[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2014066688A - Eddy current flaw detection probe, and eddy current flaw detection device - Google Patents

Eddy current flaw detection probe, and eddy current flaw detection device Download PDF

Info

Publication number
JP2014066688A
JP2014066688A JP2012214244A JP2012214244A JP2014066688A JP 2014066688 A JP2014066688 A JP 2014066688A JP 2012214244 A JP2012214244 A JP 2012214244A JP 2012214244 A JP2012214244 A JP 2012214244A JP 2014066688 A JP2014066688 A JP 2014066688A
Authority
JP
Japan
Prior art keywords
coil
eddy current
flaw
excitation coil
inspection surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012214244A
Other languages
Japanese (ja)
Inventor
Yoshifuru Saito
兆古 齊藤
Hiroki Kikuchihara
弘基 菊地原
Hideo Mogi
秀夫 茂木
Manabu Ouchi
学 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hosei University
Denshijiki Industry Co Ltd
Original Assignee
Hosei University
Denshijiki Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hosei University, Denshijiki Industry Co Ltd filed Critical Hosei University
Priority to JP2012214244A priority Critical patent/JP2014066688A/en
Publication of JP2014066688A publication Critical patent/JP2014066688A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an eddy current flaw detection probe and an eddy current flaw detection device, capable of accurately detecting a flaw in an inspection surface of a conductor.SOLUTION: An eddy current flaw detection probe 20 of the present invention includes: a first exciting coil 21 disposed so that the coil surface is parallel with an inspection surface 31 of a conductor 30; a second exciting coil 22 that is disposed at a position adjacent to the first exciting coil 21 in the direction along the inspection surface 31 so that the coil surface is parallel with the inspection surface 31 and is wound in the reverse winding direction to that of the first exciting coil 21; and a detection coil 23 disposed between the first exciting coil 21 and second exciting coil 22 so that the coil surface is orthogonal to the inspection surface 31 and the coil surface is parallel with the straight line passing a center P1 of the first exciting coil 21 and a center P2 of the second exciting coil 22.

Description

本発明は、導体の検査面のきずの検査に用いられる渦流探傷プローブ、該渦流探傷プローブを備える渦流探傷装置に関する。   The present invention relates to an eddy current flaw detection probe used for inspection of a flaw on an inspection surface of a conductor, and an eddy current flaw detection apparatus including the eddy current flaw detection probe.

導体の検査面(導体の表面)のきずを検出する検査方法の一例として、渦流探傷方法が公知である。この渦流探傷方法は、励磁コイルに流れる交流電流によって発生する磁束により導体の内部に渦電流を発生させ、その導体の検査面のきずによる渦電流の変化によって生ずる反作用磁束の変化を検出コイルで検出して検査面のきずの有無を判定する方法である。例えば割れきず等が導体の検査面にあると、そのきずを迂回するように渦電流の流れが変化するので、それによって渦電流により発生する反作用磁束にも変化が生ずる。それによって反作用磁束により検出コイルに誘起される電圧も変化するので、その検出コイルに誘起される電圧の変化から検査面のきずの有無を判定することができる。   As an example of an inspection method for detecting a flaw on a conductor inspection surface (conductor surface), an eddy current flaw detection method is known. In this eddy current flaw detection method, an eddy current is generated inside a conductor by a magnetic flux generated by an alternating current flowing in an exciting coil, and a change in reaction magnetic flux caused by a change in eddy current due to a flaw on the inspection surface of the conductor is detected by a detection coil. In this way, the presence or absence of a flaw on the inspection surface is determined. For example, if there is a crack or the like on the inspection surface of the conductor, the flow of the eddy current changes so as to bypass the flaw, so that the reaction magnetic flux generated by the eddy current also changes. As a result, the voltage induced in the detection coil by the reaction magnetic flux also changes, so that the presence or absence of a flaw on the inspection surface can be determined from the change in the voltage induced in the detection coil.

このような渦流探傷方法に用いられる渦流探傷プローブの一例として、コイル面が検査面に平行な励磁コイルの内側に、コイル面が検査面に垂直な検出コイルを配置した所謂Θ型プローブと呼ばれる渦流探傷プローブ、及びその渦流探傷プローブを備える渦流探傷装置が公知である(例えば特許文献1又は2を参照)。   As an example of an eddy current flaw detection probe used in such an eddy current flaw detection method, an eddy current called a Θ type probe in which a detection coil whose coil surface is perpendicular to the inspection surface is arranged inside the excitation coil whose coil surface is parallel to the inspection surface. A flaw detection probe and a eddy current flaw detection apparatus including the eddy current flaw detection probe are known (see, for example, Patent Document 1 or 2).

特開2003−240762号公報JP 2003-240762 A 特開2003−344361号公報JP 2003-344361 A

しかしながら上記従来技術の渦流探傷プローブは、励磁コイルの内側に検出プローブを配置する構造上、励磁コイルが作る磁束は検出コイル面と平行であるため、導体の検査面にきずがないとき、理論的には電圧は誘起されない。つまり上記従来技術の渦流探傷プローブは、理論的には常時検出コイルに電圧が誘起されないが、実際の検出コイルは有限長ソレノイド状に巻かれるため完全に検出コイル面は励磁コイルの作る磁束に平行とならず、導体の検出面にきずがないときでも微小であるが電圧の誘起は免れないため、その検出コイルに誘起される電圧の変化から検査面のきずの有無を判定することになるので、極めて小さなきずを高精度に検出することが難しいという課題がある。   However, the eddy current flaw detection probe of the above prior art has a structure in which the detection probe is arranged inside the excitation coil, and the magnetic flux generated by the excitation coil is parallel to the detection coil surface. No voltage is induced in. In other words, in the above-described prior art eddy current flaw detection probe, no voltage is always induced in the detection coil, but since the actual detection coil is wound in a finite length solenoid, the detection coil surface is completely parallel to the magnetic flux generated by the excitation coil. Even if there is no flaw on the detection surface of the conductor, it is minute but voltage induction is unavoidable, so the presence or absence of flaws on the inspection surface is determined from the change in voltage induced in the detection coil. There is a problem that it is difficult to detect extremely small flaws with high accuracy.

また上記従来技術の渦流探傷プローブにおいて、例えばフェライトコア等の磁性体からなる鉄心を検出コイルや励磁コイルに内挿し、それによって検出コイルにおける誘起電圧の検出感度を高めることは、励磁コイルの内側に検出プローブを配置する構造上、極めて困難である。つまり上記従来技術の渦流探傷プローブは、その構造上の制約から磁束の流れを制御するフェライトコア等の磁性体からなる鉄心を利用できず、検出コイルの検出感度を高めて導体の検査面の探傷精度を向上させることが難しいという課題がある。   In the above-described prior art eddy current flaw detection probe, for example, an iron core made of a magnetic material such as a ferrite core is inserted into a detection coil or an excitation coil, thereby increasing the detection sensitivity of the induced voltage in the detection coil. This is extremely difficult due to the structure in which the detection probe is arranged. In other words, the eddy current flaw detection probe of the above prior art cannot use an iron core made of a magnetic material such as a ferrite core that controls the flow of magnetic flux due to its structural limitations, and increases the detection sensitivity of the detection coil to detect flaws on the inspection surface of the conductor. There is a problem that it is difficult to improve accuracy.

