[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2014072916A - Power supply device and display apparatus - Google Patents

Power supply device and display apparatus Download PDF

Info

Publication number
JP2014072916A
JP2014072916A JP2012214742A JP2012214742A JP2014072916A JP 2014072916 A JP2014072916 A JP 2014072916A JP 2012214742 A JP2012214742 A JP 2012214742A JP 2012214742 A JP2012214742 A JP 2012214742A JP 2014072916 A JP2014072916 A JP 2014072916A
Authority
JP
Japan
Prior art keywords
power supply
pwm signal
transformer
unit
duty ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012214742A
Other languages
Japanese (ja)
Other versions
JP5285802B1 (en
Inventor
Takashi Sonoda
崇 園田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eizo Corp
Original Assignee
Eizo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eizo Corp filed Critical Eizo Corp
Priority to JP2012214742A priority Critical patent/JP5285802B1/en
Priority to PCT/JP2013/055324 priority patent/WO2014050165A1/en
Application granted granted Critical
Publication of JP5285802B1 publication Critical patent/JP5285802B1/en
Publication of JP2014072916A publication Critical patent/JP2014072916A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Led Devices (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power supply device that can suppress noise caused when a load is driven by PWM control, and a display apparatus that has the power supply device.SOLUTION: A power supply section 10 includes a transformer and a switching element, and converts an AC voltage supplied from a commercial power supply 1 to a DC voltage and outputs the converted DC voltage to an LED driver 20. The LED driver 20 PWM-controls the output of the power supply section 10 in accordance with a PWM signal to drive a backlight 110. A control section 30 controls the output of the power supply section 10 in response to an output fluctuation of the power supply section 10. An adjustment section 40 acquires the PWM signal output from a microcomputer 120, and adjusts the responsiveness of the control section 30 in accordance with a duty ratio of the acquired PWM signal.

Description

本発明は、PWM制御して負荷を駆動する電源装置及び該電源装置を備える表示装置に関する。   The present invention relates to a power supply device that drives a load by PWM control and a display device including the power supply device.

液晶モニタ(表示装置)を含む多くの電気機器又は電子機器には、負荷に所要の電圧又は電流を供給するため電源装置が用いられている。例えば、スイッチング用の変圧器の一次側にトランジスタを接続し、トランジスタのベースにパルス幅が制御されたパルス信号を加えてトランジスタをスイッチング動作させることにより、変圧器の二次側に交流電圧を誘起させ、誘起した交流電圧を整流・平滑することにより、直流電圧を負荷へ供給する電源装置が開示されている(特許文献1)。このような電源装置は、液晶モニタのバックライトをPWM制御方式で調光する表示装置に使用することができる。   Many electric devices or electronic devices including a liquid crystal monitor (display device) use a power supply device to supply a required voltage or current to a load. For example, an AC voltage is induced on the secondary side of the transformer by connecting a transistor to the primary side of the switching transformer and switching the transistor by applying a pulse signal with a pulse width controlled to the base of the transistor. A power supply device that supplies a DC voltage to a load by rectifying and smoothing the induced AC voltage is disclosed (Patent Document 1). Such a power supply device can be used for a display device that dimmes the backlight of a liquid crystal monitor using a PWM control method.

図9は従来の表示装置300の構成の一例を示すブロック図である。図9に示すように、電源装置は、スイッチング用の変圧器313を備え、変圧器313の一次側にはトランジスタ314を接続してある。トランジスタ314のベースには、コントロールIC335から出力される所要のパルス幅のパルス信号が印加され、トランジスタ314は、所定の周波数でスイッチング動作を行う。変圧器313の二次側には、ダイオード315、平滑用のキャパシタ316を接続してあり、その後段には、コイル320及びキャパシタ330で構成されるLCフィルタを接続してある。電源装置の出力側には、LEDドライバ20、バックライト110を接続してある。液晶モニタの明るさを設定すべくユーザが操作した場合、ユーザの設定に応じたブライトネス値がマイコン120へ出力され、マイコン120は、入力されたブライトネス値に応じたPWM信号を生成してLEDドライバ20へ出力する。   FIG. 9 is a block diagram showing an example of the configuration of a conventional display device 300. As shown in FIG. 9, the power supply device includes a switching transformer 313, and a transistor 314 is connected to the primary side of the transformer 313. A pulse signal having a required pulse width output from the control IC 335 is applied to the base of the transistor 314, and the transistor 314 performs a switching operation at a predetermined frequency. A diode 315 and a smoothing capacitor 316 are connected to the secondary side of the transformer 313, and an LC filter including a coil 320 and a capacitor 330 is connected to the subsequent stage. An LED driver 20 and a backlight 110 are connected to the output side of the power supply device. When the user operates to set the brightness of the liquid crystal monitor, a brightness value corresponding to the user setting is output to the microcomputer 120, and the microcomputer 120 generates a PWM signal corresponding to the input brightness value to generate an LED driver. 20 output.

実用新案登録第2513741号公報Utility Model Registration No. 2513741

従来の電源装置にあっては、バックライト110をPWM制御方式で調光を行った際に、電源装置の負荷電流が大きく変動する結果、負荷電流の変動に追従しようとしてトランジスタ314がスイッチング動作を行うため、変圧器313の磁束変化が大きくなり変圧器313のコア又は巻き線が磁束変化により振動して変圧器313から異音が発生する。このため、変圧器313から発生する異音を減少させるために、電源装置の出力端にLCフィルタを設け、変圧器313に流れる電流の変化を少なくしている。しかし、従来のLCフィルタで使用する部品は相当程度大きく、電源装置を小型化することが困難であった。   In the conventional power supply device, when the backlight 110 is dimmed by the PWM control method, the load current of the power supply device fluctuates greatly. As a result, the transistor 314 performs a switching operation in an attempt to follow the fluctuation of the load current. Therefore, the magnetic flux change of the transformer 313 becomes large, and the core or winding of the transformer 313 vibrates due to the magnetic flux change, and abnormal noise is generated from the transformer 313. For this reason, in order to reduce the abnormal noise generated from the transformer 313, an LC filter is provided at the output end of the power supply device to reduce the change in the current flowing through the transformer 313. However, the parts used in the conventional LC filter are considerably large, and it is difficult to reduce the size of the power supply device.

本発明は、斯かる事情に鑑みてなされたものであり、PWM制御して負荷を駆動する場合に発生する異音を抑制することができる電源装置及び該電源装置を備える表示装置を提供することにある。   The present invention has been made in view of such circumstances, and provides a power supply device capable of suppressing abnormal noise generated when a load is driven by PWM control, and a display device including the power supply device. It is in.

第1発明に係る電源装置は、電源部と、PWM信号に応じて前記電源部の出力をPWM制御して負荷を駆動する駆動部と、前記電源部の出力変動に応答して該電源部の出力を制御する制御部とを備える電源装置において、前記PWM信号のデューティ比に応じて、前記制御部の応答の遅速を調整する調整部を備えることを特徴とする。   A power supply device according to a first aspect of the present invention includes a power supply unit, a drive unit that drives a load by PWM-controlling the output of the power supply unit in accordance with a PWM signal, and the power supply unit in response to output fluctuations of the power supply unit. A power supply apparatus including a control unit that controls output includes an adjustment unit that adjusts a response speed of the control unit in accordance with a duty ratio of the PWM signal.

第2発明に係る電源装置は、第1発明において、前記電源部は、二次側に前記駆動部が接続される変圧器と、該変圧器の一次側に接続され、前記PWM信号の周波数よりも高い周波数でオン・オフ動作が繰り返されるスイッチング素子とを備え、前記制御部は、前記電源部の出力変動に応じて前記スイッチング素子のオン期間を制御するようにしてあり、前記調整部は、前記PWM信号のデューティ比に応じて、前記制御部が制御する前記スイッチング素子のオン期間の変化速度を調整するようにしてあることを特徴とする。   According to a second aspect of the present invention, there is provided the power supply device according to the first aspect, wherein the power supply unit is connected to the transformer on the secondary side and the primary side of the transformer, and is based on the frequency of the PWM signal. A switching element that repeats an on / off operation at a higher frequency, and the control unit is configured to control an on period of the switching element according to an output variation of the power supply unit, and the adjustment unit includes: According to the duty ratio of the PWM signal, the change rate of the ON period of the switching element controlled by the control unit is adjusted.

第3発明に係る電源装置は、第2発明において、前記調整部は、前記PWM信号のデューティ比に応じて、前記PWM信号のオン/オフ時点からの前記スイッチング素子のオン期間の変化速度を調整するようにしてあることを特徴とする。   According to a third aspect of the present invention, there is provided the power supply device according to the second aspect, wherein the adjustment unit adjusts the change rate of the on period of the switching element from the on / off time of the PWM signal according to the duty ratio of the PWM signal. It is made to do so.

第4発明に係る電源装置は、第3発明において、前記調整部は、前記デューティ比が第1閾値(<50%)より大きく、第2閾値(>50%)より小さい場合の前記スイッチング素子の前記PWM信号のオン/オフ時点からのオン期間の変化速度を、前記デューティ比が前記第1閾値より小さい場合又は前記第2閾値より大きい場合の前記PWM信号のオン/オフ時点からの前記オン期間の変化速度より遅くすべく調整するようにしてあることを特徴とする。   According to a fourth aspect of the present invention, there is provided the power supply device according to the third aspect, wherein the adjustment unit includes the switching element when the duty ratio is greater than a first threshold value (<50%) and smaller than a second threshold value (> 50%). The on period from the on / off time of the PWM signal when the duty ratio is smaller than the first threshold value or larger than the second threshold value. It is characterized in that it is adjusted so as to be slower than the rate of change of.

