JP2014067645A - Method of manufacturing positive electrode active material for lithium ion battery - Google Patents
Method of manufacturing positive electrode active material for lithium ion battery Download PDFInfo
- Publication number
- JP2014067645A JP2014067645A JP2012213179A JP2012213179A JP2014067645A JP 2014067645 A JP2014067645 A JP 2014067645A JP 2012213179 A JP2012213179 A JP 2012213179A JP 2012213179 A JP2012213179 A JP 2012213179A JP 2014067645 A JP2014067645 A JP 2014067645A
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- powder
- electrode active
- active material
- raw material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000007774 positive electrode material Substances 0.000 title claims abstract description 52
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 18
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 18
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 13
- 239000000843 powder Substances 0.000 claims abstract description 100
- 238000000034 method Methods 0.000 claims abstract description 49
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims abstract description 47
- 239000011148 porous material Substances 0.000 claims abstract description 40
- 239000011163 secondary particle Substances 0.000 claims abstract description 37
- 239000011164 primary particle Substances 0.000 claims abstract description 32
- 150000002642 lithium compounds Chemical class 0.000 claims abstract description 20
- 229910052751 metal Inorganic materials 0.000 claims abstract description 16
- 239000000203 mixture Substances 0.000 claims abstract description 15
- 239000002184 metal Substances 0.000 claims abstract description 14
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 12
- 150000001875 compounds Chemical class 0.000 claims abstract description 8
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 7
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 6
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 4
- 229910052733 gallium Inorganic materials 0.000 claims abstract description 4
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 4
- 229910052742 iron Inorganic materials 0.000 claims abstract description 3
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 3
- 239000002994 raw material Substances 0.000 claims description 37
- 239000002245 particle Substances 0.000 claims description 23
- 238000010438 heat treatment Methods 0.000 claims description 16
- 238000005979 thermal decomposition reaction Methods 0.000 claims description 12
- 238000006243 chemical reaction Methods 0.000 claims description 11
- 239000002002 slurry Substances 0.000 claims description 11
- 238000001035 drying Methods 0.000 claims description 7
- 238000005118 spray pyrolysis Methods 0.000 claims description 6
- 230000001678 irradiating effect Effects 0.000 claims description 5
- 230000003301 hydrolyzing effect Effects 0.000 claims description 2
- 239000002904 solvent Substances 0.000 claims description 2
- 230000006872 improvement Effects 0.000 abstract description 3
- 230000002776 aggregation Effects 0.000 abstract description 2
- 238000004220 aggregation Methods 0.000 abstract description 2
- 239000000463 material Substances 0.000 abstract 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 34
- 229910052744 lithium Inorganic materials 0.000 description 32
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 30
- 239000002131 composite material Substances 0.000 description 20
- 230000008569 process Effects 0.000 description 19
- 239000011572 manganese Substances 0.000 description 15
- 238000010304 firing Methods 0.000 description 14
- 239000010410 layer Substances 0.000 description 14
- 238000011156 evaluation Methods 0.000 description 12
- 229910017052 cobalt Inorganic materials 0.000 description 8
- 239000010941 cobalt Substances 0.000 description 8
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 8
- 229910052759 nickel Inorganic materials 0.000 description 8
- 239000011800 void material Substances 0.000 description 8
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 7
- 239000011347 resin Substances 0.000 description 7
- 229920005989 resin Polymers 0.000 description 7
- IUVCFHHAEHNCFT-INIZCTEOSA-N 2-[(1s)-1-[4-amino-3-(3-fluoro-4-propan-2-yloxyphenyl)pyrazolo[3,4-d]pyrimidin-1-yl]ethyl]-6-fluoro-3-(3-fluorophenyl)chromen-4-one Chemical compound C1=C(F)C(OC(C)C)=CC=C1C(C1=C(N)N=CN=C11)=NN1[C@@H](C)C1=C(C=2C=C(F)C=CC=2)C(=O)C2=CC(F)=CC=C2O1 IUVCFHHAEHNCFT-INIZCTEOSA-N 0.000 description 6
- 239000008151 electrolyte solution Substances 0.000 description 6
- 239000007773 negative electrode material Substances 0.000 description 6
- 238000001878 scanning electron micrograph Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 230000026683 transduction Effects 0.000 description 5
- 238000010361 transduction Methods 0.000 description 5
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 4
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 4
- 239000002033 PVDF binder Substances 0.000 description 4
- QXZUUHYBWMWJHK-UHFFFAOYSA-N [Co].[Ni] Chemical compound [Co].[Ni] QXZUUHYBWMWJHK-UHFFFAOYSA-N 0.000 description 4
- 239000011149 active material Substances 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 239000012159 carrier gas Substances 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 4
- 230000009257 reactivity Effects 0.000 description 4
- 229910019775 (Ni0.6CO0.2Mn0.2)(OH)2 Inorganic materials 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000007600 charging Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910013870 LiPF 6 Inorganic materials 0.000 description 2
- KFDQGLPGKXUTMZ-UHFFFAOYSA-N [Mn].[Co].[Ni] Chemical compound [Mn].[Co].[Ni] KFDQGLPGKXUTMZ-UHFFFAOYSA-N 0.000 description 2
- 239000006230 acetylene black Substances 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 2
- 229910052808 lithium carbonate Inorganic materials 0.000 description 2
- GLXDVVHUTZTUQK-UHFFFAOYSA-M lithium;hydroxide;hydrate Chemical compound [Li+].O.[OH-] GLXDVVHUTZTUQK-UHFFFAOYSA-M 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- 150000002815 nickel Chemical class 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000000197 pyrolysis Methods 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- -1 and further Substances 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000003518 caustics Substances 0.000 description 1
- 230000005465 channeling Effects 0.000 description 1
- 229910000361 cobalt sulfate Inorganic materials 0.000 description 1
- 229940044175 cobalt sulfate Drugs 0.000 description 1
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 description 1
- 238000010280 constant potential charging Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000007580 dry-mixing Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 1
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、リチウムイオン電池用正極活物質の製造方法に関する。 The present invention relates to a method for producing a positive electrode active material for a lithium ion battery.
リチウムイオン二次電池における正極活物質として、コバルト酸リチウム等の一次粒子が多数凝集した二次粒子からなり、その一次粒子が二次粒子の中心から外方に向かって放射状に並び、かつ二次粒子内に電解液が浸透しうる微小な隙間(空隙)を有するものが知られている(特許文献1(特開2001−243951号公報)及び特許文献2(特許第4726896号公報)を参照)。このような粒子の製法として、球状の遷移金属水酸化物と水酸化リチウム水和物を湿式混合して脱水したものを空気中で熱分解した後、酸素雰囲気中で焼成及び反応させる方法が提案されている。 As a positive electrode active material in a lithium ion secondary battery, it consists of secondary particles in which a large number of primary particles such as lithium cobaltate are agglomerated, and the primary particles are arranged radially from the center of the secondary particles to the outside. Those having minute gaps (voids) through which electrolyte can permeate in the particles are known (see Patent Document 1 (Japanese Patent Laid-Open No. 2001-243951) and Patent Document 2 (Japanese Patent No. 4726896)). . As a method for producing such particles, a method is proposed in which spherical transition metal hydroxide and lithium hydroxide hydrate are wet-mixed and dehydrated, thermally decomposed in air, and then fired and reacted in an oxygen atmosphere. Has been.
また、放射状に配向した球状の遷移金属水酸化物の製造方法も知られている(例えば、特許文献3(特開平9−17429号公報)及び特許文献4(特開2002−304992号公報)を参照)。 In addition, a method for producing a radially oriented spherical transition metal hydroxide is also known (for example, Patent Document 3 (Japanese Patent Laid-Open No. 9-17429) and Patent Document 4 (Japanese Patent Laid-Open No. 2002-304992). reference).
しかしながら、この正極材料活物質を用いたリチウムイオン二次電池のハイレートでの充放電特性(以下、単に「レート特性」と称する)は、一次粒子が放射状に並んでいるため、ランダムなものと比べて、電子伝導性やイオン伝導性において優れていたが、依然として改善の余地があった。特に、レート特性を向上させるためには、活物質内の電子伝導性とリチウムイオン伝導性の両方を高める必要があるが、従来の製法では限界があった。すなわち、二次粒子内の微小な空隙を増やすと電解液が浸透しやすくなるためイオン伝導性は向上するが、空隙により電子伝導の経路となる一次粒子間の結合部が小さくなるため電子伝導性が低下してしまう。その一方で、空隙を減らすと電子伝導性は向上するものの、活物質内への電解液の浸透が少なくなりリチウムイオンの拡散距離が長くなるため、イオン伝導性が低下してしまう。このように電子伝導性とイオン伝導性がトレードオフの関係を有しており、その両立は困難であった。 However, the charge / discharge characteristics at high rates of lithium ion secondary batteries using this positive electrode active material (hereinafter simply referred to as “rate characteristics”) are compared to random ones because primary particles are arranged radially. Although it was excellent in electron conductivity and ion conductivity, there was still room for improvement. In particular, in order to improve the rate characteristics, it is necessary to increase both the electronic conductivity and the lithium ion conductivity in the active material, but there are limitations in the conventional manufacturing method. In other words, increasing the number of minute voids in the secondary particles makes it easier for the electrolyte to penetrate, so that the ionic conductivity is improved. Will fall. On the other hand, when the voids are reduced, the electron conductivity is improved, but the penetration of the electrolytic solution into the active material is reduced and the diffusion distance of lithium ions is increased, so that the ion conductivity is lowered. Thus, electronic conductivity and ionic conductivity have a trade-off relationship, and it has been difficult to achieve both.