このような状況に鑑み本発明はなされたものであり、その目的は、導体の検査面のきずを高精度に検出可能な渦流探傷プローブ及び渦流探傷装置を提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide an eddy current flaw detection probe and an eddy current flaw detection apparatus that can detect a flaw on a test surface of a conductor with high accuracy.

<本発明の第1の態様>
本発明の第1の態様は、導体の検査面に対してコイル面が平行になるように配置される第1励磁コイルと、前記第1励磁コイルに対して前記検査面に沿う方向に隣り合う位置に、前記検査面に対してコイル面が平行になるように配置され、前記第1励磁コイルと逆の巻方向で巻かれている第2励磁コイルと、前記検査面に対してコイル面が直交し、かつ前記第1励磁コイルの中心及び前記第2励磁コイルの中心を通る直線に対してコイル面が平行になるように、前記第1励磁コイルと前記第2励磁コイルとの間に配置される検出コイルと、を備える渦流探傷プローブである。
<First Aspect of the Present Invention>
A first aspect of the present invention is adjacent to a first excitation coil arranged so that a coil surface is parallel to an inspection surface of a conductor, and a direction along the inspection surface with respect to the first excitation coil. The coil surface is arranged at a position so that the coil surface is parallel to the inspection surface and wound in the winding direction opposite to that of the first excitation coil, and the coil surface with respect to the inspection surface. Arranged between the first excitation coil and the second excitation coil so that the coil surfaces are parallel to a straight line that is orthogonal and passes through the center of the first excitation coil and the center of the second excitation coil. And an eddy current flaw detection probe.

ここで「コイル面」とは、コイルの巻線で囲まれた開口面であり、換言すれば、コイル軸(コイルの中心軸)と直交する面をいう。   Here, the “coil surface” is an opening surface surrounded by windings of the coil, in other words, a surface orthogonal to the coil axis (coaxial axis of the coil).

導体には、第1励磁コイルに流れる励磁電流により生ずる磁束によって、その励磁電流と逆方向の渦電流が流れる。また導体には、第2励磁コイルに流れる励磁電流により生ずる磁束によって、その励磁電流と逆方向の渦電流が流れる。そして第1励磁コイルに対して第2励磁コイルは逆の巻方向で巻かれているので、第1励磁コイルにより生ずる渦電流と第2励磁コイルにより生ずる渦電流は、その電流の方向が逆方向になる。そのため第1励磁コイルにより生ずる渦電流と第2励磁コイルにより生ずる渦電流との境界近傍には、検査面に平行で、かつ第1励磁コイルの中心及び第2励磁コイルの中心を通る直線に対して直交する方向に渦電流の流れが生ずる。つまり検査面に平行で、かつ第1励磁コイルの中心及び第2励磁コイルの中心を通る直線に対して直交する方向に流れる強い渦電流が、検出コイルの真下に発生する。   An eddy current in the direction opposite to the exciting current flows through the conductor due to the magnetic flux generated by the exciting current flowing in the first exciting coil. In addition, an eddy current in the direction opposite to the excitation current flows through the conductor due to the magnetic flux generated by the excitation current flowing in the second excitation coil. Since the second exciting coil is wound in the opposite winding direction with respect to the first exciting coil, the direction of the eddy current generated by the first exciting coil and the eddy current generated by the second exciting coil are opposite to each other. become. Therefore, in the vicinity of the boundary between the eddy current generated by the first excitation coil and the eddy current generated by the second excitation coil, a line parallel to the inspection surface and passing through the center of the first excitation coil and the center of the second excitation coil. Therefore, eddy current flows in the orthogonal direction. That is, a strong eddy current that flows in a direction that is parallel to the inspection surface and orthogonal to a straight line that passes through the center of the first excitation coil and the center of the second excitation coil is generated directly below the detection coil.

そして渦電流による反作用磁束は、その渦電流に直交する方向にしか生じない。そのため第1励磁コイルにより生ずる渦電流と第2励磁コイルにより生ずる渦電流との境界近傍において、その渦電流による反作用磁束は、全て検出コイルのコイル面に平行な磁束となる。したがって検出コイルのコイル面に交差する方向の磁束は零となる。つまり導体の検査面にきずがない状態では、検出コイルに誘起される電圧は零となる。   And the reaction magnetic flux by an eddy current arises only in the direction orthogonal to the eddy current. Therefore, in the vicinity of the boundary between the eddy current generated by the first excitation coil and the eddy current generated by the second excitation coil, the reaction magnetic flux due to the eddy current becomes a magnetic flux parallel to the coil surface of the detection coil. Therefore, the magnetic flux in the direction crossing the coil surface of the detection coil becomes zero. That is, in a state where there is no flaw on the inspection surface of the conductor, the voltage induced in the detection coil is zero.

他方、第1励磁コイルにより生ずる渦電流と第2励磁コイルにより生ずる渦電流との境界近傍において、導体の検査面にきずがあるときには、その部分に、そのきずを迂回するように渦電流が生ずる。それによってそのきずの部分には、検出コイルのコイル面に交差する方向の反作用磁束が生ずることになる。つまり導体の検査面にきずがあるときは、検出コイルに電圧が誘起されることになる。   On the other hand, in the vicinity of the boundary between the eddy current generated by the first exciting coil and the eddy current generated by the second exciting coil, when there is a flaw on the inspection surface of the conductor, an eddy current is generated at that portion so as to bypass the flaw. . As a result, a reaction magnetic flux in a direction intersecting the coil surface of the detection coil is generated in the flaw portion. That is, when there is a flaw on the inspection surface of the conductor, a voltage is induced in the detection coil.

このように本発明に係る渦流探傷プローブは、導体の検査面にきずがない状態では検出コイルの誘起電圧は常に零であり、導体の検査面にきずがあるときだけ、検出コイルに誘起電圧が生ずる。つまり本発明に係る渦流探傷プローブは、検出コイルに生ずる誘起電圧の有無によって導体の検査面のきずの有無を判定することができる。それによって極めて小さなきずを高精度に検出することができる。   Thus, in the eddy current flaw detection probe according to the present invention, the induced voltage of the detection coil is always zero when there is no flaw on the inspection surface of the conductor, and the induced voltage is applied to the detection coil only when there is a flaw on the inspection surface of the conductor. Arise. That is, the eddy current flaw detection probe according to the present invention can determine the presence or absence of a flaw on the inspection surface of the conductor based on the presence or absence of an induced voltage generated in the detection coil. As a result, extremely small flaws can be detected with high accuracy.