第5発明に係る電源装置は、第3発明において、前記PWM信号を整流して平滑する平滑回路を備え、前記調整部は、前記平滑回路で平滑した電圧が第1閾値電圧より大きく、第2閾値電圧(>前記第1閾値電圧)より小さい場合の前記スイッチング素子の前記PWM信号のオン/オフ時点からのオン期間の変化速度を、前記電圧が前記第1閾値電圧より小さい場合又は前記第2閾値電圧より大きい場合の前記PWM信号のオン/オフ時点からの前記オン期間の変化速度より遅くすべく調整するようにしてあることを特徴とする。   According to a fifth aspect of the present invention, there is provided a power supply apparatus according to the third aspect, further comprising a smoothing circuit that rectifies and smoothes the PWM signal, and the adjustment unit has a voltage smoothed by the smoothing circuit greater than a first threshold voltage, The rate of change of the ON period from the ON / OFF time point of the PWM signal of the switching element when the voltage is smaller than the threshold voltage (> the first threshold voltage), when the voltage is smaller than the first threshold voltage or the second The PWM signal is adjusted so as to be slower than the rate of change of the ON period from the ON / OFF point of the PWM signal when it is larger than the threshold voltage.

第6発明に係る表示装置は、前述の発明のいずれか1つに係る電源装置と、該電源装置の駆動部により駆動されるバックライトとを備えることを特徴とする。   A display device according to a sixth aspect of the invention includes the power supply device according to any one of the above-described inventions, and a backlight driven by a drive unit of the power supply device.

第1発明にあっては、電源部、PWM信号に応じて電源部の出力をPWM制御して負荷を駆動する駆動部、及び電源部の出力変動に応答して電源部の出力を制御する制御部を備える。電源部は、例えば、スイッチング用の変圧器及びスイッチング素子などを備える。制御部は、電源部の出力変動(例えば、電流変動、電圧変動など)に応答すべく出力を制御する。例えば、電源部の負荷電流が増加した場合には、制御部は、電源部のスイッチング素子のスイッチング動作を制御して電源部が出力する電流を増加させる。   In the first invention, the power supply unit, the drive unit that drives the load by PWM control of the output of the power supply unit according to the PWM signal, and the control that controls the output of the power supply unit in response to the output fluctuation of the power supply unit A part. The power supply unit includes, for example, a switching transformer and a switching element. The control unit controls the output so as to respond to the output fluctuation (for example, current fluctuation, voltage fluctuation, etc.) of the power supply section. For example, when the load current of the power supply unit increases, the control unit controls the switching operation of the switching element of the power supply unit to increase the current output from the power supply unit.

調整部は、PWM信号のデューティ比に応じて、制御部の応答の遅速を調整する。PWM信号は、オン・オフのパルス波形が所定の周波数で繰り返される信号であり、デューティ比αは、PWM信号の1周期に占めるオン期間の割合とすることができる。デューティ比αが、例えば、10%である場合、電源部が出力する電流は少なく、電源部の変圧器に流れる電流変化(例えば、電流波形の最大値と最小値との差)は小さい。また、デューティ比αが、例えば、90%である場合、電源部が出力する電流は多いが、電源部の変圧器に流れる電流変化(例えば、電流波形の最大値と最小値との差)は小さい。他方、デューティ比αが、例えば、50%程度である場合、電源部の変圧器に流れる電流変化(例えば、電流波形の最大値と最小値との差)は大きくなり、変圧器の磁束変化が大きくなり変圧器の異音発生の原因となる。   The adjustment unit adjusts the response speed of the control unit in accordance with the duty ratio of the PWM signal. The PWM signal is a signal in which an ON / OFF pulse waveform is repeated at a predetermined frequency, and the duty ratio α can be a ratio of an ON period in one cycle of the PWM signal. When the duty ratio α is, for example, 10%, the current output from the power supply unit is small, and the change in current flowing through the transformer of the power supply unit (for example, the difference between the maximum value and the minimum value of the current waveform) is small. Further, when the duty ratio α is 90%, for example, the current output from the power supply unit is large, but the current change flowing through the transformer of the power supply unit (for example, the difference between the maximum value and the minimum value of the current waveform) is small. On the other hand, when the duty ratio α is, for example, about 50%, the change in current flowing through the transformer of the power supply unit (for example, the difference between the maximum value and the minimum value of the current waveform) becomes large, and the magnetic flux change of the transformer becomes large. It becomes large and causes abnormal noise in the transformer.

調整部は、電源部の変圧器に流れる電流変化が大きくなるようなデューティ比αの場合、制御部の応答が遅くなるように調整する。制御部の応答を遅くすることにより、電源部が出力する電流が電源部の出力変動に追従して急激に変化することを抑制し、変圧器の磁束が急激に変化することを防止し、異音の発生を低減することができる。また、変圧器に流れる電流変化を小さくするためのLCフィルタが不要になるので、LCフィルタに用いる比較的大きな部品が不要となり、またLCフィルタを実装するための基板面積も小さくすることができ、電源装置の小型化、コスト低減を図ることができる。   The adjustment unit adjusts the response of the control unit to be delayed when the duty ratio α is such that a change in current flowing through the transformer of the power supply unit increases. By slowing down the response of the control unit, the current output from the power supply unit is prevented from abruptly changing following the output fluctuation of the power supply unit, and the transformer magnetic flux is prevented from changing suddenly. Generation of sound can be reduced. In addition, since an LC filter for reducing the current change flowing through the transformer is not required, relatively large parts used for the LC filter are not required, and the board area for mounting the LC filter can be reduced. The power supply device can be reduced in size and cost.

第2発明にあっては、電源部は、二次側に駆動部が接続される変圧器と、当該変圧器の一次側に接続され、PWM信号の周波数よりも高い周波数でオン・オフ動作が繰り返されるスイッチング素子とを備える。PWM信号の周波数は、例えば、200Hzとすることができ、スイッチング素子の動作周波数は、例えば、100kHzとすることができる。制御部は、電源部の出力の大/小に応じてスイッチング素子のオン期間を長/短にすべく制御する。例えば、電源部の負荷電流が増加した場合には、制御部は、電源部のスイッチング素子のオン期間を長くして電源部が出力する電流を増加させる。   In the second invention, the power supply unit is connected to the primary side of the transformer having the drive unit connected to the secondary side, and is turned on / off at a frequency higher than the frequency of the PWM signal. A repeated switching element. The frequency of the PWM signal can be set to 200 Hz, for example, and the operating frequency of the switching element can be set to 100 kHz, for example. The control unit performs control so that the ON period of the switching element is lengthened / shortened according to the magnitude of the output of the power source unit. For example, when the load current of the power supply unit increases, the control unit increases the current output from the power supply unit by extending the ON period of the switching element of the power supply unit.

調整部は、PWM信号のデューティ比に応じて、制御部が制御するスイッチング素子のオン期間の変化速度を調整する。デューティ比αが、例えば、10%である場合、あるいは90%である場合、電源部の変圧器に流れる電流変化(例えば、電流波形の最大値と最小値との差)は小さく、変圧器の異音が小さいので、制御部の応答を遅くする必要がない。そこで、調整部は、制御部が制御するスイッチング素子のオン期間の変化速度の調整を行わないようにする。他方、デューティ比αが、例えば、50%程度である場合、電源部の変圧器に流れる電流変化は大きくなり、変圧器の磁束変化が大きくなり変圧器の異音発生の原因となる。そこで、制御部の応答を遅くすべく、調整部は、制御部が制御するスイッチング素子のオン期間の変化速度が遅くなるように調整する。スイッチング素子のオン期間の変化速度を遅くすることにより、変圧器に流れる電流が急激に増加することを抑制して、変圧器の磁束が急激に変化することを防止し、異音の発生を低減することができる。   The adjustment unit adjusts the change rate of the ON period of the switching element controlled by the control unit according to the duty ratio of the PWM signal. When the duty ratio α is, for example, 10% or 90%, the change in current flowing through the transformer of the power supply unit (for example, the difference between the maximum value and the minimum value of the current waveform) is small, and the transformer Since abnormal noise is small, there is no need to slow down the response of the control unit. Therefore, the adjustment unit does not adjust the change rate of the ON period of the switching element controlled by the control unit. On the other hand, when the duty ratio α is, for example, about 50%, a change in current flowing through the transformer of the power supply unit becomes large, and a change in magnetic flux of the transformer becomes large, causing abnormal noise generation in the transformer. Therefore, in order to slow down the response of the control unit, the adjustment unit adjusts so that the change rate of the ON period of the switching element controlled by the control unit becomes slow. By slowing down the change rate of the ON period of the switching element, the current flowing in the transformer is suppressed from increasing rapidly, preventing the transformer magnetic flux from changing suddenly and reducing the occurrence of abnormal noise. can do.

第3発明にあっては、調整部は、PWM信号のデューティ比に応じて、PWM信号のオン/オフ時点からのスイッチング素子のオン期間の変化速度を調整する。PWM信号のオン/オフ時点は、電源部が駆動部への電流出力を開始/終了する時点となり、電源部の出力変動が大きくなる時点である。   In the third invention, the adjustment unit adjusts the changing speed of the ON period of the switching element from the ON / OFF time point of the PWM signal according to the duty ratio of the PWM signal. The on / off time of the PWM signal is a time when the power supply unit starts / ends current output to the drive unit, and is a time when output fluctuation of the power supply unit becomes large.