本発明者らは、今般、リチウムイオン電池用正極活物質の製造において、水酸化物原料粉末及び/又はその熱分解酸化物粉末に超音波を照射することにより、開気孔比率の高い酸化物粉末を生成させ、それによってレート特性の更なる向上を実現可能なリチウムイオン電池用正極活物質が得られるとの知見を得た。 In the production of a positive electrode active material for a lithium ion battery, the present inventors have recently developed an oxide powder having a high open pore ratio by irradiating a hydroxide raw material powder and / or its pyrolytic oxide powder with ultrasonic waves. As a result, it was found that a positive electrode active material for a lithium ion battery capable of further improving the rate characteristics was obtained.
したがって、本発明の目的は、レート特性の更なる向上を実現可能な、開気孔比率の高いリチウムイオン電池用正極活物質を極めて簡便な手法で製造することにある。 Therefore, an object of the present invention is to produce a positive electrode active material for a lithium ion battery having a high open pore ratio that can realize further improvement in rate characteristics by a very simple method.
本発明の一態様によれば、リチウムイオン電池用正極活物質の製造方法であって、
Ni1−yMy(OH)2(式中、0<y≦0.5、MはCo、Al、Mg、Mn、Ti、Fe、Cr、Zn及びGaからなる群から選択される少なくとも1種以上の金属元素)で表される組成の一次粒子が多数凝集した二次粒子からなり、前記一次粒子の少なくとも一部が前記二次粒子の中心から外方に向かって放射状に並んでなる、水酸化物原料粉末を用意する工程と、
前記水酸化物原料粉末及び/又はその熱分解酸化物粉末に超音波を照射する工程と、
前記超音波が照射された前記水酸化物原料粉末及び/又はその熱分解酸化物粉末を、リチウム化合物単独、又は金属元素Mを含む化合物及びリチウム化合物の組合せと、LixNi1−zMzO2(式中、0.96≦x≦1.09、0<z≦0.5)で表される組成を与えるように反応させ、それにより開気孔を備えたリチウムイオン電池用正極活物質を得る工程と、
を含んでなる、方法が提供される。
According to one aspect of the present invention, there is provided a method for producing a positive electrode active material for a lithium ion battery,
Ni 1-y M y (OH) 2 (where 0 <y ≦ 0.5, M is at least one selected from the group consisting of Co, Al, Mg, Mn, Ti, Fe, Cr, Zn, and Ga) Consisting of secondary particles in which a large number of primary particles having a composition represented by a metal element of a species or more are aggregated, and at least a part of the primary particles are arranged radially outward from the center of the secondary particles. Preparing a hydroxide raw material powder;
Irradiating the hydroxide raw material powder and / or the pyrolyzed oxide powder with ultrasonic waves;
The hydroxide raw material powder and / or its thermally decomposed oxide powder irradiated with the ultrasonic waves are combined with a lithium compound alone or a combination of a compound containing a metal element M and a lithium compound, and Li x Ni 1-z M z. A positive electrode active material for a lithium ion battery that is reacted so as to give a composition represented by O 2 (wherein 0.96 ≦ x ≦ 1.09, 0 <z ≦ 0.5), thereby providing open pores And obtaining
A method is provided comprising.
リチウムイオン電池用正極活物質の製造方法
本発明は、リチウムイオン電池用正極活物質の製造方法に関するものであり、この方法は、水酸化物原料粉末を用意する工程と、所望により水酸化物原料粉末を加熱して熱分解する工程と、水酸化物原料粉末及び/又はその熱分解酸化物粉末に超音波を照射する工程と、酸化物粉末をリチウム化合物と反応させてリチウムイオン電池用正極活物質を得る工程とを含む。以下、各工程について説明する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a positive electrode active material for a lithium ion battery, which includes a step of preparing a hydroxide raw material powder and, optionally, a hydroxide raw material. A process of thermally decomposing the powder by heating, a process of irradiating the hydroxide raw material powder and / or the pyrolyzed oxide powder with ultrasonic waves, and reacting the oxide powder with a lithium compound to produce a positive electrode active for a lithium ion battery. Obtaining a substance. Hereinafter, each step will be described.
(1)水酸化物原料粉末の用意
本発明の方法においては、Ni1−yMy(OH)2(式中、0<y≦0.5、MはCo、Al、Mg、Mn、Ti、Fe、Cr、Zn及びGaからなる群から選択される少なくとも1種以上の金属元素)で表される組成の一次粒子が多数凝集した二次粒子からなり、一次粒子の少なくとも一部が二次粒子の中心から外方に向かって放射状に並んでなる、水酸化物原料粉末を用意する。好ましくは、0.15≦y≦0.4であり、好ましい金属元素MはCo、Al、Mg及びMnからなる群から選択される少なくとも2種の金属元素であり、より好ましくはAl、Mg及びMnからなる群から選択される少なくとも1種とCoとを含み、特に好ましい金属元素Mの組合せはCo及びAl、又はCo及びMnである。
(1) Preparation of hydroxide raw material powder In the method of the present invention, Ni 1-y M y (OH) 2 (where 0 <y ≦ 0.5, M is Co, Al, Mg, Mn, Ti , Fe, Cr, Zn, and Ga, at least one metal element selected from the group consisting of secondary particles in which a large number of primary particles are aggregated, and at least part of the primary particles are secondary. A hydroxide raw material powder is prepared, which is arranged radially from the center of the particle to the outside. Preferably, 0.15 ≦ y ≦ 0.4, and the preferred metal element M is at least two metal elements selected from the group consisting of Co, Al, Mg and Mn, more preferably Al, Mg and A particularly preferred combination of metal elements M is Co and Al, or Co and Mn, including at least one selected from the group consisting of Mn and Co.
水酸化物原料粉末は、1.80g/cc以上のタップ密度を有するのが好ましく、より好ましくは1.9g/cc以上であり、更に好ましくは2.0g/cc以上である。タップ密度が高いほど緻密性が高くなりクラックが発生しやすいことから、開気孔の形成に有利となるが、2.3g/cc以下であるのが現実的である。また、水酸化物原料粉末は、二次粒径として、10〜30μmの体積基準D50平均粒径を有するのが好ましく、より好ましくは10〜25μmであり、更に好ましくは15〜20μmである。この程度に大きめの粒径であるとクラックが発生しやすいことから、開気孔の形成に有利となる。 The hydroxide raw material powder preferably has a tap density of 1.80 g / cc or more, more preferably 1.9 g / cc or more, and further preferably 2.0 g / cc or more. The higher the tap density, the higher the density and the more likely to generate cracks, which is advantageous for the formation of open pores, but it is realistic that it is 2.3 g / cc or less. The hydroxide raw material powder preferably has a volume-based D50 average particle size of 10 to 30 μm as the secondary particle size, more preferably 10 to 25 μm, and still more preferably 15 to 20 μm. If the particle size is as large as this, cracks are likely to occur, which is advantageous for the formation of open pores.
このような水酸化物原料粉末は公知の技術に従って作製することができる(例えば特許文献3及び4を参照)。例えば、pH及び温度を調整した槽内に、ニッケル塩水溶液、金属元素M含有水溶液、苛性アルカリ水溶液、及びアンモニウムイオン供給体を、その濃度及び流量を制御しながら連続的に供給して採取する方法が挙げられる。この時、上記タップ密度やD50平均粒径を満たすためには、槽内のpHを10.0〜12.0とし、温度を40〜70℃とするのが好ましい。 Such hydroxide raw material powder can be produced according to a known technique (for example, see Patent Documents 3 and 4). For example, a method in which a nickel salt aqueous solution, a metal element M-containing aqueous solution, a caustic alkaline aqueous solution, and an ammonium ion supplier are continuously supplied and controlled while controlling the concentration and flow rate in a tank adjusted in pH and temperature. Is mentioned. At this time, in order to satisfy the tap density and the D50 average particle diameter, it is preferable that the pH in the tank is 10.0 to 12.0 and the temperature is 40 to 70 ° C.
(2)熱分解工程
リチウム化合物との反応前で、かつ、超音波照射の前又は後に、水酸化物原料粉末を加熱して熱分解させ、それにより酸化物粉末を生成させる工程が行われるのが好ましい。この熱分解工程は超音波照射の前に行われるのがより好ましい。この熱分解工程において、 水酸化物原料粉末は、500〜1000℃の最高到達温度まで昇温させることにより行うのが好ましく、その際の昇温は30℃/分以上の昇温速度で及び/又は噴霧熱分解により急速に行われるのがより好ましい。これによりクラック状の開気孔を備えた酸化物粉末を生成させることができる。すなわち、500〜1000℃の最高到達温度まで昇温させる、望ましくは30℃/分以上の昇温速度で急速昇温することにより、水酸化物原料粉末を熱分解させると同時に、急激な熱膨張及び体積収縮に起因してクラックを生じやすくすることができる。こうして形成されたクラックは外気と連通する開気孔を形成しやすいことから、後続の超音波照射工程で実現しようとする高い開気孔比率に寄与する。好ましい最高到達温度は600〜1000℃であり、より好ましくは700〜1000℃、更に好ましくは750〜950℃である。昇温速度は高ければ高い方がクラックを発生しやすいことから、昇温速度は50℃/分以上、100℃/分以上、500℃/以上、あるいは1000℃/分以上としてもよい。急速昇温された水酸化物原料粉末は、上記最高到達温度で0〜10分間保持されるのが好ましく、より好ましくは0〜1分間である。最も好ましい保持時間は0分間であり、これは最高到達温度で保持することなく、最高到達温度に達した直後から降温させることを意味する。
(2) Thermal decomposition step Before the reaction with the lithium compound and before or after ultrasonic irradiation, a step of heating and hydrolyzing the hydroxide raw material powder to thereby generate an oxide powder is performed. Is preferred. This thermal decomposition step is more preferably performed before ultrasonic irradiation. In this thermal decomposition step, the hydroxide raw material powder is preferably heated by raising the temperature to a maximum temperature of 500 to 1000 ° C., and the temperature rise at that time is 30 ° C./min or higher. Or it is more preferable to carry out rapidly by spray pyrolysis. Thereby, an oxide powder having crack-like open pores can be generated. That is, the hydroxide raw material powder is pyrolyzed at the same time as it is heated rapidly to a maximum temperature of 500 to 1000 ° C., preferably at a heating rate of 30 ° C./min or more, and at the same time rapid thermal expansion. And it can make it easy to produce a crack resulting from volume contraction. Since the cracks thus formed easily form open pores communicating with the outside air, it contributes to a high open pore ratio to be realized in the subsequent ultrasonic irradiation process. A preferable maximum temperature is 600 to 1000 ° C, more preferably 700 to 1000 ° C, and still more preferably 750 to 950 ° C. The higher the rate of temperature rise, the easier the cracks are generated, so the rate of temperature rise may be 50 ° C./min or more, 100 ° C./min or more, 500 ° C./min or 1000 ° C./min or more. The hydroxide raw material powder that has been rapidly heated is preferably held at the above-mentioned maximum attained temperature for 0 to 10 minutes, more preferably 0 to 1 minute. The most preferable holding time is 0 minute, which means that the temperature is lowered immediately after reaching the maximum temperature without holding at the maximum temperature.