これにより本発明の第1の態様によれば、導体の検査面のきずを高精度に検出可能な渦流探傷プローブを提供することができるという作用効果が得られる。   Thereby, according to the 1st aspect of this invention, the effect that the eddy current test probe which can detect the flaw of the test | inspection surface of a conductor with high precision can be provided.

<本発明の第2の態様>
本発明の第2の態様は、前述した本発明の第1の態様において、前記検出コイルに内挿された第1磁性体をさらに備える、ことを特徴とする渦流探傷プローブである。
本発明に係る渦流探傷プローブは、N極とS極を形成する励磁コイル間の中心は磁界がゼロであるから、励磁コイルによる磁界を乱さずにフェライトコア等の磁性体からなる鉄心を検出コイルに内挿することができる。そしてフェライトコア等の磁性体からなる鉄心を検出コイルに内挿することによって、透磁率が大きくなり検出コイルに磁束が通りやすくなる。それによって導体の検査面のきずの検出感度をさらに向上させることができるので、導体の検査面のきずをさらに高精度に検出することができる。
<Second Aspect of the Present Invention>
A second aspect of the present invention is the eddy current flaw detection probe according to the first aspect of the present invention described above, further comprising a first magnetic body inserted into the detection coil.
In the eddy current flaw detection probe according to the present invention, since the magnetic field is zero at the center between the excitation coils forming the N pole and the S pole, an iron core made of a magnetic material such as a ferrite core is detected without disturbing the magnetic field generated by the excitation coil. Can be interpolated. By inserting an iron core made of a magnetic material such as a ferrite core into the detection coil, the magnetic permeability is increased and the magnetic flux easily passes through the detection coil. Thereby, since the detection sensitivity of the flaw on the inspection surface of the conductor can be further improved, the flaw on the inspection surface of the conductor can be detected with higher accuracy.

<本発明の第3の態様>
本発明の第3の態様は、前述した本発明の第1の態様又は第2の態様において、前記第1励磁コイル及び前記第2励磁コイルに内挿された第2磁性体をさらに備える、ことを特徴とする渦流探傷プローブである。
本発明に係る渦流探傷プローブは、N極とS極を形成する励磁コイル間の中心は磁界がゼロであるから、励磁コイルによる磁界を乱さずにフェライトコア等の磁性体からなる鉄心を第1励磁コイル及び第2励磁コイルに内挿することができる。そしてフェライトコア等の磁性体からなる鉄心を第1励磁コイル及び第2励磁コイルに内挿することによって、透磁率が大きくなり第1励磁コイル及び第2励磁コイルに磁束が通りやすくなるので、導体の検査面により多くの磁束を集中させることが可能になる。それによって導体の検査面のきずの検出感度をさらに向上させることができるので、導体の検査面のきずをさらに高精度に検出することができる。
<Third Aspect of the Present Invention>
According to a third aspect of the present invention, in the first aspect or the second aspect of the present invention described above, the first aspect further includes a second magnetic body inserted into the first excitation coil and the second excitation coil. Is an eddy current flaw detection probe characterized by
In the eddy current flaw detection probe according to the present invention, since the magnetic field is zero at the center between the exciting coils forming the N pole and the S pole, the first iron core made of a magnetic material such as a ferrite core is not disturbed by the exciting coil. It can be inserted into the excitation coil and the second excitation coil. By inserting an iron core made of a magnetic material such as a ferrite core into the first excitation coil and the second excitation coil, the magnetic permeability increases and the magnetic flux easily passes through the first excitation coil and the second excitation coil. More magnetic flux can be concentrated on the inspection surface. Thereby, since the detection sensitivity of the flaw on the inspection surface of the conductor can be further improved, the flaw on the inspection surface of the conductor can be detected with higher accuracy.

<本発明の第4の態様>
本発明の第4の態様は、前述した本発明の第1〜第3の態様のいずれかに記載の渦流探傷プローブと、前記第1励磁コイル及び前記第2励磁コイルに交流電力を供給する電源装置と、前記検出コイルに誘起される電圧を測定する電圧測定装置と、を備える渦流探傷装置である。
本発明の第4の態様によれば、渦流探傷装置において、前述した本発明の第1〜第3の態様のいずれかと同様の作用効果が得られる。
<Fourth aspect of the present invention>
According to a fourth aspect of the present invention, there is provided an eddy current flaw detection probe according to any one of the first to third aspects of the present invention described above, and a power supply for supplying AC power to the first excitation coil and the second excitation coil. An eddy current flaw detector comprising: a device; and a voltage measuring device that measures a voltage induced in the detection coil.
According to the fourth aspect of the present invention, in the eddy current flaw detector, the same effect as any of the first to third aspects of the present invention described above can be obtained.

本発明によれば、導体の検査面のきずを高精度に検出可能な渦流探傷プローブ及び渦流探傷装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the eddy current test probe and eddy current test device which can detect the flaw of the test surface of a conductor with high precision can be provided.

本発明に係る渦流探傷装置の構成を図示したブロック図。1 is a block diagram illustrating the configuration of an eddy current flaw detector according to the present invention. 第1実施例の渦流探傷プローブの平面図。The top view of the eddy current flaw detection probe of 1st Example. 第1実施例の渦流探傷プローブの正面図。The front view of the eddy current flaw detection probe of 1st Example. 励磁電流により生じる磁束を模式的に図示した第1実施例の渦流探傷プローブの正面図。The front view of the eddy current flaw detection probe of the 1st example which illustrated typically the magnetic flux which arises by exciting current. 検査面にきずがない状態における渦電流を模式的に図示した平面図。The top view which illustrated typically the eddy current in the state in which there is no crack in a test | inspection surface. 検査面にきずがある状態における渦電流を模式的に図示した平面図。The top view which illustrated typically the eddy current in the state with a crack in a test | inspection surface. 第2実施例の渦流探傷プローブの平面図。The top view of the eddy current test probe of 2nd Example. 第3実施例の渦流探傷プローブの平面図。The top view of the eddy current test probe of 3rd Example. 第3実施例の渦流探傷プローブの正面図。The front view of the eddy current test probe of 3rd Example. 渦流探傷プローブの検出コイルに誘起される電圧の波形図。The wave form diagram of the voltage induced in the detection coil of an eddy current test probe.

以下、本発明の実施の形態について図面を参照しながら説明する。
尚、本発明は、以下説明する実施例に特に限定されるものではなく、特許請求の範囲に記載された発明の範囲内で種々の変形が可能であることは言うまでもない。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
In addition, this invention is not specifically limited to the Example demonstrated below, It cannot be overemphasized that a various deformation | transformation is possible within the range of the invention described in the claim.

<渦流探傷装置の構成>
本発明に係る渦流探傷装置10の構成について、図1を参照しながら説明する。
図1は、渦流探傷装置10の構成を図示したブロック図である。
<Configuration of eddy current flaw detector>
The configuration of the eddy current flaw detector 10 according to the present invention will be described with reference to FIG.
FIG. 1 is a block diagram illustrating the configuration of the eddy current flaw detector 10.