デューティ比αが、例えば、50%程度である場合、電源部の変圧器に流れる電流変化は大きくなり、変圧器の磁束変化が大きくなり変圧器の異音発生の原因となる。そこで、制御部の応答を遅くすべく、調整部は、PWM信号のオン/オフ時点から制御部が制御するスイッチング素子のオン期間の変化速度が遅くなるように調整する。スイッチング素子のオン期間の変化速度が遅くすることにより、変圧器に流れる電流が急激に増加することを抑制して、変圧器の磁束が急激に変化することを防止し、異音の発生を低減することができる。   When the duty ratio α is, for example, about 50%, a change in current flowing through the transformer of the power supply unit becomes large, a change in magnetic flux of the transformer becomes large, and abnormal noise is generated in the transformer. Therefore, in order to slow down the response of the control unit, the adjustment unit adjusts the change rate of the ON period of the switching element controlled by the control unit from the time when the PWM signal is turned on / off. Slowing the change rate of the ON period of the switching element prevents the current flowing in the transformer from increasing suddenly, prevents the transformer magnetic flux from changing suddenly, and reduces the occurrence of abnormal noise. can do.

第4発明にあっては、調整部は、デューティ比が第1閾値(<50%)より大きく、第2閾値(>50%)より小さい場合のスイッチング素子のPWM信号のオン/オフ時点からのオン期間の変化速度を、デューティ比が第1閾値より小さい場合又は第2閾値より大きい場合のPWM信号のオン/オフ時点からのオン期間の変化速度より遅くすべく調整する。第1閾値Th1は、例えば、30%、40%などの値とすることができる。また、第2閾値Th2は、例えば、70%、60%などの値とすることができる。これにより、変圧器の磁束変化が大きくなるようなデューティ比α(Th1<α<Th2)である場合に、PWM信号のオン/オフ時点でのトランジスタのオン期間の変化速度を遅くするので、変圧器に流れる電流が急激に増加することを抑制して、変圧器の磁束が急激に変化することを防止し、異音の発生を低減することができる。   In the fourth aspect of the invention, the adjustment unit is configured to start from the ON / OFF time point of the PWM signal of the switching element when the duty ratio is larger than the first threshold value (<50%) and smaller than the second threshold value (> 50%). The change rate of the ON period is adjusted to be slower than the change rate of the ON period from the ON / OFF point of the PWM signal when the duty ratio is smaller than the first threshold value or larger than the second threshold value. The first threshold value Th1 can be set to a value such as 30% or 40%, for example. The second threshold Th2 can be set to a value such as 70% or 60%, for example. As a result, when the duty ratio α (Th1 <α <Th2) is such that the magnetic flux change of the transformer becomes large, the change rate of the on period of the transistor at the time of turning on / off the PWM signal is slowed down. It is possible to suppress a sudden increase in the current flowing through the transformer, to prevent the magnetic flux of the transformer from changing abruptly, and to reduce the occurrence of abnormal noise.

第5発明にあっては、平滑回路は、PWM信号を整流して平滑する。すなわち、PWM信号のデューティ比の大小に応じて平滑回路で平滑した電圧は高低となる。調整部は、平滑回路で平滑した電圧が第1閾値電圧より大きく、第2閾値電圧(>第1閾値電圧)より小さい場合のスイッチング素子のPWM信号のオン/オフ時点からのオン期間の変化速度を、電圧が第1閾値電圧より小さい場合又は第2閾値電圧より大きい場合のPWM信号のオン/オフ時点からのオン期間の変化速度より遅くすべく調整する。第1閾値電圧は、デューティ比の第1閾値Th1に対応し、第2閾値電圧は、デューティ比の第2閾値Th2に対応する。これにより、変圧器に流れる電流が急激に増加することを抑制して、変圧器の磁束が急激に変化することを防止し、異音の発生を低減することができる。   In the fifth invention, the smoothing circuit rectifies and smoothes the PWM signal. That is, the voltage smoothed by the smoothing circuit is high or low according to the duty ratio of the PWM signal. The adjusting unit changes the on period from the on / off time of the PWM signal of the switching element when the voltage smoothed by the smoothing circuit is larger than the first threshold voltage and smaller than the second threshold voltage (> first threshold voltage). Is adjusted to be slower than the rate of change of the on period from the on / off time point of the PWM signal when the voltage is smaller than the first threshold voltage or larger than the second threshold voltage. The first threshold voltage corresponds to the first threshold Th1 of the duty ratio, and the second threshold voltage corresponds to the second threshold Th2 of the duty ratio. Thereby, it can suppress that the electric current which flows into a transformer increases rapidly, it can prevent that the magnetic flux of a transformer changes rapidly, and generation | occurrence | production of abnormal noise can be reduced.

第6発明にあっては、PWM制御して負荷を駆動する場合に発生する異音を抑制することができる表示装置を提供することができる。   According to the sixth aspect of the invention, it is possible to provide a display device that can suppress abnormal noise that occurs when the load is driven by PWM control.

本発明によれば、PWM制御して負荷を駆動する電源装置及び該電源装置を備える表示装置において、PWM制御に起因して電源装置から発生する異音を抑制することができる。   ADVANTAGE OF THE INVENTION According to this invention, the noise which generate | occur | produces from a power supply device resulting from PWM control can be suppressed in the power supply device which drives a load by PWM control, and a display apparatus provided with this power supply device.

本実施の形態の表示装置の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the display apparatus of this Embodiment. 本実施の形態の表示装置の回路構成の一例を示す説明図である。It is explanatory drawing which shows an example of the circuit structure of the display apparatus of this Embodiment. PWM信号のデューティ比αと電源部の変圧器の磁束変化との関係を示す説明図である。It is explanatory drawing which shows the relationship between duty ratio (alpha) of a PWM signal, and the magnetic flux change of the transformer of a power supply part. PWM信号とトランジスタのスイッチング波形との関係を示す模式図である。It is a schematic diagram which shows the relationship between a PWM signal and the switching waveform of a transistor. 調整部の動作の一例を示す説明図である。It is explanatory drawing which shows an example of operation | movement of an adjustment part. PWM信号のデューティ比αがα<Th1又はα>Th2である場合のトランジスタのベースに印加されるパルス信号の一例を示す説明図である。It is explanatory drawing which shows an example of the pulse signal applied to the base of a transistor in case the duty ratio (alpha) of a PWM signal is (alpha) <Th1 or (alpha)> Th2. PWM信号のデューティ比αがTh1<α<Th2である場合のトランジスタのベースに印加されるパルス信号の一例を示す説明図である。It is explanatory drawing which shows an example of the pulse signal applied to the base of a transistor in case the duty ratio (alpha) of a PWM signal is Th1 <(alpha) <Th2. PWM信号のデューティ比αが50%付近のスイッチング波形の一例を示す説明図である。It is explanatory drawing which shows an example of the switching waveform whose duty ratio (alpha) of a PWM signal is 50% vicinity. 従来の表示装置の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the conventional display apparatus.

以下、本発明に係る電源装置及び表示装置を実施の形態を示す図面に基づいて説明する。図1は本実施の形態の表示装置200の構成の一例を示すブロック図であり、図2は本実施の形態の表示装置200の回路構成の一例を示す説明図である。図1に示すように、表示装置200は、電源装置100、バックライト110、マイコン120、液晶パネル130などを備える。また、電源装置100は、電源部10、駆動部としてのLEDドライバ20、制御部30、調整部40などを備える。   Hereinafter, a power supply device and a display device according to the present invention will be described with reference to the drawings illustrating embodiments. FIG. 1 is a block diagram illustrating an example of a configuration of a display device 200 according to the present embodiment, and FIG. 2 is an explanatory diagram illustrating an example of a circuit configuration of the display device 200 according to the present embodiment. As shown in FIG. 1, the display device 200 includes a power supply device 100, a backlight 110, a microcomputer 120, a liquid crystal panel 130, and the like. The power supply apparatus 100 includes a power supply unit 10, an LED driver 20 as a drive unit, a control unit 30, an adjustment unit 40, and the like.

液晶パネル130の明るさを設定すべくユーザがブライトネス設定の操作した場合、ユーザの設定に応じたブライトネス値がマイコン120に入力される。マイコン120は、入力されたブライトネス値に応じたPWM信号を生成し、生成したPWM信号をLEDドライバ20及び調整部40へ出力する。   When the user performs a brightness setting operation to set the brightness of the liquid crystal panel 130, a brightness value corresponding to the user setting is input to the microcomputer 120. The microcomputer 120 generates a PWM signal corresponding to the input brightness value, and outputs the generated PWM signal to the LED driver 20 and the adjustment unit 40.

電源部10は、後述のようにスイッチング用の変圧器13及びスイッチング素子としてのトランジスタ14などを備え、商用電源1から供給される交流電圧を直流電圧に変換し、変換した直流電圧をLEDドライバ20へ出力する。なお、電源部10の詳細は後述する。   As will be described later, the power supply unit 10 includes a switching transformer 13 and a transistor 14 as a switching element, converts an AC voltage supplied from the commercial power supply 1 into a DC voltage, and converts the converted DC voltage to the LED driver 20. Output to. Details of the power supply unit 10 will be described later.

LEDドライバ20は、PWM信号に応じて電源部10の出力をPWM制御して負荷としてのバックライト110を駆動する。すなわち、バックライト110は、PWM制御方式により調光することができる。   The LED driver 20 drives the backlight 110 as a load by PWM-controlling the output of the power supply unit 10 according to the PWM signal. That is, the backlight 110 can be dimmed by the PWM control method.

制御部30は、電源部10の出力変動(例えば、電流変動、電圧変動など)に応答すべく電源部10の出力を制御する。例えば、電源部10の負荷電流が増加した場合には、制御部30は、電源部10のスイッチング素子のスイッチング動作を制御して電源部10が出力する電流を増加させる。すなわち、制御部30は、電源部10の出力(例えば、電流、電圧など)をフィードバックし、電源部10のスイッチング動作を制御する。なお、制御部30の詳細は後述する。   The control unit 30 controls the output of the power supply unit 10 to respond to output fluctuations (for example, current fluctuation, voltage fluctuation, etc.) of the power supply unit 10. For example, when the load current of the power supply unit 10 increases, the control unit 30 controls the switching operation of the switching element of the power supply unit 10 to increase the current output from the power supply unit 10. That is, the control unit 30 feeds back an output (for example, current, voltage, etc.) of the power supply unit 10 and controls the switching operation of the power supply unit 10. Details of the control unit 30 will be described later.

