[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2014067638A - 非水系二次電池用炭素材、及び負極並びに、非水系二次電池 - Google Patents

非水系二次電池用炭素材、及び負極並びに、非水系二次電池 Download PDF

Info

Publication number
JP2014067638A
JP2014067638A JP2012213051A JP2012213051A JP2014067638A JP 2014067638 A JP2014067638 A JP 2014067638A JP 2012213051 A JP2012213051 A JP 2012213051A JP 2012213051 A JP2012213051 A JP 2012213051A JP 2014067638 A JP2014067638 A JP 2014067638A
Authority
JP
Japan
Prior art keywords
carbon material
less
secondary battery
negative electrode
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012213051A
Other languages
English (en)
Inventor
Akio Ueda
晃生 上田
Nobuyuki Ishiwatari
信亨 石渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2012213051A priority Critical patent/JP2014067638A/ja
Publication of JP2014067638A publication Critical patent/JP2014067638A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】表面構造を破壊することなく、高い密度を持った負極活物質を製造し、優れた出力、サイクル特性を有する非水系二次電池用炭素材を提供すること。
【解決手段】炭素質物又は黒鉛質物で被覆した内部空隙率が1%以上23%未満である加圧処理された複合炭素材(A)と、内部空隙率が23%以上40%以下である炭素材(B)を含有することを特徴とする非水系二次電池用炭素材を製造する。
【選択図】なし