本発明に係る渦流探傷装置10は、交流電源11、電圧測定装置12、表示部13及び渦流探傷プローブ20を備える。   An eddy current flaw detector 10 according to the present invention includes an AC power supply 11, a voltage measuring device 12, a display unit 13, and an eddy current flaw probe 20.

渦流探傷プローブ20は、第1励磁コイル21、第2励磁コイル22及び検出コイル23を含む。第1励磁コイル21及び第2励磁コイル22は、励磁電流による磁束を発生させ、それによって導体に渦電流を発生させるためのコイルである。第1励磁コイル21と第2励磁コイル22は、巻方向が逆になっている。検出コイル23は、導体に流れる渦電流によって発生する反作用磁束を検出するためのコイルである。   The eddy current flaw detection probe 20 includes a first excitation coil 21, a second excitation coil 22, and a detection coil 23. The first excitation coil 21 and the second excitation coil 22 are coils for generating a magnetic flux due to an excitation current and thereby generating an eddy current in the conductor. The first exciting coil 21 and the second exciting coil 22 have opposite winding directions. The detection coil 23 is a coil for detecting the reaction magnetic flux generated by the eddy current flowing in the conductor.

「電源装置」としての交流電源11は、第1励磁コイル21及び第2励磁コイル22に任意の電圧及び周波数の交流電力を供給する。電圧測定装置12は、例えば電圧計等の電圧測定機器を含み、反作用磁束によって検出コイル23に誘起される電圧を測定する。表示部13は、例えば液晶ディスプレイ等の表示機器を含み、電圧測定装置12が測定した検出コイル23の誘起電圧波形を表示する。制御部14は、公知のマイコン制御回路であり、交流電源11、電圧測定装置12及び表示部13を制御する。   The AC power supply 11 as a “power supply device” supplies AC power having an arbitrary voltage and frequency to the first excitation coil 21 and the second excitation coil 22. The voltage measuring device 12 includes a voltage measuring device such as a voltmeter, and measures the voltage induced in the detection coil 23 by the reaction magnetic flux. The display unit 13 includes a display device such as a liquid crystal display, for example, and displays an induced voltage waveform of the detection coil 23 measured by the voltage measuring device 12. The control unit 14 is a known microcomputer control circuit, and controls the AC power supply 11, the voltage measuring device 12, and the display unit 13.

<渦流探傷プローブの第1実施例>
本発明に係る渦流探傷プローブ20の第1実施例について、図2〜図6を参照しながら説明する。
<First embodiment of eddy current flaw detection probe>
A first embodiment of the eddy current flaw detection probe 20 according to the present invention will be described with reference to FIGS.

図2は、第1実施例の渦流探傷プローブ20の平面図である。図3は、第1実施例の渦流探傷プローブ20の正面図である。
渦流探傷プローブ20は、所定の間隔(リフトオフ)をもって導体30の検査面31の上に配置される。第1励磁コイル21は、円環形状のコイルであり、導体30の検査面31に対してコイル面が平行になるように配置される。第2励磁コイル22は、円環形状のコイルであり、第1励磁コイル21に対して検査面31に沿う方向に隣り合う位置に、検査面31に対してコイル面が平行になるように配置される。また第2励磁コイル22は、第1励磁コイル21と逆の巻方向で巻かれている。したがって第2励磁コイル22には、第1励磁コイル21に流れる励磁電流Ie1と逆方向の励磁電流Ie2が流れる。
尚、第1励磁コイル21と第2励磁コイル22は、特に円環形状のコイルに限定されるものではなく、例えば矩形形状のコイル等、どのような形状のコイルでもよい。また第1励磁コイル21と第2励磁コイル22は、同じ形状及び大きさで、同じ巻数及び断面積のコイルとするのが好ましい。
FIG. 2 is a plan view of the eddy current flaw detection probe 20 of the first embodiment. FIG. 3 is a front view of the eddy current flaw detection probe 20 of the first embodiment.
The eddy current flaw detection probe 20 is disposed on the inspection surface 31 of the conductor 30 with a predetermined interval (lift-off). The first excitation coil 21 is an annular coil, and is disposed such that the coil surface is parallel to the inspection surface 31 of the conductor 30. The second excitation coil 22 is an annular coil, and is disposed at a position adjacent to the first excitation coil 21 in the direction along the inspection surface 31 so that the coil surface is parallel to the inspection surface 31. Is done. Further, the second excitation coil 22 is wound in a winding direction opposite to that of the first excitation coil 21. Therefore, the excitation current Ie2 in the direction opposite to the excitation current Ie1 flowing through the first excitation coil 21 flows through the second excitation coil 22.
The first excitation coil 21 and the second excitation coil 22 are not particularly limited to an annular coil, and may be any shape coil such as a rectangular coil. The first exciting coil 21 and the second exciting coil 22 are preferably the same shape and size, and the same number of turns and cross-sectional area.

検出コイル23は、検査面31に対してコイル面が直交し、かつ第1励磁コイル21の中心P1及び第2励磁コイル22の中心P2を通る直線に対してコイル面が平行になるように、第1励磁コイル21と第2励磁コイル22との間に配置される。検出コイル23は、当該実施例においては円環形状のコイルであるが、例えば矩形形状のコイル等、どのような形状のコイルであってもよい。   The coil surface of the detection coil 23 is orthogonal to the inspection surface 31, and the coil surface is parallel to a straight line passing through the center P1 of the first excitation coil 21 and the center P2 of the second excitation coil 22. Arranged between the first excitation coil 21 and the second excitation coil 22. The detection coil 23 is an annular coil in this embodiment, but may be any shape coil such as a rectangular coil.

図4は、第1実施例の渦流探傷プローブ20の正面図であり、励磁電流Ie1と励磁電流Ie2によって生じる磁束を模式的に図示したものである。図5及び図6は、第1実施例の渦流探傷プローブ20の平面図である。図5は、検査面31にきずがない状態において導体30に流れる渦電流を模式的に図示したものであり、図6は、検査面31にきずがある状態において導体30に流れる渦電流を模式的に図示したものである。   FIG. 4 is a front view of the eddy current flaw detection probe 20 of the first embodiment, and schematically shows the magnetic flux generated by the excitation current Ie1 and the excitation current Ie2. 5 and 6 are plan views of the eddy current flaw detection probe 20 of the first embodiment. FIG. 5 schematically illustrates eddy currents flowing through the conductor 30 when there is no flaw on the inspection surface 31, and FIG. 6 schematically illustrates eddy currents flowing through the conductor 30 when there is a flaw on the inspection surface 31. This is schematically illustrated.

第1励磁コイル21に流れる励磁電流Ie1と第2励磁コイル22に流れる励磁電流Ie2は、互いに相反する方向に流れる電流である。そのため渦流探傷プローブ20及び導体30には、図4に図示したような磁束分布が生ずる。また図4に図示した磁束の方向は、交流電流である励磁電流の極性の反転に応じて反転することになる。   The exciting current Ie1 flowing through the first exciting coil 21 and the exciting current Ie2 flowing through the second exciting coil 22 are currents flowing in opposite directions. Therefore, a magnetic flux distribution as shown in FIG. 4 is generated in the eddy current flaw detection probe 20 and the conductor 30. Further, the direction of the magnetic flux illustrated in FIG. 4 is reversed according to the reversal of the polarity of the excitation current which is an alternating current.