調整部40は、マイコン120が出力したPWM信号を取得し、取得したPWM信号のデューティ比に応じて、制御部30の応答の遅速を調整する。PWM信号は、オン・オフのパルス波形が所定の周波数で繰り返される信号であり、デューティ比αは、PWM信号の1周期に占めるオン期間の割合とすることができる。PWM信号の周波数は、例えば、200Hzとすることができるが、これに限定されるものではない。   The adjustment unit 40 acquires the PWM signal output from the microcomputer 120 and adjusts the response speed of the control unit 30 according to the duty ratio of the acquired PWM signal. The PWM signal is a signal in which an ON / OFF pulse waveform is repeated at a predetermined frequency, and the duty ratio α can be a ratio of an ON period in one cycle of the PWM signal. The frequency of the PWM signal can be, for example, 200 Hz, but is not limited thereto.

図3はPWM信号のデューティ比αと電源部10の変圧器13の磁束変化との関係を示す説明図である。磁束変化は、負荷電流の変動が発生させる変圧器13の磁束変化である。図3A、B、CはそれぞれPWM信号のデューティ比αが10%、50%、90%の場合におけるPWM信号及び電源部10の変圧器13の磁束変化の様子を模式的に表している。   FIG. 3 is an explanatory diagram showing the relationship between the duty ratio α of the PWM signal and the change in magnetic flux of the transformer 13 of the power supply unit 10. The magnetic flux change is a magnetic flux change of the transformer 13 that is caused by fluctuations in the load current. 3A, 3B, and 3C schematically show how the PWM signal and the magnetic flux change of the transformer 13 of the power supply unit 10 change when the duty ratio α of the PWM signal is 10%, 50%, and 90%, respectively.

図3Aに示すように、デューティ比αが、例えば、10%である場合、電源部10が出力する電流は少なく、電源部10の変圧器13に流れる電流変化(例えば、電流波形の最大値と最小値との差)は小さい。したがって、変圧器13の磁束の最大値と最小値との差も小さい。   As shown in FIG. 3A, when the duty ratio α is, for example, 10%, the current output from the power supply unit 10 is small, and the change in current flowing through the transformer 13 of the power supply unit 10 (for example, the maximum value of the current waveform) The difference from the minimum value is small. Therefore, the difference between the maximum value and the minimum value of the magnetic flux of the transformer 13 is also small.

また、図3Cに示すように、デューティ比αが、例えば、90%である場合、電源部10が出力する電流は多いが、電源部10の変圧器13に流れる電流変化(例えば、電流波形の最大値と最小値との差)は小さい。したがって、変圧器13の磁束の最大値と最小値との差も小さい。   As shown in FIG. 3C, when the duty ratio α is 90%, for example, a large amount of current is output from the power supply unit 10, but a change in current flowing through the transformer 13 of the power supply unit 10 (for example, the current waveform) The difference between the maximum and minimum values is small. Therefore, the difference between the maximum value and the minimum value of the magnetic flux of the transformer 13 is also small.

これに対して、図3Bに示すように、デューティ比αが、例えば、50%程度である場合、電源部10の変圧器13に流れる電流変化(例えば、電流波形の最大値と最小値との差)は大きくなり、変圧器13の磁束変化が大きくなり変圧器13の異音発生の原因となる。なお、上述の10%、50%、90%は一例であって、デューティ比αの数値がこれらに限定されるものではない。   On the other hand, as shown in FIG. 3B, when the duty ratio α is about 50%, for example, the change in the current flowing through the transformer 13 of the power supply unit 10 (for example, the maximum value and the minimum value of the current waveform) (Difference) increases, and the magnetic flux change of the transformer 13 increases, causing abnormal noise in the transformer 13. The 10%, 50%, and 90% described above are examples, and the numerical value of the duty ratio α is not limited to these.

調整部40は、電源部10の変圧器13に流れる電流変化が大きくなるようなデューティ比αの場合、制御部30の応答が遅くなるように調整する。制御部30の応答を遅くすることにより、電源部10が出力する電流が電源部10の出力変動に追従して急激に変化することを抑制し、変圧器13の磁束が急激に変化することを防止し、異音の発生を低減することができる。また、変圧器13に流れる電流変化を小さくするためのLCフィルタが不要になるので、LCフィルタに用いる比較的大きな部品が不要となり、またLCフィルタを実装するための基板面積も小さくすることができ、電源装置の小型化、コスト低減を図ることができる。   The adjustment unit 40 adjusts the response of the control unit 30 to be slow when the duty ratio α is such that a change in the current flowing through the transformer 13 of the power supply unit 10 increases. By slowing down the response of the control unit 30, the current output from the power supply unit 10 is suppressed from changing rapidly following the output fluctuation of the power supply unit 10, and the magnetic flux of the transformer 13 is changed rapidly. This can prevent the occurrence of abnormal noise. In addition, since an LC filter for reducing the change in the current flowing through the transformer 13 is not required, relatively large components used for the LC filter are not required, and the board area for mounting the LC filter can be reduced. Therefore, it is possible to reduce the size and cost of the power supply device.

次に、本実施の形態の電源装置100について詳細に説明する。図2に示すように、電源部10は、整流素子11、キャパシタ12、スイッチング用の変圧器13、スイッチング素子としてのトランジスタ14、ダイオード15、キャパシタ16などを備える。   Next, the power supply device 100 of the present embodiment will be described in detail. As shown in FIG. 2, the power supply unit 10 includes a rectifying element 11, a capacitor 12, a switching transformer 13, a transistor 14 as a switching element, a diode 15, a capacitor 16, and the like.

制御部30は、抵抗31、32、発光ダイオード331及びフォトトランジスタ332を有するフォトカップラ33、シャントレギュレータ34、コントロールIC35、キャパシタ36などを備える。   The control unit 30 includes resistors 31, 32, a photocoupler 33 having a light emitting diode 331 and a phototransistor 332, a shunt regulator 34, a control IC 35, a capacitor 36, and the like.

調整部40は、ダイオード41、42、抵抗43、44、キャパシタ45、46、抵抗47、48、49、51、52、54、55、56、トランジスタ50、53、58、発光ダイオード571及びフォトトランジスタ572を有するフォトカップラ57、キャパシタ59などを備える。   The adjustment unit 40 includes diodes 41 and 42, resistors 43 and 44, capacitors 45 and 46, resistors 47, 48, 49, 51, 52, 54, 55 and 56, transistors 50, 53 and 58, light emitting diodes 571 and a phototransistor. The photocoupler 57 having the 572, the capacitor 59, and the like are provided.

まず、電源部10について説明する。図2に示すように、変圧器13の一次側にはトランジスタ14のコレクタを接続してあり、変圧器13の二次側には、ダイオード15及びキャパシタ16の後段に駆動部としてのLEDドライバ20を接続してある。LEDドライバ20は、マイコン120からのPWM信号に基づいて電源部10の出力をPWM制御することにより、バックライト110に所要の電力(電流、電圧)を供給する。   First, the power supply unit 10 will be described. As shown in FIG. 2, the collector of the transistor 14 is connected to the primary side of the transformer 13, and the LED driver 20 as a drive unit is connected to the secondary side of the transformer 13 after the diode 15 and the capacitor 16. Is connected. The LED driver 20 supplies required power (current, voltage) to the backlight 110 by performing PWM control on the output of the power supply unit 10 based on the PWM signal from the microcomputer 120.

トランジスタ14のベースには、コントロールIC35のドライブ端子Dを接続してある。コントロールIC35のドライブ端子Dから所定の周波数(例えば、100kHz)でオン・オフが繰り返される所要幅のパルス信号をトランジスタ14のベースへ出力することにより、トランジスタ14は、PWM信号の周波数よりも高い周波数でオン・オフ動作が繰り返される。なお、トランジスタ14のスイッチング動作周波数は、100kHzに限定されるものではなく、他の周波数でもよい。   The drive terminal D of the control IC 35 is connected to the base of the transistor 14. By outputting to the base of the transistor 14 a pulse signal having a required width which is repeatedly turned on and off at a predetermined frequency (for example, 100 kHz) from the drive terminal D of the control IC 35, the transistor 14 has a frequency higher than the frequency of the PWM signal. The on / off operation is repeated at. Note that the switching operation frequency of the transistor 14 is not limited to 100 kHz, and may be other frequencies.

図4はPWM信号とトランジスタ14のスイッチング波形との関係を示す模式図である。図4に示すように、トランジスタ14は、例えば、周波数が100kHzのスイッチング動作を行う。PWM信号の周波数は、例えば、200Hzであり、PWM信号のオン期間においては、トランジスタ14のスイッチング動作により、LEDドライバ20を介してバックライト110に電流が出力される。また、PWM信号のオフ期間においては、トランジスタ14がスイッチング動作を行うか否かに関わらず、バックライト110には電流が出力されない。PWM信号のオフ期間においては、トランジスタ14のスイッチング動作を停止させてもよく、あるいはスイッチング動作を続けてもよい。   FIG. 4 is a schematic diagram showing the relationship between the PWM signal and the switching waveform of the transistor 14. As shown in FIG. 4, the transistor 14 performs a switching operation with a frequency of 100 kHz, for example. The frequency of the PWM signal is, for example, 200 Hz. During the on period of the PWM signal, a current is output to the backlight 110 via the LED driver 20 by the switching operation of the transistor 14. In addition, during the OFF period of the PWM signal, no current is output to the backlight 110 regardless of whether or not the transistor 14 performs a switching operation. During the OFF period of the PWM signal, the switching operation of the transistor 14 may be stopped or the switching operation may be continued.