Description

本発明は、非水系二次電池に用いる非水系二次電池用炭素材と、その炭素材を用いて形成された負極と、その負極を備える非水系二次電池に関するものである。
近年、電子機器の小型化に伴い、高容量の二次電池に対する需要が高まってきている。特に、ニッケル・カドミウム電池や、ニッケル・水素電池に比べ、よりエネルギー密度が高く、大電流充放電特性に優れたリチウムイオン二次電池が注目されてきている。
リチウムイオン二次電池の負極材としては、コストと耐久性の面から、黒鉛材料や非晶質炭素が使用されることが多い。しかしながら、非晶質炭素材は、実用化可能な材料範囲での可逆容量の小ささ故、また黒鉛材料は、高容量化のために負極材料を含む活物質層を高密度化すると、材料破壊により初期サイクル時の充放電不可逆容量が増え、結果として、高容量化に至らないといった問題点があった。
上記問題点を解決するため、例えば、特許文献1には、球形化黒鉛を等方的に加圧し、高密度化された等方性の高い黒鉛を含有するリチウムイオン二次電池用負極材料の製造方法が開示されている。
また特許文献2では、天然黒鉛球状化粒子および天然黒鉛塊状化粒子のうち少なくとも一方が加圧処理された加圧黒鉛粒子の表面に、炭化物からなる被覆層が形成されていることを特徴とするリチウムイオン二次電池用黒鉛材料が開示されている。
また特許文献3では、つぶれ易さ(圧縮性)が等しく、粉体の吸油量及び円形度の異なる2種類の黒鉛粉末を混合することを特徴とするリチウムイオン二次電池用黒鉛材料が開示されている。
特開2005−50807号公報 特開2011−060465号公報 特開2010−92649号公報
しかしながら本発明者らの検討によると、特許文献1には、球形化黒鉛を等方的に加圧することによって黒鉛を高密度化し、負荷特性、サイクル特性などに優れるリチウムイオン二次電池についての記載があるが、この方法では黒鉛の表面構造が破壊されることから、改善の余地があった。
また、特許文献2では、天然黒鉛球状化粒子および天然黒鉛塊状化粒子のうち少なくとも一方が加圧処理された加圧黒鉛粒子の表面に、炭化物からなる被覆層が形成されているリチウムイオン二次電池用黒鉛材料が開示されているが、このような炭素材料では、市場の要求性能を満足できるものではない。
特許文献3では、高い電極密度とすることができ、かつ、電解液の浸透性に優れる旨が記載されているが、つぶれ易さ(圧縮性)が等しい材の混合であることから、互いの黒鉛の表面構造が破壊される懸念がある。
本発明はかかる課題に鑑みてなされたものであり、硬さの異なる材を混合することで、硬い材料の表面構造を破壊することなく、高い密度で負極を製造することができる。
本発明者らは、前記課題を解決すべく鋭意検討を行った結果、加圧処理を施し有機化合物を被覆(混合)した、粒子内部を緻密化した硬い複合炭素材(A)とやわらかい炭素材(B)とを含む非水系二次電池用炭素材を負極に適用することで、電解液との副反応が抑制されサイクル時の劣化が少なくなり、サイクル特性に優れた非水系二次電池が得られることを見出し、本発明を完成するに至った。
すなわち、本発明の趣旨は、炭素質物又は黒鉛質物で被覆した内部空隙率が1%以上23%未満である加圧処理された複合炭素材(A)と、内部空隙率が23%以上40%以下である炭素材(B)を含有することを特徴とする非水系二次電池用炭素材に存する。
本発明の複合炭素材(A)と炭素材(B)とを含む非水系二次電池用炭素材を非水系二次電池用負極材として用いることにより、より電解液との反応が抑制され、サイクル時の劣化が少なく、保存特性に優れた非水系二次電池を提供することができる。また、電極の膨張やガス発生が少なく、充放電レート特性に優れた高容量な非水系二次電池を得ることができる。
ここで前記効果の詳細は不明であるが、発明者らの検討の結果、優れた電池特性は次の様な効果によると考えられる。すなわち、複合炭素材(A)をそのまま用いた場合は、負極を形成する(特に電極密度を所定の値にする)工程の際に、複合炭素材(A)の表面構造が破壊され、優れた電池特性が得られ難い可能性がある。
これに対し、本発明に係る非水系二次電池用炭素材は、複合炭素材(A)と炭素材(B)とを含むことにより、複合炭素材(A)が本来持つと考えられる電池特性を損ねることなく、更に優れた電池特性を得る事ができると考えられる。
水銀圧入法による内部空隙量算出方法の解説図(一例)
以下、本発明の内容を詳細に述べる。なお、以下に記載する発明構成要件の説明は、本発明の実施態様の一例(代表例)であり、本発明はその要旨を超えない限り、これらの形態に特定されるものではない。また、“重量%”と“質量%”とは同義である。
<複合炭素材(A)の原料である原料炭素材>
本発明の複合炭素材(A)の原料である原料炭素材は、一例として下記に示すが、特に制限されない。
・原料炭素材の種類
原料炭素材の例としては、黒鉛から非晶質のものにいたるまで種々の黒鉛化度の原料炭素材が挙げられる。
また、商業的にも容易に入手可能であるという点で、黒鉛又は黒鉛化度の小さい原料炭素(非晶質炭素)材が特に好ましい。このような黒鉛又は黒鉛化度の小さい黒鉛(非晶質炭素)を原料炭素材として用いると、他の負極活物質を用いた場合よりも、高電流密度での充放電特性の改善効果が著しく大きいので好ましい。
黒鉛は、天然黒鉛、人造黒鉛の何れを用いてもよい。黒鉛としては、不純物の少ないものが好ましく、必要に応じて種々の精製処理を施して用いる。
天然黒鉛の具体例としては、鱗状黒鉛、鱗片状黒鉛、土壌黒鉛等が挙げられる。人造黒鉛としては、ピッチ原料を高温熱処理して製造した、コークス、ニードルコークス、高密
度炭素材料等の黒鉛質粒子が挙げられる。好ましくは、低コストと電極作製のし易さの点で、球形化した天然黒鉛である
人造黒鉛の具体例としては、コールタールピッチ、石炭系重質油、常圧残油、石油系重質油、芳香族炭化水素、窒素含有環状化合物、硫黄含有環状化合物、ポリフェニレン、ポリ塩化ビニル、ポリビニルアルコール、ポリアクリロニトリル、ポリビニルブチラール、天然高分子、ポリフェニレンサイルファイド、ポリフェニレンオキシド、フルフリルアルコール樹脂、フェノール−ホルムアルデヒド樹脂、イミド樹脂などの有機物を、通常2500℃以上、3200℃以下の範囲の温度で焼成し、黒鉛化したものが挙げられる。
原料炭素材は、原料炭素材に金属粒子、及び金属酸化物粒子等の粒子を任意の組み合わせで適宜混合して用いても良い。また、個々の粒子中に複数の材料が混在するものであってもよい。例えば、黒鉛の表面を黒鉛化度の小さい炭素材で被覆した構造の炭素質粒子や、炭素材を適当な有機物で集合させ再黒鉛化した粒子でも良い。更に、前記複合粒子中にSn、Si、Al、Biなどの、Liと合金化が可能な金属を含んでいても良い。
・原料炭素材の物性
本発明における原料炭素材は以下の物性を示すものである。なお、本発明における測定方法は特に制限はないが、特段の事情がない限り実施例に記載の測定方法に準じる。
(1)原料炭素材のd002
学振法によるX線回折で求めた格子面(002)のd値(層間距離)は、通常0.335nm以上、0.340nm未満である。ここで、d値は好ましくは0.339nm以下、更に好ましくは0.337nm以下である。d値が大きすぎると結晶性が低下し、初期不可逆容量が増加する場合がある。一方、下限値である0.335nmは黒鉛の理論値である。
(2)原料炭素材の表面官能基量
本発明の複合炭素材(A)の原料である原料炭素材は、下記式(1)で表される表面官能基量O/C値が通常1%以上4%以下であり、2%以上3.6%以下が好ましく、2.6%以上3%以下であるとより好ましい。
この表面官能基量O/C値が小さすぎると、バインダとの親和性が低下し、負極表面と被覆材の相互作用が弱くなり、被覆材がはがれやすくなる傾向がある。一方表面官能基量O/C値が大きすぎると、O/C値の調整が困難となり、製造処理を長時間行う必要が生じたり、工程数を増加させる必要が生じたりする傾向があり、生産性の低下やコストの上昇を招く虞がある。
式(1)
O/C値(%)={X線光電子分光法(XPS)分析におけるO1sのスペクトルのピーク面積に基づいて求めたO原子濃度/XPS分析におけるC1sのスペクトルのピーク面積に基づいて求めたC原子濃度}×100
本発明における表面官能基量O/C値はX線光電子分光法(XPS)を用いて以下のように測定することができる。
X線光電子分光法測定としてX線光電子分光器を用い、測定対象を表面が平坦になるように試料台に載せ、アルミニウムのKα線をX線源とし、マルチプレックス測定により、C1s(280〜300eV)とO1s(525〜545eV)のスペクトルを測定する。得られたC1sのピークトップを284.3eVとして帯電補正し、C1sとO1sのスペクトルのピーク面積を求め、更に装置感度係数を掛けて、CとOの表面原子濃度をそれぞれ算出する。得られたそのOとCの原子濃度比O/C(O原子濃度/C原子濃度)を原料炭素材の表面官能基量O/C値と定義する。
(3)原料炭素材の体積基準平均粒径(d50)
原料炭素材の粒径については特に制限が無いが、使用される範囲として、平均粒径(メジアン径)が通常50μm以下、好ましくは30μm以下、更に好ましくは25μm以下である。また、通常1μm以上、好ましくは4μm以上、更に好ましくは10μm以上である。 この粒径が大きすぎると極板化した際に、筋引きなどの工程上の不都合が出る傾向があり、また、粒径が小さすぎると、表面積が大きくなりすぎて、電解液に対する活性を抑制することが難しくなる傾向がある。
なお粒径の測定方法は、界面活性剤であるポリオキシエチレンソルビタンモノラウレートの0.2質量%水溶液10mLに、炭素材0.01gを懸濁させ、市販のレーザー回折/散乱式粒度分布測定装置に導入し、28kHzの超音波を出力60Wで1分間照射した後、測定装置における体積基準のメジアン径として測定したものを、本発明における体積基準平均粒径d50と定義する。
(4)原料炭素材のBET比表面積(SA)
本発明の原料炭素材のBET法で測定した比表面積については、通常4m/g以上、好ましくは5m/g以上である。また、通常11m/g以下、好ましくは9m/g以下、より好ましくは8m/g以下である。
比表面積が小さすぎると、Liが出入りする部位が少なく、高速充放電特性及び出力特性に劣り、一方、比表面積が大きすぎると、活物質の電解液に対する活性が過剰になり、初期不可逆容量が大きくなるため、高容量電池を製造できない傾向がある。
なおBET比表面積の測定方法は、比表面積測定装置を用いて、窒素ガス吸着流通法によりBET1点法にて測定する。
(5)原料炭素材のX線回折構造解析(XRD)
原料炭素材のX線回折構造解析(XRD)から得られる、Rhombohedral(菱面体晶)に対するHexagonal(六方晶)の結晶の存在比(3R/2H)は通常0.20以上、0.25以上が好ましく、0.30以上がより好ましい。3R/2Hが小さすぎると、高速充放電特性の低下を招く傾向がある。
なお、X線回折構造解析(XRD)の測定方法は、0.2mmの試料板に原料炭素材を配向しないように充填し、X線回折装置で、CuKα線にて出力30kV、200mAで測定する。得られた43.4°付近の3R(101)、及び44.5°付近の2H(101)の両ピークからバックグラウンドを差し引いた後、強度比3R(101)/2H(101)を算出できる。
(6)原料炭素材のタップ密度
本発明の原料炭素材のタップ密度は、通常0.7g/cm以上、0.8g/cm以上が好ましく、1g/cm以上がより好ましい。また、通常1.3g/cm以下、1.2g/cm以下が好ましく、1.1g/cm以下がより好ましい。タップ密度が低すぎると、高速充放電特性に劣り、タップ密度が高すぎると、粒子内炭素密度が上昇し、圧延性に欠け、高密度の負極シートを形成することが難しくなる場合がある。
本発明において、タップ密度は、粉体密度測定器を用い、直径1.6cm、体積容量20cmの円筒状タップセルに、目開き300μmの篩を通して、原料炭素材を落下させて、セルに満杯に充填した後、ストローク長10mmのタップを1000回行なって、その時の体積と試料の重量から求めた密度をタップ密度として定義する。
(7)原料炭素材のラマンスペクトル(Raman)スペクトル
原料炭素材のラマンR値は、1580cm−1付近のピークPの強度Iと、1360cm−1付近のピークPの強度Iとを測定し、その強度比R(R=I/I)を算出して定義する。その値は通常0.15以上であり、0.4以下であることが好ましく、0.3以下がより好ましい。ラマンR値がこの範囲を下回ると、粒子表面の結晶性が高くなり過ぎて、高密度化した場合に電極板と平行方向に結晶が配向し易くなり、負荷特性の低下を招く傾向がある。一方、この範囲を上回ると、粒子表面の結晶性が乱れ、電解液との反応性が増し、充放電効率の低下やガス発生の増加を招く傾向がある。
ラマンスペクトルはラマン分光器で測定できる。具体的には、測定対象粒子を測定セル内へ自然落下させることで試料充填し、測定セル内にアルゴンイオンレーザー光を照射しながら、測定セルをこのレーザー光と垂直な面内で回転させながら測定を行なう。
アルゴンイオンレーザー光の波長 :514.5nm
試料上のレーザーパワー :25mW
分解能 :4cm−1
測定範囲 :1100cm−1〜1730cm−1
ピーク強度測定、ピーク半値幅測定:バックグラウンド処理、スムージング処理(単純平均によるコンボリューション5ポイント)
(8)原料炭素材の内部空隙率
原料炭素材の内部空隙率は通常1%以上、好ましくは3%以上、より好ましく5%以上、更に好ましくは7%以上である。また通常40%以下、好ましくは35%以下、より好ましくは30%以下、更に好ましくは23%未満である。この内部空隙率が小さすぎると粒子内の液量が少なくなり、充放電特性が悪化する傾向があり、内部空隙率が大きすぎると、電極にした場合に粒子間空隙が少なく、電解液の拡散が不十分になる傾向がある。
(9)原料炭素材の製造方法
本発明の原料炭素材は、その原料として、黒鉛化されている炭素粒子であれば特に限定はないが、上述したように天然黒鉛、人造黒鉛、並びにコークス粉、ニードルコークス粉、及び樹脂等の黒鉛化物の粉体等を用いることができる。これらのうち、天然黒鉛が好ましく、中でも球形化処理を施した球形化天然黒鉛が加圧処理の効果が現れ易い点から特に好ましい。以下に、一例として球形化天然黒鉛の製造方法を記載する。
球形化処理には、例えば、衝撃力を主体として粒子の相互作用も含め圧縮、摩擦、せん断力等の機械的作用を繰り返し炭素粒子に与え、球形化を行う装置を用いることができる。具体的には、ケーシング内部に多数のブレードを設置したローターを有し、そのローターが高速回転することによって、内部に導入された原料炭素材に対して衝撃圧縮、摩擦、せん断力等の機械的作用を与え、表面処理を行なう装置が好ましい。
また、原料炭素材を循環させることによって機械的作用を繰り返して与える機構を有するものであるのが好ましい。好ましい装置として、例えば、ハイブリダイゼーションシステム(奈良機械製作所社製)、クリプトロン(アーステクニカ社製)、CFミル(宇部興産社製)、メカノフュージョンシステム(ホソカワミクロン社製)、シータコンポーザ(徳寿工作所社製)等が挙げられる。これらの中で、奈良機械製作所社製のハイブリダイゼーションシステムが好ましい。
例えば本発明で用いる原料炭素材が鱗片状黒鉛である場合には、上記の表面処理による球形化工程を施すことにより、鱗片状の天然黒鉛が折りたたまれて球状になる。又は、原料炭素材の周囲エッジ部分が球形粉砕されて球状となり、その母体粒子に、さらに粉砕により生じた主に5μm以下の微粉が付着してなる。
表面処理後の原料炭素材の表面官能基量O/C値が通常1%以上4%以下となるような
条件で、球形化処理を行うことにより製造することが好ましい。この際には、機械処理のエネルギーにより黒鉛表面の酸化反応を進行させ、黒鉛表面に酸性官能基を導入することができるよう、活性雰囲気下で行うことが好ましい。
例えば前述の装置を用いて処理する場合は、回転するローターの周速度を通常30〜100m/秒、40〜100m/秒にするのが好ましく、50〜100m/秒にするのがより好ましい。また、球形化処理は単に炭素質物を通過させるだけでも可能であるが、30秒以上装置内を循環又は滞留させて処理するのが好ましく、1分以上装置内を循環又は滞留させて処理することがより好ましい。
<複合炭素材(A)の原料である有機化合物>
本発明の複合炭素材(A)のもう一方の原料である被覆用の炭素質物又は黒鉛質物の前駆体である有機化合物は、下記に示す物性を満たせば特に制限されない。
・有機化合物の種類
本発明における有機化合物とは、焼成を行うことによって炭素質物又は黒鉛質物となる原料である。ここで、炭素質物とはd値が通常0.340nm以上の炭素のことであり、炭素質物と非晶質炭素質物とは同義である。一方、黒鉛質物とはd値が0.340nm未満の黒鉛のことである。
具体的には、含浸ピッチ、コールタールピッチ、石炭液化油等の石炭系重質油、アスファルテン等の直留系重質油、及びエチレンヘビーエンドタール等の分解系重質油等の石油系重質油等に例示される易黒鉛化性有機化合物、芳香族炭化水素、窒素含有環状化合物、硫黄含有環状化合物、ポリフェニレン、ポリ塩化ビニル、ポリビニルアルコール、ポリアクリロニトリル、ポリビニルブチラール、天然高分子、ポリフェニレンサイルファイド、ポリフェニレンオキシド、フルフリルアルコール樹脂、フェノール−ホルムアルデヒド樹脂、イミド樹脂などが挙げられ、この中でも焼成によって黒鉛化又は炭素化が可能な易黒鉛化性有機化合物が好ましい。
・有機化合物の物性
(1)X線パラメータ(d002値)
<有機化合物を焼成した炭素質物における物性>
有機化合物のみを焼成処理して得られた炭素質物粉末のX線広角回折法による(002)面の面間隔(d002)が通常0.340nm以上、好ましくは0.342nm以上である。また、通常0.380nm未満、好ましくは0.370nm以下、より好ましくは0.360nm以下である。d002値が大きすぎるということは結晶性が低いことを示し、複合炭素材(A)が結晶性の低い粒子となって不可逆容量が増加する場合があり、d002値が小さすぎると炭素質物を複合化させた効果が得られ難い。
<有機化合物を焼成した黒鉛質物における物性>
有機化合物のみを黒鉛化処理して得られた黒鉛質物粉末のX線広角回折法による(002)面の面間隔(d002)が通常0.3354nm以上、好ましくは0.3357nm以上、より好ましくは0.3359nm以上である。また、通常0.340nm未満、好ましくは0.338nm以下、より好ましくは0.337nm以下である。d002値が大きすぎるということは結晶性が低いことを示し、複合炭素材(A)が結晶性の低い粒子となって黒鉛質物を複合化させた効果が得られ難い場合があり、d002値が小さすぎると充放電反応性が低下して、高温保存時のガス発生増加や大電流充放電特性低下の虞がある。
(2)結晶子サイズ(Lc(002))
<有機化合物を焼成した炭素質物における物性>
有機化合物を焼成処理して得られた炭素質物粉末の学振法によるX線回折法で求めた炭素材料の結晶子サイズ(Lc(002))は、通常5nm以上、好ましくは10nm以上、より好ましくは20nm以上である。また通常300nm以下、好ましくは200nm以下、より好ましくは100nm以下である。結晶子サイズが大きすぎると、複合炭素材(A)が結晶性の低い粒子となって不可逆容量が増加する傾向があり、結晶子サイズが小さすぎると、炭素質物を複合化させた効果が得られ難い。
<有機化合物を焼成した黒鉛質物における物性>
有機化合物を黒鉛化処理して得られた黒鉛質物粉末の学振法によるX線回折法で求めた炭素材料の結晶子サイズ(Lc(002))は、通常300nm以上、好ましくは400nm以上、より好ましくは500nm以上である。また通常1000nm以下、好ましくは800nm以下、より好ましくは600nm以下である。結晶子サイズが大きすぎると、複合炭素材(A)が結晶性の低い粒子となって黒鉛質物を複合化させた効果が得られ難い場合があり、結晶子サイズが小さすぎると、充放電反応性が低下して、高温保存時のガス発生増加や大電流充放電特性低下の傾向がある。
(3)軟化点
有機化合物の軟化点が通常400℃以下、好ましくは300℃以下、より好ましくは200℃以下、さらに好ましくは150℃以下である。軟化点が高すぎると、原料炭素材と混合又は捏合する際に、均一に混合又は捏合することが困難になり、且つ高温で取り扱う必要が生じるため生産性に欠ける場合がある。下限は特に制限されないが、通常40℃以上である。
<複合炭素材(A)の製造方法>
複合炭素材(A)の製造方法は、炭素質物又は黒鉛質物で被覆した内部空隙率が1%以上23%未満である加圧処理された複合炭素材であれば、特に制限はないが、好ましくは、上述した原料炭素材を加圧処理した後、解砕し、炭素質物又は黒鉛質物被覆部分を得るための有機化合物と混合し、得られた混合物を焼成、粉砕処理を行う工程、もしくは、原料炭素材と非晶質、炭素質物又は黒鉛質物被覆部分を得るための有機化合物と混合し、加圧処理した後、得られた混合物を焼成、粉砕処理を行う工程にて本発明に用いられる炭素材を炭素質物又は黒鉛質物で被覆した複合炭素材(A)を製造することができる。より好ましくは、粉砕工程数が少ない後者となる。
・原料炭素材と有機化合物とを混合する工程
原料炭素材と有機化合物との混合は常法により行うことができる。混合温度は通常は常温〜150℃であり、50〜150℃がより好ましく、100〜130℃が原料炭素材と有機化合物が均一に混合し易い点から更に好ましい。
原料炭素材と混合する際に、有機化合物は有機溶媒によって希釈することが好ましい。希釈する理由としては、有機溶媒で希釈することで混合する有機化合物の粘度を下げ、より効率良く、均一に原料炭素材を被覆できるからである。
有機溶媒の種類としては、ペンタン、ヘキサン、イソヘキサン、ヘプタン、オクタン、イソオクタン、デカン、ジメチルブタン、シクロヘキサン、メチルシクロヘキサン等の炭化水素;エチルエーテル、イソプロピルエーテル、ジイソアミルエーテル、メチルフェニルエーテル、アミルフェニルエーテル、エチルベンジルエーテル等のエーテル;アセトン、メチルアセトン、メチルエチルケトン、メチルイソブチルケトン、ジエチルケトン等のケトン;ギ酸メチル、ギ酸エチル、ギ酸イソブチル、酢酸メチル、酢酸イソアミル、酢酸メトキシブチル、酢酸シクロヘキシル、酪酸メチル、酪酸エチル、安息香酸ブチル、安息香酸イソアミル等のエステル;ベンゼン、トルエン、キシレン、エチルベンゼン、ジエチルベンゼン、イソプロピルベンゼン、アミルベンゼン、ジアミルベンゼン、トリアミルベ
ンゼン、テトラアミルベンゼン、ドデシルベンゼン、ジドデシルベンゼン、アミルトルエン、テトラリン、シクロヘキシルベンゼン等の芳香族炭化水素等があるが、これらに限定されるものではない。
また、これらを2種以上混合したものでもよい。この中でも、ベンゼン、トルエン、キシレンが比較的沸点が高く粘度の低い有機溶媒であり、揮発による濃度変化等が起こり難く、有機化合物の粘度を下げられる点で特に好ましい。
また、有機溶媒による希釈倍率は、有機溶媒の質量に対して、有機化合物が、通常5%以上、好ましくは25%以上、より好ましくは40%以上、更に好ましくは50%以上であり、通常90%以下、好ましくは80%以下、より好ましくは70%以下、更に好ましくは60%以下である。この希釈倍率が大きすぎると有機化合物の濃度が低下し、効率的に原料炭素材を被覆することができない傾向がある。希釈倍率が小さすぎると有機化合物濃度が充分に低下せず効率的に原料炭素材を被覆することができない傾向がある。
混合は通常は常圧下で行うが、所望ならば、減圧下又は加圧下で行うこともできる。混合は回分方式及び連続方式のいずれで行うこともできる。いずれの場合でも、粗混合に適した装置及び精密混合に適した装置を組合せて用いることにより、混合効率を向上させることができる。
回分方式の混合装置としては、2本の枠型が自転しつつ公転する構造の混合機;高速高剪断ミキサーであるディゾルバーや高粘度用のバタフライミキサーの様な、一枚のブレートがタンク内で撹拌・分散を行う構造の装置;半円筒状混合槽の側面に沿ってシグマ型などの撹拌翼が回転する構造を有する、いわゆるニーダー形式の装置;撹拌翼を3軸にしたトリミックスタイプの装置;容器内に回転ディスクと分散媒体を有するいわゆるビーズミル型式の装置などが用いられる。
またシャフトによって回転されるパドルが内装された容器を有し、容器内壁面はパドルの回転の最外線に実質的に沿って、好ましくは長い双胴型に形成され、パドルは互いに対向する側面を摺動可能に咬合するようにシャフトの軸方向に多数対配列された構造の装置(例えば栗本鉄工所製のKRCリアクタ、SCプロセッサ、東芝機械セルマック社製のTEM、日本製鋼所製のTEX−Kなど);更には内部一本のシャフトと、シャフトに固定された複数のすき状又は鋸歯状のパドルが位相を変えて複数配置された容器を有し、その内壁面はパドルの回転の最外線に実質的に沿って、好ましくは円筒型に形成された構造の(外熱式)装置(例えばレーディゲ社製のレディゲミキサー、大平洋機工社製のフローシェアーミキサー、月島機械社製のDTドライヤーなど)を用いることもできる。連続方式で混合を行うには、パイプラインミキサーや連続式ビーズミルなどを用いればよい。
本工程で得られた混合物又は希釈混合物の粘度は、通常100cP以下、好ましくは70cP以下、より好ましくは50cP以下である。また1cP以上、好ましくは10cP以上である。粘度が高すぎると、サイクル時の劣化が起こり易く、サイクル特性が悪くなる傾向がある。
・原料炭素材を加圧処理する工程
本発明における複合炭素材(A)の製造方法においては、有機化合物と原料炭素材を混合した後に、その混合物中の原料炭素材に対して加圧処理を行うことが好ましい。
加圧及び成型する方法は特に限定されず、ロールコンパクター、ロールプレス、プリケット機、冷間等方圧加圧装置(CIP)、一軸成形機及びタブレット機などを用いることができる。原料炭素材を加圧することにより原料炭素材の内部空隙が圧縮される。その結果、加圧処理をした後に解砕した原料炭素材の密度が増加する。
また、必要があればロールに彫り込まれたパターンどおりに原料炭素材を加圧と同時に成形することも可能である。また、原料炭素材粒子間に存在する空気を排気し、真空プレ
スする方法も適用できる。
なお、加圧処理は、一方向からの加圧による加圧処理でもよいし、等方的に加圧する処理でもよいが、粒子の扁平化が起こり難く、球形を保つことができ、塗料化した際の流動性の低下も防げる点で、等方的に加圧処理することが好ましい。
原料炭素材を加圧する圧力は、特に限定されるものではないが、通常50kgf/cm以上、好ましくは100kgf/cm以上である。また、加圧処理の上限は特に限定されないが、通常2000kgf/cm以下、好ましくは1500kgf/cm以下である。圧力が低すぎると、強固な造粒が達成されず内部空隙が減少しない傾向があり、圧力が高すぎると工程上のコストの増加につながる傾向がある。特に、圧力が高すぎると、粒子内空隙率は減少する一方、成型体の解砕時に大きなエネルギーを必要とし、比表面積の増加に繋がる。上記より、低圧での加圧処理により粒子内空隙率の減少と、比表面積の増加抑制の両方が両立可能であると考えられる。
加圧する時間は、通常0.1秒以上、好ましくは3秒以上、より好ましくは1分以上である。また、通常30分以下、好ましくは10分以下、より好ましくは3分以下である。時間が長すぎると、製造工程に悪影響を及ぼす。また、時間が短すぎると強固な造粒が達成されず内部空隙が減少しない傾向がある。
・混合物を焼成する工程
得られた混合物を非酸化性雰囲気下、好ましくは窒素、アルゴン、二酸化炭素などの流通下で加熱することにより、加圧処理された原料炭素材を被覆した有機化合物を炭化又は黒鉛化させ、複合炭素材(A)を製造する。
焼成温度は混合物の調製に用いた有機化合物により異なるが、(非晶質)炭素質物又は黒鉛質物が被覆された複合炭素材(A)を得る場合、通常は500℃以上、好ましくは800℃以上、より好ましくは900℃以上に加熱して有機化合物を十分に炭化させる。加熱温度の上限は有機化合物の炭化物が、混合物中の原料炭素材の結晶構造と同等の結晶構造に達しない温度であり、通常は高くても3000℃以下、好ましくは2000℃以下、1500℃以下がより好ましい。
焼成処理条件において、熱履歴温度条件、昇温速度、冷却速度、熱処理時間等は、適宜設定する。また、比較的低温領域で熱処理した後、所定の温度に昇温することもできる。なお、本工程に用いる反応機は回分式でも連続式でも、また一基でも複数基でもよい。
焼成に使用する炉は上記要件を満たせば特に制約はないが、例えば、シャトル炉、トンネル炉、リードハンマー炉、ロータリーキルン、オートクレーブ等の反応槽、コーカー(コークス製造の熱処理槽)、タンマン炉、アチソン炉、高周波誘導加熱炉などを用いることができ、加熱方式も、直接式抵抗加熱、間接式抵抗加熱、直接燃焼加熱、輻射熱加熱等を用いることができる。熱処理時には、必要に応じて攪拌を行なってもよい。
上記工程を経た複合炭素材(A)は、必要に応じて、再度粉砕、解砕、分級処理等の粉体加工をしてもよい。また、加圧処理も適宜行ってもよい。
再度の粉砕や解砕に用いる装置に特に制限はないが、例えば、粗粉砕機としてはせん断式ミル、ジョークラッシャー、衝撃式クラッシャー、コーンクラッシャー等が挙げられる。中間粉砕機としてはロールクラッシャー、ハンマーミル等が挙げられ、さらに、微粉砕機としてはボールミル、振動ミル、ピンミル、攪拌ミル、ジェットミル等が挙げられる。
分級処理に用いる装置としては特に制限はないが、例えば、乾式篩い分けの場合は、回転式篩い、動揺式篩い、旋動式篩い、振動式篩い等を用いることができる。乾式気流式分級の場合は、重力式分級機、慣性力式分級機、遠心力式分級機(クラシファイア、サイクロン等)を用いることができる。また、湿式篩い分け、機械的湿式分級機、水力分級機、
沈降分級機、遠心式湿式分級機等も用いることができる。
<複合炭素材(A)>
上記製造方法で得られた複合炭素材(A)は、以下のような特性を持つことが好ましい。
(1)(002)面の面間隔(d002
複合炭素材(A)のX線広角回折法による(002)面の面間隔(d002)は3.37Å以下、結晶子サイズLcが900Å以上である。X線広角回折法による(002)面の面間隔(d002)が3.37Å以下、Lcが900Å以上であることは、複合炭素材(A)の粒子の表面を除く大部分の結晶性が高いということであり、非水系二次電池の負極材に用いた場合に、非晶質炭素材に見られるような不可逆容量の大きさゆえの低容量化を生じない、高容量電極となる複合炭素材であることを示す。
(2)タップ密度
複合炭素材(A)のタップ密度は、通常0.8g/cm以上であり、0.85g/cm以上が好ましい。
複合炭素材(A)のタップ密度が0.8g/cm以上であるということは、複合炭素材(A)が球状を呈していることを示す指標の一つである。タップ密度が0.8g/cmより小さいというのは、複合炭素材(A)の原料である球形炭素材が充分な球形粒子となっていないことを示す指標の一つである。タップ密度が0.8g/cmより小さいと、電極内で充分な連続空隙が確保されず、空隙に保持された電解液内のLiイオンの移動性が落ちることで、急速充放電特性が低下する傾向がある。
(3)ラマンR値
複合炭素材(A)のアルゴンイオンレーザーラマンスペクトルにおける1580cm−1付近のピーク強度に対する1360cm−1付近のピーク強度比であるラマンR値は通常0.45以下、好ましくは0.40以下、より好ましくは0.35以下であり、通常0.20以上、好ましくは0.23以上、より好ましくは0.25以上である。ラマン値がこの範囲であれば、負極活物質表面の結晶性が適度な範囲にあるため、高出力を得やすいことから好ましい。
(4)BET法による比表面積
複合炭素材(A)のBET法による比表面積は通常10m/g以下、好ましくは9m/g以下、より好ましくは8m/g以下であり、通常0.1m/g以上、好ましくは0.7m/g以上、より好ましくは1m/g以上である。比表面積が大きすぎると負極活物質として用いた時に電解液に露出した部分と電解液との反応性が増加し、ガス発生が多くなりやすく、好ましい電池が得られにくい傾向がある。比表面積が小さすぎると負極活物質として用いた場合の充電時にリチウムイオンの受け入れ性が悪くなる傾向がある。
(5)細孔容量
複合炭素材(A)の水銀圧入法による10nm〜100000nmの範囲の細孔容量は、通常1.0mL/g以下、好ましくは、0.9mL/g以下、より好ましくは0.8mL/g以下であり、通常、0.01mL/g以上、好ましくは、0.05mL/g以上、より好ましくは0.1mL/g以上である。細孔容積が大きすぎると極板化時にバインダを多量に必要とする傾向があり、細孔容積が小さすぎると高電流密度充放電特性が低下し、かつ充放電時の電極の膨張収縮の緩和効果が得られなくなる傾向がある。
(6)体積基準平均粒径(d50)
複合炭素材(A)の平均粒径(メ・BR>Wアン径)は通常50μm以下、好ましくは40
μm以下、より好ましくは30μm以下であり、通常、1μm以上、好ましくは、3μm以上、より好ましくは5μm以上である。平均粒径が大きすぎると炭素1粒子あたりが必要とするバインダが多量となる傾向があり、平均粒径が小さすぎると高電流密度充放電特性が低下する傾向がある。
(7)被覆率
本発明の複合炭素材(A)は、炭素質物又は黒鉛質物で被覆されている。この中でも非晶質炭素質物で被覆されていることがリチウムイオンの受入性の点から好ましく、この被覆率は、通常0.5%以上10.0%以下、好ましくは1.0%以上9.0%以下、より好ましくは、2.0%以上8.0%以下である。この含有率が大きすぎると負極材の非晶質炭素部分が多くなり、電池を組んだ際の可逆容量が小さくなる傾向がある。含有率が小さすぎると、加圧処理された炭素材(a)に対して非晶質炭素部位が均一にコートされないとともに強固な造粒がなされず、焼成後に粉砕した際、粒径が小さくなりすぎる傾向がある。
なお、最終的に得られる電極用炭素材料の有機化合物由来の炭化物の含有率(被覆率)は、用いる原料炭素材の量と、有機化合物の量及びJIS K 2270に準拠したミクロ法により測定される残炭率により、下記式(2)で算出することができる。
式(2)
有機化合物由来の炭化物の被覆率(%)=(有機化合物の質量×残炭率×100)/{
原料炭素材の質量+(有機化合物の質量×残炭率)}
(8)内部空隙率
複合炭素材(A)の内部空隙率は1%以上、好ましくは3%以上、より好ましく5%以上、更に好ましくは7%以上である。また23%未満、好ましくは22.5%以下、より
好ましくは22%以下である。この内部空隙率が小さすぎると粒子内の液量が少なくなり、充放電特性が悪化する傾向があり、内部空隙率が大きすぎると、電極にした場合に粒子間空隙が少なく、電解液の拡散が不十分になる傾向がある。
内部空隙率は、例えば、図1に示す様に、公知の水銀圧入法により得られた細孔分布(積分曲線)(L)を元に傾きの最小値に対して接線(M)を引き、当該接線(M)と前記積分曲線(L)の分岐点(P)を求め、その分岐点よりも小さい細孔容積を粒子内細孔量(cm/g)(V)として定義する。得られた粒子内細孔量と黒鉛の真密度から内部空隙率を算出できる。算出に用いる黒鉛の真密度は、一般的な黒鉛の真密度である2.26g/cmを用いる。算出式を式(3)に示す。
式(3)
内部空隙率(%)=[粒子内細孔量/{粒子内細孔量+(1/黒鉛の真密度)}]×100
<炭素材(B)>
炭素材(B)としては、内部空隙率が23%以上40%以下である炭素材であれば特に制限はないが、炭素材(B)は、以下のような特性を持つことが好ましい。
炭素材(B)の種類としては、例えば、天然黒鉛や人造黒鉛、加圧処理されていない原料炭素材を炭素質物又は黒鉛質物で被覆した被覆黒鉛、有機化合物を焼成することで作製可能な炭素質物又は黒鉛質物が上げられる。この中でも、天然黒鉛や人造黒鉛が高結晶化由来の高容量の観点から好ましく、天然黒鉛が柔らかさの点でより好ましく、この中でも球形化した天然黒鉛は不純物が少なく、電池の安全性の点から更に好ましい。特に好ましくは、上述した炭素材であって、等方的加圧処理されていない炭素材である。
本発明でいう高純度化とは、灰分や金属等を除去した状態を意味する。通常、塩酸、硫酸、硝酸、フッ酸などの酸中で処理すること、又はこれらの1以上の酸処理工程を組み合
わせて行なうことにより、低純度天然黒鉛中に含まれる灰分や金属等を溶解除去できる(高純度化処理工程)。そして前記酸処理工程の後には通常、水洗処理等を行ない高純度化処理工程で用いた酸分を除去する。
酸処理工程の代わりに2000℃以上の高温で処理することにより、灰分や金属等を蒸発、除去しても良い。また、高温熱処理時に塩素ガス等のハロゲンガス雰囲気で処理することにより灰分や金属等を除去しても良い。更に、これらの高純度化の手法を任意に組み合わせて用いても良い。
ここで、高純度化を行なった天然黒鉛の純度は、通常98.0質量%以上、好ましくは99.0質量%以上、より好ましくは99.6質量%以上である。純度がこの範囲であれば、負極材料として用いた場合、電池容量が高くなるのでより好ましい。
炭素材(B)の体積基準平均粒径d50は、通常3μm以上、好ましくは12μm以上、また、通常60μm以下、好ましくは40μm以下の範囲である。上記範囲内であれば複合炭素材(A)との組合せに於いて複合炭素材(A)を含む効果を得易い点から好ましい。
ここで、体積基準平均粒径とはd50を意味し、上述の原料炭素材の体積基準平均粒径と同様の方法によって測定することができる。
炭素材(B)のBET比表面積は、通常3.5m/g以上、好ましくは、4.5m/g以上、また、通常20m/g以下、好ましくは15m/g以下、より好ましくは10m/g以下、更に好ましくは8m/g以下の範囲である。上記範囲内であれば、負極材料とした場合の不可逆容量が小さい点から好ましい。
また、炭素材(B)のタップ密度は、通常0.6g/cm以上、0.7g/cm以上が好ましく、0.8g/cm以上がより好ましく、0.85g/cm以上が更に好ましい。また、通常1.3g/cm以下、1.2g/cm以下が好ましく、1.1g/cm以下がより好ましい。タップ密度が低すぎると、高速充放電特性に劣り、タップ密度が高すぎると、粒子内炭素密度が上昇し、圧延性に欠け、高密度の負極シートを形成することが難しくなる場合がある。
炭素材(B)の内部空隙率は23%以上、好ましくは23.5%以上、より好ましく24%以上である。また40%以下、好ましくは35%以下、より好ましくは32%以下、更に好ましくは30%以下である。この内部空隙率が小さすぎると粒子内の液量が少なくなり、充放電特性が悪化する傾向があり、内部空隙率が大きすぎると、電極にした場合に粒子間空隙が少なく、電解液の拡散が不十分になる傾向がある。
<複合炭素材(A)と炭素材(B)との混合>
本発明の非水系二次電池用炭素材は、少なくとも本明細書で規定している複合炭素材(A)と炭素材(B)とを含むことを特徴としている。
上述の複合炭素材(A)に炭素材(B)を混合する場合、複合炭素材(A)と炭素材(B)の総量に対する複合炭素材(A)の混合割合は、特に制限はないが、通常10質量%以上、好ましくは20質量%以上、また、通常90質量%以下、好ましくは80質量%以下の範囲である。炭素材(B)の混合割合が前記範囲を上回ると、負極を形成する(特に電極密度を所定の値にする)工程の際に、複合炭素材(A)の表面構造が破壊され、優れた電池特性が得られ難い傾向がある。一方、前記範囲を下回ると、複合炭素材(A)の特性が現れ難く、炭素材(B)が変形されすぎ、電極内への液拡散が悪くなる傾向がある。
<複合炭素材(A)と炭素材(B)の混合>
複合炭素材(A)と炭素材(B)との混合に用いる装置としては、特に制限はないが、例えば、回転型混合機の場合:円筒型混合機、双子円筒型混合機、二重円錐型混合機、正
立方型混合機、鍬形混合機等を用いることができ、固定型混合機の場合:螺旋型混合機、リボン型混合機、Muller型混合機、Helical Flight型混合機、Pugmill型混合機、流動化型混合機等を用いることができる。
<非水系二次電池用炭素材>
複合炭素材(A)と炭素材(B)との混合物(非水系二次電池用炭素材)の物性は以下のような物性であることが好ましい。
本発明の非水系二次電池用炭素材の体積基準平均粒径d50は、通常5μm以上、好ましくは10μm以上、また、通常60μm以下、好ましくは40μm以下の範囲である。上記範囲内であれば複合炭素材(A)を含む効果を得易い点から好ましい。
また、複合炭素材(A)/炭素材(B)の体積基準平均粒径の比率が0.02〜1であることが好ましく、0.1〜1であることがより好ましく、更には0.2〜1であることが好ましい。比率が0.02以下の場合は、炭素材(B)の粒径が大きくなる傾向があり、塗工時の工程性能が著しく悪化する。また、1を超える場合は、塗布後にプレスを施した際、炭素材(B)が複合炭素材(A)の表面構造を乱す傾向となる。
本発明の非水系二次電池用炭素材のBET比表面積は、通常1.5m/g以上、好ましくは、2.0m/g以上、また、通常10m/g以下、好ましくは8m/g以下の範囲である。上記範囲内であれば負極材料とした場合の不可逆容量が小さい点から好ましい。
また、炭素材(B)/前記複合炭素材(A)の比表面積の比率が0.3〜50であることが好ましく、0.4〜30であることがより好ましく、更には0.5〜20であることが好ましい。比率が0.3以下の場合は、複合炭素材(A)の優れた電池特性を得がたい傾向があり、50を超える場合は、不可逆容量が大きくなる傾向がある。
また、本発明の非水系二次電池用炭素材のタップ密度は、通常0.6g/cm以上、0.7g/cm以上が好ましく、0.8g/cm以上がより好ましく、0.85g/cm以上が更に好ましい。また、通常1.4g/cm以下、1.3g/cm以下が好ましく、1.2g/cm以下がより好ましい。タップ密度が低すぎると、高速充放電特性に劣り、タップ密度が高すぎると、粒子内炭素密度が上昇し、圧延性に欠け、高密度の負極シートを形成することが難しくなる場合がある。
本発明の非水系二次電池用炭素材は、錠剤成型機を用いて加圧した際、錠剤化されることが好ましい。
錠剤化するということは、加圧した際、複合炭素材(A)よりも先に、炭素材(B)が優先的に形状変化を起こし、粒子間が結着することを意味する。
錠剤化する密度としては、好ましくは0.5g/cm以上、好ましくは0.8g/cm以上、より好ましくは1.0g/cm以上である。また、通常1.9g/cm以下で、好ましくは1.8g/cm以下、より好ましくは1.7g/cm以下、更に好ましくは1.6g/cm以下である。
錠剤化する密度が低すぎる際は特に問題ないが、密度が高すぎる場合は、複合炭素材(A)が形状変化を起こし、表面構造を破壊している可能性がある。
錠剤化の判断は、一般的な杵・臼型の錠剤成型機を利用して所定の密度まで加圧した際、錠剤化した材料の形状を維持したまま、成型機から取り出せるかで行うことができる。
<その他の炭素材>
等方的加圧処理された炭素材に黒鉛質物が複合化した複合炭素材(a)と、天然黒鉛(b)以外に、公知の炭素材を本発明の効果を損なわない範囲であれば、混合させてもよい。
<非水系二次電池用負極>
本発明の非水系二次電池用負極(以下適宜「電極シート」ともいう。)は、集電体と、集電体上に形成された活物質層とを備え、当該活物質層は少なくとも本発明にかかる非水系二次電池用複合炭素材を含有することを特徴とする。更に好ましくは、当該活物質層にはバインダを含有する。
バインダとしては、分子内にオレフィン性不飽和結合を有するものを用いる。その種類は特に制限されないが、具体例としては、スチレン−ブタジエンゴム、スチレン・イソプレン・スチレンゴム、アクリロニトリル−ブタジエンゴム、ブタジエンゴム、エチレン・プロピレン・ジエン共重合体などが挙げられる。このようなオレフィン性不飽和結合を有するバインダを用いることにより、活物質層の電解液に対する膨潤性を低減することができる。中でも入手の容易性から、スチレン−ブタジエンゴムが好ましい。
このようなオレフィン性不飽和結合を有するバインダと、前述の活物質とを組み合わせて用いることにより、負極板の強度を高くすることができる。負極板の強度が高いと、充放電による負極の劣化が抑制され、サイクル寿命を長くすることができる。また、本発明に係る負極では、活物質層と集電体との接着強度が高いので、活物質層中のバインダの含有量を低減させても、負極を捲回して電池を製造する際に、集電体から活物質層が剥離することもないと推察される。
分子内にオレフィン性不飽和結合を有するバインダとしては、その分子量が大きいものか、或いは、不飽和結合の割合が高いものが望ましい。
具体的に、分子量が大きいバインダの場合には、その重量平均分子量が通常1万以上、好ましくは5万以上、また、通常100万以下、好ましくは30万以下の範囲にあるものが望ましい。また、不飽和結合の割合が高いバインダの場合には、全バインダの1g当たりのオレフィン性不飽和結合のモル数が、通常2.5×10−7以上、好ましくは8×10−7以上、また、通常5×10−6以下、好ましくは1×10−6以下の範囲にあるものが望ましい。
バインダとしては、これらの分子量に関する規定と不飽和結合の割合に関する規定のうち、少なくとも何れか一方を満たしていればよいが、両方の規定を同時に満たすものがより好ましい。オレフィン性不飽和結合を有するバインダの分子量が小さ過ぎると機械的強度に劣り、大き過ぎると可撓性に劣る。また、バインダ中のオレフィン性不飽和結合の割合が低過ぎると強度向上効果が薄れ、高過ぎると可撓性に劣る。
また、オレフィン性不飽和結合を有するバインダは、その不飽和度が、通常15%以上、好ましくは20%以上、より好ましくは40%以上、また、通常90%以下、好ましくは80%以下の範囲にあるものが望ましい。なお、不飽和度とは、ポリマーの繰り返し単位に対する二重結合の割合(%)を表す。
本発明においては、オレフィン性不飽和結合を有さないバインダも、本発明の効果が失われない範囲において、上述のオレフィン性不飽和結合を有するバインダと併用することができる。オレフィン性不飽和結合を有するバインダ量に対する、オレフィン性不飽和結合を有さないバインダの混合比率は、通常150質量%以下、好ましくは120質量%以下の範囲である。
オレフィン性不飽和結合を有さないバインダを併用することにより、塗布性を向上することができるが、併用量が多すぎると活物質層の強度が低下する。
オレフィン性不飽和結合を有さないバインダの例としては、メチルセルロース、カルボキシメチルセルロース、澱粉等の多糖類;カラギナン、プルラン、グアーガム、ザンサン
ガム(キサンタンガム)等の増粘多糖類;ポリエチレンオキシド、ポリプロピレンオキシド等のポリエーテル類;ポリビニルアルコール、ポリビニルブチラール等のビニルアルコール類;ポリアクリル酸、ポリメタクリル酸等のポリ酸、或いはこれらポリマーの金属塩;ポリフッ化ビニリデン等の含フッ素ポリマー;ポリエチレン、ポリプロピレンなどのアルカン系ポリマー及びこれらの共重合体などが挙げられる。
本発明の炭素材は、上述のオレフィン性不飽和結合を有するバインダと組み合わせて用いた場合、活物質層に用いるバインダの比率を従来に比べて低減することができる。具体的には、本発明の負極材料と、バインダ(上述のように不飽和結合を有するバインダと、不飽和結合を有さないバインダとの混合物であってもよい。)との質量比率(負極材料/バインダ)は、それぞれの乾燥質量比で、通常90/10以上、好ましくは95/5以上であり、通常99.9/0.1以下、好ましくは99.5/0.5以下の範囲である。
バインダの割合が高過ぎると容量の減少や、抵抗増大を招きやすく、バインダの割合が少な過ぎると負極板強度が劣る。
本発明の負極は、上述の本発明の負極材料とバインダとを分散媒に分散させてスラリーとし、これを集電体に塗布することにより形成される。分散媒としては、アルコールなどの有機溶媒や、水を用いることができる。このスラリーには更に、所望により導電剤を加えてもよい。導電剤としては、アセチレンブラック、ケッチェンブラック、ファーネスブラックなどのカーボンブラック、平均粒径1μm以下のCu、Ni又はこれらの合金からなる微粉末などが挙げられる。導電剤の添加量は、本発明の負極材料に対して通常10質量%以下程度である。
スラリーを塗布する集電体には、従来公知のものを用いることができる。具体的には、圧延銅箔、電解銅箔、ステンレス箔等の金属薄膜が挙げられる。集電体の厚さは、通常4μm以上、好ましくは6μm以上であり、通常30μm以下、好ましくは20μm以下である。
このスラリーを、集電体である銅箔上に、負極材料が5〜15mg/cm付着するように、ドクターブレードを用いて幅5cmに塗布し、室温で風乾を行う。更に110℃で30分乾燥後、ロールプレスで、活物質層の密度が1.7g/cmになるよう調整することにより、好ましい電極シートを得ることができる。
スラリーを集電体上に塗布した後、通常60℃以上、好ましくは80℃以上、また、通常200℃以下、好ましくは195℃以下の温度で、乾燥空気又は不活性雰囲気下で乾燥し、活物性層を形成する。
スラリーを塗布、乾燥して得られる活物質層の厚さは、ロールプレスを行った後の状態において、通常5μm以上、好ましくは20μm以上、更に好ましくは30μm以上、また、通常200μm以下、好ましくは100μm以下、更に好ましくは75μm以下である。活物質層が薄すぎると、活物質の粒径との兼ね合いから負極としての実用性に欠け、厚すぎると、高密度の電流値に対する十分なLiイオンの吸蔵・放出の機能が得られにくい。
また、複合炭素材(A)と炭素材(B)をそれぞれ電極シート化し、ロールプレス機で所定の密度にした際の荷重の比率、複合炭素材(A)/炭素材(B)の値は1〜50であることが好ましく、1.1〜30であることがより好ましく、更には1.2〜20であることが好ましい。比率が1以下の場合は、複合炭素材の表面構造が乱される可能性があり、50を超える場合は、荷重に対して密度の変化が激しくなり、密度の制御が困難となる。
活物質層における炭素材の密度は、用途により異なるが、容量を重視する用途では、好
ましくは1.55g/cm以上、とりわけ1.6g/cm以上、更に1.65g/cm以上、特に1.7g/cm以上が好ましい。密度が低すぎると、単位体積あたりの電池の容量が必ずしも充分ではない。また、密度が高すぎるとレート特性が低下するので、1.9g/cm以下が好ましい。
以上説明した本発明の非水系二次電池用複合炭素材を用いて非水系二次電池用負極を作製する場合、その手法や他の材料の選択については、特に制限されない。また、この負極を用いてリチウムイオン二次電池を作製する場合も、リチウムイオン二次電池を構成する正極、電解液等の電池構成上必要な部材の選択については特に制限されない。
以下、本発明の負極材料を用いたリチウムイオン二次電池用負極及びリチウムイオン二次電池の詳細を例示するが、使用し得る材料や作製の方法等は以下の具体例に限定されるものではない。
<非水系二次電池>
本発明の非水系二次電池、特にリチウムイオン二次電池の基本的構成は、従来公知のリチウムイオン二次電池と同様であり、通常、リチウムイオンを吸蔵・放出可能な正極及び負極、並びに電解質を備える。負極としては、上述した本発明の負極を用いる。
正極は、正極活物質及びバインダを含有する正極活物質層を、集電体上に形成したものである。
正極活物質としては、リチウムイオンなどのアルカリ金属カチオンを充放電時に吸蔵、放出できる金属カルコゲン化合物などが挙げられる。金属カルコゲン化合物としては、バナジウムの酸化物、モリブデンの酸化物、マンガンの酸化物、クロムの酸化物、チタンの酸化物、タングステンの酸化物などの遷移金属酸化物;バナジウムの硫化物、モリブデンの硫化物、チタンの硫化物、CuSなどの遷移金属硫化物;NiPS、FePS等の遷移金属のリン−硫黄化合物;VSe、NbSeなどの遷移金属のセレン化合物;Fe0.250.75、Na0.1CrSなどの遷移金属の複合酸化物;LiCoS、LiNiSなどの遷移金属の複合硫化物等が挙げられる。
これらの中でも、V、V13、VO、Cr、MnO、TiO、MoV、LiCoO、LiNiO、LiMn、TiS、V、Cr0.250.75、Cr0.50.5などが好ましく、特に好ましいのはLiCoO、LiNiO、LiMnや、これらの遷移金属の一部を他の金属で置換したリチウム遷移金属複合酸化物である。これらの正極活物質は、単独で用いても複数を混合して用いてもよい。
正極活物質を結着するバインダとしては、公知のものを任意に選択して用いることができる。例としては、シリケート、水ガラス等の無機化合物や、テフロン(登録商標)、ポリフッ化ビニリデン等の不飽和結合を有さない樹脂などが挙げられる。これらの中でも好ましいのは、不飽和結合を有さない樹脂である。正極活物質を結着する樹脂として不飽和結合を有する樹脂を用いると酸化反応時(充電時)に分解するおそれがある。これらの樹脂の重量平均分子量は通常1万以上、好ましくは10万以上、また、通常300万以下、好ましくは100万以下の範囲である。
正極活物質層中には、電極の導電性を向上させるために、導電材を含有させてもよい。導電剤としては、活物質に適量混合して導電性を付与できるものであれば特に制限はないが、通常、アセチレンブラック、カーボンブラック、黒鉛などの炭素粉末、各種の金属の繊維、粉末、箔などが挙げられる。
正極板は、前記したような負極の製造と同様の手法で、正極活物質やバインダを溶剤でスラリー化し、集電体上に塗布、乾燥することにより形成する。正極の集電体としては、
アルミニウム、ニッケル、ステンレススチール(SUS)などが用いられるが、何ら限定されない。
電解質としては、非水系溶媒にリチウム塩を溶解させた非水系電解液や、この非水系電解液を有機高分子化合物等によりゲル状、ゴム状、固体シート状にしたものなどが用いられる。
非水系電解液に使用される非水系溶媒は特に制限されず、従来から非水系電解液の溶媒として提案されている公知の非水系溶媒の中から、適宜選択して用いることができる。例えば、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート等の鎖状カーボネート類;エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等の環状カーボネート類;1,2−ジメトキシエタン等の鎖状エーテル類;テトラヒドロフラン、2−メチルテトラヒドロフラン、スルホラン、1,3−ジオキソラン等の環状エーテル類;ギ酸メチル、酢酸メチル、プロピオン酸メチル等の鎖状エステル類;γ−ブチロラクトン、γ−バレロラクトン等の環状エステル類などが挙げられる。
これらの非水系溶媒は、何れか一種を単独で用いても良く、二種以上を混合して用いても良い。混合溶媒の場合は、環状カーボネートと鎖状カーボネートを含む混合溶媒の組合せが好ましく、環状カーボネートが、エチレンカーボネートとプロピレンカーボネートの混合溶媒であることが、低温でも高いイオン電導度を発現でき、低温充電負荷特性が向上するという点で特に好ましい。
中でもプロピレンカーボネートが非水系溶媒全体に対し、2重量%以上80重量%以下の範囲が好ましく、5重量%以上70重量%以下の範囲がより好ましく、10重量%以上60重量%以下の範囲がさらに好ましい。プロピレンカーボネートの割合が上記より低いと低温でのイオン電導度が低下し、プロピレンカーボネートの割合が上記より高いと、負極に黒鉛系電極を用いた場合に、Liイオンに溶媒和したプロピレンカーボネートが黒鉛相間へ共挿入することにより黒鉛系負極活物質の層間剥離劣化が起こり、十分な容量が得られなくなる問題がある。
非水系電解液に使用されるリチウム塩も特に制限されず、この用途に用い得ることが知られている公知のリチウム塩の中から、適宜選択して用いることができる。例えば、LiCl、LiBrなどのハロゲン化物;LiClO、LiBrO、LiClOなどの過ハロゲン酸塩;LiPF、LiBF、LiAsFなどの無機フッ化物塩などの無機リチウム塩;LiCFSO、LiCSOなどのパーフルオロアルカンスルホン酸塩;Liトリフルオロスルフォンイミド((CFSONLi)などのパーフルオロアルカンスルホン酸イミド塩などの含フッ素有機リチウム塩などが挙げられ、この中でもLiClO、LiPF、LiBF、が好ましい。
リチウム塩は、単独で用いても、2種以上を混合して用いてもよい。非水系電解液中におけるリチウム塩の濃度は、通常0.5mol/L以上、2.0mol/L以下の範囲である。
また、上述の非水系電解液に有機高分子化合物を含ませ、ゲル状、ゴム状、或いは固体シート状にして電解質を使用する場合、有機高分子化合物の具体例としては、ポリエチレンオキシド、ポリプロピレンオキシド等のポリエーテル系高分子化合物;ポリエーテル系高分子化合物の架橋体高分子;ポリビニルアルコール、ポリビニルブチラールなどのビニルアルコール系高分子化合物;ビニルアルコール系高分子化合物の不溶化物;ポリエピクロルヒドリン;ポリフォスファゼン;ポリシロキサン;ポリビニルピロリドン、ポリビニリデンカーボネート、ポリアクリロニトリルなどのビニル系高分子化合物;ポリ(ω−メトキシオリゴオキシエチレンメタクリレート)、ポリ(ω−メトキシオリゴオキシエチレンメタクリレート−co−メチルメタクリレート)、ポリ(ヘキサフルオロプロピレン−
フッ化ビニリデン)等のポリマー共重合体などが挙げられる。
上述の非水系電解液は、更に被膜形成剤を含んでいても良い。被膜形成剤の具体例としては、ビニレンカーボネート、ビニルエチルカーボネート、メチルフェニルカーボネートなどのカーボネート化合物;エチレンサルファイド、プロピレンサルファイドなどのアルケンサルファイド;1,3−プロパンスルトン、1,4−ブタンスルトンなどのスルトン化合物;マレイン酸無水物、コハク酸無水物などの酸無水物などが挙げられる。
更に、ジフェニルエーテル、シクロヘキシルベンゼン等の過充電防止剤が添加されていても良い。上記添加剤を用いる場合、その含有量は通常10質量%以下、中でも8質量%以下、更には5質量%以下、特に2質量%以下の範囲が好ましい。上記添加剤の含有量が多過ぎると、初期不可逆容量の増加や低温特性、レート特性の低下等、他の電池特性に悪影響を及ぼすおそれがある。
また、電解質として、リチウムイオン等のアルカリ金属カチオンの導電体である高分子固体電解質を用いることもできる。高分子固体電解質としては、前述のポリエーテル系高分子化合物にLiの塩を溶解させたものや、ポリエーテルの末端水酸基がアルコキシドに置換されているポリマーなどが挙げられる。
正極と負極との間には通常、電極間の短絡を防止するために、多孔膜や不織布などの多孔性のセパレータを介在させる。この場合、非水系電解液は、多孔性のセパレータに含浸させて用いる。セパレータの材料としては、ポリエチレン、ポリプロピレンなどのポリオレフィン、ポリエーテルスルホンなどが用いられ、好ましくはポリオレフィンである。
本発明のリチウムイオン二次電池の形態は特に制限されない。例としては、シート電極及びセパレータをスパイラル状にしたシリンダータイプ、ペレット電極及びセパレータを組み合わせたインサイドアウト構造のシリンダータイプ、ペレット電極及びセパレータを積層したコインタイプ等が挙げられる。また、これらの形態の電池を任意の外装ケースに収めることにより、コイン型、円筒型、角型等の任意の形状にして用いることができる。
本発明のリチウムイオン二次電池を組み立てる手順も特に制限されず、電池の構造に応じて適切な手順で組み立てればよいが、例を挙げると、外装ケース上に負極を乗せ、その上に電解液とセパレータを設け、更に負極と対向するように正極を乗せて、ガスケット、封口板と共にかしめて電池にすることができる。
<電池の性能>
上述のように作製した電池は以下の様な性能を示すものである。
出力は、通常1.0W以上、好ましくは1.5W以上、より好ましくは1.8W以上である。出力が低すぎると、電気自動車用電源としてリチウムイオン二次電池を使用する場合に発進、加速時に大きなエネルギーを取り出せず、また、減速時に発生する大きなエネルギーを効率よく回生することができない。
サイクル維持率は、通常70%以上、好ましくは75%以上、より好ましくは80%以上である。サイクル維持率が低すぎると、充放電を繰り返し、長い期間使用するような用途へ適さない。ここでサイクル維持率とは、1サイクル目の放電容量に対する、500サイクル目の放電容量のことを表す。
一定の温度下での充電状態の保存後の残存率は、通常50%以上、好ましくは55%以上、より好ましくは60%以上である。また、回復率は通常80%以上、好ましくは85%以上、より好ましくは90%以上である。残存率・回復率が低すぎると、長期の保存状態への適用が期待できない。
次に実施例により本発明の具体的態様を更に詳細に説明するが、本発明はこれらの例によって限定されるものではない。
(測定方法)
(1)体積基準平均粒径(d50)
粒径の測定方法は、界面活性剤であるポリオキシエチレンソルビタンモノラウレート(例として、ツィーン20(登録商標))の0.2質量%水溶液10mLに、炭素材0.01gを懸濁させ、市販のレーザー回折/散乱式粒度分布測定装置「HORIBA製LA−920」に導入し、28kHzの超音波を出力60Wで1分間照射した後、測定装置における体積基準のメジアン径として測定したものを、本発明における体積基準平均粒径d50と定義する。なお、複合炭素材(A)と炭素材(B)のd50の比率を算出する場合は、それぞれのd50を測定の後、d50(複合炭素材(A))/d50(炭素材(B))にて行った。
(2)内部空隙率
Hgポロシメトリー解析により内部空隙率を算出した。まず、Hgポロシメトリーの測定方法は粉体を正確に秤量し、真空下(50μm/Hgx10分)前処理した後、マイクロメリッテクス社製オートポアIV9520型を用いて、水銀圧入方により細孔分布を測定した。
内部空隙率の算出方法は、得られた細孔分布(積分曲線)を元に、後述の図2に示す様に接線を引き、接線と積分曲線の分岐点を求め、それよりも小さい細孔容積を粒子内細孔量として定義する。得られた粒子内細孔量と黒鉛の真密度から粒子内細孔量を算出した。算出に用いた黒鉛の真密度は一般的な黒鉛の真密度の2.26g/cmを用いた。算出式を式(3)に示した。
式(3):内部空隙率=[粒子内細孔量/{粒子内細孔量+(1/黒鉛の真密度)}×100
(3)BET比表面積(SA)
BET比表面積の測定方法は、例えば大倉理研社製比表面積測定装置「AMS8000」を用いて、窒素ガス吸着流通法によりBET1点法にて測定する。具体的には、試料(炭素材)0.4gをセルに充填し、350℃に加熱して前処理を行った後、液体窒素温度まで冷却して、窒素30%、He70%のガスを飽和吸着させ、その後室温まで加熱して脱着したガス量を計測し、得られた結果から、通常のBET法により比表面積を算出した。
なお、複合炭素材(A)と炭素材(B)のSAの比率を算出する場合は、それぞれのSAを測定の後、SA(炭素材(B))/SA(複合炭素材(A))にて行った。
(4)プレス荷重
複合炭素材(A)と炭素材(B)の荷重の比率を算出する場合は、それぞれの負極活物質を電極シート化し、ロールプレス機で1.6g/ccの密度にした際の荷重を算出した後、荷重(複合炭素材(A))/荷重(炭素材(B))にて行った。
(実施例1)
原料炭素材として高純度化した球形化黒鉛を用い、ナフサ熱分解時に得られる石油系重質油(易黒鉛化性有機化合物)とを2軸混練機にて混合した後、CIP成型機を用いて100kgf/cmで2分間、等方的加圧処理を行った後、得られた混合物を不活性ガス中で700℃、2時間、更に1300℃で1時間の熱処理し、球形化天然炭素材表面に異なる結晶性を有する炭素質物が被覆した複層炭素構造物である複合炭素材(A)を得た。
ここで、複合炭素材(A)の体積基準平均粒径(d50)は11μm、BET比表面積(SA)が3.7m/gであった。
なお、得られた複合炭素材(A)の粒子内空隙率は22%であり、焼成残炭率から算出される被覆率は、黒鉛94%に対して6%の非晶質炭素質物で被覆されていることが確認された。
炭素材(B)としてd50が17μm、SAが6.6m/g、粒子内空隙率25%がである高純度化した球形化黒鉛を用いた。この時の各比率は、d50(複合炭素材(A))/d50(炭素材(B))=0.7、SA(炭素材(B))/SA(複合炭素材(A))=1.8、荷重(複合炭素材(A))/荷重(炭素材(B))=3.3であった。
複合炭素材(A)と炭素材(B)の総量に対する複合炭素材(A)の混合割合が70質量%とになるように秤量し、双子円筒型混合機を用いて20分間混合し非水系二次電池用炭素材を得た。得られた非水系二次電池用炭素材の粉体物性を表1に示す。
・正極、負極、電解液及び電池の作製
(負極の作製)
実施例1の負極材料を負極活物質とし、この負極活物質98質量%に、増粘剤、バインダーとしてそれぞれ、カルボキシメチルセルロースナトリウム1質量%、及び、スチレン−ブタジエンゴムの水性ディスパージョン(スチレン−ブタジエンゴムの濃度40質量%)1質量%を加え、2軸混練で混合してスラリー化した。得られたスラリーを18μmの圧延銅箔に片面塗布して乾燥し、プレス機で圧延したものを、活物質層のサイズとして幅32mm、長さ42mm及び集電部タブ溶接部として未塗工部を有する形状に切り出し、負極とした。この時の負極の活物質の密度は1.6g/cmであった。
(正極の作製)
正極活物質は、以下に示す方法で合成したリチウム遷移金属複合酸化物であり、組成式LiMn0.33Ni0.33Co0.33で表される。マンガン原料としてMn、ニッケル原料としてNiO、及びコバルト原料としてCo(OH)を、Mn:Ni:Co=1:1:1のモル比となるように秤量し、これに純水を加えてスラリーとし、攪拌しながら、循環式媒体攪拌湿式ビーズミルを用いて、スラリー中の固形分を、体積基準平均粒径d50が0.2μmになるように湿式粉砕した。
得られたスラリーをスプレードライヤーにより噴霧乾燥し、マンガン原料、ニッケル原料、コバルト原料のみからなる、粒径約5μmのほぼ球状の造粒粒子を得た。得られた造粒粒子に、体積基準平均粒径d50が3μmのLiOH粉末を、Mn、Ni、及びCoの合計モル数に対するLiのモル数の比が1.05となるように添加し、ハイスピードミキサーにて混合して、ニッケル原料、コバルト原料、マンガン原料の造粒粒子とリチウム原料との混合粉を得た。この混合粉を空気流通下、950℃で12時間焼成(昇降温度5℃/min)した後、解砕し、目開き45μmの篩を通し、正極活物質を得た。この正極活物質のBET比表面積は1m/g、平均一次粒子径は1μm、体積基準平均粒径d50は8μm、タップ密度は1.7g/cmであった。
上述の正極活物質を90質量%と、導電材としてのアセチレンブラック7質量%と、結着剤としてのポリフッ化ビニリデン(PVdF)3質量%とを、N−メチルピロリドン溶媒中で混合して、スラリー化した。得られたスラリーを15μmのアルミ箔に塗布して乾燥し、プレス機で厚さ100μmに圧延したものを、正極活物質層のサイズとして幅30mm、長さ40mm及び集電用の未塗工部を有する形状に切り出し正極とした。正極活物質層の密度は2.6g/cmであった。
(電解液の調製)
不活性雰囲気下でエチレンカーボネート(EC)とエチルメチルカーボネート(EMC)の混合物(体積比3:7)に、1mol/Lの濃度で、十分に乾燥したヘキサフルオロリン酸リチウム(LiPF)を溶解させた。さらに、その電解液にビニレンカーボネート(VC)を1質量%添加したものを用いた。
(電池の作製)
正極1枚と負極1枚は活物質面が対峙するように配置し、電極の間に多孔性ポリエチレンシートのセパレータ(厚さ25μm)が挟まれるようにした。この際、正極活物質面が負極活物質面内から外れないよう対面させた。この正極と負極それぞれについての未塗工部に集電タブを溶接し、電極体としたものをポリプロピレンフィルム、厚さ0.04mmのアルミニウム箔、及びナイロンフィルムをこの順に積層したラミネートシート(合計厚さ0.1mm)を用い、内面側にポリプロピレンフィルムがくるようにしてラミネートシートではさみ、電解液を注入するための一片を除いて、電極のない領域をヒートシールした。その後、活物質層に前記非水電解液を200μL注入して、電極に充分浸透させ、密閉して、ラミネートセルを作製した。この電池の定格容量は、40mAhである。
(サイクル維持率測定)
25℃環境下で、電圧範囲4.2〜3.0V、電流値0.2C(1時間率の放電容量による定格容量を1時間で放電する電流値を1Cとする、以下同様)にて初期コンディショニングを行った。さらに、60℃でエージングを行った後、サイクル試験を行った。1サイクル目の放電容量を基準とし、500サイクル目の放電容量から次式にしたがってサイクル維持率を算出した。
サイクル維持率(%)=(500サイクル目の放電容量÷1サイクル目の放電容量)×100
(保存特性)
60℃環境下、4.2Vの状態で4週間保存をした後、残存している容量を保存前の容量で割った値を残存率とした。
残存率(%)=(保存後の放電容量÷保存前の放電容量)×100
得られた結果を表1に示す。
(実施例2)
複合炭素材(A)と炭素材(B)の総量に対する複合炭素材(A)の混合割合が50質量%とした以外は、実施例1と同様の実験を行った。得られた炭素材の粉体物性と電池評価結果を表1に示す。
(実施例3)
複合炭素材(A)と炭素材(B)の総量に対する複合炭素材(A)の混合割合が30質量%とした以外は、実施例1と同様の実験を行った。得られた炭素材の粉体物性と電池評価結果を表1に示す。
(比較例1)
複合炭素材(A)のみを負極材料として用い、得られ粉体物性と電池評価結果を表1に示す。
(比較例2)
炭素材(B)のみを負極材料として用い、得られた粉体物性と電池評価結果を表1に示す。
Figure 2014067638
表1より、実施例1−3のように複合炭素材(A)と炭素材(B)を混合した材は、複合炭素材(A)、炭素材(B)それぞれに比べ、サイクル維持率、残存率ともに高いことが確認される。
本発明の負極材料は、非水系二次電池用の負極材として用いることにより、高容量、且つサイクル特性の良好な非水系二次電池用負極材を提供することができる。

Claims (8)

  1. 炭素質物又は黒鉛質物で被覆した内部空隙率が1%以上23%未満である加圧処理された複合炭素材(A)と、内部空隙率が23%以上40%以下である炭素材(B)を含有することを特徴とする非水系二次電池用炭素材。
  2. 複合炭素材(A)/炭素材(B)の体積基準平均粒径の比率が0.02〜1であることを特徴する請求項1に記載の非水系二次電池用炭素材。
  3. 炭素材(B)が球形化黒鉛である請求項1又は2に記載の非水系二次電池用炭素材。
  4. 炭素材(B)/前記複合炭素材(A)の比表面積の比率が0.3〜50であることを特徴する請求項1〜3のいずれか1項に記載の非水系二次電池用炭素材。
  5. 前記複合炭素材(A)/炭素材(B)のプレス荷重の比が1〜50であることを特徴する請求項1〜4のいずれか1項に記載の非水系二次電池用炭素材。
  6. 非水系二次電池用炭素材の密度が0.5g/cm以上1.9g/cm以下であることを特徴する請求項1〜5のいずれか1項に記載の非水系二次電池用炭素材。
  7. 集電体と、前記集電体上に形成された活物質層とを備える非水系二次電池用負極であって、前記活物質層が、請求項1〜6のいずれか1項に記載の非水系二次電池用炭素材を含有する、非水系二次電池用負極。
  8. 正極及び負極、並びに、電解質を備える非水系二次電池であって、前記負極が請求項7に記載の非水系二次電池用負極である、非水系二次電池。
JP2012213051A 2012-09-26 2012-09-26 非水系二次電池用炭素材、及び負極並びに、非水系二次電池 Pending JP2014067638A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012213051A JP2014067638A (ja) 2012-09-26 2012-09-26 非水系二次電池用炭素材、及び負極並びに、非水系二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012213051A JP2014067638A (ja) 2012-09-26 2012-09-26 非水系二次電池用炭素材、及び負極並びに、非水系二次電池

Publications (1)

Publication Number Publication Date
JP2014067638A true JP2014067638A (ja) 2014-04-17

Family

ID=50743825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012213051A Pending JP2014067638A (ja) 2012-09-26 2012-09-26 非水系二次電池用炭素材、及び負極並びに、非水系二次電池

Country Status (1)

Country Link
JP (1) JP2014067638A (ja)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017027771A (ja) * 2015-07-22 2017-02-02 三菱化学株式会社 非水系二次電池用炭素材、及び、リチウムイオン二次電池
JP2018517260A (ja) * 2015-06-08 2018-06-28 イオニツク・マテリアルズ・インコーポレーテツド 多価金属負極を有するバッテリー
WO2019239948A1 (ja) 2018-06-15 2019-12-19 パナソニックIpマネジメント株式会社 非水電解質二次電池
WO2019239652A1 (ja) 2018-06-15 2019-12-19 三洋電機株式会社 非水電解質二次電池
WO2020044930A1 (ja) 2018-08-29 2020-03-05 パナソニックIpマネジメント株式会社 非水電解質二次電池
US10741877B1 (en) 2012-04-11 2020-08-11 Ionic Materials, Inc. Solid electrolyte high energy battery
WO2020175361A1 (ja) 2019-02-28 2020-09-03 三洋電機株式会社 非水電解質二次電池
US10811688B2 (en) 2013-12-03 2020-10-20 Ionic Materials, Inc. Solid, ionically conducting polymer material, and methods and applications for same
WO2020218083A1 (ja) 2019-04-24 2020-10-29 三洋電機株式会社 非水電解質二次電池
WO2021059706A1 (ja) * 2019-09-27 2021-04-01 パナソニックIpマネジメント株式会社 リチウムイオン二次電池用負極及びリチウムイオン二次電池
US11031599B2 (en) 2012-04-11 2021-06-08 Ionic Materials, Inc. Electrochemical cell having solid ionically conducting polymer material
WO2021111931A1 (ja) 2019-12-06 2021-06-10 三洋電機株式会社 非水電解液二次電池
WO2021111932A1 (ja) 2019-12-06 2021-06-10 三洋電機株式会社 非水電解液二次電池
WO2021111930A1 (ja) 2019-12-06 2021-06-10 三洋電機株式会社 非水電解液二次電池
WO2021117550A1 (ja) * 2019-12-13 2021-06-17 パナソニックIpマネジメント株式会社 非水電解液二次電池
US11114655B2 (en) 2015-04-01 2021-09-07 Ionic Materials, Inc. Alkaline battery cathode with solid polymer electrolyte
US11145857B2 (en) 2012-04-11 2021-10-12 Ionic Materials, Inc. High capacity polymer cathode and high energy density rechargeable cell comprising the cathode
US11145899B2 (en) 2015-06-04 2021-10-12 Ionic Materials, Inc. Lithium metal battery with solid polymer electrolyte
US11152657B2 (en) 2012-04-11 2021-10-19 Ionic Materials, Inc. Alkaline metal-air battery cathode
US11251455B2 (en) 2012-04-11 2022-02-15 Ionic Materials, Inc. Solid ionically conducting polymer material
US11319411B2 (en) 2012-04-11 2022-05-03 Ionic Materials, Inc. Solid ionically conducting polymer material
US11342559B2 (en) 2015-06-08 2022-05-24 Ionic Materials, Inc. Battery with polyvalent metal anode
US11749833B2 (en) 2012-04-11 2023-09-05 Ionic Materials, Inc. Solid state bipolar battery
US12074274B2 (en) 2012-04-11 2024-08-27 Ionic Materials, Inc. Solid state bipolar battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010092622A (ja) * 2008-10-03 2010-04-22 Nissan Motor Co Ltd 電池用電極の製造方法
WO2012077653A1 (ja) * 2010-12-08 2012-06-14 日本コークス工業株式会社 リチウムイオン二次電池用負極材料及びその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010092622A (ja) * 2008-10-03 2010-04-22 Nissan Motor Co Ltd 電池用電極の製造方法
WO2012077653A1 (ja) * 2010-12-08 2012-06-14 日本コークス工業株式会社 リチウムイオン二次電池用負極材料及びその製造方法

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11319411B2 (en) 2012-04-11 2022-05-03 Ionic Materials, Inc. Solid ionically conducting polymer material
US12074274B2 (en) 2012-04-11 2024-08-27 Ionic Materials, Inc. Solid state bipolar battery
US11152657B2 (en) 2012-04-11 2021-10-19 Ionic Materials, Inc. Alkaline metal-air battery cathode
US11251455B2 (en) 2012-04-11 2022-02-15 Ionic Materials, Inc. Solid ionically conducting polymer material
US11749833B2 (en) 2012-04-11 2023-09-05 Ionic Materials, Inc. Solid state bipolar battery
US10741877B1 (en) 2012-04-11 2020-08-11 Ionic Materials, Inc. Solid electrolyte high energy battery
US11611104B2 (en) 2012-04-11 2023-03-21 Ionic Materials, Inc. Solid electrolyte high energy battery
US11145857B2 (en) 2012-04-11 2021-10-12 Ionic Materials, Inc. High capacity polymer cathode and high energy density rechargeable cell comprising the cathode
US11031599B2 (en) 2012-04-11 2021-06-08 Ionic Materials, Inc. Electrochemical cell having solid ionically conducting polymer material
US11949105B2 (en) 2012-04-11 2024-04-02 Ionic Materials, Inc. Electrochemical cell having solid ionically conducting polymer material
US10811688B2 (en) 2013-12-03 2020-10-20 Ionic Materials, Inc. Solid, ionically conducting polymer material, and methods and applications for same
US11114655B2 (en) 2015-04-01 2021-09-07 Ionic Materials, Inc. Alkaline battery cathode with solid polymer electrolyte
US11145899B2 (en) 2015-06-04 2021-10-12 Ionic Materials, Inc. Lithium metal battery with solid polymer electrolyte
JP2018517260A (ja) * 2015-06-08 2018-06-28 イオニツク・マテリアルズ・インコーポレーテツド 多価金属負極を有するバッテリー
US11342559B2 (en) 2015-06-08 2022-05-24 Ionic Materials, Inc. Battery with polyvalent metal anode
JP7160534B2 (ja) 2015-06-08 2022-10-25 イオニツク・マテリアルズ・インコーポレーテツド 多価金属負極を有するバッテリー
US11605819B2 (en) 2015-06-08 2023-03-14 Ionic Materials, Inc. Battery having aluminum anode and solid polymer electrolyte
JP2017027771A (ja) * 2015-07-22 2017-02-02 三菱化学株式会社 非水系二次電池用炭素材、及び、リチウムイオン二次電池
JPWO2019239948A1 (ja) * 2018-06-15 2021-06-24 パナソニックIpマネジメント株式会社 非水電解質二次電池
US12126013B2 (en) 2018-06-15 2024-10-22 Panasonic Energy Co., Ltd. Non-aqueous electrolyte secondary cell
WO2019239948A1 (ja) 2018-06-15 2019-12-19 パナソニックIpマネジメント株式会社 非水電解質二次電池
WO2019239652A1 (ja) 2018-06-15 2019-12-19 三洋電機株式会社 非水電解質二次電池
CN112292774A (zh) * 2018-06-15 2021-01-29 松下知识产权经营株式会社 非水电解质二次电池
US11728484B2 (en) 2018-06-15 2023-08-15 Panasonic Intellectual Property Management Co., Ltd. Non-aqueous electrolyte secondary battery
WO2020044930A1 (ja) 2018-08-29 2020-03-05 パナソニックIpマネジメント株式会社 非水電解質二次電池
WO2020175361A1 (ja) 2019-02-28 2020-09-03 三洋電機株式会社 非水電解質二次電池
US20220131131A1 (en) * 2019-02-28 2022-04-28 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery
US12015139B2 (en) 2019-02-28 2024-06-18 Panasonic Energy Co., Ltd. Non-aqueous electrolyte secondary battery
WO2020218083A1 (ja) 2019-04-24 2020-10-29 三洋電機株式会社 非水電解質二次電池
US20220216475A1 (en) * 2019-04-24 2022-07-07 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
WO2021059706A1 (ja) * 2019-09-27 2021-04-01 パナソニックIpマネジメント株式会社 リチウムイオン二次電池用負極及びリチウムイオン二次電池
WO2021111931A1 (ja) 2019-12-06 2021-06-10 三洋電機株式会社 非水電解液二次電池
WO2021111932A1 (ja) 2019-12-06 2021-06-10 三洋電機株式会社 非水電解液二次電池
WO2021111930A1 (ja) 2019-12-06 2021-06-10 三洋電機株式会社 非水電解液二次電池
WO2021117550A1 (ja) * 2019-12-13 2021-06-17 パナソニックIpマネジメント株式会社 非水電解液二次電池

Similar Documents

Publication Publication Date Title
JP6102074B2 (ja) 非水系二次電池用負極炭素材、及び負極並びに、非水系二次電池
JP6528826B2 (ja) 非水系二次電池用炭素材並びにそれを用いた負極及びリチウムイオン二次電池
JP2014067638A (ja) 非水系二次電池用炭素材、及び負極並びに、非水系二次電池
JP6127426B2 (ja) 非水系二次電池用炭素材、負極及び、非水系二次電池
WO2012133788A1 (ja) 非水系二次電池用黒鉛粒子及びその製造方法、負極並びに非水系二次電池
JP6340865B2 (ja) 非水系二次電池用負極材料及びその製造方法、非水系二次電池負極並びに非水系二次電池
JP6318758B2 (ja) 非水系二次電池用炭素材、及び、非水系二次電池
WO2012133700A1 (ja) 非水系二次電池用炭素材、及び負極、並びに、非水系二次電池
JP6120626B2 (ja) 非水系二次電池用複合炭素材の製造方法
JP6127427B2 (ja) 非水系二次電池用炭素材料、及び負極並びに、非水系二次電池
JP5994319B2 (ja) 非水系二次電池用複合黒鉛粒子の製造方法及びその製造方法で得られた複合黒鉛粒子、負極並びに非水系二次電池
JP2014067680A (ja) 非水系二次電池用黒鉛粒子及び、それを用いた非水系二次電池用負極並びに非水系二次電池
JP7248019B2 (ja) 非水系二次電池用負極材、非水系二次電池用負極及び非水系二次電池
JP2014067639A (ja) 非水系二次電池用炭素材料、非水系二次電池用負極及び非水系二次電池
JP2017045574A (ja) 炭素材、及び、非水系二次電池
JP6098275B2 (ja) 非水系二次電池負極用炭素材、非水系二次電池用負極及び非水系二次電池
JP2014067636A (ja) 非水系二次電池負極用複合炭素材、及び負極並びに、非水系二次電池
JP2017174739A (ja) 非水系二次電池用負極材、及び、リチウムイオン二次電池
JP6379565B2 (ja) 非水系二次電池負極用炭素材、及び、非水系二次電池
JP2014067644A (ja) 非水系二次電池用炭素材、及び負極並びに、非水系二次電池
JP6492407B2 (ja) 非水系二次電池負極用炭素材、及び、非水系二次電池
JP6070016B2 (ja) 非水系二次電池用複合炭素材及びその製造方法、負極並びに非水系二次電池
JP5691220B2 (ja) 非水系二次電池用炭素材料、負極及び非水系二次電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160714

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161213