導体30には、第1励磁コイル21に流れる励磁電流Ie1により生ずる磁束によって、その励磁電流Ie1と逆方向の渦電流が流れる。また導体30には、第2励磁コイル22に流れる励磁電流Ie2により生ずる磁束によって、その励磁電流と逆方向の渦電流が流れる。そして第1励磁コイル21に対して第2励磁コイル22は逆の巻方向で巻かれているので、第1励磁コイル21により生ずる渦電流と第2励磁コイル22により生ずる渦電流は、その電流の方向が逆方向になる。そのため第1励磁コイル21により生ずる渦電流と第2励磁コイル22により生ずる渦電流との境界近傍には、検査面31に平行で、かつ第1励磁コイル21の中心P1及び第2励磁コイル22の中心P2を通る直線に対して直交する方向に渦電流の流れが生ずる(図5)。つまり検査面31に平行で、かつ第1励磁コイル21の中心P1及び第2励磁コイル22の中心P2を通る直線に対して直交する方向に流れる強い渦電流が、検出コイル23の真下に発生する。   An eddy current in the direction opposite to the excitation current Ie1 flows through the conductor 30 due to the magnetic flux generated by the excitation current Ie1 flowing through the first excitation coil 21. In addition, an eddy current in a direction opposite to the excitation current flows through the conductor 30 due to the magnetic flux generated by the excitation current Ie2 flowing through the second excitation coil 22. Since the second exciting coil 22 is wound in the reverse winding direction with respect to the first exciting coil 21, the eddy current generated by the first exciting coil 21 and the eddy current generated by the second exciting coil 22 are The direction is reversed. Therefore, in the vicinity of the boundary between the eddy current generated by the first excitation coil 21 and the eddy current generated by the second excitation coil 22, the center P1 of the first excitation coil 21 and the second excitation coil 22 are parallel to the inspection surface 31. Eddy current flows in a direction perpendicular to the straight line passing through the center P2 (FIG. 5). That is, a strong eddy current that flows in a direction that is parallel to the inspection surface 31 and orthogonal to a straight line that passes through the center P1 of the first excitation coil 21 and the center P2 of the second excitation coil 22 is generated directly below the detection coil 23. .

そして渦電流による反作用磁束は、その渦電流に直交する方向にしか生じない。そのため第1励磁コイル21により生ずる渦電流と第2励磁コイル22により生ずる渦電流との境界近傍において、その渦電流による反作用磁束は、全て検出コイル23のコイル面に平行な磁束となる。したがって導体30の検査面31にきずがない状態では、検出コイル23のコイル面に交差する方向の磁束は零となるので、検出コイル23に誘起される電圧は零となる。   And the reaction magnetic flux by an eddy current arises only in the direction orthogonal to the eddy current. Therefore, in the vicinity of the boundary between the eddy current generated by the first excitation coil 21 and the eddy current generated by the second excitation coil 22, the reaction magnetic flux due to the eddy current is all a magnetic flux parallel to the coil surface of the detection coil 23. Therefore, in a state where the inspection surface 31 of the conductor 30 is not flawed, the magnetic flux in the direction intersecting the coil surface of the detection coil 23 is zero, so that the voltage induced in the detection coil 23 is zero.

他方、第1励磁コイル21により生ずる渦電流と第2励磁コイル22により生ずる渦電流との境界近傍において、導体30の検査面31にきず32があるときには、その部分の渦電流はそのきず32を迂回するように流れる(図6)。それによってそのきず32の部分には、検出コイル23のコイル面に交差する方向の反作用磁束が生ずることになる。つまり導体30の検査面31にきず32があるときは、検出コイル23に電圧が誘起されることになる。   On the other hand, when there is a flaw 32 on the inspection surface 31 of the conductor 30 in the vicinity of the boundary between the eddy current generated by the first excitation coil 21 and the eddy current generated by the second excitation coil 22, the eddy current in that portion causes the flaw 32 to pass through the flaw 32. It flows in a detour (FIG. 6). As a result, a reaction magnetic flux in a direction intersecting the coil surface of the detection coil 23 is generated in the portion of the flaw 32. That is, when there is a flaw 32 on the inspection surface 31 of the conductor 30, a voltage is induced in the detection coil 23.

このようにして本発明に係る渦流探傷プローブ20は、導体30の検査面31にきず32がない状態では検出コイル23の誘起電圧は常に零であり、検査面31にきず32があるときだけ、検出コイル23に誘起電圧が生ずる。つまり本発明に係る渦流探傷プローブ20は、検出コイル23に生ずる誘起電圧の有無によって検査面31のきず32の有無を判定することができる。それによって極めて小さなきず32を高精度に検出することができる。したがって本発明によれば、導体30の検査面31のきず32を高精度に検出可能な渦流探傷プローブ20を提供することができるという作用効果が得られる。   In this way, in the eddy current flaw detection probe 20 according to the present invention, the induced voltage of the detection coil 23 is always zero in a state where the inspection surface 31 of the conductor 30 has no flaw 32, and only when the inspection surface 31 has the flaw 32, An induced voltage is generated in the detection coil 23. That is, the eddy current flaw detection probe 20 according to the present invention can determine the presence or absence of the flaw 32 on the inspection surface 31 based on the presence or absence of the induced voltage generated in the detection coil 23. As a result, extremely small flaws 32 can be detected with high accuracy. Therefore, according to the present invention, it is possible to provide the eddy current flaw detection probe 20 that can detect the flaw 32 of the inspection surface 31 of the conductor 30 with high accuracy.

<渦流探傷プローブの第2実施例>
本発明に係る渦流探傷プローブ20の第2実施例について、図7を参照しながら説明する。
図7は、第2実施例の渦流探傷プローブ20の平面図である。
第2実施例の渦流探傷プローブ20は、第1実施例に加えて、検出コイル23に内挿された第1磁性体24をさらに備える。第1磁性体24は、円柱体形状であり、例えばフェライトコア等の磁性体からなる鉄心である。それ以外の渦流探傷プローブ20の構成は、第1実施例と同様であるため、同一の構成要素に同一の符合を付して詳細な説明を省略する。
尚、第1磁性体24は、当該実施例においては円柱体形状の磁性体であるが、例えば矩形形状のフェライトコア等、どのような形状の磁性体であってもよい。
<Second embodiment of eddy current flaw detection probe>
A second embodiment of the eddy current flaw detection probe 20 according to the present invention will be described with reference to FIG.
FIG. 7 is a plan view of the eddy current flaw detection probe 20 of the second embodiment.
In addition to the first embodiment, the eddy current flaw detection probe 20 of the second embodiment further includes a first magnetic body 24 inserted in the detection coil 23. The first magnetic body 24 has a cylindrical shape and is an iron core made of a magnetic body such as a ferrite core. The rest of the configuration of the eddy current flaw detection probe 20 is the same as that of the first embodiment, and therefore, the same components are denoted by the same reference numerals and detailed description thereof is omitted.
The first magnetic body 24 is a cylindrical magnetic body in this embodiment, but may be any shape of magnetic body such as a rectangular ferrite core.