急速昇温の手法は30℃/分以上の昇温速度を実現可能な手法であればいかなる手法であってもよいが、急速昇温が赤外線ランプ加熱炉内での加熱により行われるのが昇温速度を制御しやすい点で好ましい。本発明の別の好ましい態様によれば、急速昇温は、水酸化物原料粉末を噴霧空気とともに噴霧熱分解炉内に吹き込むことにより行われてもよい。このとき、噴霧熱分解炉内が500〜1000℃の最高到達温度に加熱されていることで、原料粉末を構成する粒子が噴霧状態のため瞬時に加熱され、それによって昇温速度の測定が困難なほどに高い昇温速度が実現される。この際の昇温速度は50℃/分以上、さらには1000℃/分以上であるものと推定されるが、昇温速度を測定するまでもなく噴霧熱分解によれば本発明による急速昇温によるクラック状の開気孔の形成を非常に効率良く行うことができ、多量の原料粉末を短時間で処理できるため量産にも適する。いずれにせよ、本発明の熱分解工程において、一次粒子及び空隙(開気孔)の少なくとも一部が二次粒子の中心から外方に向かって放射状に並んでなる水酸化物原料粉末の配向性がそのまま酸化物にも継承され、その結果、一次粒子が多数凝集した二次粒子からなり、一次粒子及び空隙(開気孔)の少なくとも一部が二次粒子の中心から外方に向かって放射状に並んでなる、酸化物粉末が得られる。 The rapid heating method may be any method as long as it can realize a heating rate of 30 ° C./min or more, but the rapid heating is performed by heating in an infrared lamp heating furnace. This is preferable in that the temperature rate can be easily controlled. According to another preferred embodiment of the present invention, the rapid temperature increase may be performed by blowing the hydroxide raw material powder into the spray pyrolysis furnace together with the spray air. At this time, since the inside of the spray pyrolysis furnace is heated to the highest temperature of 500 to 1000 ° C., the particles constituting the raw material powder are instantaneously heated because of the spray state, thereby making it difficult to measure the temperature rising rate. A very high heating rate is realized. The temperature rising rate at this time is estimated to be 50 ° C./min or higher, and further 1000 ° C./min or higher. The crack-shaped open pores can be formed very efficiently, and a large amount of raw material powder can be processed in a short time, which is suitable for mass production. In any case, in the pyrolysis step of the present invention, the orientation of the hydroxide raw material powder in which at least part of the primary particles and voids (open pores) are arranged radially outward from the center of the secondary particles is As a result, it is inherited by oxides. As a result, it consists of secondary particles in which many primary particles are aggregated, and at least a part of the primary particles and voids (open pores) are arranged radially outward from the center of the secondary particles. An oxide powder is obtained.
もっとも、後続の超音波照射工程及びリチウム導入工程を経て所望の開気孔比率の正極活物質が得られるかぎり、上記熱分解工程や急速昇温は行わなくてもよい。 However, as long as the positive electrode active material having a desired open pore ratio can be obtained through the subsequent ultrasonic irradiation step and the lithium introduction step, the thermal decomposition step and the rapid temperature increase need not be performed.
(3)超音波照射工程
水酸化物原料粉末及び/又はその熱分解酸化物粉末には超音波が照射される。超音波を照射することにより、水酸化物原料粉末及び/又はその熱分解酸化物粉末において開気孔を高い比率で形成することができる。その理由は定かではないが、超音波照射によって発生するキャビテーションによって、粉末を構成する二次粒子の表面や既に存在しうるクラック等の開気孔から多数の一次粒子が脱落して、新たな開気孔の形成や既に存在する開気孔の拡大が促進されるためではないかと推察される。こうして形成ないし拡大された開気孔は外気と連通しやすくなることから、多数の一次粒子同士が緻密に結合した二次粒子マトリックス中に開気孔比率が高い空隙を、主として二次粒子の中心から外方に向かって放射状に形成させることができる。従って、放射状に形成された開気孔を通って二次粒子内に電解液が浸透しやすくなるためイオン伝導性が向上すると同時に、開気孔以外の部分は多数の一次粒子同士の緻密な結合に起因して電子伝導の経路となる一次粒子間の結合部を十分多く確保することができ、空隙形成に伴う電子伝導性の低下を抑制できる。その結果、本来はトレードオフの関係にある電子伝導性とイオン伝導性の両立が可能となり、改善したレート特性が得られるものと考えられる。上記のような現象が期待されるかぎり、超音波の諸条件は特に限定されないが、超音波の好ましい振幅は20〜50μmであり、好ましい周波数は16〜30kHzである。超音波の照射時間も特に限定されるものではないが、3分以上が好ましく、より好ましくは5〜60分である。
(3) Ultrasonic irradiation process Ultrasonic is irradiated to the hydroxide raw material powder and / or its pyrolytic oxide powder. By irradiating with ultrasonic waves, open pores can be formed at a high ratio in the hydroxide raw material powder and / or its pyrolytic oxide powder. The reason is not clear, but due to cavitation generated by ultrasonic irradiation, a large number of primary particles fall off from the surface of secondary particles constituting the powder and open pores such as cracks that may already exist, and new open pores It is presumed that this may be due to the promotion of the formation of open pores and the expansion of the existing open pores. Since the open pores formed or expanded in this way are easy to communicate with the outside air, voids having a high open pore ratio are mainly removed from the center of the secondary particles in the secondary particle matrix in which many primary particles are closely bonded. It can be formed radially toward the direction. Therefore, the electrolyte solution easily penetrates into the secondary particles through the open pores formed radially, so that the ionic conductivity is improved, and at the same time, the portions other than the open pores are caused by the dense bonding of many primary particles. As a result, a sufficiently large number of bonding portions between primary particles serving as electron conduction paths can be secured, and a decrease in electron conductivity associated with void formation can be suppressed. As a result, it is considered that both the electron conductivity and the ionic conductivity which are originally in a trade-off relationship can be achieved, and an improved rate characteristic can be obtained. As long as the above phenomenon is expected, the ultrasonic conditions are not particularly limited, but the preferable amplitude of the ultrasonic wave is 20 to 50 μm and the preferable frequency is 16 to 30 kHz. The irradiation time of ultrasonic waves is not particularly limited, but is preferably 3 minutes or more, and more preferably 5 to 60 minutes.
本発明の好ましい態様によれば、超音波照射の前に水酸化物原料粉末及び/又はその熱分解酸化物粉末を水等の溶媒に分散させてスラリーを作製し、スラリーに対して超音波が照射された後、リチウム化合物との反応前にスラリーが乾燥される。これによって超音波照射による開気孔比率の増加を効率良く実現することができる。もっとも、スラリーを使用しない場合であっても、リチウム化合物との反応前に、超音波が照射された水酸化物原料粉末及び/又はその熱分解酸化物粉末を乾燥してもよい。いずれにしても、乾燥は300〜600℃の温度で行われるのが好ましく、より好ましくは350〜550℃である。このような乾燥を行うことで電池特性が向上する。 According to a preferred embodiment of the present invention, before the ultrasonic irradiation, the hydroxide raw material powder and / or the thermally decomposed oxide powder is dispersed in a solvent such as water to produce a slurry, and ultrasonic waves are applied to the slurry. After irradiation, the slurry is dried before reaction with the lithium compound. As a result, an increase in the open pore ratio by ultrasonic irradiation can be realized efficiently. But even if it is a case where a slurry is not used, you may dry the hydroxide raw material powder and / or its thermal decomposition oxide powder with which the ultrasonic wave was irradiated before reaction with a lithium compound. In any case, drying is preferably performed at a temperature of 300 to 600 ° C, more preferably 350 to 550 ° C. Battery characteristics are improved by performing such drying.