次に、制御部30について説明する。電源部10とLEDドライバ20との間には、直列接続した抵抗31、32を接続してあり、抵抗31、32と並列にフォトカップラ33(発光ダイオード331)とシャントレギュレータ34との直列回路を接続してある。シャントレギュレータ34のリファレンスは抵抗31、32の接続ノードに接続してある。   Next, the control unit 30 will be described. Resistors 31 and 32 connected in series are connected between the power supply unit 10 and the LED driver 20, and a series circuit of a photocoupler 33 (light emitting diode 331) and a shunt regulator 34 is connected in parallel with the resistors 31 and 32. Connected. The reference of the shunt regulator 34 is connected to the connection node of the resistors 31 and 32.

フォトトランジスタ332のコレクタはコントロールIC35のフィードバック端子FBに接続してあり、フィードバック端子FBには、制御部30の応答性を決定付けるためのキャパシタ36を接続してある。   The collector of the phototransistor 332 is connected to the feedback terminal FB of the control IC 35, and a capacitor 36 for determining the responsiveness of the control unit 30 is connected to the feedback terminal FB.

コントロールIC35は、フィードバック端子FBの電圧値の高低に応じて、ドライブ端子Dから出力するパルス信号のパルス幅を変化させる。より具体的には、コントロールIC35は、フィードバック端子FBの電圧値が高いほど、ドライブ端子Dから出力するパルス信号のオン幅を長くする。パルス信号のオン幅を長くするほど、トランジスタ14のオン期間が長くなり、電源部10は多くの電流を出力することが可能となる。   The control IC 35 changes the pulse width of the pulse signal output from the drive terminal D according to the voltage value of the feedback terminal FB. More specifically, the control IC 35 increases the ON width of the pulse signal output from the drive terminal D as the voltage value of the feedback terminal FB is higher. As the ON width of the pulse signal is increased, the ON period of the transistor 14 becomes longer, and the power supply unit 10 can output more current.

上述の構成により、コントロールIC35は、電源部10の出力変動の大小に応じてトランジスタ14のオン期間を制御することができる。例えば、電源部10の負荷電流が減少した場合には、抵抗31、32で分圧された電圧、すなわちシャントレギュレータ34のリファレンス電圧が高くなり、発光ダイオード331に流れる電流が増加する。そうするとフォトトランジスタ332は、コントロールIC35のフィードバック端子FBから多くの電流を流出させ、FB端子の電圧値を下げるので、電源部10のトランジスタ14のオン期間を短くして電源部10が出力する電流を減少させる。   With the above configuration, the control IC 35 can control the ON period of the transistor 14 in accordance with the output fluctuation of the power supply unit 10. For example, when the load current of the power supply unit 10 decreases, the voltage divided by the resistors 31 and 32, that is, the reference voltage of the shunt regulator 34 increases, and the current flowing through the light emitting diode 331 increases. Then, the phototransistor 332 causes a large amount of current to flow out from the feedback terminal FB of the control IC 35 and lowers the voltage value of the FB terminal. Therefore, the on period of the transistor 14 of the power supply unit 10 is shortened and the current output from the power supply unit 10 is reduced. Decrease.

なお、PWM信号のオフ期間においては、電源部10の出力はゼロ又は極めて小さくなるので、発光ダイオード331に流れる電流が増加し、フォトトランジスタ332がコントロールIC35のフィードバック端子FBから流出させる電流が増加し、FB端子の電圧値を下げる。この場合、コントロールIC35は、ドライブ端子Dから出力するパルス信号のオン幅をゼロ又は極めて短くすることにより、トランジスタ14のスイッチング動作を停止又は極めて短いオン時間で動作させることができる。   Note that, during the off period of the PWM signal, the output of the power supply unit 10 is zero or extremely small, so that the current flowing through the light emitting diode 331 increases and the current that the phototransistor 332 flows out from the feedback terminal FB of the control IC 35 increases. , Decrease the voltage value of the FB terminal. In this case, the control IC 35 can stop the switching operation of the transistor 14 or operate it with a very short on-time by reducing the on width of the pulse signal output from the drive terminal D to zero or extremely short.

次に、調整部40について説明する。マイコン120のPWM信号の出力端Pには、ダイオード41と抵抗43の直列回路を接続してあり、抵抗43の後段にはキャパシタ45を接続してある。同様に、マイコン120のPWM信号の出力端Pには、ダイオード42と抵抗44の直列回路を接続してあり、抵抗44の後段にはキャパシタ46及び抵抗47を接続してある。ダイオード41、抵抗43、キャパシタ45は、平滑回路を構成する。また、ダイオード42、抵抗44、47、キャパシタ46も、平滑回路を構成する。かかる構成により、マイコン120のPWM信号は、それぞれのキャパシタ45、46で平滑(積分)される。なお、図2に示す構成ではPWM信号の出力端PはLEDドライバへの出力端と分かれているが、PWM信号の出力端PはLEDドライバへの出力端を兼ねる構成としてもよい。   Next, the adjustment unit 40 will be described. A series circuit of a diode 41 and a resistor 43 is connected to the output terminal P of the PWM signal of the microcomputer 120, and a capacitor 45 is connected to the subsequent stage of the resistor 43. Similarly, a series circuit of a diode 42 and a resistor 44 is connected to the output terminal P of the PWM signal of the microcomputer 120, and a capacitor 46 and a resistor 47 are connected to the subsequent stage of the resistor 44. The diode 41, the resistor 43, and the capacitor 45 constitute a smoothing circuit. The diode 42, the resistors 44 and 47, and the capacitor 46 also form a smoothing circuit. With this configuration, the PWM signal of the microcomputer 120 is smoothed (integrated) by the capacitors 45 and 46. In the configuration shown in FIG. 2, the output end P of the PWM signal is separated from the output end to the LED driver, but the output end P of the PWM signal may also serve as the output end to the LED driver.

キャパシタ46と抵抗44との接続ノードには、抵抗49を介してトランジスタ50のベースを接続してある。トランジスタ50のベース・エミッタ間には抵抗48を接続してある。同様に、キャパシタ45と抵抗43との接続ノードには、抵抗51を介してトランジスタ53のベースを接続してある。トランジスタ53のベース・エミッタ間には抵抗52を接続してある。   A base of the transistor 50 is connected to a connection node between the capacitor 46 and the resistor 44 through a resistor 49. A resistor 48 is connected between the base and emitter of the transistor 50. Similarly, the base of the transistor 53 is connected to the connection node between the capacitor 45 and the resistor 43 via the resistor 51. A resistor 52 is connected between the base and emitter of the transistor 53.

トランジスタ50のエミッタ、及びトランジスタ53のコレクタは、トランジスタ58のベースに接続してある。また、トランジスタ58のベースには、所要の電圧Vccを抵抗54、55で分圧した電圧が印加されるようにしてある。トランジスタ58のコレクタには、抵抗56とフォトカップラ57(発光ダイオード571)の直列回路を接続してある。また、コントロールIC35のフィードバック端子FBには、キャパシタ59とフォトカップラ57(フォトトランジスタ572)の直列回路を接続してある。   The emitter of the transistor 50 and the collector of the transistor 53 are connected to the base of the transistor 58. A voltage obtained by dividing the required voltage Vcc by resistors 54 and 55 is applied to the base of the transistor 58. A series circuit of a resistor 56 and a photocoupler 57 (light emitting diode 571) is connected to the collector of the transistor 58. A series circuit of a capacitor 59 and a photocoupler 57 (phototransistor 572) is connected to the feedback terminal FB of the control IC 35.

次に、調整部40の動作について説明する。図5は調整部40の動作の一例を示す説明図である。図5は、PWM信号のデューティ比αの大小に応じて調整部40がどのように動作するかを例示したものである。図5において、Th1は第1閾値、Th2は第2閾値である。例えば、第1閾値Th1を30%とし、第2閾値Th2を70%とすることができる。あるいは、第1閾値Th1を40%とし、第2閾値Th2を60%としてもよい。第1閾値及び第2閾値の値は、これらの数値に限定されるものではない。   Next, the operation of the adjustment unit 40 will be described. FIG. 5 is an explanatory diagram showing an example of the operation of the adjustment unit 40. FIG. 5 illustrates how the adjustment unit 40 operates in accordance with the duty ratio α of the PWM signal. In FIG. 5, Th1 is a first threshold value and Th2 is a second threshold value. For example, the first threshold Th1 can be set to 30% and the second threshold Th2 can be set to 70%. Alternatively, the first threshold Th1 may be 40% and the second threshold Th2 may be 60%. The values of the first threshold value and the second threshold value are not limited to these numerical values.

図5に示すように、マイコン120から出力されるPWM信号のデューティ比αが小さい(α<Th1)場合、PWM信号を平滑した電圧V1、V2は小さいので、トランジスタ50はオンとなり、トランジスタ53はオフとなる。トランジスタ50がオンとなるので、トランジスタ58のベース電位は基準レベル(接地レベル)となり、トランジスタ58はオフとなる。トランジスタ58がオフであるので、発光ダイオード571に流れる電流はゼロ又は極めて少ない電流(漏電流程度)となり、フォトトランジスタ572はオフとなる。このため、コントロールIC35のフィードバック端子FBには、キャパシタ36だけが接続され、フィードバック端子FBのキャパシタの容量は比較的小さくなる。   As shown in FIG. 5, when the duty ratio α of the PWM signal output from the microcomputer 120 is small (α <Th1), the voltages V1 and V2 obtained by smoothing the PWM signal are small, so that the transistor 50 is turned on and the transistor 53 is turned on. Turn off. Since the transistor 50 is turned on, the base potential of the transistor 58 is at the reference level (ground level), and the transistor 58 is turned off. Since the transistor 58 is off, the current flowing through the light-emitting diode 571 is zero or extremely small (about the leakage current), and the phototransistor 572 is turned off. For this reason, only the capacitor 36 is connected to the feedback terminal FB of the control IC 35, and the capacitance of the capacitor of the feedback terminal FB becomes relatively small.