このように本発明に係る渦流探傷プローブ20は、第1励磁コイル21及び第2励磁コイル22の中間で磁界がゼロとなる位置に検出コイル23が配置されているので、第1磁性体24を検出コイル23に内挿することができる。そして第1磁性体24を検出コイル23に内挿することによって、透磁率が大きくなり検出コイル23に磁束が通りやすくなる。それによって導体30の検査面31のきず32の検出感度をさらに向上させることができるので、導体30の検査面31のきず32をさらに高精度に検出することができる。   As described above, in the eddy current flaw detection probe 20 according to the present invention, since the detection coil 23 is disposed at a position where the magnetic field is zero between the first excitation coil 21 and the second excitation coil 22, the first magnetic body 24 is provided. It can be inserted into the detection coil 23. Then, by inserting the first magnetic body 24 into the detection coil 23, the magnetic permeability increases and the magnetic flux easily passes through the detection coil 23. Accordingly, the detection sensitivity of the flaw 32 on the inspection surface 31 of the conductor 30 can be further improved, so that the flaw 32 on the inspection surface 31 of the conductor 30 can be detected with higher accuracy.

<渦流探傷プローブの第3実施例>
本発明に係る渦流探傷プローブ20の第3実施例について、図8及び図9を参照しながら説明する。
図8は、第3実施例の渦流探傷プローブ20の平面図である。図9は、第3実施例の渦流探傷プローブ20の正面図である。
第3実施例の渦流探傷プローブ20は、第2実施例に加えて、第1励磁コイル21及び第2励磁コイル22に内挿された第2磁性体25をさらに備える。第2磁性体25は、図示の如く、ほぼU字形状であり、例えばフェライトコア等の磁性体からなる鉄心である。より具体的には第2磁性体25は、一端側が第1励磁コイル21に内挿されており、他端側が第2励磁コイル22に内挿されている。それ以外の渦流探傷プローブ20の構成は、第2実施例と同様であるため、同一の構成要素に同一の符合を付して詳細な説明を省略する。
<Third embodiment of eddy current flaw detection probe>
A third embodiment of the eddy current flaw detection probe 20 according to the present invention will be described with reference to FIGS.
FIG. 8 is a plan view of the eddy current flaw detection probe 20 of the third embodiment. FIG. 9 is a front view of the eddy current flaw detection probe 20 of the third embodiment.
In addition to the second embodiment, the eddy current flaw detection probe 20 of the third embodiment further includes a second magnetic body 25 inserted in the first excitation coil 21 and the second excitation coil 22. As illustrated, the second magnetic body 25 is substantially U-shaped, and is an iron core made of a magnetic body such as a ferrite core. More specifically, one end side of the second magnetic body 25 is inserted into the first excitation coil 21, and the other end side is inserted into the second excitation coil 22. The rest of the configuration of the eddy current flaw detection probe 20 is the same as that of the second embodiment, and therefore, the same components are denoted by the same reference numerals and detailed description thereof is omitted.

このように本発明に係る渦流探傷プローブ20は、第1励磁コイル21及び第2励磁コイル22の外側に検出コイル23が配置されているので、第1励磁コイル21及び第2励磁コイル22に第2磁性体25を内挿することができる。そして第1励磁コイル21及び第2励磁コイル22に第2磁性体25を内挿することによって、透磁率が大きくなり第1励磁コイル21及び第2励磁コイル22に磁束が通りやすくなるので、検出コイル23により多くの磁束を集中させることが可能になる。それによって導体30の検査面31のきず32の検出感度をさらに向上させることができるので、導体30の検査面31のきず32をさらに高精度に検出することができる。   As described above, in the eddy current flaw detection probe 20 according to the present invention, since the detection coil 23 is disposed outside the first excitation coil 21 and the second excitation coil 22, the first excitation coil 21 and the second excitation coil 22 are connected to the first excitation coil 21 and the second excitation coil 22. Two magnetic bodies 25 can be inserted. Then, by inserting the second magnetic body 25 into the first excitation coil 21 and the second excitation coil 22, the magnetic permeability is increased, and the magnetic flux easily passes through the first excitation coil 21 and the second excitation coil 22. The coil 23 can concentrate a large amount of magnetic flux. Accordingly, the detection sensitivity of the flaw 32 on the inspection surface 31 of the conductor 30 can be further improved, so that the flaw 32 on the inspection surface 31 of the conductor 30 can be detected with higher accuracy.

<確認実験>
出願人らは、本発明の効果を確認すべく、渦流探傷装置10を用いて、本発明の第1実施例及び第2実施例の渦流探傷プローブ20のそれぞれについて、導体30の検査面31のきず32を検出する実験を行った。
<Confirmation experiment>
In order to confirm the effect of the present invention, the applicants use the eddy current flaw detection apparatus 10 to check the inspection surface 31 of the conductor 30 for each of the eddy current flaw detection probes 20 of the first embodiment and the second embodiment of the present invention. An experiment was conducted to detect flaw 32.

1.第1実施例の渦流探傷プローブ20
第1励磁コイル21、第2励磁コイル22及び検出コイル23は、いずれも内径60mm、外径60.4mmの円環状のコイルで、直径0.1mmの巻線を100ターン巻いた2層コイルとした。
1. Eddy current flaw detection probe 20 of the first embodiment
The first excitation coil 21, the second excitation coil 22, and the detection coil 23 are all annular coils having an inner diameter of 60 mm and an outer diameter of 60.4 mm, and a two-layer coil in which a winding having a diameter of 0.1 mm is wound 100 turns. did.

2.第2実施例の渦流探傷プローブ20
第1励磁コイル21及び第2励磁コイル22は、内径20mm、外径23mmの円環状のコイルで、直径0.4mmの巻線を75ターン巻いた3層コイルとした。検出コイル23は、内径1mm×2mm、外径1.4mm×2.4mm、長さ6mmの矩形形状のコイルとした。また検出コイル23は、幅1mm×高さ2mm×長さ10mmのMnZnフェライトからなる第1磁性体24を内挿し、これに直径0.1mmの巻線を100ターン巻いた2層コイルとした。
2. Eddy current flaw detection probe 20 of the second embodiment
The first excitation coil 21 and the second excitation coil 22 are annular coils having an inner diameter of 20 mm and an outer diameter of 23 mm, and are three-layer coils in which a winding having a diameter of 0.4 mm is wound by 75 turns. The detection coil 23 was a rectangular coil having an inner diameter of 1 mm × 2 mm, an outer diameter of 1.4 mm × 2.4 mm, and a length of 6 mm. The detection coil 23 was a two-layer coil in which a first magnetic body 24 made of MnZn ferrite having a width of 1 mm, a height of 2 mm, and a length of 10 mm was inserted, and a winding having a diameter of 0.1 mm was wound 100 turns.

3.導体30の構成及び実験手順
導体30は、厚さ約1mmの銅板とし、幅2mm程度のスリット状の欠損を設け、それを検査面31のきず32とした。交流電源11から第1励磁コイル21及び第2励磁コイル22へ印加する交流電圧は、約9V(実効値)の交流電圧とし、周波数は、渦流探傷において標準的に用いられている256KHzとした。そして検査面31にきず32がない状態、及び検査面31にきず32がある状態についてきず32の角度を0度、45度、90度として、それぞれ検出コイル23の誘起電圧波形を観測した。
3. Configuration of Conductor 30 and Experimental Procedure The conductor 30 was a copper plate having a thickness of about 1 mm, a slit-shaped defect having a width of about 2 mm was provided, and this was used as a flaw 32 on the inspection surface 31. The AC voltage applied from the AC power supply 11 to the first excitation coil 21 and the second excitation coil 22 was an AC voltage of about 9 V (effective value), and the frequency was 256 KHz, which is normally used in eddy current flaw detection. Then, the induced voltage waveform of the detection coil 23 was observed with the angle of the flaw 32 being 0 degrees, 45 degrees, and 90 degrees in the state where the flaw 32 was not present on the inspection surface 31 and the state where the flaw 32 was present on the inspection surface 31.

4.実験結果及び考察
図10は、渦流探傷プローブ20の検出コイル23の誘起電圧波形である。一点鎖線の波形は、きず32の角度が0度及び90度のときの誘起電圧波形であり、実線の波形は、きず32の角度が45度のときの誘起電圧波形である。
4). Experimental Results and Discussion FIG. 10 shows an induced voltage waveform of the detection coil 23 of the eddy current flaw detection probe 20. The one-dot chain line waveform is an induced voltage waveform when the angle of the flaw 32 is 0 degrees and 90 degrees, and the solid line waveform is an induced voltage waveform when the angle of the flaw 32 is 45 degrees.

検査面31にきず32がない状態では、ノイズ等による高周波のわずかな誘起電圧(図示せず)が検出されるだけであった。他方、検査面31にきず32があるときは、きず32の角度が0度、45度、90度のいずれの場合も周波数256KHzの誘起電圧がはっきりと検出された。またきず32の角度が0度及び90度のときと比較して、きず32の角度が45度のときの方が、より高い誘起電圧が検出された。これはきず32の角度が0度及び90度のときは、きず32の周辺において相互に打ち消し合う方向に流れる渦電流が多くなるためと考えられる。   In the state where there were no flaws 32 on the inspection surface 31, only a slight high-frequency induced voltage (not shown) due to noise or the like was detected. On the other hand, when there was a flaw 32 on the inspection surface 31, an induced voltage with a frequency of 256 KHz was clearly detected when the angle of the flaw 32 was 0 degree, 45 degree, or 90 degree. Further, a higher induced voltage was detected when the angle of the scratch 32 was 45 degrees than when the angle of the scratch 32 was 0 degrees and 90 degrees. This is presumably because when the angle of the scratch 32 is 0 degree and 90 degrees, eddy currents flowing in directions that cancel each other around the scratch 32 increase.

また第1実施例の渦流探傷プローブ20における検出コイル23の誘起電圧波形は、きず32の角度が0度及び90度のときのピーク電圧が約±0.02Vであり、きず32の角度が45度のときのピーク電圧が約±0.2Vであった。それに対して第2実施例の渦流探傷プローブ20における検出コイル23の誘起電圧波形は、きず32の角度が0度及び90度のときのピーク電圧が約±0.04Vであり、きず32の角度が45度のときのピーク電圧が約±0.4Vであった。これは第2実施例の検出コイル23には第1磁性体24が内挿されており、それによって透磁率が大きくなって検出コイル23に磁束が通りやすくなったことで、検出コイル23によるきず32の検出感度が向上したためと考えられる。   In the induced voltage waveform of the detection coil 23 in the eddy current flaw detection probe 20 of the first embodiment, the peak voltage when the angle of the flaw 32 is 0 degrees and 90 degrees is about ± 0.02 V, and the angle of the flaw 32 is 45. The peak voltage at the time was about ± 0.2V. On the other hand, in the induced voltage waveform of the detection coil 23 in the eddy current flaw detection probe 20 of the second embodiment, the peak voltage when the angle of the flaw 32 is 0 degree and 90 degrees is about ± 0.04 V, and the angle of the flaw 32 is The peak voltage when the angle was 45 degrees was about ± 0.4V. This is because the first magnetic body 24 is inserted into the detection coil 23 of the second embodiment, thereby increasing the magnetic permeability and making it easier for the magnetic flux to pass through the detection coil 23, so that the flaws caused by the detection coil 23 can be prevented. This is considered to be because the detection sensitivity of 32 was improved.

このようにして本発明に係る渦流探傷プローブ20は、検出コイル23に生ずる誘起電圧の有無によって検査面31のきず32の有無を判定することができることが確認された。つまり本発明に係る渦流探傷プローブ20によれば、導体30の検査面31のきず32を高精度に検出できるという作用効果が得られることが確認された。またリフトオフ(センサと被検査体との間隔)を変えながら検査面31のきず32を検出する実験も行ったところ、リフトオフを5mm程度設けても検査面31のきず32をはっきりと検出できることが確認された。   Thus, it was confirmed that the eddy current flaw detection probe 20 according to the present invention can determine the presence or absence of the flaw 32 on the inspection surface 31 based on the presence or absence of the induced voltage generated in the detection coil 23. That is, according to the eddy current flaw detection probe 20 according to the present invention, it was confirmed that the effect of being able to detect the flaw 32 on the inspection surface 31 of the conductor 30 with high accuracy was obtained. In addition, an experiment was carried out to detect a flaw 32 on the inspection surface 31 while changing the lift-off (interval between the sensor and the object to be inspected). As a result, it was confirmed that the flaw 32 on the inspection surface 31 could be detected clearly even if a lift-off of about 5 mm was provided. It was done.

10 渦流探傷装置
11 交流電源
12 電圧測定装置
13 表示部
14 制御部
20 渦流探傷プローブ
21 第1励磁コイル
22 第2励磁コイル
23 検出コイル
24 第1磁性体
25 第2磁性体
30 導体
31 導体の検査面
32 検査面のきず
DESCRIPTION OF SYMBOLS 10 Eddy current flaw detector 11 AC power supply 12 Voltage measuring device 13 Display part 14 Control part 20 Eddy current flaw detection probe 21 1st excitation coil 22 2nd excitation coil 23 Detection coil 24 1st magnetic body 25 2nd magnetic body 30 Conductor 31 Inspection of conductor Surface 32 Inspection surface flaw

Claims (4)

導体の検査面に対してコイル面が平行になるように配置される第1励磁コイルと、
前記第1励磁コイルに対して前記検査面に沿う方向に隣り合う位置に、前記検査面に対してコイル面が平行になるように配置され、前記第1励磁コイルと逆の巻方向で巻かれている第2励磁コイルと、
前記検査面に対してコイル面が直交し、かつ前記第1励磁コイルの中心及び前記第2励磁コイルの中心を通る直線に対してコイル面が平行になるように、前記第1励磁コイルと前記第2励磁コイルとの間に配置される検出コイルと、を備える渦流探傷プローブ。
A first excitation coil arranged such that the coil surface is parallel to the inspection surface of the conductor;
The coil surface is arranged parallel to the inspection surface at a position adjacent to the first excitation coil in the direction along the inspection surface, and wound in a winding direction opposite to that of the first excitation coil. A second exciting coil,
The first exciting coil and the first exciting coil are arranged so that the coil surface is orthogonal to the inspection surface and the coil surface is parallel to a straight line passing through the center of the first exciting coil and the center of the second exciting coil. An eddy current flaw detection probe comprising: a detection coil disposed between the second excitation coil.
請求項1に記載の渦流探傷プローブにおいて、前記検出コイルに内挿された第1磁性体をさらに備える、ことを特徴とする渦流探傷プローブ。   The eddy current test probe according to claim 1, further comprising a first magnetic body inserted in the detection coil. 請求項1又は2に記載の渦流探傷プローブにおいて、前記第1励磁コイル及び前記第2励磁コイルに内挿された第2磁性体をさらに備える、ことを特徴とする渦流探傷プローブ。   3. The eddy current flaw detection probe according to claim 1, further comprising a second magnetic body inserted in the first excitation coil and the second excitation coil. 4. 請求項1〜3のいずれかに記載の渦流探傷プローブと、
前記第1励磁コイル及び前記第2励磁コイルに交流電力を供給する電源装置と、
前記検出コイルに誘起される電圧を測定する電圧測定装置と、を備える渦流探傷装置。
The eddy current flaw detection probe according to any one of claims 1 to 3,
A power supply device for supplying AC power to the first excitation coil and the second excitation coil;
An eddy current flaw detector comprising: a voltage measuring device that measures a voltage induced in the detection coil.
JP2012214244A 2012-09-27 2012-09-27 Eddy current flaw detection probe, and eddy current flaw detection device Pending JP2014066688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012214244A JP2014066688A (en) 2012-09-27 2012-09-27 Eddy current flaw detection probe, and eddy current flaw detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012214244A JP2014066688A (en) 2012-09-27 2012-09-27 Eddy current flaw detection probe, and eddy current flaw detection device

Publications (1)

Publication Number Publication Date
JP2014066688A true JP2014066688A (en) 2014-04-17

Family

ID=50743232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012214244A Pending JP2014066688A (en) 2012-09-27 2012-09-27 Eddy current flaw detection probe, and eddy current flaw detection device

Country Status (1)

Country Link
JP (1) JP2014066688A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016133459A (en) * 2015-01-21 2016-07-25 学校法人法政大学 Eddy current testing probe, Eddy current testing equipment
EP3321671A4 (en) * 2015-07-09 2019-01-09 Hitachi High-Technologies Corporation RAIL INSPECTION DEVICE AND RAIL INSPECTION SYSTEM
EP3561501A4 (en) * 2016-12-21 2020-08-12 Hitachi High-tech Fine Systems Corporation RAIL INSPECTION SYSTEM

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263946A (en) * 2006-03-03 2007-10-11 Hitachi Ltd Eddy current flaw detection sensor and eddy current flaw detection method
JP2010054352A (en) * 2008-08-28 2010-03-11 Hitachi Ltd Eddy current flaw detection method, eddy current flaw detection probe, and eddy current flaw detection device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263946A (en) * 2006-03-03 2007-10-11 Hitachi Ltd Eddy current flaw detection sensor and eddy current flaw detection method
JP2010054352A (en) * 2008-08-28 2010-03-11 Hitachi Ltd Eddy current flaw detection method, eddy current flaw detection probe, and eddy current flaw detection device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016133459A (en) * 2015-01-21 2016-07-25 学校法人法政大学 Eddy current testing probe, Eddy current testing equipment
EP3321671A4 (en) * 2015-07-09 2019-01-09 Hitachi High-Technologies Corporation RAIL INSPECTION DEVICE AND RAIL INSPECTION SYSTEM
US10591442B2 (en) 2015-07-09 2020-03-17 Hitachi High-Technologies Corporation Rail check device and rail check system
EP3561501A4 (en) * 2016-12-21 2020-08-12 Hitachi High-tech Fine Systems Corporation RAIL INSPECTION SYSTEM
US10989694B2 (en) 2016-12-21 2021-04-27 Hitachi High-Tech Fine Systems Corporation Rail inspection system

Similar Documents

Publication Publication Date Title
CN103733060B (en) Magnetic method of detection and magnetic fault detector
KR20170120167A (en) Rope damage diagnosis test equipment and rope damage diagnosis test method
JP2013205024A (en) Detector for non-destructive examination employing alternating field
JP5156432B2 (en) Eddy current sample measurement method and eddy current sensor
CN102483391B (en) Method for inspecting an austenitic stainless steel weld
JP2015102513A (en) Metallic foreign matter detection device, and eddy current flaw detector
JP5851783B2 (en) Eddy current testing probe
JP6452880B1 (en) Method and apparatus for inspecting flaws or defects in tubular body
KR101339117B1 (en) Apparatus and method for detecting the defects of reverse side using pulsed eddy current
CN104569142A (en) U-shaped detection probe based on AC magnetic field detection and detection method
JP2014066688A (en) Eddy current flaw detection probe, and eddy current flaw detection device
EP1674861A1 (en) Eddy current probe and inspection method comprising a pair of sense coils
JP4117645B2 (en) Eddy current testing probe and eddy current testing equipment for magnetic materials
JP2016057225A (en) Eddy current flaw detection sensor device
JP2003232776A (en) Eddy current flaw detecting apparatus and method
JP6601226B2 (en) Magnetic flux leakage flaw detector
JP4192708B2 (en) Magnetic sensor
JP2016133459A (en) Eddy current testing probe, Eddy current testing equipment
JP2016197085A (en) Magnetic flaw detection method
CN203758961U (en) U-shaped detection probe based on detection of alternating current electromagnetic field
KR20190061933A (en) Lissajour curve display apparatus using magnetic sensor array
JP2013185951A (en) Magnetic flaw detection probe
RU103926U1 (en) ELECTROMAGNETIC CONVERTER TO DEFECTOSCOPE
JP2012026806A (en) Remote field eddy current flow detector, and method
JP2013104857A (en) Electromagnetic type checkup method and electromagnetic type checkup apparatus

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140820

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20141016

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150114