 0.005-0.15% contained, Fe: 0.0. 30% or less, V: regulated to 0.01% or less, having a chemical component consisting of the balance Al and inevitable impurities, the grain size of the crystallized product being regulated to 5 μm or less, parallel to the hot extrusion direction A high-strength aluminum alloy extruded material characterized in that the area ratio of the fibrous structure in the cross section is 95% or more.
[Selection] Figure 1

Description

本発明は、高強度アルミニウム合金からなる押出材に関する。   The present invention relates to an extruded material made of a high-strength aluminum alloy.

6000系アルミニウム合金材は、強度や耐食性に優れており、機械部品や構造部材等の用途に使用されている。近年では、自動車を始めとする輸送機器のフレーム等に6000系アルミニウム合金材を適用し、フレーム等を軽量化する検討がなされている。   The 6000 series aluminum alloy material is excellent in strength and corrosion resistance, and is used for applications such as mechanical parts and structural members. In recent years, studies have been made to apply a 6000 series aluminum alloy material to frames of transportation equipment including automobiles to reduce the weight of the frames.

自動車等に好適に用いられる高強度アルミニウム合金材の例としては、特許文献1に記載のアルミニウム合金押出材や特許文献2に記載のアルミニウム合金鍛造材がある。特許文献1に記載されたアルミニウム合金押出材は、中央部が繊維状組織、両側表層部が再結晶組織から構成されており、衝撃吸収特性に優れたアルミニウム押出材として提案されたものである。また、特許文献2に記載のアルミニウム合金鍛造材は、Mg、Siに加えてCuを0.4〜1.2重量%添加することにより、強度を高くすることを図ったものである。   Examples of the high-strength aluminum alloy material suitably used for automobiles and the like include an aluminum alloy extruded material described in Patent Document 1 and an aluminum alloy forged material described in Patent Document 2. The aluminum alloy extruded material described in Patent Document 1 has been proposed as an aluminum extruded material having a central portion composed of a fibrous structure and both surface layer portions composed of a recrystallized structure, and having excellent impact absorption characteristics. Moreover, the aluminum alloy forging material described in Patent Document 2 is intended to increase the strength by adding 0.4 to 1.2% by weight of Cu in addition to Mg and Si.

特開2001−355032号公報JP 2001-355032 A 特開平6−330264号公報JP-A-6-330264

従来の成分範囲かつ従来の製造方法により製造された6000系アルミニウム合金は、一般にフレームに使用される鉄系材料に比べて強度が低い。そのため、板厚を厚くしたり、鍛造等により補強のための形状を付与することが必要となっており、生産性が低いという問題があった。そのため、耐力が350MPa以上となる高強度アルミニウム合金材を、生産性の高い押出加工により作製することが切望されていた。   The 6000 series aluminum alloy manufactured by the conventional component range and the conventional manufacturing method generally has lower strength than the ferrous material used for the frame. Therefore, it is necessary to increase the plate thickness or to give a shape for reinforcement by forging or the like, and there is a problem that productivity is low. Therefore, it has been anxious to produce a high-strength aluminum alloy material having a yield strength of 350 MPa or more by extrusion processing with high productivity.

しかしながら、特許文献1に記載のアルミニウム合金押出材は、引張強さが300MPa程度であり、鉄系材料に替えて使用するためには強度が不足していた。   However, the aluminum alloy extruded material described in Patent Document 1 has a tensile strength of about 300 MPa, and the strength is insufficient for use in place of an iron-based material.

特許文献2に記載のアルミニウム合金は、従来の6000系アルミニウム合金よりも強度が高いものの、鍛造材であり、押出加工を行うには以下のような問題があった。すなわち、特許文献2に記載のアルミニウム合金は、押出加工の際に高速で押出するとダイス等との摩擦により表面が剥落する等、押出加工に伴って表面に欠陥が発生し、表面品質が低下するおそれがあった。   Although the aluminum alloy described in Patent Document 2 is higher in strength than the conventional 6000 series aluminum alloy, it is a forged material and has the following problems in performing extrusion processing. That is, when the aluminum alloy described in Patent Document 2 is extruded at a high speed during the extrusion process, the surface peels off due to friction with a die or the like, resulting in defects on the surface accompanying the extrusion process, and the surface quality is degraded. There was a fear.

また、特許文献2に記載のアルミニウム合金鍛造材は、6000系アルミニウム合金としてはCuの含有量が比較的多いため、耐食性が劣るものとなっていた。   Moreover, since the aluminum alloy forging material described in Patent Document 2 has a relatively high Cu content as a 6000 series aluminum alloy, the corrosion resistance is inferior.

本発明は、上記の背景に鑑みてなされたもので、耐食性、押出加工性及び押出加工後の表面品質に優れた高強度アルミニウム合金押出材を提供しようとするものである。   The present invention has been made in view of the above background, and an object of the present invention is to provide a high-strength aluminum alloy extruded material excellent in corrosion resistance, extrusion processability, and surface quality after extrusion.

本発明の一態様は、Si:0.70〜1.3%(質量%、以下同じ)、Mg:0.45〜1.2%、Cu:0.15〜0.40%未満、Mn:0.10〜0.40%、Cr:0.06%以下(0%を含まず)、Zr:0.05〜0.20%、Ti:0.005〜0.15%を含有し、Fe:0.30%以下、V:0.01%以下に規制し、残部Alおよび不可避不純物からなる化学成分を有し、
晶出物の粒径が5μm以下に規制されており、
熱間押出方向と平行な断面における繊維状組織の面積比率が95%以上であることを特徴とする高強度アルミニウム合金押出材にある(請求項1)。
In one embodiment of the present invention, Si: 0.70 to 1.3% (mass%, the same applies hereinafter), Mg: 0.45 to 1.2%, Cu: 0.15 to less than 0.40%, Mn: 0.10 to 0.40%, Cr: 0.06% or less (not including 0%), Zr: 0.05 to 0.20%, Ti: 0.005 to 0.15%, Fe : 0.30% or less, V: 0.01% or less, having a chemical component consisting of the balance Al and inevitable impurities,
The crystallized particle size is regulated to 5 μm or less,
The high strength aluminum alloy extruded material is characterized in that the area ratio of the fibrous structure in a cross section parallel to the hot extrusion direction is 95% or more.

本発明の他の態様は、Si:0.70〜1.3%(質量%、以下同じ)、Mg:0.45〜1.2%、Cu:0.15〜0.40%未満、Mn:0.10〜0.40%、Cr:0.06%以下(0%を含まず)、Zr:0.05〜0.20%、Ti:0.005〜0.15%を含有し、Fe:0.30%以下、V:0.01%以下に規制し、残部Alおよび不可避不純物からなる化学成分を有する鋳塊を作製し、
上記鋳塊を450℃以上500℃未満の温度に2〜30時間保持する均質化処理を行い、
その後、加工開始時における上記鋳塊の温度を480℃〜540℃とした状態で上記鋳塊に熱間押出加工を行って押出材とし、
該押出材の温度が480℃以上である間に2〜100℃/秒の冷却速度で150℃以下まで急冷し、
その後、上記押出材を150℃〜200℃の温度で1〜24時間加熱する時効処理を行うことを特徴とする高強度アルミニウム合金押出材の製造方法にある(請求項3)。
Other aspects of the present invention include Si: 0.70 to 1.3% (mass%, the same applies hereinafter), Mg: 0.45 to 1.2%, Cu: 0.15 to less than 0.40%, Mn : 0.10 to 0.40%, Cr: 0.06% or less (not including 0%), Zr: 0.05 to 0.20%, Ti: 0.005 to 0.15%, Fe: 0.30% or less, V: 0.01% or less, to produce an ingot having a chemical component consisting of the balance Al and inevitable impurities,
A homogenization treatment is performed in which the ingot is held at a temperature of 450 ° C. or higher and lower than 500 ° C. for 2 to 30 hours,
Then, in the state where the temperature of the ingot at the start of processing is 480 ° C. to 540 ° C., the ingot is subjected to hot extrusion to obtain an extruded material,
While the temperature of the extruded material is 480 ° C. or higher, it is rapidly cooled to 150 ° C. or lower at a cooling rate of 2 to 100 ° C./second,
Thereafter, the extruded material is subjected to an aging treatment in which the extruded material is heated at a temperature of 150 ° C. to 200 ° C. for 1 to 24 hours (claim 3).