また、図5に示すように、マイコン120から出力されるPWM信号のデューティ比αが大きい(α>Th2)場合、PWM信号を平滑した電圧V1、V2は大きい、トランジスタ50はオフとなり、トランジスタ53はオンとなる。トランジスタ53がオンとなるので、トランジスタ58のベース電位は基準レベル(接地レベル)となり、トランジスタ58はオフとなる。トランジスタ58がオフであるので、発光ダイオード571に流れる電流はゼロ又は極めて少ない電流(漏電流程度)となり、フォトトランジスタ572はオフとなる。このため、コントロールIC35のフィードバック端子FBには、キャパシタ36だけが接続され、フィードバック端子FBのキャパシタの容量は比較的小さくなる。   As shown in FIG. 5, when the duty ratio α of the PWM signal output from the microcomputer 120 is large (α> Th2), the voltages V1 and V2 obtained by smoothing the PWM signal are large, the transistor 50 is turned off, and the transistor 53 Is turned on. Since the transistor 53 is turned on, the base potential of the transistor 58 is at the reference level (ground level), and the transistor 58 is turned off. Since the transistor 58 is off, the current flowing through the light-emitting diode 571 is zero or extremely small (about the leakage current), and the phototransistor 572 is turned off. For this reason, only the capacitor 36 is connected to the feedback terminal FB of the control IC 35, and the capacitance of the capacitor of the feedback terminal FB becomes relatively small.

また、図5に示すように、マイコン120から出力されるPWM信号のデューティ比αが、Th1<α<Th2である場合、PWM信号を平滑した電圧V1、V2は中程度の電圧となり、トランジスタ50、53はいずれもオフとなる。この場合、平滑回路で平滑した電圧が第1閾値電圧より大きく、第2閾値電圧(>第1閾値電圧)より小さい場合に相当する。トランジスタ50、53がいずれもオフとなるので、トランジスタ58のベースには、電圧Vccを分圧した電圧が印加され、トランジスタ58はオンとなる。トランジスタ58がオンとなるので、発光ダイオード571に電流が流れ、フォトトランジスタ572はオンとなる。このため、コントロールIC35のフィードバック端子FBには、キャパシタ36と並列にキャパシタ59が接続され、フィードバック端子FBのキャパシタの容量は比較的大きくなる。   Further, as shown in FIG. 5, when the duty ratio α of the PWM signal output from the microcomputer 120 is Th1 <α <Th2, the voltages V1 and V2 obtained by smoothing the PWM signal are medium voltages, and the transistor 50 53 are turned off. This case corresponds to a case where the voltage smoothed by the smoothing circuit is larger than the first threshold voltage and smaller than the second threshold voltage (> first threshold voltage). Since both the transistors 50 and 53 are turned off, a voltage obtained by dividing the voltage Vcc is applied to the base of the transistor 58, and the transistor 58 is turned on. Since the transistor 58 is turned on, a current flows through the light emitting diode 571, and the phototransistor 572 is turned on. Therefore, the capacitor 59 is connected to the feedback terminal FB of the control IC 35 in parallel with the capacitor 36, and the capacitance of the capacitor of the feedback terminal FB becomes relatively large.

フォトカップラ33のフォトトランジスタ332がオンしたときに、コントロールIC35のフィードバック端子FBのキャパシタの容量が大きいほど、フィードバック端子FBの電圧値の変化速度は遅くなる。コントロールIC35は、フィードバック端子FBの電圧値が低いほど、ドライブ端子Dから出力するパルス信号のオン幅を短くする。パルス信号のオン幅を短くするほど、トランジスタ14のオン期間が短くなり、電源部10は、出力する電流を少なくする。   When the phototransistor 332 of the photocoupler 33 is turned on, the change rate of the voltage value of the feedback terminal FB becomes slower as the capacitance of the feedback terminal FB of the control IC 35 is larger. The control IC 35 shortens the ON width of the pulse signal output from the drive terminal D as the voltage value of the feedback terminal FB is lower. As the ON width of the pulse signal is shortened, the ON period of the transistor 14 is shortened, and the power supply unit 10 reduces the output current.

また、フォトカップラ33のフォトトランジスタ332がオンしたときに、コントロールIC35のフィードバック端子FBのキャパシタの容量が小さいほど、フィードバック端子FBの電圧値の変化速度は速くなる。コントロールIC35は、フィードバック端子FBの電圧値が高いほど、ドライブ端子Dから出力するパルス信号のオン幅を長くする。パルス信号のオン幅を長くするほど、トランジスタ14のオン期間が長くなり、電源部10は、出力する電流を多くする。   Further, when the phototransistor 332 of the photocoupler 33 is turned on, the change rate of the voltage value of the feedback terminal FB increases as the capacitance of the capacitor of the feedback terminal FB of the control IC 35 decreases. The control IC 35 increases the ON width of the pulse signal output from the drive terminal D as the voltage value of the feedback terminal FB is higher. As the ON width of the pulse signal is increased, the ON period of the transistor 14 is increased, and the power supply unit 10 increases the output current.

上述のように、調整部40は、PWM信号のデューティ比に応じて、制御部30が制御するトランジスタ14のオン期間の変化速度を調整する。デューティ比αが、例えば、10%である場合(α<Th1)、あるいは90%である場合(α>Th2)、電源部10の変圧器13に流れる電流変化(例えば、電流波形の最大値と最小値との差)は小さく、変圧器13の異音が小さいので、制御部30の応答を遅くする必要がない。そこで、調整部40は、制御部30が制御するトランジスタ14のオン期間の変化速度の調整を行わないようにする。すなわち、コントロールIC35のフィードバック端子FBにはキャパシタ59が接続されない状態とする。   As described above, the adjustment unit 40 adjusts the change rate of the ON period of the transistor 14 controlled by the control unit 30 according to the duty ratio of the PWM signal. When the duty ratio α is, for example, 10% (α <Th1) or 90% (α> Th2), a change in current flowing through the transformer 13 of the power supply unit 10 (for example, the maximum value of the current waveform) (The difference from the minimum value) is small and the noise of the transformer 13 is small, so there is no need to slow down the response of the control unit 30. Therefore, the adjustment unit 40 does not adjust the change rate of the ON period of the transistor 14 controlled by the control unit 30. That is, the capacitor 59 is not connected to the feedback terminal FB of the control IC 35.

他方、デューティ比αが、例えば、50%程度である場合(Th1<α<Th2)、電源部10の変圧器13に流れる電流変化は大きくなり、変圧器13の磁束変化が大きくなり変圧器13の異音発生の原因となる。そこで、制御部30の応答を遅くすべく、調整部40は、制御部30が制御するトランジスタ14のオン期間の変化速度が遅くなるように調整する。すなわち、コントロールIC35のフィードバック端子FBにキャパシタ59が接続された状態とする。トランジスタ14のオン期間の変化速度を遅くすることにより、変圧器13に流れる電流が急激に増加することを抑制して、変圧器13の磁束が急激に変化することを防止し、異音の発生を低減することができる。   On the other hand, when the duty ratio α is, for example, about 50% (Th1 <α <Th2), a change in current flowing through the transformer 13 of the power supply unit 10 becomes large, and a change in magnetic flux of the transformer 13 becomes large. Cause abnormal noise. Therefore, in order to slow down the response of the control unit 30, the adjustment unit 40 adjusts so that the change rate of the ON period of the transistor 14 controlled by the control unit 30 is slow. That is, the capacitor 59 is connected to the feedback terminal FB of the control IC 35. By slowing down the change rate of the ON period of the transistor 14, it is possible to suppress a sudden increase in the current flowing through the transformer 13, thereby preventing the magnetic flux of the transformer 13 from changing suddenly and generating abnormal noise. Can be reduced.

また、調整部40は、PWM信号のデューティ比に応じて、PWM信号のオン時点からのトランジスタ14のオン期間の変化速度を調整する。PWM信号のオン時点は、電源部10がLEDドライバ20への電流出力を開始する時点となり、電源部10の出力変動が大きくなる時点である。   Further, the adjustment unit 40 adjusts the change rate of the ON period of the transistor 14 from the ON point of the PWM signal according to the duty ratio of the PWM signal. The time when the PWM signal is turned on is the time when the power supply unit 10 starts to output current to the LED driver 20, and the time when the output fluctuation of the power supply unit 10 increases.

デューティ比αが、例えば、50%程度である場合(Th1<α<Th2)、電源部10の変圧器13に流れる電流変化は大きくなり、変圧器13の磁束変化が大きくなり変圧器13の異音発生の原因となる。そこで、制御部30の応答を遅くすべく、調整部40は、PWM信号のオン時点から制御部30が制御するトランジスタ14のオン期間の変化速度が遅くなるように調整する。トランジスタ14のオン期間の変化速度を遅くすることにより、変圧器13に流れる電流が急激に増加することを抑制して、変圧器13の磁束が急激に変化することを防止し、異音の発生を低減することができる。   When the duty ratio α is, for example, about 50% (Th1 <α <Th2), a change in current flowing through the transformer 13 of the power supply unit 10 becomes large, a change in magnetic flux of the transformer 13 becomes large, and a difference in the transformer 13 occurs. Causes sound generation. Therefore, in order to slow down the response of the control unit 30, the adjustment unit 40 adjusts so that the change rate of the ON period of the transistor 14 controlled by the control unit 30 becomes slow from the time when the PWM signal is turned on. By slowing down the change rate of the ON period of the transistor 14, it is possible to suppress a sudden increase in the current flowing through the transformer 13, thereby preventing the magnetic flux of the transformer 13 from changing suddenly and generating abnormal noise. Can be reduced.