(4)リチウム導入工程
超音波が照射された水酸化物原料粉末及び/又はその熱分解酸化物粉末は、リチウム化合物単独、又は金属元素Mを含む化合物及びリチウム化合物の組合せと、LixNi1−zMzO2(式中、0.96≦x≦1.09、0<z≦0.5)で表される組成を与えるように反応させ、それにより開気孔を備えたリチウムイオン電池用正極活物質を得る。リチウム化合物は上記組成を与えることが可能なあらゆるリチウム含有化合物が使用可能であり、好ましい例としては水酸化リチウム、炭酸リチウム等が挙げられる。反応に先立ち、水酸化物原料粉末及び/又はその熱分解酸化物粉末はリチウム化合物と、乾式混合、湿式混合等の手法により混合されるのが好ましい。リチウム化合物の平均粒子径は特に限定されないが、0.1〜5μmであることが吸湿性の観点からの取扱い容易性及び反応性の観点から好ましい。なお、反応性を高めるために、リチウム量を0.5〜40mol%程度過剰にしてもよい。その際、Al2O3等の金属元素Mを含む化合物を併せて反応させることにより、LixNi1−zMzO2で表される組成を実現することも可能である。もっとも、水酸化物原料粉末において既に必要量の金属元素Mが含まれている場合においては、リチウム導入工程での金属元素Mを含む化合物の使用は不要である。
(4) Lithium introduction process The hydroxide raw material powder and / or its thermally decomposed oxide powder irradiated with ultrasonic waves are a lithium compound alone, or a combination of a compound containing a metal element M and a lithium compound, and Li x Ni 1. (wherein, 0.96 ≦ x ≦ 1.09,0 <z ≦ 0.5) -z M z O 2 are reacted to give a composition represented by lithium-ion battery thus with open pores A positive electrode active material is obtained. Any lithium-containing compound capable of providing the above composition can be used as the lithium compound, and preferred examples include lithium hydroxide and lithium carbonate. Prior to the reaction, the hydroxide raw material powder and / or its pyrolytic oxide powder is preferably mixed with the lithium compound by a technique such as dry mixing or wet mixing. The average particle size of the lithium compound is not particularly limited, but is preferably 0.1 to 5 μm from the viewpoint of ease of handling and reactivity from the viewpoint of hygroscopicity. In order to increase the reactivity, the lithium amount may be excessive by about 0.5 to 40 mol%. At that time, it is also possible to realize a composition represented by Li x Ni 1-z M z O 2 by reacting together a compound containing a metal element M such as Al 2 O 3 . However, when the required amount of the metal element M is already contained in the hydroxide raw material powder, it is not necessary to use a compound containing the metal element M in the lithium introduction step.
上記のようにして得られる正極活物質は、一次粒子が多数凝集した空隙率5〜25体積%、好ましくは10〜25体積%で略球状の二次粒子からなり、一次粒子及び空隙の少なくとも一部が二次粒子の中心から外方に向かって放射状に並んでなるのが好ましい。また、正極活物質は80%以上、好ましくは90%以上、より好ましくは95%以上の開気孔比率を有するのが好ましい。開気孔率は高ければ高い方が良く、理想的には100%である。 The positive electrode active material obtained as described above comprises substantially spherical secondary particles having a porosity of 5 to 25% by volume, preferably 10 to 25% by volume, in which a large number of primary particles are aggregated, and at least one of primary particles and voids. It is preferable that the portions are arranged radially from the center of the secondary particle toward the outside. The positive electrode active material preferably has an open pore ratio of 80% or more, preferably 90% or more, more preferably 95% or more. The higher the open porosity, the better, and ideally 100%.
リチウム化合物との反応によるリチウム導入は、酸化物粉末、リチウム化合物、及び所望により金属元素Mを含む化合物の混合物を適宜焼成することにより好ましく行うことができる。例えば、上述の焼成前混合物を収容した鞘を炉中に投入することで焼成を好ましく行うことができる。この焼成により、正極活物質の合成、さらには粒子の焼結及び粒成長が行われる。このとき、一次粒子及び空隙(開気孔)の少なくとも一部が二次粒子の中心から外方に向かって放射状に並んでなる酸化物粉末の配向性がそのままリチウム導入後の焼成粉末にも継承され、その結果、一次粒子が多数凝集した二次粒子からなり、一次粒子及び空隙(開気孔)の少なくとも一部が二次粒子の中心から外方に向かって放射状に並んでなる、正極活物質の粉末を得ることができる。 The introduction of lithium by reaction with the lithium compound can be preferably carried out by appropriately firing a mixture of oxide powder, lithium compound, and optionally a compound containing the metal element M. For example, firing can be preferably performed by putting a sheath containing the mixture before firing into a furnace. By this firing, synthesis of the positive electrode active material, and further, particle sintering and particle growth are performed. At this time, the orientation of the oxide powder in which at least a part of the primary particles and voids (open pores) are arranged radially outward from the center of the secondary particles is directly inherited by the calcined powder after lithium introduction. As a result, the positive electrode active material is composed of secondary particles in which a large number of primary particles are aggregated, and at least a part of the primary particles and voids (open pores) are arranged radially outward from the center of the secondary particles. A powder can be obtained.
リチウム導入時の焼成温度は、600℃〜1100℃が好ましく、この範囲内であると、粒成長が十分となり一次粒子が放射状に並びやすくなる(すなわち配向しやすくなる)とともに、正極活物質の分解やリチウムの揮発を抑制して所望の組成が実現しやすくなる。また、熱分解工程を経ていない水酸化物原料粉末であっても、焼成温度より低温(例えば400〜600℃)で1〜20時間の温度保持することで熱分解させた後、焼成温度でリチウム導入することで、熱分解とリチウム導入を効率良く行うことができる。焼成時間は1〜50時間とするのが好ましく、この範囲であると、配向率が高くなるとともに、焼成のために消費されるエネルギーの過度の増大を防止できる。 The firing temperature at the time of introducing lithium is preferably 600 ° C. to 1100 ° C. If the temperature is within this range, the grain growth is sufficient and the primary particles are easily arranged in a radial pattern (ie, easily oriented), and the positive electrode active material is decomposed. In addition, the volatilization of lithium and lithium can be suppressed and a desired composition can be easily realized. Moreover, even if it is the hydroxide raw material powder which did not pass through a pyrolysis process, after making it thermally decompose by hold | maintaining the temperature for 1 to 20 hours at low temperature (for example, 400-600 degreeC) from baking temperature, it is lithium at baking temperature. By introducing, thermal decomposition and lithium introduction can be performed efficiently. The firing time is preferably 1 to 50 hours. When the firing time is within this range, the orientation rate increases, and an excessive increase in energy consumed for firing can be prevented.
また、昇温過程において混合したリチウムと前駆体酸化物粉末との反応性を高める目的で、焼成温度より低温(例えば400〜600℃)で1〜20時間の温度保持が行われてもよい。かかる温度保持工程を経ることで、リチウムが溶融するため、反応性を高めることができる。なお、この焼成(リチウム導入)工程における、ある温度域(例えば400〜600℃)の昇温速度を調整することによっても、同様の効果が得られる。 In addition, for the purpose of increasing the reactivity between the lithium mixed with the precursor oxide powder in the temperature raising process, the temperature may be maintained at a temperature lower than the firing temperature (for example, 400 to 600 ° C.) for 1 to 20 hours. Since lithium is melted through the temperature holding step, the reactivity can be increased. In addition, the same effect is acquired also by adjusting the temperature increase rate of a certain temperature range (for example, 400-600 degreeC) in this baking (lithium introduction | transduction) process.
焼成雰囲気は、焼成中に分解が進んで一旦リチウム導入した(リチウムと反応させた)リチウム複合酸化物からリチウムが抜けてしまうことが無いように適宜設定されるのが望ましい。リチウムの揮発が進むような場合は、炭酸リチウム等を同じ鞘内に配置してリチウム雰囲気とすることが好ましい。焼成中に酸素の放出や、さらには還元が進むような場合、酸素分圧の高い雰囲気で焼成することが好ましい。なお、焼成後に、正極活物質粒子同士の癒着や凝集を解したり、正極活物質粒子の平均粒子径を調整したりする目的で、解砕や分級が適宜行われてもよい。 The firing atmosphere is preferably set as appropriate so that the lithium does not escape from the lithium composite oxide once decomposed during firing and introduced once (reacted with lithium). When the volatilization of lithium proceeds, it is preferable to arrange lithium carbonate or the like in the same sheath to create a lithium atmosphere. When oxygen release or further reduction proceeds during firing, firing is preferably performed in an atmosphere having a high oxygen partial pressure. In addition, after firing, crushing and classification may be appropriately performed for the purpose of releasing the adhesion and aggregation between the positive electrode active material particles or adjusting the average particle diameter of the positive electrode active material particles.
また、焼成後、所望により解砕や分級工程を経た正極材活物質に対して、100〜400℃で後熱処理を行ってもよい。かかる後熱処理工程を行うことで、一次粒子の表面層を改質することができ、それによりレート特性及び出力特性を更に改善することができる。 Moreover, you may heat-process at 100-400 degreeC with respect to the positive electrode material active material which passed the crushing and the classification process as needed after baking. By performing such a post-heat treatment step, the surface layer of the primary particles can be modified, thereby further improving rate characteristics and output characteristics.
以下、本発明を以下の例に基づいて具体的に説明するが、本発明はこれらの例に限定されるものではない。なお、例中の「部」及び「%」は特に断らない限り質量基準である。また、各種物性値の測定方法、及び諸特性の評価方法を以下に示す。 Hereinafter, the present invention will be specifically described based on the following examples, but the present invention is not limited to these examples. In the examples, “parts” and “%” are based on mass unless otherwise specified. Moreover, the measuring method of various physical-property values and the evaluation method of various characteristics are shown below.