上記高強度アルミニウム合金押出材は、上記特定の化学成分を有している。そのため、上記高強度アルミニウム合金押出材は、耐食性、押出加工性に優れるとともに、高強度な押出材となりやすい。
また、上記高強度アルミニウム合金押出材は、晶出物の粒径を5μm以下に規制している。そのため、上記高強度アルミニウム合金押出材は、押出加工の際に表面が剥落しにくく、押出加工後の表面品質に優れるものとなりやすい。
また、上記高強度アルミニウム合金押出材は、熱間押出方向と平行な断面における繊維状組織の面積比率が95%以上である。そのため、上記高強度アルミニウム合金押出材は、350MPa以上の耐力を有するものとなりやすい。
The high-strength aluminum alloy extruded material has the specific chemical component. Therefore, the high-strength aluminum alloy extruded material is excellent in corrosion resistance and extrusion processability, and easily becomes a high-strength extruded material.
The high-strength aluminum alloy extruded material regulates the crystallized particle size to 5 μm or less. Therefore, the high-strength aluminum alloy extruded material is less likely to be peeled off during extrusion, and tends to be excellent in surface quality after extrusion.
The high strength aluminum alloy extruded material has an area ratio of a fibrous structure in a cross section parallel to the hot extrusion direction of 95% or more. Therefore, the high-strength aluminum alloy extruded material tends to have a proof stress of 350 MPa or more.

すなわち、上記高強度アルミニウム合金押出材は、上記特定の化学成分と、上述のように制御された金属組織との相乗効果により、耐食性、押出加工性及び押出加工後の表面品質に優れ、かつ、350MPa以上の耐力を有する高強度な押出材となる。   That is, the high-strength aluminum alloy extruded material is excellent in corrosion resistance, extrudability and surface quality after extrusion, due to a synergistic effect of the specific chemical component and the metal structure controlled as described above, and It becomes a high-strength extruded material having a yield strength of 350 MPa or more.

次に、上記高強度アルミニウム合金押出材の製造方法は、上記特定の処理温度、処理時間及び処理手順により上記高強度アルミニウム合金押出材を製造する。これにより、上記高強度アルミニウム合金押出材を容易に得ることができる。   Next, the manufacturing method of the said high strength aluminum alloy extruded material manufactures the said high strength aluminum alloy extruded material with the said specific process temperature, process time, and a process procedure. Thereby, the said high intensity | strength aluminum alloy extrusion material can be obtained easily.

実施例1における、繊維状組織の面積比率が高い試料No.1の金属組織写真。In Example 1, the sample No. 1 with a high area ratio of the fibrous tissue was used. 1 is a metal structure photograph. 実施例1における、繊維状組織の面積比率が低い試料No.10の金属組織写真。In Example 1, the sample No. 2 with a low area ratio of the fibrous tissue was used. 10 metallographic photographs.

上記高強度アルミニウム合金押出材は、0.70%以上1.3%以下のSiと、0.45%以上1.2%以下のMgとを共に含有している。SiとMgとは、合金中に共存することにより時効処理中にMgSi粒子を析出させ、析出強化により上記押出材の強度を向上させる作用を有する。また、MgSi粒子として析出しない過剰のSiは、MgSi粒子を微細化する等の作用を有し、上記押出材の強度向上に寄与する。 The high-strength aluminum alloy extruded material contains both 0.70% and 1.3% Si and 0.45% and 1.2% Mg. Si and Mg coexist in the alloy to precipitate Mg 2 Si particles during the aging treatment, and have the effect of improving the strength of the extruded material by precipitation strengthening. Further, excess Si is not precipitated as Mg 2 Si particles have an effect of such refining the Mg 2 Si particles, this contributes to an increase in the strength of the extruded material.

Siの含有量が0.7%未満の場合には、MgSi粒子の析出量が少なくなるため、得られる押出材の強度が低くなる。そのため、Siの含有量は0.7%以上がよく、0.85%以上がより好ましい。一方、Siの含有量が1.3%を超える場合には、押出加工の際に押出材の表面に剥落等の欠陥が発生しやすく、得られる押出材の表面品質が低下しやすい。そのため、Si含有量は1.3%以下がよく、1.2%以下がより好ましい。 When the Si content is less than 0.7%, the precipitation amount of Mg 2 Si particles decreases, so the strength of the obtained extruded material decreases. Therefore, the Si content is preferably 0.7% or more, and more preferably 0.85% or more. On the other hand, when the content of Si exceeds 1.3%, defects such as peeling are likely to occur on the surface of the extruded material during the extrusion process, and the surface quality of the obtained extruded material tends to deteriorate. Therefore, the Si content is preferably 1.3% or less, and more preferably 1.2% or less.

また、Mgの含有量が0.45%未満の場合には、MgSi粒子の析出量が少なくなるため、得られる押出材の強度が低くなる。そのため、Mgの含有量は0.45%以上がよく、0.6%以上がより好ましい。一方、Mgの含有量が1.2%を超える場合には、押出加工の際の押出圧力が増加する等、押出加工性が悪化するため、得られる押出材の表面品質が低下したり、押出材の生産性が低下しやすい。そのため、Mgの含有量は1.2%以下がよく、0.9%以下がより好ましい。 Further, when the Mg content is less than 0.45%, the amount of Mg 2 Si particles deposited decreases, so that the strength of the obtained extruded material becomes low. Therefore, the content of Mg is preferably 0.45% or more, and more preferably 0.6% or more. On the other hand, if the Mg content exceeds 1.2%, the extrusion processability deteriorates, such as an increase in the extrusion pressure during the extrusion process. The productivity of the material tends to decrease. Therefore, the content of Mg is preferably 1.2% or less, and more preferably 0.9% or less.

また、上記化学成分のうち、Cuの含有量は、0.15%以上0.40%未満である。Cuは合金中に固溶し、固溶体強化により上記押出材の強度を向上させる作用を有する。Cuの含有量が0.15%未満の場合には、Cuの含有量が不十分となるため、得られる押出材の強度が低くなる。そのため、Cuの含有量は、0.15%以上がよく、0.20%以上がより好ましい。一方、Cuの含有量が0.40%以上となる場合には、押出加工性が悪化するため、得られる押出材の表面品質や生産性が低下しやすい。また、この場合には、耐食性が悪化しやすくなる。そのため、Cuの含有量は0.40%未満がよく、0.38%以下がより好ましい。   Moreover, content of Cu is 0.15% or more and less than 0.40% among the said chemical components. Cu dissolves in the alloy and has the effect of improving the strength of the extruded material by strengthening the solid solution. When the Cu content is less than 0.15%, the Cu content is insufficient, so the strength of the obtained extruded material is lowered. Therefore, the content of Cu is preferably 0.15% or more, and more preferably 0.20% or more. On the other hand, when the Cu content is 0.40% or more, the extrusion processability is deteriorated, so that the surface quality and productivity of the obtained extruded material are likely to be lowered. In this case, the corrosion resistance tends to deteriorate. Therefore, the Cu content is preferably less than 0.40%, more preferably 0.38% or less.

また、上記化学成分のうち、Mnの含有量は0.10%以上0.40%以下であり、Crの含有量は0.06%以下(0%を含まず)であり、Zrの含有量は0.05%以上0.20%以下である。   Of the above chemical components, the Mn content is 0.10% or more and 0.40% or less, the Cr content is 0.06% or less (not including 0%), and the Zr content Is 0.05% or more and 0.20% or less.

Mn、Cr及びZrは、Alとの間にAl−Mn系、Al−Mn−Si系、Al−Cr系、Al−Zr系の微細な金属間化合物を形成する。当該金属間化合物は、合金中に析出することにより再結晶を抑制し、上記押出材における繊維状組織の比率を高める作用を有する。そのため、これら3種の元素の含有量が過度に少ない場合には、得られる押出材中における繊維状組織の比率が小さくなり、押出材の強度が低下するおそれがある。一方、Mn、Cr及びZrの含有量が過度に多い場合には、上記金属間化合物が粗大なものとなり、押出加工の際に押出材の表面に剥落等の欠陥が発生しやすく、得られる押出材の表面品質が低下しやすい。   Mn, Cr and Zr form Al—Mn, Al—Mn—Si, Al—Cr, and Al—Zr fine intermetallic compounds with Al. The intermetallic compound has the effect of suppressing recrystallization by being precipitated in the alloy and increasing the ratio of the fibrous structure in the extruded material. Therefore, when the content of these three elements is excessively small, the ratio of the fibrous structure in the obtained extruded material becomes small, and the strength of the extruded material may be reduced. On the other hand, when the contents of Mn, Cr and Zr are excessively large, the intermetallic compound becomes coarse, and defects such as exfoliation are easily generated on the surface of the extruded material during the extrusion process. The surface quality of the material tends to deteriorate.

Mn、Cr及びZrは、それぞれ単独でも再結晶を抑制する作用を有するが、これら3元素を複合的に添加することによりその効果をより向上させることができる。そのため、Mn、Cr及びZrの含有量をそれぞれ上記特定の範囲に調整することにより、上記押出材における繊維状組織の比率を高めつつ、粗大な金属間化合物の析出を抑制することができる。   Mn, Cr, and Zr each have an action of suppressing recrystallization, but the effect can be further improved by adding these three elements in combination. Therefore, by adjusting the contents of Mn, Cr and Zr to the specific ranges, it is possible to suppress the precipitation of coarse intermetallic compounds while increasing the ratio of the fibrous structure in the extruded material.

また、上記化学成分のうち、Tiの含有量は0.005%以上0.15%以下である。Tiは、鋳塊組織を微細化する作用を有するとともに、上記押出材における繊維状組織の比率を高める作用を有する。Tiの含有量が0.005%未満の場合には、鋳塊組織の微細化が不十分となったり、繊維状組織の比率が低くなったりするため、得られる押出材の強度や表面品質が低下しやすくなる。一方、Tiの含有量が0.15%を超える場合には、Alとの間にAl−Ti系の粗大な晶出物が形成されやすくなる。そのため押出加工の際に押出材の表面に剥落等の欠陥が発生しやすく、得られる押出材の表面品質が低下しやすい。   Moreover, content of Ti is 0.005% or more and 0.15% or less among the said chemical components. Ti has an effect of refining the ingot structure and an effect of increasing the ratio of the fibrous structure in the extruded material. When the Ti content is less than 0.005%, the ingot structure is not sufficiently refined or the ratio of the fibrous structure is lowered, so that the strength and surface quality of the obtained extruded material are low. It tends to decrease. On the other hand, when the Ti content exceeds 0.15%, an Al—Ti coarse crystallized product is easily formed between the Ti content. For this reason, defects such as peeling are likely to occur on the surface of the extruded material during the extrusion process, and the surface quality of the obtained extruded material is likely to deteriorate.

また、上記化学成分のうち、Feの含有量を0.30%以下に、Vの含有量を0.01%以下にそれぞれ規制する。Fe及びVの含有量が過度に多くなると、粗大な晶出物を形成しやすくなるため、押出加工の際に押出材の表面に剥落等の欠陥が発生しやすく、得られる押出材の表面品質が低下しやすい。このような表面品質の低下は、Feの含有量を0.30%以下に、Vの含有量を0.01%以下にそれぞれ規制することにより回避することができる。なお、Fe及びVの含有量に下限はないが、Fe及びVの含有量を低減しようとすると、純度の高いアルミニウム地金を用いる必要があり、コストアップを招く。過度なコストアップを回避するためには、例えば、Feの含有量を0.05%以上とすることができる。   Moreover, among the chemical components, the Fe content is regulated to 0.30% or less, and the V content is regulated to 0.01% or less. When the content of Fe and V is excessively large, it becomes easy to form a coarse crystallized product. Therefore, defects such as exfoliation are likely to occur on the surface of the extruded material during extrusion processing, and the surface quality of the obtained extruded material. Is prone to decline. Such deterioration of the surface quality can be avoided by regulating the Fe content to 0.30% or less and the V content to 0.01% or less. Although there is no lower limit to the contents of Fe and V, it is necessary to use high-purity aluminum ingots to reduce the contents of Fe and V, resulting in an increase in cost. In order to avoid an excessive cost increase, for example, the Fe content can be 0.05% or more.

また、上記高強度アルミニウム合金押出材には、0.20%以下のZnが含有されていてもよい。Znはリサイクル材を用いた場合などに混入する不純物であるが、含有量が0.20%以下であれば性能に悪影響を及ぼすことはない。Znの含有量が0.20%を超える場合には、得られる押出材の耐食性が低下する場合がある。   The high-strength aluminum alloy extruded material may contain 0.20% or less of Zn. Zn is an impurity mixed when a recycled material is used. However, if the content is 0.20% or less, the performance is not adversely affected. When the Zn content exceeds 0.20%, the corrosion resistance of the obtained extruded material may be lowered.

更に、上記高強度アルミニウム合金押出材は、晶出物の粒径が5μm以下に規制されている。押出材の金属組織中に存在する晶出物は、押出加工の際に押出材の表面が剥落する場合の剥落部分の起点となりやすい。そのため、晶出物の粒径を5μm以下に規制することにより、押出加工の際の欠陥を低減でき、上記押出材の表面品質を向上させることができる。   Furthermore, in the high-strength aluminum alloy extruded material, the grain size of the crystallized product is regulated to 5 μm or less. Crystallized substances present in the metal structure of the extruded material are likely to be the starting point of the exfoliated portion when the surface of the extruded material is exfoliated during the extrusion process. Therefore, by restricting the particle size of the crystallized product to 5 μm or less, defects during extrusion processing can be reduced, and the surface quality of the extruded material can be improved.

なお、晶出物の粒径は、例えば、以下の方法により測定することができる。まず、上記押出材を切断して断面を露出させ、当該断面を研磨して平滑面を得る。その後、当該平滑面を光学顕微鏡により観察し、得られた顕微鏡像中の晶出物を楕円により近似し、当該楕円の長軸方向の長さを粒径とする。   The particle size of the crystallized product can be measured, for example, by the following method. First, the extruded material is cut to expose a cross section, and the cross section is polished to obtain a smooth surface. Then, the said smooth surface is observed with an optical microscope, the crystallization thing in the obtained microscope image is approximated by an ellipse, and let the length of the major axis direction of the said ellipse be a particle size.

また、上記高強度アルミニウム合金押出材は、晶出物の含有量が少ないほど上記押出材の表面品質を向上させることができる。晶出物の含有量は、例えば、1%以下とすることができる。なお、晶出物の含有量は、例えば、上述の粒径測定の方法と同様に顕微鏡像を取得した後、画像処理により当該顕微鏡像における晶出物の面積比率を算出し、これを含有量とすることができる。   Moreover, the said high-strength aluminum alloy extruded material can improve the surface quality of the said extruded material, so that there is little content of a crystallization thing. The content of the crystallized product can be, for example, 1% or less. The crystallized content is obtained by, for example, obtaining a microscopic image in the same manner as the particle size measurement method described above, and then calculating the area ratio of the crystallized product in the microscopic image by image processing. It can be.

また、上記高強度アルミニウム合金押出材は、熱間押出方向と平行な断面における繊維状組織の面積比率が95%以上である。押出材の金属組織中に繊維状組織が含まれると、押出方向における引っ張り強さや耐力等の機械特性が向上する。そのため、上記押出材は、繊維状組織の面積比率を95%以上に制御することにより、高い強度を有するものとなる。なお、上記押出材の金属組織は、例えば、押出材の断面に対して電解研磨を行った後、Barker氏液を用いて20℃、20Vにおいて1分間の電解エッチングを行う。その後、偏光顕微鏡を用いてエッチング後の断面を観察することで確認できる。また、繊維状組織の面積比率の算出方法については、実施例において詳細に説明する。   The high strength aluminum alloy extruded material has an area ratio of a fibrous structure in a cross section parallel to the hot extrusion direction of 95% or more. When a fibrous structure is included in the metal structure of the extruded material, mechanical properties such as tensile strength and yield strength in the extrusion direction are improved. Therefore, the extruded material has a high strength by controlling the area ratio of the fibrous structure to 95% or more. For example, the metal structure of the extruded material is subjected to electrolytic etching for 1 minute at 20 ° C. and 20 V using Barker's liquid after electrolytic polishing is performed on the cross section of the extruded material. Then, it can confirm by observing the cross section after an etching using a polarizing microscope. Moreover, the calculation method of the area ratio of a fibrous structure is demonstrated in detail in an Example.

ここで、上述した熱間押出方向と平行な断面は、熱間押出方向と平行な種々の断面の中から金属組織中に存在する繊維状組織の比率を代表可能な断面を任意に選択することができる。すなわち、熱間押出方向と平行な断面は、上記押出材の形状に応じて適宜選択することができる。例えば、上記押出材が丸棒状を呈する場合には、その中心軸を通る断面を選択することができる。また、上記押出材が角棒状を呈する場合には、その中心軸を通り、かつ、幅方向または厚み方向のいずれか一方と垂直な断面を選択することができる。また、上記押出材が、押出方向から見て略L字状に成型される等、板状部分を有する形状の場合には、当該板状部分の厚み方向と平行な断面を選択することができる。なお、上述した断面の選び方は一例であり、これに限定されるものではない。   Here, as the cross section parallel to the hot extrusion direction described above, a cross section that can represent the ratio of the fibrous structure existing in the metal structure is arbitrarily selected from various cross sections parallel to the hot extrusion direction. Can do. That is, the cross section parallel to the hot extrusion direction can be appropriately selected according to the shape of the extruded material. For example, when the extruded material has a round bar shape, a cross section passing through the central axis can be selected. When the extruded material has a square bar shape, a cross section that passes through the central axis and is perpendicular to either the width direction or the thickness direction can be selected. In addition, when the extruded material has a shape having a plate-like portion, such as being formed in an approximately L shape when viewed from the extrusion direction, a cross section parallel to the thickness direction of the plate-like portion can be selected. . The method of selecting the cross section described above is an example, and the present invention is not limited to this.

以上のように、上記特定の化学成分と上記特定の金属組織とを有する上記高強度アルミニウム合金押出材は、従来の成分範囲かつ従来の製造方法により作製された6000系アルミニウム合金材よりも高い強度を有し、耐食性、表面品質に優れたものとなる。そのため、上記高強度アルミニウム合金押出材は、車両用構造部材として好適に使用することができるものとなる(請求項2)。   As described above, the high-strength aluminum alloy extruded material having the specific chemical component and the specific metal structure is higher in strength than the 6000 series aluminum alloy material produced by the conventional component range and the conventional manufacturing method. It has excellent corrosion resistance and surface quality. Therefore, the high-strength aluminum alloy extruded material can be suitably used as a vehicle structural member (claim 2).

すなわち、上記高強度アルミニウム合金押出材は、振動や腐食等の過酷な使用環境においても良好な特性を発揮することができ、例えば自動車のサイドフレームやドアアッシュ等に好適に用いることができる。また、上記高強度アルミニウム合金押出材を車両用構造部材として使用する場合には、350MPa以上の耐力を有するものを特に好適に使用することができる。   That is, the high-strength aluminum alloy extruded material can exhibit good characteristics even in a severe use environment such as vibration and corrosion, and can be suitably used for, for example, an automobile side frame or door ash. Moreover, when using the said high-strength aluminum alloy extruded material as a structural member for vehicles, what has a yield strength of 350 Mpa or more can be used especially suitably.

次に、上記高強度アルミニウム合金押出材の製造方法について説明する。上記高強度アルミニウム合金押出材の製造方法においては、まず、上記特定の化学成分を有するアルミニウム合金鋳塊を作製する。ここで、上記鋳塊を作製する際、出湯から凝固完了までの冷却速度を0.2℃/秒以上に制御することが好ましい。鋳造時の冷却速度を上述のように制御することにより、鋳塊中に形成される晶出物の粒径を小さくしやすくなる。   Next, a method for producing the high-strength aluminum alloy extruded material will be described. In the manufacturing method of the high-strength aluminum alloy extruded material, first, an aluminum alloy ingot having the specific chemical component is prepared. Here, when producing the said ingot, it is preferable to control the cooling rate from tapping to completion of solidification to 0.2 ° C./second or more. By controlling the cooling rate at the time of casting as described above, it becomes easy to reduce the particle size of the crystallized substance formed in the ingot.

次に、上記鋳塊を450℃以上500℃未満の温度で2〜30時間保持する均質化処理を行う。上記均質化処理の保持温度が450℃未満の場合には、鋳塊組織における鋳塊偏析層の均質化が不十分となる。その結果、結晶粒の粗大化や、不均一な結晶組織の形成等が起こるため、最終的に得られる押出材の表面品質が低下するおそれがある。一方、保持温度が500℃を越える場合には、AlZr系の析出物が変態を起こすため、再結晶を抑制する効果が小さくなる。そのため、得られる押出材における繊維状組織の比率が小さくなるおそれがある。従って、上記均質化処理の保持温度は、450℃以上500℃未満であることが好ましい。   Next, the homogenization process which hold | maintains the said ingot at the temperature of 450 to 500 degreeC for 2 to 30 hours is performed. When the holding temperature of the homogenization treatment is lower than 450 ° C., the ingot segregation layer in the ingot structure is not sufficiently homogenized. As a result, coarsening of crystal grains, formation of a non-uniform crystal structure, and the like occur, so that the surface quality of the finally obtained extruded material may be deteriorated. On the other hand, when the holding temperature exceeds 500 ° C., AlZr-based precipitates undergo transformation, and thus the effect of suppressing recrystallization is reduced. Therefore, the ratio of the fibrous structure in the obtained extruded material may be reduced. Therefore, the holding temperature in the homogenization treatment is preferably 450 ° C. or higher and lower than 500 ° C.

また、上記均質化処理の保持時間は、2時間以上であることが好ましい。上記保持時間が2時間未満の場合には、鋳塊組織における鋳塊偏析層の均質化が不十分となるため、上述と同様に最終的に得られる押出材の表面品質が低下するおそれがある。一方、上記均質化処理の保持時間が30時間を超える場合には、鋳塊偏析層の均質化が十分になされるため、それ以上の効果を見込むことができない。従って、上記均質化処理の保持時間は、2時間以上30時間以下が好ましい。   Moreover, it is preferable that the holding time of the said homogenization process is 2 hours or more. When the holding time is less than 2 hours, homogenization of the ingot segregation layer in the ingot structure becomes insufficient, and thus the surface quality of the finally obtained extruded material may be reduced in the same manner as described above. . On the other hand, when the retention time of the homogenization treatment exceeds 30 hours, the ingot segregation layer is sufficiently homogenized, and therefore no further effect can be expected. Therefore, the holding time for the homogenization treatment is preferably 2 hours or more and 30 hours or less.

上記均質化処理を行った後、上記鋳塊の温度を480℃〜540℃とした状態で上記鋳塊に熱間押出加工を行って押出材を得る。押出前の鋳塊の温度が480℃未満の場合には、添加されている元素の溶入化が不十分なため、得られる押出材の強度が小さくなるおそれがある。一方、押出前の鋳塊の温度が540℃を超える場合には、押出加工中に加工発熱が加わることにより、局部的に共晶融解が生じるおそれがある。そのため、得られる押出材の表面品質が低下するおそれがある。   After the homogenization treatment, the ingot is hot-extruded in a state where the temperature of the ingot is 480 ° C to 540 ° C to obtain an extruded material. When the temperature of the ingot before extrusion is less than 480 ° C., the added element may not be sufficiently infiltrated, so that the strength of the obtained extruded material may be reduced. On the other hand, when the temperature of the ingot before extrusion exceeds 540 ° C., eutectic melting may occur locally due to heat generated during the extrusion process. Therefore, the surface quality of the obtained extruded material may be deteriorated.

また、上記熱間押出加工は、上記鋳塊の温度が480℃〜540℃の範囲内に到達した時から5時間以内に行うことが好ましい。5時間以内に熱間押出加工が行われない場合には、AlZr系の析出物が変態を起こすおそれがあり、再結晶を抑制する効果が小さくなるおそれがある。   Moreover, it is preferable to perform the said hot extrusion process within 5 hours after the temperature of the said ingot reaches | attains in the range of 480 degreeC-540 degreeC. If hot extrusion is not performed within 5 hours, the AlZr-based precipitate may be transformed, and the effect of suppressing recrystallization may be reduced.

上記熱間押出加工により得られた押出材は、押出の後、温度が480℃以上である間に2〜100℃/秒の冷却速度で150℃以下まで急冷される(以下、押出材を急冷することを「急冷処理」と呼ぶことがある。)。上記押出材が急冷される前の温度が480℃未満である場合には、焼入れが不十分となり、得られる押出材の強度が低くなるおそれがある。また、急冷された後の押出材の温度が150℃を超える場合には、焼入れが不十分となり、その結果得られる押出材の強度が低くなるおそれがある。   After the extrusion, the extruded material obtained by the hot extrusion process is rapidly cooled to 150 ° C. or lower at a cooling rate of 2 to 100 ° C./second while the temperature is 480 ° C. or higher (hereinafter, the extruded material is rapidly cooled). This is sometimes called “quick cooling”.) When the temperature before the extruded material is rapidly cooled is less than 480 ° C., quenching may be insufficient, and the strength of the obtained extruded material may be reduced. Moreover, when the temperature of the extruded material after being rapidly cooled exceeds 150 ° C., quenching may be insufficient, and the resulting extruded material may have low strength.

また、上記冷却速度が100℃/秒を超える場合には、それに見合った効果を得ることができない。一方、冷却速度が2℃/秒未満であると、焼入れが不十分となるため、得られる押出材の強度が低くなるおそれがある。   Moreover, when the said cooling rate exceeds 100 degrees C / second, the effect corresponding to it cannot be acquired. On the other hand, when the cooling rate is less than 2 ° C./second, quenching becomes insufficient, and the strength of the obtained extruded material may be lowered.

なお、上記押出材の急冷は、上記押出材を強制的な手段により冷却することにより可能となる。上記急冷に用いる冷却手段としては、例えばファン空冷、ミスト冷却、シャワー冷却もしくは水冷等の方法を採用できる。   The extruded material can be rapidly cooled by cooling the extruded material by a forced means. As the cooling means used for the rapid cooling, methods such as fan air cooling, mist cooling, shower cooling, or water cooling can be employed.

上述のように急冷した後の押出材は、150〜200℃の温度で1〜24時間加熱する時効処理を施される。上記時効処理における温度が150℃未満の場合には、時効の効果が不十分となり、得られる押出材の強度が低くなるおそれがある。一方、上記時効処理における温度が200℃を超える場合には、過時効となり、得られる押出材の強度が低くなるおそれがある。   The extruded material after being rapidly cooled as described above is subjected to an aging treatment in which the extruded material is heated at a temperature of 150 to 200 ° C. for 1 to 24 hours. When the temperature in the aging treatment is less than 150 ° C., the aging effect is insufficient, and the strength of the obtained extruded material may be lowered. On the other hand, when the temperature in the aging treatment exceeds 200 ° C., overaging occurs, and the strength of the obtained extruded material may be lowered.

また、上記時効処理における加熱時間が1時間未満の場合には亜時効となり、得られる押出材の強度が低くなるおそれがある。一方、上記時効処理における加熱時間が24時間を越える場合には過時効となるため、得られる押出材の強度が低くなるおそれがある。   Moreover, when the heating time in the said aging treatment is less than 1 hour, it will become a sub-aging and there exists a possibility that the intensity | strength of the extrusion material obtained may become low. On the other hand, when the heating time in the aging treatment exceeds 24 hours, overaging occurs, so that the strength of the obtained extruded material may be lowered.

(実施例1)
本例は、上記高強度アルミニウム合金押出材の化学成分について検討した例である。本例においては、表1に示すごとく、化学成分を種々変化させた合金(合金No.A〜No.M)を用い、表2に示す製造条件にて試料(試料No.1〜No.13)を作製し、各試料の強度測定、金属組織観察、表面品質評価及び耐食性評価を行った。以下に、各試料の製造条件及び強度測定方法、金属組織観察方法、表面品質評価方法並びに耐食性評価方法を説明する。
Example 1
In this example, the chemical component of the high-strength aluminum alloy extruded material was examined. In this example, as shown in Table 1, alloys (alloys No. A to No. M) having various chemical components were used, and samples (samples No. 1 to No. 13) were manufactured under the manufacturing conditions shown in Table 2. ), And the strength measurement, metal structure observation, surface quality evaluation, and corrosion resistance evaluation of each sample were performed. The manufacturing conditions and strength measurement method, metal structure observation method, surface quality evaluation method, and corrosion resistance evaluation method of each sample will be described below.

<試料の製造条件>
連続鋳造により、表1に記載された化学成分を有する直径90mmの鋳塊を鋳造した。その後、該鋳塊を480℃の温度に10時間保持する均質化処理を行った。その後、上記鋳塊の温度が表2に示す温度である状態で、該鋳塊を押出速度10m/分で熱間押出加工することにより、幅35mm、厚さ3mmのフラットバー形状を呈する押出材を作製した。その後、該押出材の温度が表1に示す温度である状態において、該展伸材を10℃/秒の冷却速度で表2に示す温度まで冷却する急冷処理を行った。そして、上記急冷処理を行った上記展伸材を、180℃で6時間加熱する時効処理を実施して試料(試料No.1〜No.13)とした。
<Sample manufacturing conditions>
An ingot having a diameter of 90 mm having the chemical components described in Table 1 was cast by continuous casting. Then, the homogenization process which hold | maintains this ingot for 10 hours at the temperature of 480 degreeC was performed. Thereafter, in the state in which the temperature of the ingot is the temperature shown in Table 2, the ingot is hot-extruded at an extrusion speed of 10 m / min to give a flat bar shape having a width of 35 mm and a thickness of 3 mm. Was made. Thereafter, in the state where the temperature of the extruded material was the temperature shown in Table 1, a rapid cooling treatment was performed to cool the stretched material to the temperature shown in Table 2 at a cooling rate of 10 ° C./second. And the aging treatment which heated the said wrought material which performed the said rapid cooling process at 180 degreeC for 6 hours was implemented, and it was set as the sample (sample No.1-No.13).

<強度測定方法>
試料から、JIS Z2241(ISO6892−1)に準拠する方法により試験片(金属材料引張試験片5号試験片)を採取し、耐力の測定を行った。その結果、350MPa以上の耐力を示すものを合格と判定した。
<Strength measurement method>
A test piece (metal material tensile test piece No. 5 test piece) was sampled from the sample by a method in accordance with JIS Z2241 (ISO 6892-1), and the proof stress was measured. As a result, those showing a yield strength of 350 MPa or more were determined to be acceptable.

<金属組織観察方法>
幅方向の寸法が半分になるように試料を切断した後、当該切断面における晶出物の粒径測定及び繊維状組織の面積比率の算出を以下の方法により行った。
<Metallic structure observation method>
After cutting the sample so that the dimension in the width direction was halved, the particle size measurement of the crystallized substance on the cut surface and the calculation of the area ratio of the fibrous structure were performed by the following methods.

晶出物の粒径測定においては、まず、上記切断面を研磨することにより、平滑面を得た。そして、当該平滑面から無作為に5箇所を選び、光学顕微鏡を用いてこれら5箇所の顕微鏡像を倍率500倍で取得した。その後、当該顕微鏡像に対し画像解析を行い、上述した楕円近似による方法を用いて算出した晶出物の粒径のうち最大の値を得た。このようにして得られた晶出物の最大粒径が5μm以下のものを合格と判定した。   In measuring the particle size of the crystallized product, first, a smooth surface was obtained by polishing the cut surface. And five places were selected at random from the smooth surface, and microscopic images of these five places were obtained at a magnification of 500 times using an optical microscope. Thereafter, image analysis was performed on the microscopic image, and the maximum value among the particle sizes of the crystallized substances calculated using the above-described method by elliptic approximation was obtained. A crystallized product having a maximum particle size of 5 μm or less was determined to be acceptable.

繊維状組織の面積比率の算出においては、上述の方法により上記切断面に電解研磨及びエッチングを行った後、厚み方向の全範囲が視野に入るようにして光学顕微鏡によりエッチング後の上記切断面の顕微鏡像を取得した。その後、得られた顕微鏡像に対して画像解析を行い、金属組織全体に対する繊維状組織の面積比率を算出した。このようにして得られた繊維状組織の面積比率が95%以上であるものを好ましい結果と判定した。   In the calculation of the area ratio of the fibrous structure, after electropolishing and etching the cut surface by the above-described method, the cut surface after etching is etched with an optical microscope so that the entire range in the thickness direction is in the field of view. Microscopic images were acquired. Thereafter, image analysis was performed on the obtained microscopic image, and the area ratio of the fibrous structure to the entire metal structure was calculated. An area ratio of the fibrous structure thus obtained was determined to be a preferable result.

<表面品質評価方法>
試料表面を目視により観察し、表面の剥落や押出方向に形成された筋状の傷等の欠陥の有無を確認した。これらの欠陥が見られないものを合格と判定した。
<Surface quality evaluation method>
The surface of the sample was visually observed to check for the presence of defects such as stripping of the surface and streak-like scratches formed in the extrusion direction. Those in which these defects were not found were judged as acceptable.

<耐食性評価方法> <Corrosion resistance evaluation method>

各試料に対してJIS Z2371に準拠した方法により塩水噴霧試験を行い、試験時間1000時間後の最大腐食深さを測定した。その結果、最大腐食深さが200μm以下であるものを合格と判定した。   Each sample was subjected to a salt spray test by a method based on JIS Z2371, and the maximum corrosion depth after 1000 hours of the test time was measured. As a result, those having a maximum corrosion depth of 200 μm or less were determined to be acceptable.

各試料の評価結果を表3に示す。なお、各々の評価結果において合格と判定されなかったものもしくは好ましい結果と判定されなかったものについては、表3中の当該評価結果に下線を付して示した。   The evaluation results of each sample are shown in Table 3. In addition, about what was not determined to be acceptable or not preferable in each evaluation result, the evaluation result in Table 3 is underlined.

表3より知られるように、試料No.1〜No.3は、全ての評価項目において合格となり、強度、耐食性、押出加工性及び表面品質のいずれにも優れた特性を示した。優れた特性を有する試料の代表例として、図1に、試料No.1における繊維状組織の面積比率の算出に用いた顕微鏡像を示す。図1に示すように、優れた特性を有する試料の金属組織は、表面のごく近傍にのみ再結晶組織が生成されており、試料内部の大部分は、押出方向と平行な向きの繊維状組織より構成されている。   As known from Table 3, sample no. 1-No. No. 3 passed in all evaluation items, and showed excellent properties in all of strength, corrosion resistance, extrusion processability and surface quality. As a representative example of a sample having excellent characteristics, FIG. 1 shows a microscopic image used for calculating the area ratio of the fibrous structure in FIG. As shown in FIG. 1, in the sample metal structure having excellent characteristics, a recrystallized structure is generated only in the very vicinity of the surface, and most of the inside of the sample is a fibrous structure in a direction parallel to the extrusion direction. It is made up of.

試料No.4は、Siの含有量が少なすぎるため、耐力が不合格と判定した。
試料No.5は、Siの含有量が多すぎるため、押出加工後に表面の剥落が認められ、不合格と判定した。
Sample No. No. 4 was judged to be unacceptable because the Si content was too small.
Sample No. No. 5 was judged to be unacceptable because peeling of the surface was observed after extrusion because the Si content was too high.

試料No.6は、Mgの含有量が少なすぎるため、耐力が不合格と判定した。
試料No.7は、Mgの含有量が多すぎるため、押出加工後に表面の剥落が認められ、不合格と判定した。
Sample No. No. 6 was judged to have failed proof stress because the Mg content was too small.
Sample No. No. 7 was judged to be unacceptable because the Mg content was too high, exfoliation of the surface was observed after extrusion.

試料No.8は、Cuの含有量が少なすぎるため、耐力が不合格と判定した。
試料No.9は、Cuの含有量が多すぎるため、押出加工後に表面の剥落が認められ、また、耐食性に劣り、不合格と判定した。
Sample No. In No. 8, since the Cu content was too small, the yield strength was judged to be unacceptable.
Sample No. No. 9 was judged to be unacceptable because the Cu content was too high, peeling of the surface was observed after the extrusion process, and the corrosion resistance was inferior.

試料No.10は、Mn、Cr、Zrのそれぞれの含有量が少なすぎるため、繊維状組織の面積比率が低くなった結果、耐力が低くなり不合格と判定した。繊維状組織の面積比率が低い試料の代表例として、図2に、試料No.10における繊維状組織の面積比率の算出に用いた顕微鏡像を示す。図2に示すように、繊維状組織の面積比率が低い試料の金属組織は、図1と比べて表面に生成される再結晶組織の厚みが大きく、筋状の模様が見られず繊維状組織とは色調の異なる層(再結晶組織)が、表面近傍に明確に観察された。   Sample No. No. 10 was judged to be unacceptable due to a decrease in the area ratio of the fibrous structure because the respective contents of Mn, Cr, and Zr were too small, resulting in a decrease in yield strength. As a representative example of a sample having a low area ratio of the fibrous tissue, FIG. The microscope image used for calculation of the area ratio of the fibrous structure in 10 is shown. As shown in FIG. 2, the metal structure of the sample with a low area ratio of the fibrous structure has a thick recrystallized structure formed on the surface as compared with FIG. 1, and no fibrous pattern is seen. A layer (recrystallized structure) having a color tone different from that of the sample was clearly observed in the vicinity of the surface.

試料No.11は、Mn、Cr、Zrのそれぞれの含有量が多すぎるため、晶出物の粒径が過度に大きくなり、また、押出加工後に表面の剥落が認められ、不合格と判定した。   Sample No. In No. 11, since the contents of Mn, Cr, and Zr were too large, the particle size of the crystallized product was excessively large, and peeling of the surface was observed after the extrusion process.

試料No.12は、Tiの含有量が少なすぎるため、繊維状組織の面積比率が低くなった結果、耐力が低くなり不合格と判定した。
試料No.13は、Ti、V、Feのそれぞれの含有量が多すぎるため、晶出物の粒径が過度に大きくなり、また、押出加工後に表面の剥落が認められ、不合格と判定した。
Sample No. In No. 12, since the Ti content was too small, the area ratio of the fibrous structure was low, and as a result, the yield strength was low and it was determined to be unacceptable.
Sample No. In No. 13, since each content of Ti, V, and Fe was too large, the particle size of the crystallized product was excessively large, and peeling of the surface was recognized after the extrusion process, and it was determined to be rejected.

(実施例2)
本例は、上記高強度アルミニウム合金押出材の製造方法について検討した例である。本例においては、表1に示す合金No.Aを用い、表4に示すように製造条件を変化させて試料(試料No.21〜39)を作製し、各試料の強度測定、金属組織観察、表面品質評価及び耐食性評価を行った。なお、各試料の製造条件及び強度測定方法、金属組織観察方法、表面品質評価方法並びに耐食性評価方法の詳細は、実施例1と同様である。
(Example 2)
This example is an example in which a method for producing the high-strength aluminum alloy extruded material was examined. In this example, the alloy no. Using A, the production conditions were changed as shown in Table 4 to prepare samples (Sample Nos. 21 to 39), and the strength measurement, metal structure observation, surface quality evaluation, and corrosion resistance evaluation of each sample were performed. The details of the manufacturing conditions and strength measurement method, metal structure observation method, surface quality evaluation method, and corrosion resistance evaluation method of each sample are the same as in Example 1.

各試料の評価結果を表5に示す。なお、各々の評価結果において合格と判定されなかったものもしくは好ましい結果と判定されなかったものについては、表5中の当該評価結果に下線を付して示した。   The evaluation results for each sample are shown in Table 5. In addition, about what was not determined to be acceptable or not preferable in each evaluation result, the evaluation result in Table 5 is underlined.

表5より知られるように、試料No.21〜No.30は、全ての評価項目において合格となり、強度、耐食性、押出加工性及び表面品質のいずれにも優れた特性を示した。   As known from Table 5, sample no. 21-No. No. 30 passed in all evaluation items, and exhibited excellent properties in all of strength, corrosion resistance, extrusion processability and surface quality.

試料No.31は、均質化処理における保持温度が低すぎるため、耐力が低く、また、押出加工後に表面の剥落が認められ、不合格と判定した。
試料No.32は、均質化処理における保持温度が高すぎるため、繊維状組織の面積比率が低くなった結果、耐力が低くなり不合格と判定した。
Sample No. No. 31 had a low proof stress because the holding temperature in the homogenization treatment was too low, and peeling of the surface was recognized after extrusion, and it was determined to be unacceptable.
Sample No. No. 32 was judged to be unacceptable because the holding temperature in the homogenization treatment was too high, resulting in a decrease in the area ratio of the fibrous structure, resulting in a decrease in yield strength.

試料No.33は、均質化処理における保持時間が短すぎるため、耐力が低く、また、押出加工後に表面の剥落が認められ、不合格と判定した。   Sample No. No. 33 was judged to be unacceptable because the holding time in the homogenization treatment was too short, so that the proof stress was low, and surface exfoliation was observed after extrusion.

試料No.34は、熱間押出加工前の鋳塊温度が低すぎるため、耐力が不合格と判定した。
試料No.35は、熱間押出加工前の鋳塊温度が高すぎるため、押出加工後に表面の剥落が認められ、不合格と判定した。
Sample No. No. 34 determined that the proof stress was unacceptable because the ingot temperature before hot extrusion was too low.
Sample No. In 35, since the ingot temperature before hot extrusion was too high, peeling of the surface was recognized after extrusion, and it was determined to be unacceptable.

試料No.36は、急冷処理における冷却速度が小さすぎるため、耐力が不合格と判定した。   Sample No. No. 36 determined that the yield strength was unacceptable because the cooling rate in the rapid cooling treatment was too small.

試料No.37は、急冷処理完了後の押出材の温度が高すぎるため、耐力が不合格と判定した。   Sample No. In No. 37, the temperature of the extruded material after completion of the rapid cooling treatment was too high, so the proof stress was determined to be unacceptable.

試料No.38及びNo.39は、時効処理における処理時間と処理温度とが、上記特定の範囲外となるため、耐力が不合格と判定した。   Sample No. 38 and no. No. 39 was determined to have failed proof stress because the treatment time and treatment temperature in the aging treatment were outside the above specific range.

Claims (3)

Si:0.70〜1.3%(質量%、以下同じ)、Mg:0.45〜1.2%、Cu:0.15〜0.40%未満、Mn:0.10〜0.40%、Cr:0.06%以下(0%を含まず)、Zr:0.05〜0.20%、Ti:0.005〜0.15%を含有し、Fe:0.30%以下、V:0.01%以下に規制し、残部Alおよび不可避不純物からなる化学成分を有し、
晶出物の粒径が5μm以下に規制されており、
熱間押出方向と平行な断面における繊維状組織の面積比率が95%以上であることを特徴とする高強度アルミニウム合金押出材。
Si: 0.70 to 1.3% (mass%, the same applies hereinafter), Mg: 0.45 to 1.2%, Cu: 0.15 to less than 0.40%, Mn: 0.10 to 0.40 %, Cr: 0.06% or less (excluding 0%), Zr: 0.05 to 0.20%, Ti: 0.005 to 0.15%, Fe: 0.30% or less, V: restricted to 0.01% or less, having a chemical component consisting of the balance Al and inevitable impurities,
The crystallized particle size is regulated to 5 μm or less,
A high-strength aluminum alloy extruded material, wherein the area ratio of the fibrous structure in a cross section parallel to the hot extrusion direction is 95% or more.
請求項1に記載の高強度アルミニウム合金押出材において、車両用構造部材として使用されることを特徴とする高強度アルミニウム合金押出材。   The high-strength aluminum alloy extruded material according to claim 1, wherein the high-strength aluminum alloy extruded material is used as a structural member for a vehicle. Si:0.70〜1.3%(質量%、以下同じ)、Mg:0.45〜1.2%、Cu:0.15〜0.40%未満、Mn:0.10〜0.40%、Cr:0.06%以下(0%を含まず)、Zr:0.05〜0.20%、Ti:0.005〜0.15%を含有し、Fe:0.30%以下、V:0.01%以下に規制し、残部Alおよび不可避不純物からなる化学成分を有する鋳塊を作製し、
上記鋳塊を450℃以上500℃未満の温度に2〜30時間保持する均質化処理を行い、
その後、加工開始時における上記鋳塊の温度を480℃〜540℃とした状態で上記鋳塊に熱間押出加工を行って押出材とし、
該押出材の温度が480℃以上である間に2〜100℃/秒の冷却速度で150℃以下まで急冷し、
その後、上記押出材を150℃〜200℃の温度で1〜24時間加熱する時効処理を行うことを特徴とする高強度アルミニウム合金押出材の製造方法。
Si: 0.70 to 1.3% (mass%, the same applies hereinafter), Mg: 0.45 to 1.2%, Cu: 0.15 to less than 0.40%, Mn: 0.10 to 0.40 %, Cr: 0.06% or less (excluding 0%), Zr: 0.05 to 0.20%, Ti: 0.005 to 0.15%, Fe: 0.30% or less, V: Restricted to 0.01% or less, producing an ingot having a chemical component composed of the balance Al and inevitable impurities,
A homogenization treatment is performed in which the ingot is held at a temperature of 450 ° C. or higher and lower than 500 ° C. for 2 to 30 hours,
Then, in the state where the temperature of the ingot at the start of processing is 480 ° C. to 540 ° C., the ingot is subjected to hot extrusion to obtain an extruded material,
While the temperature of the extruded material is 480 ° C. or higher, it is rapidly cooled to 150 ° C. or lower at a cooling rate of 2 to 100 ° C./second,
Then, the manufacturing method of the high-strength aluminum alloy extrusion material characterized by performing the aging treatment which heats the said extrusion material at the temperature of 150 to 200 degreeC for 1 to 24 hours.
JP2012222943A 2012-10-05 2012-10-05 High strength aluminum alloy extruded material and manufacturing method thereof Active JP6022882B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012222943A JP6022882B2 (en) 2012-10-05 2012-10-05 High strength aluminum alloy extruded material and manufacturing method thereof
CN201310439853.0A CN103710580B (en) 2012-10-05 2013-09-25 High-strength aluminum-alloy extruded material and manufacture method thereof
US14/040,630 US20140096878A1 (en) 2012-10-05 2013-09-28 High-strength aluminum alloy extruded material and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012222943A JP6022882B2 (en) 2012-10-05 2012-10-05 High strength aluminum alloy extruded material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2014074213A true JP2014074213A (en) 2014-04-24
JP6022882B2 JP6022882B2 (en) 2016-11-09

Family

ID=50403925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012222943A Active JP6022882B2 (en) 2012-10-05 2012-10-05 High strength aluminum alloy extruded material and manufacturing method thereof

Country Status (3)

Country Link
US (1) US20140096878A1 (en)
JP (1) JP6022882B2 (en)
CN (1) CN103710580B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113215451A (en) * 2021-05-13 2021-08-06 中南大学 High-strength Al-Mg-Si-Cu aluminum alloy and preparation method thereof
JPWO2021187626A1 (en) * 2021-03-31 2021-09-23

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5023232B1 (en) 2011-06-23 2012-09-12 住友軽金属工業株式会社 High strength aluminum alloy material and manufacturing method thereof
JP5285170B2 (en) 2011-11-07 2013-09-11 住友軽金属工業株式会社 High strength aluminum alloy material and manufacturing method thereof
JP6344923B2 (en) 2014-01-29 2018-06-20 株式会社Uacj High strength aluminum alloy and manufacturing method thereof
CN104846241A (en) * 2015-05-12 2015-08-19 福建省闽发铝业股份有限公司 Corrosion resistant aluminum alloy
JP6445958B2 (en) * 2015-12-14 2018-12-26 株式会社神戸製鋼所 Aluminum alloy forgings for automobiles
CN113409982B (en) * 2016-10-31 2023-02-17 住友电气工业株式会社 Aluminum alloy wire, aluminum alloy stranded wire, coated electric wire, and electric wire with terminal
CN107248431B (en) * 2017-05-09 2019-01-25 佳腾电业(赣州)有限公司 A kind of production technology of the flat enamel covered wire of high tenacity
MX2020007482A (en) 2018-01-12 2020-11-12 Accuride Corp Aluminum wheels and methods of manufacture.
CN114480924B (en) * 2021-12-28 2023-03-10 广东和胜工业铝材股份有限公司 Aluminum alloy material and preparation method and application thereof
CN118497563B (en) * 2024-04-23 2025-02-11 东莞市东兴铝业有限公司 Boron high thermal conductivity aluminum alloy for automobile box and its production process

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08232035A (en) * 1995-02-24 1996-09-10 Sumitomo Light Metal Ind Ltd High-strength aluminum alloy material for bumpers with excellent bending workability and method for producing the same
JP2000128017A (en) * 1998-10-27 2000-05-09 Kobe Steel Ltd Al-Mg-Si TYPE ALUMINUM COMPOUND EXTRUSION MATERIAL
JP2002003974A (en) * 2000-06-19 2002-01-09 Kobe Steel Ltd Al-Mg-Si ALLOY EXTRUDED ARTICLE EXCELLENT IN IMPACT-ENERGY ABSORBABILITY
JP2003268474A (en) * 2003-04-09 2003-09-25 Kobe Steel Ltd Al-Mg-Si ALUMINUM ALLOY EXTRUDED-SHAPE SUPERIOR IN IMPACT ENERGY ABSORPTION
JP2010070847A (en) * 2008-08-21 2010-04-02 Aisin Keikinzoku Co Ltd Al-Mg-Si-BASED ALUMINUM ALLOY EXTRUDED PRODUCT EXHIBITING EXCELLENT FATIGUE STRENGTH AND IMPACT FRACTURE RESISTANCE

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020014287A1 (en) * 1998-10-27 2002-02-07 Shinji Yoshihara A1-mg-si based aluminum alloy extrusion
EP1407057B1 (en) * 2001-07-09 2005-04-20 Corus Aluminium Walzprodukte GmbH Weldable high strength al-mg-si alloy
JP2003221636A (en) * 2002-01-29 2003-08-08 Aisin Keikinzoku Co Ltd Al-Mg-Si ALUMINUM ALLOY EXTRUSION MOLDED MATERIAL SHOWING EXCELLENT RESISTANCE TO IMPACT FRACTURE
EP1987170A1 (en) * 2006-02-17 2008-11-05 Norsk Hydro ASA Aluminium alloy with improved crush properties

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08232035A (en) * 1995-02-24 1996-09-10 Sumitomo Light Metal Ind Ltd High-strength aluminum alloy material for bumpers with excellent bending workability and method for producing the same
JP2000128017A (en) * 1998-10-27 2000-05-09 Kobe Steel Ltd Al-Mg-Si TYPE ALUMINUM COMPOUND EXTRUSION MATERIAL
JP2002003974A (en) * 2000-06-19 2002-01-09 Kobe Steel Ltd Al-Mg-Si ALLOY EXTRUDED ARTICLE EXCELLENT IN IMPACT-ENERGY ABSORBABILITY
JP2003268474A (en) * 2003-04-09 2003-09-25 Kobe Steel Ltd Al-Mg-Si ALUMINUM ALLOY EXTRUDED-SHAPE SUPERIOR IN IMPACT ENERGY ABSORPTION
JP2010070847A (en) * 2008-08-21 2010-04-02 Aisin Keikinzoku Co Ltd Al-Mg-Si-BASED ALUMINUM ALLOY EXTRUDED PRODUCT EXHIBITING EXCELLENT FATIGUE STRENGTH AND IMPACT FRACTURE RESISTANCE

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021187626A1 (en) * 2021-03-31 2021-09-23
WO2021187626A1 (en) * 2021-03-31 2021-09-23 三菱アルミニウム株式会社 High-strength aluminum alloy extruded material having excellent surface qualities
JP7151002B2 (en) 2021-03-31 2022-10-11 Maアルミニウム株式会社 High-strength aluminum alloy extrusions with excellent surface quality
CN113215451A (en) * 2021-05-13 2021-08-06 中南大学 High-strength Al-Mg-Si-Cu aluminum alloy and preparation method thereof
CN113215451B (en) * 2021-05-13 2022-04-22 中南大学 High-strength Al-Mg-Si-Cu aluminum alloy and preparation method thereof

Also Published As

Publication number Publication date
US20140096878A1 (en) 2014-04-10
CN103710580A (en) 2014-04-09
JP6022882B2 (en) 2016-11-09
CN103710580B (en) 2016-03-30

Similar Documents

Publication Publication Date Title
JP6022882B2 (en) High strength aluminum alloy extruded material and manufacturing method thereof
KR101624116B1 (en) High-strength aluminum alloy and method for producing same
US9279173B2 (en) Aluminum alloy forged material for automotive vehicles and production method for the material
JP5023232B1 (en) High strength aluminum alloy material and manufacturing method thereof
JP5723192B2 (en) Aluminum alloy forging and method for producing the same
JP5343333B2 (en) Method for producing high-strength aluminum alloy material with excellent resistance to stress corrosion cracking
JP4794862B2 (en) Method for producing 6000 series aluminum alloy plate excellent in paint bake hardenability
WO2015025706A1 (en) High-strength aluminum alloy and method for producing same
JP2012207302A (en) METHOD FOR MANUFACTURING EXTRUDED MATERIAL OF HEAT TREATMENT TYPE Al-Zn-Mg-BASED ALUMINUM ALLOY
US10208370B2 (en) High-strength aluminum alloy and manufacturing method thereof
JP2005298922A (en) Aluminum alloy plate to be formed, and manufacturing method therefor
CN107735503A (en) The excellent aluminum alloy extrusion material of exterior quality with anodic oxide coating and its manufacture method
JP2011144396A (en) High strength aluminum alloy extruded material having excellent stress corrosion cracking resistance
JP4996853B2 (en) Aluminum alloy material for high temperature and high speed forming, method for manufacturing the same, and method for manufacturing aluminum alloy formed product
JP7172833B2 (en) Aluminum alloy material and its manufacturing method
WO2016132994A1 (en) Aluminum alloy worked material, and manufacturing method thereof
WO2017006816A1 (en) Aluminum alloy extruded material having positive electrode oxide film and excellent external appearance quality and production method therefor
JP2011042857A (en) Aluminum alloy having excellent fatigue strength, toughness and brightness, and method for producing the same
JP2013007114A (en) High-strength aluminum alloy material for anodization
WO2016132995A1 (en) Aluminum alloy worked material, and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161006

R150 Certificate of patent or registration of utility model

Ref document number: 6022882

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350