図6はPWM信号のデューティ比αがα<Th1又はα>Th2である場合のトランジスタ14のベースに印加されるパルス信号の一例を示す説明図であり、図7はPWM信号のデューティ比αがTh1<α<Th2である場合のトランジスタ14のベースに印加されるパルス信号の一例を示す説明図である。   FIG. 6 is an explanatory diagram showing an example of a pulse signal applied to the base of the transistor 14 when the duty ratio α of the PWM signal is α <Th1 or α> Th2, and FIG. 7 shows the duty ratio α of the PWM signal. It is explanatory drawing which shows an example of the pulse signal applied to the base of the transistor in the case of Th1 <α <Th2.

図6に示すように、PWM信号のデューティ比αがα<Th1又はα>Th2である場合には、前述のように、電源部10の変圧器13に流れる電流変化は小さく、変圧器13の異音が小さいので、制御部30の応答を遅くする必要がない。そこで、コントロールIC35のフィードバック端子FBにはキャパシタ59が接続されない状態とすることにより、調整部40は、時刻t0のPWM信号のオン時点から制御部30が制御するトランジスタ14のオン期間の変化速度の調整を行わないようにする。この場合、トランジスタ14のベースに印加されるパルス信号のオン幅はT1となり、負荷電流は、時刻t0において立ち上がる。   As shown in FIG. 6, when the duty ratio α of the PWM signal is α <Th1 or α> Th2, as described above, the change in the current flowing through the transformer 13 of the power supply unit 10 is small. Since the abnormal noise is small, there is no need to delay the response of the control unit 30. Therefore, by setting the capacitor 59 not to be connected to the feedback terminal FB of the control IC 35, the adjustment unit 40 can change the change rate of the ON period of the transistor 14 controlled by the control unit 30 from the ON time of the PWM signal at time t0. Do not make adjustments. In this case, the ON width of the pulse signal applied to the base of the transistor 14 is T1, and the load current rises at time t0.

また、図7に示すように、PWM信号のデューティ比αがTh1<α<Th2である場合には、前述のように、電源部10の変圧器13に流れる電流変化は大きく、変圧器13の異音が大きくなるので、制御部30の応答を遅くする。そこで、コントロールIC35のフィードバック端子FBにはキャパシタ59が接続された状態とすることにより、調整部40は、時刻t0のPWM信号のオン時点から制御部30が制御するトランジスタ14のオン期間の変化速度の調整を行う。この場合、トランジスタ14のベースに印加されるパルス信号のオン幅はT2(<T1)となる。   As shown in FIG. 7, when the duty ratio α of the PWM signal is Th1 <α <Th2, the change in current flowing through the transformer 13 of the power supply unit 10 is large as described above, and Since abnormal noise becomes large, the response of the control unit 30 is delayed. Therefore, by setting the capacitor 59 to be connected to the feedback terminal FB of the control IC 35, the adjustment unit 40 can change the ON period of the transistor 14 controlled by the control unit 30 from the ON point of the PWM signal at time t0. Make adjustments. In this case, the ON width of the pulse signal applied to the base of the transistor 14 is T2 (<T1).

このように、調整部40は、デューティ比αが第1閾値Th1(<50%)より大きく、第2閾値Th2(>50%)より小さい場合のトランジスタ14のPWM信号のオン時点からのオン期間の変化速度を、デューティ比αが第1閾値Th1より小さい場合又は第2閾値Th2より大きい場合のPWM信号のオン時点からのオン期間の変化速度より遅くすべく調整する。これにより、変圧器13の磁束変化が大きくなるようなデューティ比α(Th1<α<Th2)である場合に、PWM信号のオン時点からのトランジスタ14のオン期間の変化速度を遅くするので、変圧器13に流れる電流が急激に増加することを抑制して、変圧器13の磁束が急激に変化することを防止し、異音の発生を低減することができる。   As described above, the adjustment unit 40 determines the ON period from the ON point of the PWM signal of the transistor 14 when the duty ratio α is larger than the first threshold Th1 (<50%) and smaller than the second threshold Th2 (> 50%). Is adjusted to be slower than the change rate of the ON period from the ON point of the PWM signal when the duty ratio α is smaller than the first threshold value Th1 or larger than the second threshold value Th2. As a result, when the duty ratio α (Th1 <α <Th2) is such that the magnetic flux change of the transformer 13 increases, the change rate of the ON period of the transistor 14 from the ON point of the PWM signal is slowed down. It is possible to suppress a sudden increase in the current flowing through the transformer 13, prevent the magnetic flux of the transformer 13 from changing suddenly, and reduce the occurrence of abnormal noise.

同様に、調整部40は、PWM信号のデューティ比に応じて、PWM信号のオフ時点からのトランジスタ14のオン期間の変化速度を調整する。PWM信号のオフ時点は、電源部10がLEDドライバ20への電流出力を終了する時点となり、電源部10の出力変動が大きくなる時点である。   Similarly, the adjustment unit 40 adjusts the change rate of the ON period of the transistor 14 from the OFF time of the PWM signal according to the duty ratio of the PWM signal. The time when the PWM signal is turned off is the time when the power supply unit 10 finishes outputting the current to the LED driver 20, and the time when the output fluctuation of the power supply unit 10 becomes large.

デューティ比αが、例えば、50%程度である場合(Th1<α<Th2)、電源部10の変圧器13に流れる電流変化は大きくなり、変圧器13の磁束変化が大きくなり変圧器13の異音発生の原因となる。そこで、制御部30の応答を遅くすべく、調整部40は、PWM信号のオフ時点から制御部30が制御するトランジスタ14のオン期間の変化速度が遅くなるように調整する。トランジスタ14のオン期間の変化速度を遅くすることにより、変圧器13に流れる電流が急激に増加することを抑制して、変圧器13の磁束が急激に変化することを防止し、異音の発生を低減することができる。   When the duty ratio α is, for example, about 50% (Th1 <α <Th2), a change in current flowing through the transformer 13 of the power supply unit 10 becomes large, a change in magnetic flux of the transformer 13 becomes large, and a difference in the transformer 13 occurs. Causes sound generation. Therefore, in order to slow down the response of the control unit 30, the adjustment unit 40 adjusts the rate of change of the ON period of the transistor 14 controlled by the control unit 30 from the time when the PWM signal is turned off. By slowing down the change rate of the ON period of the transistor 14, it is possible to suppress a sudden increase in the current flowing through the transformer 13, thereby preventing the magnetic flux of the transformer 13 from changing suddenly and generating abnormal noise. Can be reduced.

図8はPWM信号のデューティ比αが50%付近のスイッチング波形の一例を示す説明図である。図8AはPWM信号を示し、図8Bは従来のスイッチング波形を示し、図8Cは本実施の形態のスイッチング波形を示す。図8Bに示すように、従来のスイッチング波形では、PWM信号のオン/オフ時におけるスイッチング波形の変化が急峻である。これに対して、本実施の形態では、図8Cに示すように、PWM信号のオン/オフ時におけるスイッチング波形の変化が緩やかである。   FIG. 8 is an explanatory diagram showing an example of a switching waveform when the duty ratio α of the PWM signal is around 50%. 8A shows the PWM signal, FIG. 8B shows the conventional switching waveform, and FIG. 8C shows the switching waveform of the present embodiment. As shown in FIG. 8B, in the conventional switching waveform, the switching waveform changes sharply when the PWM signal is turned on / off. On the other hand, in the present embodiment, as shown in FIG. 8C, the change of the switching waveform when the PWM signal is turned on / off is gradual.

上述のように、本実施の形態では、電源部10の出力電流が急変するポイント、すなわち変圧器13の磁束が最大に振れ、異音が大きくなるポイントで電源部10の応答性能を落とす(具体的には、コントロールIC35のフィードバック端子FBのキャッパシタの容量を大きくすることで、フィードバックゲインを下げ、出力変動に対する追従性能を下げる)ことにより、変圧器13の磁束変化を和らげ、異音の発生を抑制することができる。   As described above, in the present embodiment, the response performance of the power supply unit 10 is degraded at the point where the output current of the power supply unit 10 changes suddenly, that is, at the point where the magnetic flux of the transformer 13 swings to the maximum and abnormal noise increases (specifically). Specifically, by increasing the capacitance of the feedback terminal FB of the control IC 35, the feedback gain is lowered and the follow-up performance with respect to the output fluctuation is lowered), so that the magnetic flux change of the transformer 13 is softened and abnormal noise is generated. Can be suppressed.

また、バックライト制御用のPWM信号によって、電源部10の変圧器13の磁束変化の大小を判別し、電源部10の負荷変動に対する応答性(追従性能)を制御することにより、変圧器13の磁束変化を和らげ、変圧器13からの異音の発生を抑制することができる。また、変圧器13からの異音の発生を抑制(削減又は微小化)することができるので、従来のスイッチング電源では必要としたLCフィルタを省略することができ、装置の小型化、コスト低減を図ることができる。なお、本実施の形態においても電源部10にLCフィルタを設けてもよい。この場合には、LCフィルタを従来のものより小さくすることができる。   Further, the magnitude of the magnetic flux change of the transformer 13 of the power supply unit 10 is determined by the backlight control PWM signal, and the response (following performance) to the load fluctuation of the power supply unit 10 is controlled, so that the transformer 13 The change in magnetic flux can be softened and the generation of abnormal noise from the transformer 13 can be suppressed. Further, since the generation of abnormal noise from the transformer 13 can be suppressed (reduced or miniaturized), the LC filter required in the conventional switching power supply can be omitted, and the apparatus can be reduced in size and cost. Can be planned. Note that an LC filter may be provided in the power supply unit 10 also in the present embodiment. In this case, the LC filter can be made smaller than the conventional one.