<二次粒子径(μm)>
粒度分布測定装置(「マイクロトラックMT3300」、日機装社製)を用いて、水を分散媒として、正極活物質の体積基準としたメディアン径(D50)を測定し、この値を正極活物質の二次粒子径とした。
<Secondary particle size (μm)>
Using a particle size distribution measuring device ("Microtrack MT3300", manufactured by Nikkiso Co., Ltd.), the median diameter (D50) based on the volume of the positive electrode active material was measured using water as a dispersion medium, and this value was measured as the value of the positive electrode active material. The secondary particle size was taken.
<一次粒子の配列状態>
正極活物質粉末を樹脂埋めし、クロスセクションポリッシャ(CP)により正極活物質の断面研磨面が観察できるように研磨した。このようにして作製したサンプルに対し、SEM(走査型子顕微鏡「JSM−6390LA」、日本電子社製)を用いて、一個の二次粒子全体が見られる視野において、一次粒子の配列状態を確認した。なお、一次粒子の粒界がより明瞭になるように、結晶方位によるコントラスト(チャネリングコントラスト)が高くなるような条件(WD:6〜8mm)で観察を行った。
<Alignment state of primary particles>
The positive electrode active material powder was filled with a resin and polished with a cross section polisher (CP) so that the cross-section polished surface of the positive electrode active material could be observed. Using the SEM (Scanning Microscope “JSM-6390LA”, manufactured by JEOL Ltd.), the array of primary particles is confirmed in the field where one secondary particle can be seen. did. The observation was performed under the condition (WD: 6 to 8 mm) in which the contrast (channeling contrast) due to the crystal orientation was high so that the grain boundaries of the primary particles became clearer.
<タップ密度>
粉末5g以上を100℃で3時間以上乾燥し、100ccのメスシリンダーへ充填後、600回タッピングした後の体積を求めた。乾燥後の粉末重量を体積で除した値をタップ密度とした。
<Tap density>
5 g or more of the powder was dried at 100 ° C. for 3 hours or more, filled into a 100 cc graduated cylinder, and then the volume after tapping 600 times was determined. The value obtained by dividing the weight of the powder after drying by the volume was taken as the tap density.
<空隙率(%)>
正極材料活物質を樹脂埋めし、クロスセクションポリッシャ(CP)により正極活物質の断面研磨面が観察できるように研磨し、SEM(走査型子顕微鏡、「JSM−6390LA」、日本電子社製)により、断面イメージを取得した。このイメージを画像処理により、断面中の空隙部分と正極材料部分を分け、(空隙部分の面積)/(空隙部分の面積+正極材料の面積)を求めた。これを、10個の2次粒子に対して行い、その平均値を求め、空隙率とした。
<Porosity (%)>
The positive electrode material active material is filled with resin and polished so that the cross-section polished surface of the positive electrode active material can be observed with a cross section polisher (CP), and then SEM (scanning microscope, “JSM-6390LA”, manufactured by JEOL Ltd.) A cross-sectional image was acquired. This image was subjected to image processing to separate the void portion and the positive electrode material portion in the cross section, and (area of void portion) / (area of void portion + area of positive electrode material) was obtained. This was performed on 10 secondary particles, and the average value thereof was determined as the porosity.
<開気孔比率>
上述の空隙率の評価法において、空隙部分のうち樹脂が含浸されている部分を開気孔、空隙部分のうち樹脂が含浸されていない部分を閉気孔とし(開気孔部分の面積)/(開気孔部分の面積+閉機構部分の面積)によって求めた。これを、10個の2次粒子に対して行い、その平均値を求め、開気孔比率とした。なお、樹脂埋めの際には、開気孔中に十分に樹脂が含浸されるよう、真空含浸装置(ストルアス社製、装置名「シトバック」)を用いて気孔中に存在する空気を十分に追い出しながら樹脂埋めを行った。
<Open pore ratio>
In the porosity evaluation method described above, the portion of the void portion that is impregnated with the resin is the open pore, and the portion of the void portion that is not impregnated with the resin is the closed pore (area of the open pore portion) / (open pore) (Area of the part + area of the closing mechanism part). This was performed on 10 secondary particles, and the average value thereof was obtained as the open pore ratio. When filling the resin, use a vacuum impregnation device (manufactured by Struers, device name “Citback”) to expel the air present in the pores sufficiently so that the open pores are sufficiently impregnated with the resin. Resin filling was performed.
<レート容量維持率(%)>
作製した電池について、0.1Cレートの電流値で電池電圧が4.3Vとなるまで定電流充電した。その後、電池電圧を4.3Vに維持する電流条件で、その電流値が1/20に低下するまで定電圧充電した。10分間休止した後、0.2Cレートの電流値で電池電圧が3.0Vになるまで定電流放電した。その後10分間休止した。これらの充放電操作を1サイクルとし、25℃の条件下で合計2サイクル繰り返し、2サイクル目の放電容量の測定値を「0.2Cレートにおける放電容量」とした。引き続き、充電時の電流値を0.1Cレートに固定し、放電時の電流値を2Cレートにして前記と同様に2サイクル充放電を繰り返した。2サイクル目の放電容量の測定値を「2Cレートにおける放電容量」とした。「2Cレートにおける放電容量」を「0.2Cレートの放電容量」で除した値(実際には、これを百分率で表した値)を、「レート容量維持率」とした。
<Rate capacity maintenance rate (%)>
The manufactured battery was charged with a constant current at a current value of 0.1 C rate until the battery voltage became 4.3V. Thereafter, constant voltage charging was performed until the current value decreased to 1/20 under the current condition of maintaining the battery voltage at 4.3V. After resting for 10 minutes, constant current discharge was performed until the battery voltage reached 3.0 V at a current value of 0.2 C rate. Then, it rested for 10 minutes. These charging / discharging operations were defined as one cycle, and repeated for a total of two cycles under the condition of 25 ° C., and the measured value of the discharge capacity at the second cycle was defined as “discharge capacity at 0.2 C rate”. Subsequently, the current value at the time of charging was fixed at the 0.1 C rate, the current value at the time of discharging was set to the 2 C rate, and two-cycle charge / discharge was repeated in the same manner as described above. The measured value of the discharge capacity at the second cycle was defined as “discharge capacity at 2C rate”. The value obtained by dividing the “discharge capacity at the 2C rate” by the “discharge capacity at the 0.2C rate” (actually, the value expressed as a percentage) was defined as the “rate capacity maintenance rate”.
例A1〜A3
Li1.02(Ni0.81Co0.15Al0.04)O2からなり、種々の空隙率及び開気孔非理を有する正極活物質の作製及び評価を以下のようにして行った。
Examples A1 to A3
Production and evaluation of a positive electrode active material composed of Li 1.02 (Ni 0.81 Co 0.15 Al 0.04 ) O 2 and having various void ratios and open pores were performed as follows.
例A1
組成が(Ni0.844Co0.156)(OH)2であり、二次粒子がほぼ球状且つ一次粒子の一部が二次粒子の中心から外方向へ放射状に並んだ、二次粒子径(d50)が12μm、タップ密度が1.9g/ccであるニッケル・コバルト複合水酸化物粉末を用意した。このニッケル・コバルト複合水酸化物粉末は公知の技術に従って作製可能なものであり、例えば例1においては以下のようにして作製した。すなわち、純水20Lを入れた反応槽へ、モル比でNi:Co=84.4:15.6である濃度1mol/Lの硫酸ニッケルと硫酸コバルトの混合水溶液を投入速度50ml/minで、また濃度5mol/Lの硫酸アンモニウムを投入速度5ml/minで同時に連続投入した。一方、濃度10mol/Lの水酸化ナトリウム水溶液を、反応槽内のpHが自動的に11.6に維持されるように投入した。反応槽内の温度は50℃に維持し、攪拌機により常に攪拌した。生成したニッケル・コバルト複合水酸化物は、オーバーフロー管からオーバーフローさせて取り出し、水洗、脱水、乾燥処理した。
Example A1
Secondary particle diameter in which the composition is (Ni 0.844 Co 0.156 ) (OH) 2 , the secondary particles are almost spherical, and a part of the primary particles are arranged radially outward from the center of the secondary particles A nickel-cobalt composite hydroxide powder having (d50) of 12 μm and a tap density of 1.9 g / cc was prepared. This nickel-cobalt composite hydroxide powder can be produced according to a known technique. For example, in Example 1, it was produced as follows. That is, a mixed aqueous solution of nickel sulfate and cobalt sulfate having a molar ratio of Ni: Co = 84.4: 15.6 in a molar ratio of 1 mol / L to a reaction vessel containing 20 L of pure water at a charging rate of 50 ml / min. Ammonium sulfate having a concentration of 5 mol / L was continuously continuously fed at a feeding rate of 5 ml / min. On the other hand, an aqueous sodium hydroxide solution having a concentration of 10 mol / L was added so that the pH in the reaction vessel was automatically maintained at 11.6. The temperature in the reaction vessel was maintained at 50 ° C. and constantly stirred with a stirrer. The produced nickel / cobalt composite hydroxide was taken out by overflowing from the overflow tube, washed with water, dehydrated, and dried.
<熱分解工程>
ニッケル・コバルト複合水酸化物粉末Ni0.844Co0.156)(OH)2を、赤外線ランプ加熱炉(アルバック理工製、MILA3000)により、室温から750℃まで昇温速度50℃/minで昇温し、750℃で1分間熱分解処理を行い、ニッケル・コバルト複合酸化物粉末(Ni0.844Co0.156)Oを得た。
<Thermal decomposition process>
Nickel-cobalt composite hydroxide powder Ni 0.844 Co 0.156 ) (OH) 2 was heated from room temperature to 750 ° C. at a rate of temperature increase of 50 ° C./min by an infrared lamp heating furnace (MILA3000 manufactured by ULVAC-RIKO). The mixture was heated and thermally decomposed at 750 ° C. for 1 minute to obtain nickel / cobalt composite oxide powder (Ni 0.844 Co 0.156 ) O.
<超音波照射工程>
上記ニッケル・コバルト複合酸化物粉末10gを純水20g中に分散させたスラリーに対し、超音波ホモジナイザー(日本精機製作所製、US−600AT)を用いて、周波数20kHz、振幅40μmの超音波を5分間照射した。このスラリーを500℃で12時間乾燥させ得られた粉末から、気流分級機(日清エンジニアリング株式会社製、製品型式TC−15)を用いて、超音波照射によって発生した5μm以下の微粉を除去した。また、超音波照射後の複合酸化物粒子をSEMで観察したところ、図2に示される画像が得られた。
<Ultrasonic irradiation process>
Using an ultrasonic homogenizer (US-600AT, manufactured by Nippon Seiki Seisakusho Co., Ltd.), an ultrasonic wave having a frequency of 20 kHz and an amplitude of 40 μm is applied to the slurry in which 10 g of the nickel-cobalt composite oxide powder is dispersed in 20 g of pure water for 5 minutes. Irradiated. From the powder obtained by drying this slurry at 500 ° C. for 12 hours, fine powder of 5 μm or less generated by ultrasonic irradiation was removed using an airflow classifier (manufactured by Nissin Engineering Co., Ltd., product type TC-15). . Moreover, when the composite oxide particle after ultrasonic irradiation was observed with SEM, the image shown in FIG. 2 was obtained.
<粉末混合工程>
熱処理したニッケル・コバルト複合酸化物粉末(Ni0.844Co0.156)Oと、LiOH・H2O粉末(和光純薬工業社製)及びAl2O3・H2O(SASOL社製)とを、mol比率でLi1.02(Ni0.81Co0.15Al0.04)O2となるように混合した。
<Powder mixing process>
Heat-treated nickel / cobalt composite oxide powder (Ni 0.844 Co 0.156 ) O, LiOH.H 2 O powder (manufactured by Wako Pure Chemical Industries, Ltd.) and Al 2 O 3 .H 2 O (manufactured by SASOL) Were mixed so that the molar ratio was Li 1.02 (Ni 0.81 Co 0.15 Al 0.04 ) O 2 .
<焼成工程>
上記混合粉末を、高純度アルミナ製のるつぼに入れ、雰囲気電気炉(フルテック製FT−201P)により、酸素雰囲気中(0.1MPa)にて750℃、24時間加熱処理することで、Li1.02(Ni0.81Co0.15Al0.04)O2粉末を得た。こうしてリチウムが導入された後の複合酸化物粒子をSEMで観察したところ、図3に示される画像が得られた。
<Baking process>
The mixed powder is placed in a crucible made of high-purity alumina and subjected to heat treatment at 750 ° C. for 24 hours in an oxygen atmosphere (0.1 MPa) using an atmospheric electric furnace (FT-201P manufactured by Fulltech) . 02 (Ni 0.81 Co 0.15 Al 0.04 ) O 2 powder was obtained. Thus, when the complex oxide particle after lithium was introduce | transduced was observed by SEM, the image shown by FIG. 3 was obtained.
<電池特性評価>
電池特性の評価のために、次のようにして図1に示されるコイン型のリチウム二次電池(コインセル)を作成した。このコインセル1は、正極板2、負極板3、セパレータ4、電解液5及び電池ケース6を備え、正極板2は正極集電体21及び正極活物質層22からなり、負極板3は負極集電体31及び負極活物質層32からなる。上記で得られたLi1.02(Ni0.81Co0.15Al0.04)O2粉末、アセチレンブラック、及びポリフッ化ビニリデン(PVDF)を、質量比で75:20:5となるように混合して、正極材料を調製した。調製した正極材料0.02gを、300kg/cm2の圧力で直径20mmの円板状にプレス成形することで、正極活物質層を作製した。作製した正極活物質層、リチウム金属板からなる負極活物質層、ステンレス集電板、及びセパレータを、正極集電板21−正極活物質層22−セパレータ4−負極活物質層31−負極集電板32の順に配置し、この集積体及び電解液5を、電池ケース6(正極側容器61、負極側容器62及び絶縁ガスケット63を含む)内に液密的に封入することによってコインセル1を得た。電解液5は、エチレンカーボネート(EC)及びジエチルカーボネート(DEC)を等体積比で混合した有機溶媒に、LiPF6を1mol/Lの濃度となるように溶解することで調製した。上述のようにして作製した電池(コインセル)を用いて、レート容量維持率の評価を行った。評価結果は表1に示されるとおりであった。
<Battery characteristics evaluation>
In order to evaluate the battery characteristics, a coin-type lithium secondary battery (coin cell) shown in FIG. 1 was prepared as follows. The coin cell 1 includes a positive electrode plate 2, a negative electrode plate 3, a separator 4, an electrolytic solution 5, and a battery case 6. The positive electrode plate 2 includes a positive electrode current collector 21 and a positive electrode active material layer 22. It consists of an electric conductor 31 and a negative electrode active material layer 32. The Li 1.02 (Ni 0.81 Co 0.15 Al 0.04 ) O 2 powder obtained above, acetylene black, and polyvinylidene fluoride (PVDF) are in a mass ratio of 75: 20: 5. To prepare a positive electrode material. A positive electrode active material layer was produced by press-forming 0.02 g of the prepared positive electrode material into a disk shape having a diameter of 20 mm at a pressure of 300 kg / cm 2 . The produced positive electrode active material layer, negative electrode active material layer made of a lithium metal plate, stainless steel current collector plate, and separator were combined into a positive electrode current collector plate 21-a positive electrode active material layer 22-a separator 4-a negative electrode active material layer 31-a negative electrode current collector. The coin cell 1 is obtained by arranging the integrated body and the electrolyte 5 in a battery case 6 (including the positive electrode side container 61, the negative electrode side container 62, and the insulating gasket 63) in a liquid-tight manner. It was. The electrolytic solution 5 was prepared by dissolving LiPF 6 in an organic solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at an equal volume ratio so as to have a concentration of 1 mol / L. Using the battery (coin cell) produced as described above, the rate capacity retention rate was evaluated. The evaluation results are as shown in Table 1.
例A2
超音波照射を行わなかったこと以外は、例A1と同様にして正極活物質の作製及び評価を行った。評価結果は表1に示されるとおりであった。また、リチウム導入前に撮影された複合酸化物粒子のSEM画像を図4に、リチウム導入後に撮影された複合酸化物粒子のSEM画像を図5にそれぞれ示す。
Example A2
A positive electrode active material was prepared and evaluated in the same manner as in Example A1, except that ultrasonic irradiation was not performed. The evaluation results are as shown in Table 1. Further, FIG. 4 shows an SEM image of the composite oxide particles taken before introducing lithium, and FIG. 5 shows an SEM image of the composite oxide particles taken after introducing lithium.
例A3
熱分解工程を、噴霧熱分解装置(大川原化工機製、RH−2)により、電気ヒーター温度950℃、炉内温度を750℃、粉体キャリアガス流量40L/min、炉内キャリアガス流量10L/min、粉末投入量10g/minとして行ったこと以外は、例A1と同様にして正極活物質の作製及び評価を行った。評価結果は表1に示されるとおりであった。
Example A3
The thermal decomposition process was carried out using a spray pyrolysis apparatus (manufactured by Okawara Chemical Industries, RH-2), with an electric heater temperature of 950 ° C., an in-furnace temperature of 750 ° C., a powder carrier gas flow rate of 40 L / min, and an in-furnace carrier gas flow rate of 10 L / min. The positive electrode active material was prepared and evaluated in the same manner as in Example A1, except that the powder input was 10 g / min. The evaluation results are as shown in Table 1.
例B1〜B3
Li1.02(Ni0.60Co0.20Mn0.20)O2からなり、種々の空隙率及び開気孔非理を有する正極活物質の作製及び評価を以下のようにして行った。
Examples B1-B3
Production and evaluation of a positive electrode active material composed of Li 1.02 (Ni 0.60 Co 0.20 Mn 0.20 ) O 2 and having various void ratios and open pores were performed as follows.
例B1
組成が(Ni0.6Co0.2Mn0.2)(OH)2であり、二次粒子がほぼ球状且つ一次粒子の一部が二次粒子の中心から外方向へ放射状に並んだ、二次粒子径(d50)が13μm、タップ密度が1.9g/ccであるニッケル・コバルト・マンガン複合水酸化物粉末を用意した。このニッケル・コバルト・マンガン複合水酸化物粉末は公知の技術に従って作製可能なものであり、前述した例A1の諸条件を適宜変えることにより各種ニッケル・コバルト・マンガン複合水酸化物粉末を作製した。
Example B1
The composition is (Ni 0.6 Co 0.2 Mn 0.2 ) (OH) 2 , the secondary particles are almost spherical, and some of the primary particles are arranged radially outward from the center of the secondary particles, A nickel / cobalt / manganese composite hydroxide powder having a secondary particle diameter (d50) of 13 μm and a tap density of 1.9 g / cc was prepared. This nickel / cobalt / manganese composite hydroxide powder can be produced according to a known technique, and various nickel / cobalt / manganese composite hydroxide powders were produced by appropriately changing the conditions of Example A1 described above.
<熱分解工程>
ニッケル・コバルト・マンガン複合水酸化物粉末(Ni0.6Co0.2Mn0.2)(OH)2を、赤外線ランプ加熱炉(アルバック理工製、MILA3000)により、室温から750℃まで昇温速度50℃/minで昇温し、750℃で1分間熱分解処理を行い、ニッケル・コバルト・マンガン複合酸化物粉末(Ni0.6Co0.2Mn0.2)Oを得た。
<Thermal decomposition process>
Nickel / cobalt / manganese composite hydroxide powder (Ni 0.6 Co 0.2 Mn 0.2 ) (OH) 2 is heated from room temperature to 750 ° C. with an infrared lamp heating furnace (MILA3000, ULVAC-RIKO) The temperature was raised at a rate of 50 ° C./min, and a thermal decomposition treatment was performed at 750 ° C. for 1 minute to obtain nickel / cobalt / manganese composite oxide powder (Ni 0.6 Co 0.2 Mn 0.2 ) O.
<超音波照射工程>
上記ニッケル・コバルト・マンガン複合酸化物粉末10gを純水20g中に分散させたスラリーに対し、超音波ホモジナイザー(日本精機製作所製、US−600AT)を用いて、周波数20kHz、振幅40μmの超音波を5分間照射した。このスラリーを500℃で12時間乾燥させ得られた粉末から、気流分級機(日清エンジニアリング株式会社製 製品型式TC−15)を用いて、超音波照射によって発生した5μm以下の微粉を除去した。
<Ultrasonic irradiation process>
Using an ultrasonic homogenizer (US-600AT, manufactured by Nippon Seiki Seisakusho Co., Ltd.), an ultrasonic wave having a frequency of 20 kHz and an amplitude of 40 μm is applied to a slurry in which 10 g of the nickel-cobalt-manganese composite oxide powder is dispersed in 20 g of pure water. Irradiated for 5 minutes. From the powder obtained by drying this slurry at 500 ° C. for 12 hours, fine powder of 5 μm or less generated by ultrasonic irradiation was removed using an airflow classifier (product model TC-15 manufactured by Nisshin Engineering Co., Ltd.).
<粉末混合工程>
得られたニッケル・コバルト・マンガン複合水酸化物粉末(Ni0.6Co0.2Mn0.2)(OH)2と、LiOH・H2O粉末(和光純薬工業社製)とを、mol比率でLi1.02(Ni0.6Co0.2Mn0.2)O2となるように混合した。
<Powder mixing process>
The obtained nickel-cobalt-manganese composite hydroxide powder (Ni 0.6 Co 0.2 Mn 0.2 ) (OH) 2 and LiOH · H 2 O powder (manufactured by Wako Pure Chemical Industries, Ltd.) were mixed such that Li 1.02 (Ni 0.6 Co 0.2 Mn 0.2) O 2 in mol ratio.
<焼成工程>
上記混合粉末を、高純度アルミナ製のるつぼに入れ、雰囲気電気炉(フルテック製、FT−201P)により、大気雰囲気中にて825℃、24時間加熱処理することで、Li1.02(Ni0.6Co0.2Mn0.2)O2粉末を得た。
<Baking process>
The mixed powder is put into a high-purity alumina crucible and subjected to heat treatment in an atmospheric atmosphere at 825 ° C. for 24 hours in an atmospheric electric furnace (manufactured by Fulltech, FT-201P), whereby Li 1.02 (Ni 0 .6 Co 0.2 Mn 0.2 ) O 2 powder was obtained.
<電池特性評価>
電池特性の評価のために、次のようにして図1に示されるコイン型のリチウム二次電池(コインセル)を作成した。このコインセル1は、正極板2、負極板3、セパレータ4、電解液5及び電池ケース6を備え、正極板2は正極集電体21及び正極活物質層22からなり、負極板3は負極集電体31及び負極活物質層32からなる。上記で得られたLi1.03(Ni0.6Co0.2Mn0.2)O2粉末、アセチレンブラック、及びポリフッ化ビニリデン(PVDF)を、質量比で75:20:5となるように混合して、正極材料を調製した。調製した正極材料0.02gを、300kg/cm2の圧力で直径20mmの円板状にプレス成形することで、正極活物質層を作製した。作製した正極活物質層、リチウム金属板からなる負極活物質層、ステンレス集電板、及びセパレータを、正極集電板21−正極活物質層22−セパレータ4−負極活物質層31−負極集電板32の順に配置し、この集積体及び電解液5を、電池ケース6(正極側容器61、負極側容器62及び絶縁ガスケット63を含む)内に液密的に封入することによってコインセル1を得た。電解液5は、エチレンカーボネート(EC)及びジエチルカーボネート(DEC)を等体積比で混合した有機溶媒に、LiPF6を1mol/Lの濃度となるように溶解することで調製した。上述のようにして作製した電池(コインセル)を用いて、レート容量維持率の評価を行った。評価結果は表2に示されるとおりであった。
<Battery characteristics evaluation>
In order to evaluate the battery characteristics, a coin-type lithium secondary battery (coin cell) shown in FIG. 1 was prepared as follows. The coin cell 1 includes a positive electrode plate 2, a negative electrode plate 3, a separator 4, an electrolytic solution 5, and a battery case 6. The positive electrode plate 2 includes a positive electrode current collector 21 and a positive electrode active material layer 22. It consists of an electric conductor 31 and a negative electrode active material layer 32. Li 1.03 (Ni 0.6 Co 0.2 Mn 0.2 ) O 2 powder obtained above, acetylene black, and polyvinylidene fluoride (PVDF) are in a mass ratio of 75: 20: 5. To prepare a positive electrode material. A positive electrode active material layer was produced by press-forming 0.02 g of the prepared positive electrode material into a disk shape having a diameter of 20 mm at a pressure of 300 kg / cm 2 . The produced positive electrode active material layer, negative electrode active material layer made of a lithium metal plate, stainless steel current collector plate, and separator were combined into a positive electrode current collector plate 21-a positive electrode active material layer 22-a separator 4-a negative electrode active material layer 31-a negative electrode current collector. The coin cell 1 is obtained by arranging the integrated body and the electrolyte 5 in a battery case 6 (including the positive electrode side container 61, the negative electrode side container 62, and the insulating gasket 63) in a liquid-tight manner. It was. The electrolytic solution 5 was prepared by dissolving LiPF 6 in an organic solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at an equal volume ratio so as to have a concentration of 1 mol / L. Using the battery (coin cell) produced as described above, the rate capacity retention rate was evaluated. The evaluation results were as shown in Table 2.
例B2
超音波照射を行わなかったこと以外は、例B1と同様にして正極活物質の作製及び評価を行った。評価結果は表2に示されるとおりであった。
Example B2
A positive electrode active material was prepared and evaluated in the same manner as in Example B1, except that ultrasonic irradiation was not performed. The evaluation results were as shown in Table 2.
例B3
熱分解工程を、噴霧熱分解装置(大川原化工機製、RH−2)により、電気ヒーター温度950℃、炉内温度を750℃、粉体キャリアガス流量40L/min、炉内キャリアガス流量10L/min、粉末投入量10g/minとして行ったこと以外は、例B1と同様にして正極活物質の作製及び評価を行った。評価結果は表2に示されるとおりであった。
Example B3
The thermal decomposition process was carried out using a spray pyrolysis apparatus (manufactured by Okawara Chemical Industries, RH-2), with an electric heater temperature of 950 ° C., an in-furnace temperature of 750 ° C., a powder carrier gas flow rate of 40 L / min, and an in-furnace carrier gas flow rate of 10 L / min. The positive electrode active material was prepared and evaluated in the same manner as in Example B1 except that the powder input was 10 g / min. The evaluation results were as shown in Table 2.
Claims (13)
Ni1−yMy(OH)2(式中、0<y≦0.5、MはCo、Al、Mg、Mn、Ti、Fe、Cr、Zn及びGaからなる群から選択される少なくとも1種以上の金属元素)で表される組成の一次粒子が多数凝集した二次粒子からなり、前記一次粒子の少なくとも一部が前記二次粒子の中心から外方に向かって放射状に並んでなる、水酸化物原料粉末を用意する工程と、
前記水酸化物原料粉末及び/又はその熱分解酸化物粉末に超音波を照射する工程と、
前記超音波が照射された前記水酸化物原料粉末及び/又はその熱分解酸化物粉末を、リチウム化合物単独、又は金属元素Mを含む化合物及びリチウム化合物の組合せと、LixNi1−zMzO2(式中、0.96≦x≦1.09、0<z≦0.5)で表される組成を与えるように反応させ、それにより開気孔を備えたリチウムイオン電池用正極活物質を得る工程と、
を含んでなる、方法。 A method for producing a positive electrode active material for a lithium ion battery,
Ni 1-y M y (OH) 2 (where 0 <y ≦ 0.5, M is at least one selected from the group consisting of Co, Al, Mg, Mn, Ti, Fe, Cr, Zn, and Ga) Consisting of secondary particles in which a large number of primary particles having a composition represented by a metal element of a species or more are aggregated, and at least a part of the primary particles are arranged radially outward from the center of the secondary particles. Preparing a hydroxide raw material powder;
Irradiating the hydroxide raw material powder and / or the pyrolyzed oxide powder with ultrasonic waves;
The hydroxide raw material powder and / or its thermally decomposed oxide powder irradiated with the ultrasonic waves are combined with a lithium compound alone or a combination of a compound containing a metal element M and a lithium compound, and Li x Ni 1-z M z. A positive electrode active material for a lithium ion battery that is reacted so as to give a composition represented by O 2 (wherein 0.96 ≦ x ≦ 1.09, 0 <z ≦ 0.5), thereby providing open pores And obtaining
Comprising a method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012213179A JP2014067645A (en) | 2012-09-26 | 2012-09-26 | Method of manufacturing positive electrode active material for lithium ion battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012213179A JP2014067645A (en) | 2012-09-26 | 2012-09-26 | Method of manufacturing positive electrode active material for lithium ion battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014067645A true JP2014067645A (en) | 2014-04-17 |
Family
ID=50743832
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012213179A Pending JP2014067645A (en) | 2012-09-26 | 2012-09-26 | Method of manufacturing positive electrode active material for lithium ion battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2014067645A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015146598A1 (en) * | 2014-03-28 | 2015-10-01 | 住友金属鉱山株式会社 | Precursor of positive electrode active material for nonaqueous electrolyte secondary cell, method of producing said precursor, positive electrode active material for nonaqueous electrolyte secondary cell, and method for manufacturing said material |
WO2016039511A1 (en) * | 2014-09-11 | 2016-03-17 | 주식회사 에코프로 | Positive electrode active material for lithium secondary battery, and lithium secondary battery comprising same |
JP2018515884A (en) * | 2015-04-30 | 2018-06-14 | エルジー・ケム・リミテッド | Positive electrode active material for secondary battery, method for producing the same, and secondary battery including the same |
CN108183233A (en) * | 2016-12-08 | 2018-06-19 | 三星Sdi株式会社 | For the active material based on nickel, preparation method and the lithium secondary battery for including the anode containing it of lithium secondary battery |
US11302919B2 (en) | 2016-07-20 | 2022-04-12 | Samsung Sdi Co., Ltd. | Nickel-based active material for lithium secondary battery, method of preparing the same, and lithium secondary battery including positive electrode including the nickel-based active material |
US11456458B2 (en) | 2016-12-08 | 2022-09-27 | Samsung Sdi Co., Ltd. | Nickel-based active material precursor for lithium secondary battery, preparing method thereof, nickel-based active material for lithium secondary battery formed thereof, and lithium secondary battery comprising positive electrode including the nickel-based active material |
US11569503B2 (en) | 2016-07-20 | 2023-01-31 | Samsung Sdi Co., Ltd. | Nickel-based active material for lithium secondary battery, method of preparing the same, and lithium secondary battery including positive electrode including the nickel-based active material |
-
2012
- 2012-09-26 JP JP2012213179A patent/JP2014067645A/en active Pending
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10601036B2 (en) | 2014-03-28 | 2020-03-24 | Sumitomo Metal Mining Co., Ltd. | Precursor of positive electrode active material for nonaqueous electrolyte secondary batteries and production method thereof and positive electrode active material for nonaqueous electrolyte secondary batteries and production method thereof |
JP2015191844A (en) * | 2014-03-28 | 2015-11-02 | 住友金属鉱山株式会社 | Precursor of positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same, and positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same |
US12087943B2 (en) | 2014-03-28 | 2024-09-10 | Sumitomo Metal Mining Co., Ltd. | Precursor of positive electrode active material for nonaqueous electrolyte secondary batteries and production method thereof and positive electrode active material for nonaqueous electrolyte secondary batteries and production method thereof |
US11742479B2 (en) | 2014-03-28 | 2023-08-29 | Sumitomo Metal Mining Co., Ltd. | Precursor of positive electrode active material for nonaqueous electrolyte secondary batteries and production method thereof and positive electrode active material for nonaqueous electrolyte secondary batteries and production method thereof |
WO2015146598A1 (en) * | 2014-03-28 | 2015-10-01 | 住友金属鉱山株式会社 | Precursor of positive electrode active material for nonaqueous electrolyte secondary cell, method of producing said precursor, positive electrode active material for nonaqueous electrolyte secondary cell, and method for manufacturing said material |
JP7321225B2 (en) | 2014-09-11 | 2023-08-04 | エコプロ ビーエム カンパニー リミテッド | Positive electrode active material for lithium secondary batteries |
JP2017536685A (en) * | 2014-09-11 | 2017-12-07 | エコプロ ビーエム コーポレイテッドEcopro Bm Co., Ltd. | Positive electrode active material for lithium secondary battery and lithium secondary battery including the same |
JP7648688B2 (en) | 2014-09-11 | 2025-03-18 | エコプロ ビーエム カンパニー リミテッド | Positive electrode active material for lithium secondary batteries |
WO2016039511A1 (en) * | 2014-09-11 | 2016-03-17 | 주식회사 에코프로 | Positive electrode active material for lithium secondary battery, and lithium secondary battery comprising same |
CN105814719A (en) * | 2014-09-11 | 2016-07-27 | 艾可普罗有限公司 | Positive electrode active material for lithium secondary battery and lithium secondary battery containing same |
JP2022003647A (en) * | 2014-09-11 | 2022-01-11 | エコプロ ビーエム カンパニー リミテッドEcopro Bm Co., Ltd. | Cathode active material for lithium secondary battery |
JP2018515884A (en) * | 2015-04-30 | 2018-06-14 | エルジー・ケム・リミテッド | Positive electrode active material for secondary battery, method for producing the same, and secondary battery including the same |
US10581110B2 (en) | 2015-04-30 | 2020-03-03 | Lg Chem, Ltd. | Positive electrode active material for secondary battery, method of preparing the same, and secondary battery including the positive electrode active material |
US11569503B2 (en) | 2016-07-20 | 2023-01-31 | Samsung Sdi Co., Ltd. | Nickel-based active material for lithium secondary battery, method of preparing the same, and lithium secondary battery including positive electrode including the nickel-based active material |
US11302919B2 (en) | 2016-07-20 | 2022-04-12 | Samsung Sdi Co., Ltd. | Nickel-based active material for lithium secondary battery, method of preparing the same, and lithium secondary battery including positive electrode including the nickel-based active material |
US11742482B2 (en) | 2016-07-20 | 2023-08-29 | Samsung Sdi Co., Ltd. | Nickel-based active material for lithium secondary battery, method of preparing the same, and lithium secondary battery including positive electrode including the nickel-based active material |
US11309542B2 (en) | 2016-12-08 | 2022-04-19 | Samsung Sdi Co., Ltd. | Nickel-based active material for lithium secondary battery, preparing method thereof, and lithium secondary battery including positive electrode including the same |
US11456458B2 (en) | 2016-12-08 | 2022-09-27 | Samsung Sdi Co., Ltd. | Nickel-based active material precursor for lithium secondary battery, preparing method thereof, nickel-based active material for lithium secondary battery formed thereof, and lithium secondary battery comprising positive electrode including the nickel-based active material |
CN108183233A (en) * | 2016-12-08 | 2018-06-19 | 三星Sdi株式会社 | For the active material based on nickel, preparation method and the lithium secondary battery for including the anode containing it of lithium secondary battery |
JP2018098205A (en) * | 2016-12-08 | 2018-06-21 | 三星エスディアイ株式会社Samsung SDI Co., Ltd. | Nickel-based active material for lithium secondary battery, production method of the same, and lithium secondary battery including the positive electrode containing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6230540B2 (en) | Positive electrode active material for lithium secondary battery and positive electrode using the same | |
JP2014049410A (en) | Manufacturing method of cathode active material for lithium-ion battery | |
JP6196175B2 (en) | Method for producing positive electrode active material for lithium secondary battery and active material precursor powder used therefor | |
JP7348329B2 (en) | Electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery equipped with the same | |
JP5830178B2 (en) | Method for producing positive electrode active material for lithium secondary battery and active material precursor powder used therefor | |
JP4915488B1 (en) | Nickel-manganese composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery | |
JP6094591B2 (en) | Nickel-cobalt composite hydroxide and its production method and production apparatus, positive electrode active material for non-aqueous electrolyte secondary battery, its production method, and non-aqueous electrolyte secondary battery | |
JP5266861B2 (en) | Method for producing positive electrode active material for lithium secondary battery | |
JP2014067645A (en) | Method of manufacturing positive electrode active material for lithium ion battery | |
JP5263807B2 (en) | Method for producing lithium iron phosphate powder for electrode | |
WO2009119104A1 (en) | Oxycobalt hydroxide particulate powder and manufacturing method therefor, as well as lithium cobaltate particulate powder, manufacturing method therefor, and non-aqueous electrolyte secondary battery using the same | |
JPWO2016017783A1 (en) | Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same | |
CN109997260A (en) | Non-aqueous electrolyte secondary battery positive active material and its manufacturing method and the non-aqueous electrolyte secondary battery for having used the positive active material | |
JP2020177860A (en) | Composite hydroxide containing nickel, manganese and cobalt and production method thereof, composite oxide containing lithium, nickel, manganese and cobalt and production method thereof, positive electrode active material for lithium ion secondary battery and production method thereof, and lithium ion secondary battery | |
JP5321802B2 (en) | Lithium cobalt oxide particle powder and method for producing the same, and non-aqueous electrolyte secondary battery | |
CN102754254A (en) | Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery | |
WO2014061580A1 (en) | Process for manufacturing positive electrode active material for lithium secondary battery, and active material precursor powder to be used therein | |
JP6614202B2 (en) | Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same | |
JP6933143B2 (en) | A method for producing a positive electrode active material precursor for a non-aqueous electrolyte secondary battery, a method for producing a positive electrode active material precursor for a non-aqueous electrolyte secondary battery, and a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery. | |
CN104733714B (en) | Modification method of lithium ion battery cathode material | |
JP2014067694A (en) | Method for producing positive electrode active material for lithium secondary battery or precursor thereof | |
JP2022174094A (en) | Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and compact | |
JP2016031854A (en) | Transition metal complex hydroxide particle and manufacturing method thereof, and method for manufacturing positive electrode active material for nonaqueous electrolyte secondary batteries with the same | |
CN108028375B (en) | Positive electrode active material, positive electrode, and lithium ion secondary battery | |
JP2014049407A (en) | Method of manufacturing cathode active material for lithium secondary battery |