上述の実施の形態では、コントロールIC35のフィードバック端子FBに2個のキャパシタを接続する構成とし、一方のキャパシタを接続状態又は非接続状態とするものであったが、キャパシタの数は2個に限定されるものではなく、3個以上設けることもできる。キャパシタを3個以上設ける場合には、PWM信号のデューティ比αの大小に応じて、接続状態にするキャパシタの数を段階的に増減させることができる。   In the above-described embodiment, two capacitors are connected to the feedback terminal FB of the control IC 35, and one capacitor is connected or disconnected. However, the number of capacitors is limited to two. However, three or more can be provided. When three or more capacitors are provided, the number of capacitors to be connected can be increased or decreased stepwise according to the duty ratio α of the PWM signal.

また、上述の実施の形態において、ブライトネス値、PWM信号、パルス信号のパルス幅などの関係を予め定めたデータベースを記憶しておき、マイコン120でトランジスタ14のスイッチング動作を制御するようにしてもよい。この場合には、マイコン120が制御部30及び調整部40の機能を行うことになる。   In the above-described embodiment, a database in which relationships such as the brightness value, the PWM signal, and the pulse width of the pulse signal are previously stored may be stored, and the microcomputer 120 may control the switching operation of the transistor 14. . In this case, the microcomputer 120 performs the functions of the control unit 30 and the adjustment unit 40.

10 電源部
13 変圧器
14 トランジスタ(スイッチング素子)
20 LEDドライバ(駆動部)
30 制御部
31、32 抵抗
33 フォトカップラ
34 シャントレギュレータ
35 コントロールIC
36 キャパシタ
40 調整部
41、42 ダイオード(平滑回路)
43、44、47 抵抗(平滑回路)
45、46 キャパシタ(平滑回路)
59 キャパシタ
110 バックライト(負荷)
120 マイコン
10 Power Supply Unit 13 Transformer 14 Transistor (Switching Element)
20 LED driver (drive unit)
30 Control Unit 31, 32 Resistor 33 Photocoupler 34 Shunt Regulator 35 Control IC
36 capacitor 40 adjustment unit 41, 42 diode (smoothing circuit)
43, 44, 47 Resistance (smoothing circuit)
45, 46 Capacitor (smoothing circuit)
59 Capacitor 110 Backlight (Load)
120 microcomputer

Claims (6)

電源部と、PWM信号に応じて前記電源部の出力をPWM制御して負荷を駆動する駆動部と、前記電源部の出力変動に応答して該電源部の出力を制御する制御部とを備える電源装置において、
前記PWM信号のデューティ比に応じて、前記制御部の応答の遅速を調整する調整部を備えることを特徴とする電源装置。
A power supply unit; a drive unit that drives a load by PWM-controlling an output of the power supply unit according to a PWM signal; and a control unit that controls the output of the power supply unit in response to an output fluctuation of the power supply unit. In power supply,
A power supply apparatus comprising: an adjustment unit that adjusts a response speed of the control unit in accordance with a duty ratio of the PWM signal.
前記電源部は、
二次側に前記駆動部が接続される変圧器と、
該変圧器の一次側に接続され、前記PWM信号の周波数よりも高い周波数でオン・オフ動作が繰り返されるスイッチング素子と
を備え、
前記制御部は、
前記電源部の出力変動に応じて前記スイッチング素子のオン期間を制御するようにしてあり、
前記調整部は、
前記PWM信号のデューティ比に応じて、前記制御部が制御する前記スイッチング素子のオン期間の変化速度を調整するようにしてあることを特徴とする請求項1に記載の電源装置。
The power supply unit is
A transformer connected to the drive unit on the secondary side;
A switching element connected to a primary side of the transformer, and repeatedly switching on and off at a frequency higher than the frequency of the PWM signal,
The controller is
The ON period of the switching element is controlled according to the output fluctuation of the power supply unit,
The adjustment unit is
2. The power supply device according to claim 1, wherein a change rate of an ON period of the switching element controlled by the control unit is adjusted according to a duty ratio of the PWM signal.
前記調整部は、
前記PWM信号のデューティ比に応じて、前記PWM信号のオン/オフ時点からの前記スイッチング素子のオン期間の変化速度を調整するようにしてあることを特徴とする請求項2に記載の電源装置。
The adjustment unit is
3. The power supply device according to claim 2, wherein a change speed of an on period of the switching element from an on / off time point of the PWM signal is adjusted according to a duty ratio of the PWM signal.
前記調整部は、
前記デューティ比が第1閾値(<50%)より大きく、第2閾値(>50%)より小さい場合の前記スイッチング素子の前記PWM信号のオン/オフ時点からのオン期間の変化速度を、前記デューティ比が前記第1閾値より小さい場合又は前記第2閾値より大きい場合の前記PWM信号のオン/オフ時点からの前記オン期間の変化速度より遅くすべく調整するようにしてあることを特徴とする請求項3に記載の電源装置。
The adjustment unit is
When the duty ratio is larger than the first threshold value (<50%) and smaller than the second threshold value (> 50%), the rate of change of the ON period from the ON / OFF time point of the PWM signal of the switching element is expressed as the duty ratio. The ratio is adjusted so as to be slower than the rate of change of the ON period from the ON / OFF time point of the PWM signal when the ratio is smaller than the first threshold value or larger than the second threshold value. Item 4. The power supply device according to Item 3.
前記PWM信号を整流して平滑する平滑回路を備え、
前記調整部は、
前記平滑回路で平滑した電圧が第1閾値電圧より大きく、第2閾値電圧(>前記第1閾値電圧)より小さい場合の前記スイッチング素子の前記PWM信号のオン/オフ時点からのオン期間の変化速度を、前記電圧が前記第1閾値電圧より小さい場合又は前記第2閾値電圧より大きい場合の前記PWM信号のオン/オフ時点からの前記オン期間の変化速度より遅くすべく調整するようにしてあることを特徴とする請求項3に記載の電源装置。
A smoothing circuit for rectifying and smoothing the PWM signal;
The adjustment unit is
Change rate of ON period from ON / OFF time of PWM signal of switching element when voltage smoothed by smoothing circuit is larger than first threshold voltage and smaller than second threshold voltage (> first threshold voltage) Is adjusted to be slower than the rate of change of the ON period from the ON / OFF time point of the PWM signal when the voltage is lower than the first threshold voltage or higher than the second threshold voltage. The power supply device according to claim 3.
請求項1乃至請求項5のいずれか1項に記載の電源装置と、該電源装置の駆動部により駆動されるバックライトとを備えることを特徴とする表示装置。   A display device comprising: the power supply device according to any one of claims 1 to 5; and a backlight driven by a drive unit of the power supply device.
JP2012214742A 2012-09-27 2012-09-27 Power supply device and display device Expired - Fee Related JP5285802B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012214742A JP5285802B1 (en) 2012-09-27 2012-09-27 Power supply device and display device
PCT/JP2013/055324 WO2014050165A1 (en) 2012-09-27 2013-02-28 Power source device and display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012214742A JP5285802B1 (en) 2012-09-27 2012-09-27 Power supply device and display device

Publications (2)

Publication Number Publication Date
JP5285802B1 JP5285802B1 (en) 2013-09-11
JP2014072916A true JP2014072916A (en) 2014-04-21

Family

ID=49274056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012214742A Expired - Fee Related JP5285802B1 (en) 2012-09-27 2012-09-27 Power supply device and display device

Country Status (2)

Country Link
JP (1) JP5285802B1 (en)
WO (1) WO2014050165A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112087171B (en) * 2020-08-26 2022-02-11 湖南英迈智能科技有限公司 Current smoothing method and device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003299356A (en) * 2002-04-01 2003-10-17 Nanao Corp Dc-dc converter control method
JP5071516B2 (en) * 2010-04-22 2012-11-14 株式会社デンソー Power converter

Also Published As

Publication number Publication date
WO2014050165A1 (en) 2014-04-03
JP5285802B1 (en) 2013-09-11

Similar Documents

Publication Publication Date Title
JP5708371B2 (en) LIGHTING POWER SUPPLY DEVICE AND HOLDING CURRENT CONTROL METHOD
EP2515611B1 (en) Lighting device and illumination apparatus
JP5341627B2 (en) Semiconductor device and switching power supply device
JP5353119B2 (en) Switching power supply
JP6456916B2 (en) Voltage regulator
EP2289143B1 (en) Impedance correction
JP2008283798A (en) Switching control device
KR20130102508A (en) Regulation for power supply mode transition to low-load operation
CN110401347B (en) DC power supply device
JP6034657B2 (en) LIGHT EMITTING DEVICE CONTROL CIRCUIT, LIGHT EMITTING DEVICE USING THE SAME, AND ELECTRONIC DEVICE
JP2011182482A (en) Switching step-up type dc-dc converter and semiconductor integrated circuit device
JP5285802B1 (en) Power supply device and display device
JP7256384B2 (en) Power supply device, semiconductor integrated circuit and ripple suppression method
CN103095138A (en) Apparatus for supplying multi-output and display apparatus using the same
JP6559643B2 (en) Adjustable flyback or buck-boost converter
JP5701326B2 (en) Load drive device
JP2012253900A (en) Switching power supply device and led lighting apparatus using the same
JP4349377B2 (en) Dual power supply for load drive
CN103368424A (en) Power supply circuit, backlight unit and liquid crystal display television
TWI663818B (en) Switching power supply having dynamically adjustable feedback compensation function
KR100988560B1 (en) Ac-dc converter using controlling phase angle
JP2013030373A (en) Dc lighting device
JP2011229282A (en) Switching power supply unit
CN109429026A (en) Power management circuit and microcontroller
JP6199503B2 (en) Power supply device and lighting apparatus including the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130531

R150 Certificate of patent or registration of utility model

Ref document number: 5285802

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees